Functions as Passive Constraints in LIFE

HASSAN AIT-KACI and ANDREAS PODELSKI
Digital Equipment Corporation

LIFE is a programming language proposing to integrate logic programming, functional programming, and
object-oriented programming. It replaces first-order terms with «4-terms, data structures that allow computing
with partial information. These are approximation structures denoting sets of values. LIFE further enriches the
expressiveness of 1)-terms with functional dependency constraints. We must explain the meaning and use of
functions in LIFE declaratively, as solving partial information constraints. These constraints do not attempt to
generate their solutions but behave as demons filtering out anything else. In this manner, LIFE functions act
as declarative coroutines. We need to show that the +-term’s approximation semantics is congruent with an
operational semantics viewing functional reduction as an effective enforcing of passive constraints. In thisarticle,
we develop a general formal framework for entailment and disentailment of constraints based on a technique
called relative smplification. We study its operational and semantical properties, and we use it to account for
functional application over i-termsin LIFE.

Categories and Subject Descriptors: D. [Software]: Programming Techniques, D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory---semantics; syntax; D.3.2 [Programming Languages]: Language
Classifications---applicative languages; concurrent, distributed, and parallel languages; nonprocedural lan-
guages; D.3.3 [Programming Languages]: Language Constructs and Features---concurrent programming
structures; coroutines; data types and structures; E. [Data]: Data Structures---graphs; trees

General terms. Design, Languages

Additional Key Words and Phrases: 1-terms, committed-choice languages, concurrent constraint programming,
coroutining, first-order terms, matching, relative simplification, residuation, unification

The paradox of culture is that language[...] is too linear, not comprehensive
enough, too slow, too limited, too constrained, too unnatural, too much a
product of its own evolution, and too artificial. This means that [man] must
constantly keep in mind the limitations language places upon him.

Epwarp T. HaLL, Beyond Culture.

1. INTRODUCTION

Logic programming frameworks that exploit the separation of relational resolution and
constraint solving have recently been introduced. Among the preeminent, Constraint Logic
Programming (CLP) [Jaffar and Lassez 1987], the guarded Horn clause scheme of Maher
(ALPS) [Maher 1987], Concurrent Constraint Programming (CCP) [Saraswat and Rinard
1990], and Kernel AndorraProlog (KAP) [Haridi and Janson 1990] do soto afull extent by
being parameterized with respect to an abstract class of constraint systems. Additionally,
ALPS, CCP, and KAP require atest for entailment and disentailment between constraints.
Thisyieldsadvanced control mechanismssuch as coroutining and synchronization through

Authors' addresses: H. Ait-Kaci, School of Computing Science, Simon Fraser University, Burnaby, British
Columbia, V5A 1S6, Canada; email: hak@cs.sfu.ca; A. Podelski, Digital Equipment Corporation, Paris Research
Laboratory, 85 avenue Victor Hugo, 92563 Rueil-Ma maison Cedex, France; email: podel ski @prl.dec.com.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires afee and/or specific permission.

© 1994 ACM 0164-0925/94/0000-0000 $0.00

ACM Transactions on Programming L anguages and Systems, VVol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1275

committed choice and deep constraint propagation.

LIFE [Ait-Kaci and Podelski 1993b] is a CLP language over order-sorted feature
constraints augmented with effective functional dependencies. Evaluating functional
dependencies involves constraint entailment/disentailment since passing arguments to
functions is done by matching as opposed to unification. Thus, LIFE employs a related,
but limited, suspension scheme called residuation to enforce deterministic functional
application. In thiswork, we extend the guarded Horn clause scheme of Maher [1987] and
present alogical semantics of the general residuation scheme used in LIFE.

This will involve three things essentially. First, we will develop a general residuation
framework for guarded Horn clauses over arbitrary constraint systemswith an incremental
constraint simplification system. Doing so, we will give alogical reading of guarded rules
asfirst-order formulae and exhibit operational and semantical properties of the framework.
Second, we will develop a correct and complete operational scheme for testing entailment
and disentailment of order-sorted feature constraints. To that end, we will introduce a
general technique, which we dub relative simplification, that amounts to normalizing a
formulain the context of another. Last, we will use this genera residuation framework
on the particular instance of functional application over the order-sorted features terms of
LIFE. In particular, we will characterize functional application over LIFE’s structuresin
terms of their logical, set-theoretic, and algebraic accounts.

1.1 The Task
LIFE extends the computational paradigm of logic programming in two essential ways:

---using a data structure richer than that provided by first-order constructor terms, and
---allowing interpretable functional expressions as bona fide terms.

Thefirst extensionisbased on y-terms, which are attributed partially ordered sortsdenoting
sets of objects[Ait-Kaci 1986; Ait-Kaci and Nasr 1986]. In particular, 1-terms generalize
first-order constructor terms in their role as data structures in that they are endowed
with a unification operation denoting set intersection. This gives an elegant means to
incorporate a cal culus of multipleinheritance into symbolic programming. Importantly, the
denotation-as-value of constructor terms is replaced by the denotation-as-approximation
of ¢-terms. As aresult, the notion of afully defined element, or ground term, is no longer
available. Hence, familiar tools such as variable substitutions, instantiation, unification,
etc. must be reformulated in the new setting [Ait-Kaci and Podelski 1993b].

The second extension deal swith building into the unification operation ameansto reduce
functional expressions using definitions of interpretable symbols over data patterns. Our
basicideaisthat unificationisno longer seen as an atomic operation by theresolution rule.
Indeed, since unification amountsto normalizing a conjunction of equations, and sincethis
normalization process commutes with resolution, these equations may be left in a normal
form that is not a fully solved form. In particular, if an equation involves a functional
expression whose arguments are not sufficiently instantiated to match adefiniendumpattern
of the function in question, it is simply left untouched. Resolution may proceed until the
arguments are proven to match a definition from the accumulated constraintsin the context

1Several patterns specifying a same function may possibly have overlapping denotations. Therefore, the order of
the specified patterns defines an implicit priority, asisusual in functional programming using first-order patterns
(e.g., Harper et al. [1988]).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1276 . H. Ait-Kaci and A. Podelski

[Ait-Kaci and Nasr 1989]. Thissimpleideaturnsout invaluablein practice. Here are afew
benefits.

---Such nondeclarative heresies as the is predicate in Prolog and the freeze metapredicate
in some of its extensions[Colmerauer 1982b; Naish 1986] are not needed.

---Functional computations are determinate and do not incur the overhead of the search
strategy needed by logic programming.

---Higher-order functions are easy to return or pass as arguments since functional variables
can be bound to partialy applied functions.

---Functions can be called before the arguments are known, freeing the programmer from
having to know what the data dependencies are.

---It provides a powerful search-space pruning facility by changing ‘‘ generate-and-test’’
search into demon-controlled *‘ test-and-generate’ ' search.

---Communication with the external world is made simple and clean [Bonnier and
Maluszyhski 1988].

---More generally, it alows concurrent computation. Synchronization is obtained by
checking entailment [Maher 1987; Saraswat and Rinard 1990].

Therearetwo orthogonal dimensionsto elucidate regarding the use of functionsin LIFE:

---characterizing functions as approximation-driven coroutines, and
---constructing a higher-order model of LIFE approximation structures.

This article is concerned only with the first item, and therefore considers the case of
first-order rules defining partial functions over ¢-terms.

1.2 The Method

The most direct way to explain the issue is with an example. In LIFE, we can define
functions as usual; say:

fact(0) — 1
fact(N : int) — N * fact(N — 1).

More interesting is the possibility to compute with partial information. For example:

minus(negint) — posint.
minus(posint) — negint.
minus(zero) — zero.

Let us assume that the symbols int, posint, negint, and zero have been defined as sorts
with the approximation ordering such that posint, zero, negint are pairwise incompatible
subsorts of the sort int (i.e., posint A zero = L, negint A zero = L, posint A negint =).
Thisisdeclaredin LIFE asint := {posint; zero; negint}. Furthermore, we assume the sort
definition posint := {posodd; poseven}, i.e., posodd and poseven are subsorts of posint
and mutually incompatible.

The LIFE query Y = minus(X : poseven)? will return Y = negint. The sort poseven of
the actual parameter is incompatible with the sort negint of the formal parameter of the
first rule defining the function minus. Therefore that rule is skipped. The sort poseven is
more specific than the sort posint of the formal parameter of the second rule. Hence, that
ruleis applicable and yieldstheresult Y = negint.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1277

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is incompatible
with the sort of the formal parameter of every rule defining minus.

Thus, in order to determine which of the rules, if any, defining the function in a given
functional expression will be applied, two tests are necessary:

---verify whether the actual parameter is more specific than or equal to the formal
parameter;

---verify whether the actual parameter isat all compatible with the formal parameter.

What happensif both of these tests fail? For example, consider the query consisting of
the conjunction:

Y = minus(X: int), X = minus(zero)?

Like Prolog, LIFE follows a left-to-right resolution strategy and examines the equation
Y = minus(X : int) first. However, both foregoing testsfail, and deciding which ruleto use
among those defining minus is inconclusive. Indeed, the sort int of the actual parameter
in that cal is neither more specific than, nor incompatible with, the sort negint of the
first rule’sformal parameter. Therefore, the function call will residuate on the variable X.
This means that the functional evaluation is suspended pending more information on X.
The second goal in the query is treated next. There, it is found that the actual parameter
is incompatible with the first two rules and is the same as the last rule’s. This allows
reduction and binds X to zero. At this point, X has been instantiated, and therefore the
residual equation pending on X can be reexamined. Again, as before, aredex is found for
thelast rule and yields Y = zero.

The two tests above can in fact be worded in a more general setting. Viewing
data structures as constraints, ‘‘more specific’’ is simply a particular case of constraint
entailment. We will say that a constraint disentails another whenever their conjunction is
unsatisfiable, or, equivalently, whenever it entails its negation. In particular, first-order
matching is the process of deciding entailment between constraints consisting of equations
over first-order terms. Similarly, deciding unifiability of first-order terms amounts to
deciding *‘ compatibility’’ in the sense used informally above.

The suspension/resumption mechanism illustrated in our exampleis repesated each time
a residuated actual parameter becomes more instantiated from the context, i.e., through
solving other partsof thequery. Therefore, itismost beneficial for apractical algorithm that
tests entailment and disentailment to be incremental. This means that, upon resumption,
the test for the instantiated actual parameter builds upon partial results obtained by the
previous test. One outcome of the results presented in this article is that it is possible
to build such atest, namely, an algorithm deciding simultaneously two problems in an
incremental manner---entailment and disentailment. Relative simplification of constraints
is the technique that we have devised to do that.

Consequently, although motivated by our concern for LIFE, this technique is relevant
to general concurrent constraint logic programming, whose paradigm of concurrency rests
on a new effective discipline for procedure parameter passing that can be described as
‘*call-by-constraint entailment’’ (as opposed to Prolog’ s call-by-unification).

1.3 Relation to Other Work

It isimportant that we situate the contribution of thisarticle with respect to those of others.
Indeed, there are some subtle issues that may cause confusion and need to be explicated.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1278 . H. Ait-Kaci and A. Podelski

What we recount has close ties with the ALPS system of Maher [1987] and the
work of Smolka [1991] characterizing residuation in terms of guarded rules. The main
contribution of Maher was the formal insight explaining (1) the commit condition in the
residuation mechanism as logical entailment of the guard constraint and (2) reduction
via the residuation mechanism as equivalence transformations. As a result, he could
give committed-choice languages alogical semantics. Smolka introduced the notion of a
guarded rule. Such arule expresses directly that its (atomic) head is equivalent to its body
if and only if its guard is entailed by the context. Hence, the residuation mechanism itself
isthereby justified logically.

In both Maher's and Smolka's schemes, a program has two components. The first
component consists of a Horn clause program from which one derives the denotational
semantics. The operational semanticsisderived fromthe other component. Thiscomponent
consists either (1) of guarded Horn clauses (which one obtains from the syntax of Horn
clausesby explicitly writing one conjunction symbol asthe guard operator) or (2) of guarded
rules (which one adds to the Horn clause program, in accordance with its denotational
semantics). There is an issue as to whether this dichotomy is at all necessary. It would
better to have a single view of a program having only one component (consisting of
first-order logic formulae without special symbols for control annotations) which declares
the denotational and the operational semantics. This is indeed what is achieved by our
scheme.

It iswell known that, in general, committed-choice programs do not have a declarative
semantics? That is, a predicate definition with two or more clauses cannot in general be
trandlated to a consistent first-order formula (i.e., with a nontrivial model). We give here
a necessary and sufficient condition when this is yet the case. That is, we characterize
committed-choice programs which do have a consistent denotational semantics. Roughly,
this condition is acompatibility and a closed-world assumption on the guards. Importantly,
this result extends the declarative semantics results of Maher [1987] for the case of
incompatible guards to the more general case of compatible guards. Given a guarded
Horn clause program satisfying the compatibility condition, one can give aprogram in our
scheme with equivalent operational semantics (and with a denotational semantics).

The other contribution of our scheme is to describe formally a general implementation
technique for proving guards incrementally, called relative simplification, and to incor-
porate it with the delay mechanism. We have abstracted its essential properties from
the systems that we have developed for proving guards in two specific contexts: one for
(unsorted) feature logic [Ait-Kaci et al. 1994] and the one we report in this article for the
order-sorted case (i.e., the system of Section 3, presented in abridged form by Ait-Kaci and
Podelski [19934]). In the operational semantics of their respective schemes, Maher [1987]
and Smolka [1991] do not deal with practical proofs of guards. In particular, Smolka
formulates the proof of entailment of the guard as the simplification of the conjunction of
the context constraint and the negated guard constraint to false. Regarding implementation,
this would lead to a nonincremental proof system. In contrast, we present an operational
semantics for residuation that is based on an incremental algorithm that can be simultane-
ously used for doing both tests. entailment and disentailment, namely, in the case of terms,
matching and (non)unification.

Finally, itisimportant to observethat neither Maher nor Smolkaexplicate goal reduction

2Formally, theseare programswith guarded Horn clauses, guarded rules, or al so the committed-choi ce combinator
[Haridi et al. 1992].

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1279

in the presence of negation in guards, whereas we do.

Although our common work with Smolka[Ait-Kaci et al. 1994] wasthefirst publication
using relative simplification, the concept was first introduced by us as early as June 1991
[Ait-Kaci and Podelski 1991]. There, we developed the system we present in this article
as amore general one than the one described by Ait-Kaci et a. [1994]. In fact, the work
presented by Ait-Kaci et al. [1994] was the result of Smolka’ s suggestion that we work out
the simpler case of unsorted partial-feature logic before we publicize the more complex
and more general system we report here. Indeed, it turned out that taking into account
the hierarchy on sorts is a nontrivial extension of the case of pairwise incompatible sorts
treated by Ait-Kaci et a. [1994]. Subtle complexities arise, for example, when three
sorts are incompatible, but pairwise compatible. Further, we present here the first truly
incremental system in the sense that none of its rulesintroduces an operation that hasto be
undone upon residuation (when neither entailment nor disentailment can be proven). Thus,
for example, two variables from the resolvent are never bound together. This property
leads to a more complex system than the system of Ait-Kaci et al. [1994].

1.4 Organization of Article

In Section 2, we explain residuation in a general framework, introducing the concept of
relative simplification asagenera proof-theoretic method for proving guardsin concurrent
constraint logic languages using guarded rules. In Section 3, we develop a specific
relative simplification system for order-sorted feature constraints, the data structures of
LIFE. Section 4 ties the operational semantics of function reduction with the semantics of
y-terms as approximation structures. Finally, we conclude with Section 5, giving a brief
recapitulation of thisarticle’'s contribution and afew perspectives.

Throughout, we use the terminology and notation introduced by Ait-Kaci and Podel ski
[1993b]. So, we provide an appendix where we recall all the necessary formalism
accounting for LIFE's structures and operations. It is meant to make this document
self-contained. The reader already familiar with those notions could ignore it altogether,
although reading it may provide atimely summary.

2. A GENERAL RESIDUATION FRAMEWORK
2.1 Overview

The technique of residuation---delaying reduction and enforcing determinism by allowing
only equivalence reductions---does not have to be limited to functions. Therefore, we
explain it for the general case of relations. Intuitively, the arguments of a relation that
are constrained by the guard are its input parameters and correspond to the arguments of
afunction. Also, athough in the current version of LIFE the guards corresponding to a
function’ sarguments are mutually exclusive, we will develop a scheme that does not need
thisrestriction.

A program in our scheme, which uses logical formulae called guarded rules, can
characterize the denotational and the operational meaning of a program in the ALPS
scheme of Maher [1987], which uses guarded Horn clauses. Namely, a definition by n
guarded Horn clauses corresponds to the conjunction of n+ 1 guarded rules.

Wewill relax the requirement of Maher that the guards of onerelation should be mutually
exclusive. While this requirement is not part of the general ALPS scheme, it is essential
for the denotational-semantics results. Since adding guarded rules promotes determinate
reduction, the possibility of doing so with possibly overlapping guards is important for

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1280 . H. Ait-Kaci and A. Podelski

efficiency. For example, the and predicate on three boolean arguments can be specified
with nine guarded Horn clauses, instead of just two, namely (we will introduce the syntax
formally later):

and(X,Y,Z):- X=false | Z=false
Y=false | z=false
X =true |] Y=2
Y = true |] X=127
Z=true | X=trueY = true
X=Y [x=z
X£Y | z=fase
X£2Z | X=true Y= false, Z = false;

Y#2Z || X=false Y=true Z = false

If the constraint system provides a test of entailment that allows negated constraints in
the context, we can add five more rules (this test is treated by Ramachandran and Van
Hentenryck [1993]):

and(X,Y,Z):- X#true [X=false,Z = falsg;
Y#true | Y=false Z = false
X;éfalseﬂ X=trug Y =Z
Y#false | Y=trug X=Z

Z+#fase | X=true Y =true Z = true

The question is: when do we dtill obtain the denotational-semantics results, having
dropped the requirement that Maher put on the guards? It is clear that generally this is
not possible. We introduce a compatibility condition for guarded rules and show it to be
necessary and sufficient for the existence of amodel of guarded Horn clauses.

In the scheme of Maher [1987], the denotational semantics is obtained by ignoring the
operational semantics. That is, the control construct guard is given a first-order logic
reading (i.e., conjunction) that is orthogonal to its operational significance. Namely, we see
guarded Horn clauses as defining arelation r by considering them as simple Horn clauses.
Thisamountsto using Clark’s completion, yielding a definite equivalence [Clark 1978]. In
the scheme of Smolka[1991], arelationr isfirst defined by adefinite equivalence defining
the semantics of this relation, and only then guarded rules are added, which define the
derivations. In our scheme, the specification of arelation r, done solely by guarded rules,
definesits semantics and the derivations.

Furthermore, the definition of reduction in our guarded-rule reduction scheme extends
the one of Smolka. Namely, it avoids useless redundancies in the syntactic formulation of
guarded rules and in the operational semantics of reduction, as will be explained next.3

In every guarded-clause language, a resolution step produces a new environment,
namely, the conjunction of the old environment, which is the constraint part of the
resolvent (the context), and the guard. This conjunction affects the variables in the body
(namely, in LIFE, theright-hand-side expression of afunction definition) after successfully
executing the corresponding guard; i.e., it *‘ constrains'’’ them in a semantical sense.

For example, if (in the Herbrand constraint system) Y = f(a) isthecontextand Y = f(X)
isthe guard and Z = X isthe body, then X is constrained to be equal to a. Practically, the

3We mean ‘‘useless redundancy,’’ not as a pleonasm, but as a deliberate opposition to ** useful redundancy’’
serving a pragmatic purpose (see also footnote 6).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1281

matching proof is done by unification, which yields the instantiation of the body variable
X, namely, X = a. In order to compute the new environment, this unification should,
of course, not be repeated. In fact, it is avoided in our scheme, whereas in Smolka's
schemethe guard Y = f(X) hasto occur in the body for a second time, and the unification
f(a) = f(X) hasto be repeated.

The example above can be generalized to al constraint systems where the proof of the
entailment/disentailment of the guard can be done by a new operational method that we
call incrementa relative simplification of the guard with respect to the context. In this
method, the proof of entailment has as a consequence (somewhat like a side-effect) that
the conjunction of the context and the guard is in solved form, as if normalized by the
constraint solver. For example, relative simplification of the guard Y = f(X) relative to
the context Y = f(a) yields the constraint X = a. Hence, we say that an occurrence of
the variable X in the body is then instantiated. This method applies in particular to the
order-sorted feature (OSF) constraint system used in LIFE, as we show in Section 3.

In summary, our scheme captures the practically relevant case where the variables in
the body are already instantiated through the corresponding guard’ s entailment proof. So,
one thing our scheme brings out formally is the justification and accommodation of the
implementer’ s natural ideathat repeated constraint-solving work should be avoided.

Independently of its benefits when used in aguarded language, relative simplification is
an implementation strategy for entailment/disentailment proofs. As such, it formalizesand
justifies the standard approach of proving matching by doing unification and checking the
bindings. Furthermore, it is operationally more powerful since it is incrementd; i.e., no
redundant work isdone. For example, the test of matching through unification followed by
the check whether global variables have been bound is not incremental; bindings of global
variables effected for atest have to be undone afterward.

The rest of this section details the general scheme that we have just overviewed. We
first present guarded rules and give an operational and denotational semantics for them.
We explain how they relate to guarded Horn clauses and give examples. Considering
incrementa relative-simplification systems in general, we exhibit some properties that
indicate how these might be constructed from a unification system, or more generally,
from a constraint solver. Finaly, we combine all these notions to derive the operational
semantics of residuation.

2.2 Guarded Horn Clauses and Guarded Rules

We assume aranked alphabet R of relational symbols. A relational atom is an expression
of the form r(Xy, ..., X,) wherer € R and the X’s are mutually distinct variables. For
notational convenience, we will write such arelational atom simply as r(X). Also, when
equating tuples, we will writeasequence X; = Uy, ..., Xp = U, simply as X = U.

Also, we assume aclass of logical formulae (called constraints), noted ¢, ¢, . . ., closed
under conjunction and including the false constant L and the true constant T and a model
or a class of models (possibly specified by axioms), to which satisfiability and validity
will refer in the following. As usual, an empty conjunct is considered the sasmeas T. We
assume that the constraint systems come with atest of satisfiability and entailment (which
is provided, e.g., by arelative simplification system).

A guarded ruleis alogical sentence of the form

YUVYU. (G — (r(U) < TV.B)) 1)

where
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1282 . H. Ait-Kaci and A. Podelski

---the guard G is a constraint;

---the head r(U) isarelational atom;

---the body B is of the form R & ¢, where R, the relational part, is a (possibly empty)
conjunction of relational atoms, and ¢, the constraint part, is a (possibly true) constraint
formulg;

---U = Var(G) — {U} andV = Var(B) — ({ U {U}).

Later we will see that the guard G can be a conjunction of a constraint and negated
conjuncts. We first consider the case where G is a constraint.

As an example, X = false — (and(X, Y, Z) « Z = false) is the guarded rule which
corresponds to the first of the guarded Horn clauses specifying the and predicate given
above. We will formalize this correspondence later.

A (constrained) resolvent R is a (possibly existentially quantified) formula of the form
R & ¢, where R consists of a (possibly empty) conjunction of relational atoms, and ¢, its
context, is a (possibly true) constraint formula. In the following, we will consider only
the derivation of resolvents without quantifiers. Indeed, only the matrix of a quantified
resolvent is rewritten (adding possibly more quantifications).

We will call the variablesin Var(R) global and denote them generically as X, Y, Z, etc.
The variables in a rule are called local. Except for the case of explicit examples, local
variables are generically named U, V, W, etc. The variables that are local to the body
are within a quantification scope contained in that of those variables that are also in the
guard. Local and global variables will always be assumed distinct, by implicit renaming if
necessary, so asto avoid capture.

A guarded-rule reduction derives the resolvent of the form

R =R&rX) & ¢

by application of the guarded rule of the form above to the resolvent
R = 3U3 V. (R&B& ¢& G& U =X)

if (and only if) the context ¢ of the resolvent R entails the guard of therule, i.e., if
¢ — JUTU. (G& U =X)

isvalid.4

ProrosiTioNn 1. A guarded-rule reduction is an equivalence transformation (of a
resolvent to the derived resolvent).

Proor. Theentailment condition saysthat the context ¢ is equivalent toits conjunction
with the instantiated guard,

¢ — ¢& V.U (GEU=X) « FJUIU. (¢ & G& U =X).
TheresolventR = R& r(X) & ¢ isequivalent to

JUIU. (R&r(U) & ¢ & G& U =X).
Sincethevariable U and the variablesin i/ are universally quantified, the guarded rule can
be written as

40ur definition of guarded rules is the same as, but our definition of guarded-rule reduction is different from,
what is defined by Smolka[1991], which does not include the guard in the derived resolvent R’. We will explain
the effect of thisdifferencein Section 2.4.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1283

(rU)&G) < IV.(B&G).
It followsthat R is equivaent to

JUIUFIV. (R& ¢&B&G&U=X). O

Two Remarks. First, the existential quantification 3V of the variables local to the body
may not bepulled out; i.e., theguarded rulemay not bewritten (¥) (G — (r(U) < B)).
Second, let us assume that the constraint ¢ entails the guard G. Then, although ¢ is
equivalent to U JU. (¢ & G & U = X), the conjunction B & ¢ is generaly not
equivalent to the quantified formula3u3U. (B & ¢ & G & U = X). Namely, the guard G
generally shares variables with the body B of the guarded rule. Roughly, the conjunction
¢ & G & U = X provides the instantiation of input parameters used in the body B of the
guarded rule.

All conjuncts in the guard that do not share variables other than U (the variablesin the
head) with the body, may be omitted in the derived resolvent. We will exploit this next
when we define guarded-rul e reduction with guards which contain negations as conjuncts.
Itisclear that variables in the scope of a negated existential quantifier do not occur in the
body.

Generally, aguard G in aguarded rule of the form (1) is a conjunction of the form

k
G =G & A\-U.G @)
j=1
where Gy, . . ., Gp areconstraints. Wewill alwaysassumethat the setsi/; = Var(G;) —{U}
are pairwise digoint, aswell asdigoint from#/ and from V.

We now define guarded-rule reduction by application of the guarded rule (1) with
the guard (2): The resolvent R = R & r(X) & ¢ derives to the resolvent R =
U 3 FV. (R& B& ¢ & Gg & U = X) (hence, without the negated conjuncts of the
guard) if (and only if) the context ¢ of the resolvent entails the guard. This means that
(1) theimplication

¢ — FUTU. (G & U=X)
isvalid and (2) the conjunctions
$&G&U=X
forj=1,... kareunsatisfiable.

ProrosiTioNn 2. Guarded-rule reduction is as well an equivalence transformation
under the definition for guardswith negations.

Proor. Theproof of Proposition 1 can be rephrased with the new form of G. Under the
entailment assumption, the context ¢ isequivalentto ¢ & —=3%. (G; & U = X), and since
G; does not share varigbleswith B, B & ¢ isequivaenttoB & ¢ & —3l;. (G; & U = X).
This means that the conjuncts —=3;. (G; & U = X) can be omitted in the derived
resolvent. [

A guarded-rule program can be given alogical semantics (and a reasonable operational
semantics) only if every collection of n guarded rules with the same head in the program,
namely,

VUVUi.(Gi — (r(U) — HVi.Bi)>, ©)]
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1284 . H. Ait-Kaci and A. Podelski

(wherel; = Var(G;) — {U} and Vi = Var(Bj) — (4 U {U}),fori = 1,...,n) comeswith
aguarded rule called the *‘ otherwise’ rule (which might be left implicit) of the form

YU. (-3hG1 & ... & ~TUG, — (r(U) = L)). (4)

We assume the guards G; to be of the general form, asin (2).
Whenever they are consistent, the n + 1 guarded rules above define the relation r. This
follows from the next fact.

ProrosiTion 3. Thefollowing formulaisalogical consequence of then+ 1 guarded
rulesgivenin (3) and (4):

YU (rU) < \/ U3 (G&B)). (5)

i:l,“‘,ﬂ

Proor. Theproof for the — part of theformula(5) isclear. For the — part we consider
the two cases whether or not —r(U), and thereforer(U) — L, holds in an interpretation.
Inthefirst case, thereis nothing to show. In the second case, we use the (n + 1)st guarded
rule, the ‘‘otherwise’’ rule, by contraposition. [

Still, not every conjunction of guarded rules has amodel. In fact, in order to be a model
an interpretation must satisfy the following compatibility condition.

A <vu VU (G & G — (V. B — 31},».5,»))). (6)

i j=1
This conditionistrivialy fulfilled if the guards are mutually exclusive.

ProprosiTioN 4. Every model of the definite equivalence (5) and the compatibility
condition (6) is a model of the conjunction of the n + 1 guarded rules of the form (1), and
vice versa.

Proor. By (5), Gi & V. By impliesr(U). If G; & r(U) holds in an interpretation,
then, by (5), there exists some j such that G; & 3Vj. Bj holds. But then, by (6), 3Vi. B
holds also. The (n + 1)st guarded rule is an immediate consequence of (5). The other
direction followsfrom Proposition 3 for (5) and from combining the guarded rules pairwise
for (6). O

CoroLrLaRry 1. If the compatibility condition is valid, then a guarded-rules program
has a least model.

Proor. It isawell-known fact that a system of predicate definitions such as (5) has
aleast model extending the model of the theory of the constraint domain (see Jaffar and
Lassez [1987] and Hohfeld and Smolka [1988]). The statement then follows from the
assumption and Proposition 4. [

A guarded Horn clauseis of theform ““H :- G [B'* whereH, the head, isarelational
atom; G, the guard, is a constraint formula; and, B, the body, is of theform R & ¢,
where R, the relational part, is a (possibly empty) conjunction of relational atoms, and
@, the congtraint part, is a (possibly true) constraint formula. In the case of constraint
systemswith arelative simplification system, the guard G can be a conjunction of positive
and negated constraints. We first consider the case where G is a conjunction of positive
constraints.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1285

Here is an example of aguarded Horn clause defining deterministic list concatenation:®

concat(X,Y,Z):- X:nil | Y=Z
concat(X,Y,Z) :- X:cons& X.hd =V & Xtl =W |
Z:cons& Z.hd =V & Ztl =L & concat(W,Y,L).

Let H = r(U) wherer € R and U is a variable. Let &/ = Var(G) — {U} and
V = Var(B) — (i U {U}). Then, the guarded Horn clauseH :- G || B correspondsto the
guarded rule of the form (1).

For example, the guarded rules corresponding to our foregoing definition of concat are:

VYU, Uz, Us
((Ug @ nil)
— (concat(Uy, Uz, Ug) < Up = Us).

YUy, U, Us, V, W.
((Ug:cons& Up.hd =V & Uptl = W)
— (concat(U1, Uy, Us)
< 3L. (Us:cons& Us.hd =V & Us.tl = L & concat(W, U, L)))).

Sinceany constraint system can betrivially augmented to expresstuples (although doing
SO may increase its expressive power significantly), we may assume the relational symbol
r in the head to be a unary predicate. This amountsto replacing r(Us, ..., Uy,) :- G |] B
with r(U) :- U = (Uy,...,U,) & G [B. Here, the constraint with tuple notation
U = (Uy,...,Up) is just a shorthand for the specific constraint encoding multiple
arguments in the system being considered. For instance, in our OSF constraint system,
U= (Uy,...,Up) standsforU.1=U; & ... & U.n=U,.

Withunary relation symbols, the guarded rules corresponding to our foregoing definition
of concat are;

YU VX.
((U.1=X& X:nil)
— (concat(U)
— HY,Z}(U2=Y&U3=Z&Y=2Z))).

YU Y{X,V, W}.
((Ul1=X&X:cons& X.hd =V & X.tl = W)
— (concat(U)
— Y,z L}.
(U2=Y&U3=Z&Z:cons& Zhd=V& Ztl =L &
concat(W, Y,L)))).

In thefirst rule, the variable X does not occur in the rule' s body; thus, we can write it

5In this example, we use the syntax of OSF constraints expressing the nature of the data expected by the rules.
Namely, V : s stands for ‘‘variable Visin sort s’ V.£ = W stands for ‘‘feature £ of variable V is equal to
variableW,” andV = W ‘‘variable V isequal to variable W."” Hence the guards in the two rules of this example
constrain X to be, respectively, the emply list nil and a nonempty list cons with a head feature hd equal to V and
atail featuretl equal to W.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1286 . H. Ait-Kaci and A. Podelski

vu.
(3IX(U.1= X & X:nil)
— (concat(U)
- HY,Z}(U2=Y&U3=Z&Y=2Z))).

Thisisalso true for X in the second rule, but not for V nor W, since the scope of these two
variables extends over the guard and the body.

The collection of the guarded Horn clausesr(U) :- G; [Bi (wherei =1,...,n)with
the same head in agiven program stands for the conjunction of n+1 guarded rules, namely,
n of theform 3 and one, the** otherwise’’ rule, of the form 4. In our examples, the (n+1)st
guarded rule (the ** otherwise’’ rule) is alwaysleft implicit.

A model of aguarded Horn clause programisamodel of the corresponding guarded-rules
program, hence the following.

CoroLLARY 2. If the compatibility condition is valid, then a guarded Horn clause
program has a least model.

For example, this allows us to show that the program for the and predicate given above
has a declarative semantics.

For the sake of compl etely relating our approach to others, let usmention oneideathat is
not (yet) implemented in LIFE. Given aprogram consisting of definite clauses, one can add
explicit guarded rules that are logical consequences of the program [Smolka 1991]. Now,
assume a relation r declared by the definite clausesr(X) — 3Ui. ¢i & R,i=1,...,k
Thus, the completed form of r is

k
r(X) < \/ (i ¢ &R).
i=1
Then, the following guarded rules are always immediate consequences of this definition.

—3U1. ¢1 & ... & -3FUi_1. ¢i_1 &
-JUis1. $is1 & ... & =FUk. ¢ — (r(X) <= FUi. R & ¢i)

fori = 1,..., k Theseguardedrulescan beleftimplicit. Although semantically redundant,
these additions are of great pragmatic use for efficient reductions. In fact, adding them
is paramount to enabling the immediate reduction of a determinate goal, i.e., one whose
definition offers only one alternative in its context. This appears to be related to what
has been quoted to us as the ** Andorra Principle’’ [Haridi and Janson 1990], a strategy
of preferentially selecting goals that have at most one aternative, and is a basic principle
underlying the AndorraModel [Santos Costa et al. 1991].

2.3 Incremental Relative-Simplification Systems

If Gisaguard of the genera form, asin (2), and ¢ is the context of a given resolvent, then
we say that the context entails the guard if the validity condition and the unsatisfiability
conditions in Proposition 2 are fulfilled. We say that the context disentails the guard if
the implication ¢ — —-3U3U. (G & U = X) isvalid, or if one of the implications
¢ — 3U Y. (G & U =X)isvdlid, forj = 1,...,k Again, disentailment is not the
negation of entailment, i.e., the two problems are not dual to each other. Thus, a guarded
rule system needs to carry out two different tests.

8Thisisan example of auseful redundancy (see also footnote 3).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1287

If the context ¢ of aresolvent R entails the guard, then the context of any resolvent
derived from R entails the guard, too. In other words, a context can only become stronger
in each derivation step; i.e., constraints are added as conjuncts. The same holds for
disentailment.

If the context ¢ neither entails nor disentailsthe guard, there might still be aderivative of
R whose context entails, or disentails, the guard. This is why incrementality isimportant.
In the case where both tests fail, for the context ¢ of the current resolvent R, the proof that
has determined this will be continued by the proof for the strengthened context ¢ & ¢’ of
aresolvent R derived from R, instead of starting from scratch. That is, the proof of the
guard ‘‘stalls’’ in the context of R; the proof of the guard in the context of R’ ‘‘resumes'”’
it.

The following observation is useful for deriving an entailment test from a constraint
normalization system.

ProrosiTION 5. The context ¢ entails the guard G if and only if the conjunction
¢ & (G & U= X)isequivalentto ¢ & G’ for someformula G’ such that G’ isvalid.

Proor. If G’ isvadlid, then ¢ — G’ is aso valid. Therefore, ¢ is equivalent to
¢ & G'. According to the assumption, ¢ & (G & U = X) — ¢ & G isvalid. Thus, ¢ is
equivalentto ¢ & (G & U = X). Thisshowsthat ¢ — 3U3U (G & U = X) isvdid. For
the other direction, it is sufficient to choose G = ((G & U = X) V =¢). Clearly, then
¢ & (G& U=X)isequivalentto ¢ & G',anddso G’ isvalid. O

The “*only if"’ direction in this proposition is crucial for practical purposes. Given ¢
and G, the formula G’ has to be effectively found, and its validity has to be effectively
determined.

In what follows, ¢ and ¢ are two constraints where ¢ is a context formula assumed be
consistent such that Var () N Var(¢) = 0.

CoroLrLaRY 3. If the guard consists of a positive constraint, say v, then the context
entailsthe guard, i.e, ¢ — 3U 3U. (¢ & U = X) isvalid, if and only if the conjunction
¢ & ¥ & U= Xisequivalentto ¢ & 1’ for someformula’ suchthat 3U 3. ' isvalid.

Proor. The proof isastraightforward rephrasing of the previous proof. [1

The corollary gives the idea about how one generally intends to obtain the formula G/
from Proposition 5, namely, by applying a suitable constraint normalization system on the
conjunct ¢ & ¥ & U = X successively, as long as thisis possible, without modifying ¢.
Clearly, the main difficulty is completeness; that is, whether under entailment, one can
actually derive a constraint ¢ & v’ such that 3U 3¢/ ¢’ isvalid.

CoROLLARY 4. Thecontext ¢ disentailstheguard ¢, i.e.,¢ — —-3U 3. (v & U =
X) isvalidifandonlyif ¢ & ¥ & U = Xisequivalentto ¢ & L.

Proor. We only need to note that if
& IVIU. (v &U=X) — ¢& U . Y
isvalid, then also

$& - (Y& U=ZX) — ¢& - ¢. O

Again, itisclear how onemay try to obtain the disentailment proof, namely, by applying
the constraint solver on the conjunct ¢ & ¢ & U = X successively, as long as this is

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1288 . H. Ait-Kaci and A. Podelski

possible without modifying ¢, or until one arrives at ¢ & L. Again, the difficulty is
completeness. That is, whether under disentailment, one can actually derive L inthisway.

Definition 1. (Relative-Smplification System) A reduction systemisarelative-simp-
lification systemif, given the context constraint ¢, the guard constraint ¢, and the binding
U = X of thevariable U in v to the variable X in ¢, it reduces ¢ & U = X to a constraint
¥’ withV = Var(y') — Var(¢) such that

---3V. ¢/ isvalidif and only if ¢ entailsy;i.e, ¢ — 33U IU. (¢ & U = X) isvalid;
-/ = Lifand only if ¢ disentails¢;i.e, ¢ — —-3U IU. (¢ & U = X) isvalid.

Moreover, at each intermediate simplification step deriving a constraint ¢’ with V =
Var(y') — Var(g¢) the following relative-simplificationinvariant must hold:

¢ & JU. (¥ & U = X) isequivaentto ¢ & V. .

An important property for efficient implementation of the entailment and disentailment
tests isincrementality. This means, intuitively, no undoing, i.e., the ability to reuse work
done in previous tests. Technicaly, this is the case if the constraint simplification steps
used for the tests are the same whether the resolvent is given at once, or whether it is built
up gradually at each goal reduction step (and the tests are applied following each reduction
step). Thisisfacilitated by the conjoining effect of goal reduction that builds anew context
by conjunction of arule' sbody constraints to the existing context. Formally, let ¢;, i € IN,
be a sequence of contexts obtained by goal reduction, i.e., such that ¢i.1 = ¢; & ¢], for
any i.

Definition 2. (Incremental Constraint System) A constraint system is said to be in-
cremental if the sequence of constraint simplification steps used for n successive appli-
cations of the entailment and disentailment tests applied to the ¢;’s and the guard v, for
i =0,...,n, isone of the nondeterministic paths of constraint simplification performing
the tests directly on ¢, and .

ProPOsITION 6. (CONFLUENCE OF RELATIVE SIMPLIFICATION) It is possible
to transform a relative-simplificati on system into an incremental one simply by closing the
simplification relation with respect to the following condition. If ¢» simplifiesto ¢’ relative
to ¢, and ¢ simplifiesto ¢ relativeto ¢ & ¢’, then also:

---y simplifiesto ¢’ relativeto ¢ & ¢’, and
---y’ simplifiesto ¢’ relativeto ¢ & ¢'.

Proor. Observe that the relative-simplification invariant still holds if one considers
every simplification relative to ¢ also as a simplification relativeto ¢ & ¢'. Namely, if
¢ — (¢ «— ¢')isvaid, thensois ¢ & ¢’ — (v — ¢'). The remaining conditions of
Definition 1 aretrivialy fulfilled. O

Generally, it is not evident how to transform the specification of a nonincremental
relative-simplification system (e.g., by rewrite rules) into an incremental one (e.g.,
by adding or modifying the rules). Our experience is limited to cases (essentially
to the constraint systems over finite or rational first-order trees [Colmerauer 1982a;
Colmerauer 1984] or feature trees [Ait-Kaci et a. 1994; Smolkaand Treinen 1992]) where
incrementality came for free.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1289

2.4 Operational Semantics of Residuation

We assume a constraint system with an incremental relative-simplification system as
described in the previous section. Let therelation r be specified by n guarded Horn clauses,
each of theformr(U) :- G [B, corresponding to n+1 guarded rules, each of theform (1).
Let the guard G be of the form

G = 1/;0& /\ —E|Uj.1[}j.
j=1,....k

Let us consider the hypothetical reduction of the resolvent R = R & r(X) & ¢ to the
new resolvent

R = V. (R& ¢ & B&yp& [\ U),
j:l,“‘,k

where the constraints ¢; & U = X simplify to 'l/}j/ relative to the context ¢, with
Var(yj) = Uj and Var () — Var(¢) = U/ forj=0,1,... k.

ProprosiTION 7. (CORRECTNESS OoF REDUCTION) The reduction transforming
the resolvent R into the resolvent R’ is always a correct reduction step: R’ impliesR; i.e.,
all solutions of R" are solutions of R.

Proor. Thisfollowsfrom Proposition 3 and the relative-simplification invariant. [

The reduction step from the resolvent R to the resolvent R’ is also a complete reduction
step: (with Proposition 7) R is equivalent to R'. Equivalently, we have the following.

ProposiTION 8. (COMPLETENESS OF REDUCTION) If 3. ¢gisvalidand ¢ =
1, for eachj = 1,...,K, then the solutions of R" and R coincide. Moreover, R’ is then
equivalenttoR& ¢ & v & B.

Proor. Thisfollowsfrom Proposition 2 and the relative-simplification invariant. [

In the case of relative-simplification systems based on constraint solvers (e.g., imple-
menting unification), ¢ & vy isalready essentially the solved form of ¢ & . Thisisthe
case for OSF constraints (see Section 3), and also of Prolog terms. That is, our scheme
captures the practically important case when the conjunction of the context and the guard
has already been solved through the guard proof.

For comparison, let us consider the guarded-rule reduction defined by Smolka [1991].
There, the ‘*commit condition’” is that the conjunction of the context ¢ and the negated
guard —¢ be a constraint that simplifies to L, the inconsistent constraint. Under this
condition, the resolvent ¢ & r(x) & Rreducesto ¢ & R & Rif the (renamed) guarded
ruey — (r(X) «— ¢’ & R) isused, and the constraint ¢ & ¢’ simplifiesto ¢".

A consequence of this on the syntactic formulation of guarded rulesisthat, in Smolka's
scheme, the part of the guard that constrains variablesin the body must be repeated in the
constraint ¢’ in the body of the guarded rule. That is, the guarded rule

YU V. (G — (r(U) — HV.B))
must be written in the form
YU. (FU.G — (r(U) < 34 3IV.(G&B))).

Asaresult, in Smolka' soperational semantics of guarded-rule reduction, the simplification
of the constraint ¢ & ¢’ must repeat the simplification of the conjunction of the context

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1290 . H. Ait-Kaci and A. Podelski

and the guard.” Thus, for constraint systems with relative simplification, our formulation
has an advantage in efficiency. Namely, it is only necessary to normalize the constraints
in B, but not those in G, in conjunction with the resolvent’ s context in the case where that
guarded ruleis applied.

Thenext proposition considersthe case of disentailment. Here, of course, noinstantiation
is effectuated. It states that the reduction step from resolvent R to the resolvent R’ can be
excluded whenever R’ isequivalent to L. Equivalently, we have the following.

ProposITION 9. (FAILURE oF REDUCTION) The set of solutions of R is empty,
ifyg = L,or ifEIuj’. 1/;j’ isvalid, for at least oneof j =1,...,k

Proor. Thisfollowsfrom Proposition 3 and Definition1. [

The foregoing propositions might suggest several possibilities for fine details of the
operational semantics concerning resolvents with residuations, i.e., relational atoms r(X)
for which none of the guards of the n+ 1 guarded rules for r is entailed. The answer of
the query could be given by the residuated resolvent, i.e., with the relational atom r(X).
Or, in order to make the answer more refined, it could be given by the disjunction of all
resolvents R’ that are not equivalent to L.

The constraint part of such aresolvent R’ can be further tested for satisfiability. Possibly,
it contains negated constraints. Assuming that the constraint system has the independence
property (see Theorem 3), such a constraint part can be tested for satisfiability by testing
entailment of each of the negated constraints by the positive constraint.

3. ENTAILMENT AND DISENTAILMENT OF OSF CONSTRAINTS

In the following, we use ¢ as the context formula. It is assumed to be an OSF constraint
in solved form, although not necessarily coming from dissolving a single i-term. The
variablesin ¢ are global. We shall use X' to designate the set of global variables Var(¢)
andtheletters X, Y, Z, .. ., for variablesin X'. We use v, adissolved -term, asthe guard
formula. The variablesin ¢ are local to ¢, i.e., Var(¢) N Var(y) = 0. We shall use/ to
designate the set of local variables Var(y) and thelettersU, V, W, .. ., for variablesin /.
The letter U will always designate the root variable of . We aso refer to ¢ as the actual
parameter, and v as the formal parameter. By extension, we will often use the qualifiers
global/local, actual/formal, and context/guard, with all syntactic entities, e.g., variables,
formulae, constraints, or sorts.
We thus must study a proof system that decides two problems simultaneously:

---the validity of theimplication VX' (¢ — 3. (v & U = X));
---the unsatisfiability of the conjunction¢ & ¥ & U = X.

Thefirst test is called atest for entailment of the guard by the context, and the second, atest
for disentailment. This second test is equivalent to testing the validity of the implication
VX (¢ —-3U. (v & U=X)).

Since both tests amount to deciding whether the context implies the guard or its
negation, al local variables are existentially quantified, and al global variables are
universally quantified.

Therelative-simplification system for OSF constraintsis given by therulesin Figures 1,
2, and 3. An OSF constraint 1) simplifiesto ¢’ relativeto ¢ by asimplification rule p if 1%

7Of course, thisis because Smolka did not know about relative simplification at the time of his formulation (nor
did we, as amatter of fact!).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1291

Feature Decomposition:
Y& UL=VE&UL=W

(F.1)
V& UL=VE&E W=V

Relative Feature Decomposition:

Yp&U=X&UL=V
(F.2) T EUZXEVZY ifXL=YeEo

Relative Feature Equality:
F3) P&U=X&U=X&V=Y, X002 € 6300 2 Vo 6
VE&UZX &U=X&V=Y,&V=Y, adV=Y2¢y

Variable Introduction:

£ PY&U=X&U=X; X1l =Y, €d, Xl =Yy €
F4 : : : : andY; ¢ Var(y) and Yz ¢ Var(t))
Y&U=X&U=X&V=Y1&V=Y; wherelVisanewvariabTe

Fig. 1. Simplification relativeto ¢: Features.

is an instance of p and if the applicability condition (on ¢ and v) is satisfied. We say that
 simplifiesto v’ relativeto ¢ if it does so in afinite number of steps.

The relative-simplification system preserves an important invariant property: a global
variable never appears on the left of a variable equality constraint in the formula being
simplified. Thus, an equality U = X is adirected relation binding the local variable U to
the global variable X. Furthermore, a global variableis never eliminated by alocal one, or
vice versa.

A set of bindingsU; = X, i = 1,...,nisafunctional binding if al the variables U; are
mutually distinct.

Effectuality of Relative Smplification. The solved OSF constraint ¢ entails (resp.,
disentails) the OSF constraint 3U. (U = X &) if and only if the normal form ¢’ of
¥ & U = Xrelative to ¢ is a conjunction of equations making up a functional binding
(resp., isthe false constraint ¢/ = L).

There are two technical remarks to be made. First, observe that in our formulation of
the entailment/disentailment problem, the implication contains only one equality U = X
binding only one global variable. However, thisis not a restriction. Equality constraints
Ui = Xq,...,Un = X, can be equivaently replaced by adding X; = X.1& ... & X, =
X.1ltothecontext¢ andU; = U.1& ... & U, =U.n& U = Xto+, where Xand U are
new. That is, one obtains the conjunction of one equality U = X and aguard that, again, is
a dissolved -term.

Second, the fact that v is a dissolved -term rooted in U ensures that the test of
entailment of v & U = X by ¢ does not depend on whether the implication holds in all
OSF interpretations, or only in ¥, or 7. Thisis not necessarily so if U is not the root of
. Indeed, let us assume that U is not the root of v; for example, take ¢ tobe V.£ = U.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1292 . H. Ait-Kaci and A. Podelski

Sort Intersection:
Y& U:s&U:¢d

(51) V& U :sAY

Sort Containment:

Y& U=X&U:s
(S.2) : ifX:s € ¢,ands <s

Sort Refinement:

Pp&U=X&U:s
(S.3) ifX:s € ¢,andsns <s
P& U=X&U:sAS

Relative Sort Intersection:

P& U=X&U=X ifX:se ¢, X :d€g,
(S4) sAS <sSAS <,
P& U=X&U=X&U:sSAS andU:s" ¢, foranysorts’

Sort Inconsistency:

Y& UL
(s5) ——

Fig. 2. Simplification relativeto ¢: Sorts.

Relative Variable Elimination:

P& U=X&V=X VeV X 2 0
Y[U/V] & U =X& V=X adu#V

(E1)

Equation Entailment:

P &U=X&U=Y
(E.2) ifX=Yorif X=Y€ ¢
P& U=X

Fig. 3. Simplification relativeto ¢: Equations.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1293

Extended Feature Decomposition:
Yy&UL=U & UL=U"

(X.2) ifU’ %. U
py&UL=U&UL=U"&U"=U

Extended Sort Intersection 1:
v&U:s&U:s ifsns < ¢’ foranys”’

2 p&U:s&U:sAS suchthat U : s’ € %

Extended Sort Intersection 2:
v&U:s&U:s ifsns < ¢ foranys”’

(X.3) " 1o
P& U:s&U:5g&U:sAS suchthat U : s € 4

Fig. 4. Rulesextending basic simplification.

Clearly, while VX (T — 3U3V (¢ & U = X)) holdsin ¥ and 7, it does not hold in all
OSF algebras where it is not guaranteed that every element is the £-image of some other
element. In¥ (and 7), thisis the case since any element X is the £-image of at |east one
element, namely, T (¢ = X).

Effectuality of relative simplification is the central result of this section. We now
proceed through the technical details aimed at establishing its claim in the form of two
theorems: Theorems 1 and 2.

3.1 Termination of Relative Simplification

To show that relative simplification of OSF constraints aways terminates, we introduce
an additional set of rules, shown in Figure 4, extending basic simplification. These rules
are not meant to be used in the effective operation of basic simplification, but only serve
in our proof argument. The idea is that relative simplification of a guard ¢ relative to a
context ¢ can be ‘‘simulated’’ by normalizing the formula ¢ & ¢ & U = X using basic
simplification (Figure 7 in the Appendix) together with the rules of Figure 4. Itis not a
real simulation, however, since Rules (B.1)--(B.5) destroy the context as aside effect. The
point is that one application of arelative-simplification rule can be made to correspond to
at least one application of one of Rules (B.1)--(B.5), (X.1)--(X.3). Since this latter system
can be shown to terminate, then so can relative simplification.

Rules (X.1)--(X.3) perform essentially the same work as Rules (B.1) and (B.2) except
that they do no erase parts of the formula. In Rule (X.1), we denote by ~_. the
reflexive, symmetric, and transitive closure of = (that is, the equivalence relation on the
variables occurring in the constraint that is generated by the =-pairs between variablesin
the constraint).

LeMMma 1. Thebasic-simplificationrules (B.1)--(B.5) extended with rules (X.1)--(X.3)
define equivalence transformations; furthermore, they are terminating.

Proor. Thefirst statement is clear. The proof of the second statement is an extension
of the termination proof of the basic simplification rules (B.1)--(B.5) [Ait-Kaci and

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1294 . H. Ait-Kaci and A. Podelski

Podelski 1993b]: (X.1) can be applied only afinite number of times, since the number of
equivalence classes partitioning the finite set of variables occurring in the constraint that is
to be simplified decreases by 1 with each application. (X.2) and (X.3) can be applied only
afinite number of times, since they can be applied at most once for every sort occurring in
the constraint that isto be simplified. O

LemMa 2. Lety & U = Xsimplifyto ¢’ relativeto ¢ by arelative-simplification step
not using Rule (F.4). Then, ¢ & v & X = U simplifiesto ¢’ & "’ by at most one extended
basic-simplification step and a finite number of variable eimination (B.3), where ¢ and
" are equal up to variable renaming.

Proor. It can be seen that each relative simplification rule, except for (F.4), corre-
sponds to one or several extended basic-simplification rules. Rules (F.1)--(F.3) correspond
to Rules (B.1) and (X.1). Rules (S.1)--(S.4) correspond to Rules (B.2), (X.2) and (X.3).
Rules (E.1)--(E.2) correspond to Rule (B.3). This, and the fact that extended basic-
simplification rules are equivalence transformations, allow usto conclude. [

LEMMA 3. Lety simplifyto’ oftheformiy & Uy = X; & Uy = X, byan application
of Rule (F.4) relativeto ¢. Then, ¢ & U; = X, simplifiesto the same constraint ¢’ by an
application of Rule (F.3) relativeto ¢.

ProrosiTioN 10. Therelative-simplificationrules are terminating.

Proor. Thisisproved by induction on n, using Lemmas 2 and 3. For every relative-
simplification chain ¥1 & Uy = Xg,...,¢¥n & Uy = X, relative to ¢, there exists an
extended basic-simplification chain of length n + k, where k > 0. This chain starts with
the basic constraint ¢ & ¥ & X; = Uy & X = U, where X = U stands for the equations
we have added so that each global variable X is bound to somelocal variable U (which, if
necessary, is chosen new).

Since, according to Lemma 1, extended basic-simplification chains are finite, so are
relative-simplification chains. [

3.2 Correctness and Completeness

We first note another consequence of the lemmata of the last section. Let V stand for the
new local variablesintroduced by Rule (F.4).

ProrosiTioN 11. Lety & U = Xsimplifyto’ relativeto¢. Then,¢ & v & U = X
and 3V. (¢ & ¢') areequivalent.

Proofr. Let usfirst assumethat v & U = X simplifies to ¢’ relative to ¢, not using
Rule (F.4). Then, ¢ & v & U = Xand ¢ & ' are equivalent by Lemmas 1 and 2. Let
¥ & U= Xsmplifytoy & U =X& V= X; & V = X;relativeto ¢, by an application of
Rule(F.4).Clearly, ¢ & ¢ & U = Xand¢ & V. (¢ & U = X & V = X;) areequivalent.
Thus, with Lemma 3, we can apply thefirst part of theproofony & U =X & V= X;. O

Thenext corollary statesaproperty that isimportant for showing that relative simplification
can be used for proving entailment, the invariance property.

=X

COROLLARY 5. (INVARIANCE OF RELATIVE SIMPLIFICATION) If ¢ & U
Y') are

simplifies to ¢’ relative to ¢, then 3U. (¢ & ¢ & U = X) and 3U/3IV. (¢
equivalent.

&
&

Itis helpful to list systematically the normal-form properties of the relative-simplification
system.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1295

Redundant Sort Elimination:

(R1) 9&X:s ifU = X € v, and

U:s € forsomes <'s

Redundant Feature Elimination:

6 8& X = Xy 0 & X = Xo.
(R2) ifU=X € U=X €0
6 & X, = X0

Entailed Sort Redundancy Elimination:

P& X1 :S& Xo:s
(R.3) S XS fuU=X ey, U=X €9
1 -

Fig. 5. Redundancy elimination rules.

ProposiTioN 12. The constraint ¢ isin normal form relative to ¢ if and only if all
the following conditions are satisfied:

--- isin solved form;

---a global variable X may occur in ¢ only intheform _ = X;

-—-if X = _ € ¢, then X does not occur in y;

—-ifV=Xeyp,and_=XL€ ¢, then_=V.L & ¢,

—ifV=Xe¢y,andX:sec¢,andV:s € ¢, thens < s

—if V=X V=Y} C ¢,and{X' = XL Y =Y.} C ¢, then{W=X W=Y} C
1, for somevariable W,

—if{V=X,V=Y} C ¢,and{X:5,Y:5} C ¢, thenV:se 1, for somesorts
suchthats< s ands < s,.

Proor. By inspection of the relative-simplification rules. [

ProrosiTioN 13. Let v’ beanormal formof & U = Xrelativeto ¢. Let ¢’ be the
constraint obtained from ¢ eliminating all redundanciesaccording tothe rulesof Figure5,
and removing bindings V = _ of new variables introduced by (F.4). Then, the constraint
¢' & 1’ isa solved form of the constraint ¢ & ¢ & U = X, up to variable renaming.

Proofr. According to Proposition 11, ¢ & & U = Xisequivalent to AV. ¢ & ¢/,
where V stands for the new variables. According to the last three conditions of Propo-
sition 12, Rules (R.1), (R.2), or (R.3) perform equivalence transformations. Thus, if
applications of these rules modify ¢’ to ¢”, then ¢’ & v’ isequivalentto ¢’ & .

According to the first four conditions of Proposition 12, ¢” & ' isin solved form
up to variable eliminations via Rule (B.3). More precisely, these variable eliminations
are applications of Rule (B.3) using new equations of the form V = X introduced by
Rule (F.4). They produce possibly equations of the form X = Y between global variables;
then, further variable eliminations consist of applications of Rule (B.3) using these new
equations. As alast step, these new equations are removed in order to obtain a constraint

ACM Transactions on Programming L anguages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1296 . H. Ait-Kaci and A. Podelski

that is exactly equivalentto ¢ & ¢ & U = X, and not just up to existential quantification
of new variables. [

CoroLrLARY 6. If the normal form of v & U = X relative to ¢ is not L, then
¢ & Y & U= Xissatisfiable.

Proor. We showed elsewhere that a constraint is satisfiable if and only if it has a
solved form[Ait-Kaci and Podelski 1993b]. That is, its basic normal form isdifferent from
L. The statement then follows from Proposition 13. [

THEOREM 1. (DISENTAILMENT) Let ¢’ bea normal formof ¢ & U = Xrelative
to ¢. Then, ¢ disentails 3. (¢ & U = X) ifand only if ¢ = L.

Proor. If ¢/ = L, thenVX (¢ — -3U3V. ¢') isvalid. From Corollary 5, it follows
that VX (¢ — —3U. ¢ & U = X) isvdid, too. If ¢’ # L, then Corollary 6 can be
applied. O

ProrosiTioN 14. If the normal form ¢’ of v & U = X relative to ¢ is not a
conjunction of equations representing a functional binding, then ¢ & -3U. (v & U = X)
issatisfiable.

ProoF. The assumption on the form of 1)’ meansthat one of the three following cases
istrue, for someV € Var(+') bound to some X € Var(¢), i.e,V =X e ¢':

(1) +' containsasort constrainton V, say, V : s, or,
(2) +' containstwo equationsonV, say,V =X & V =Y, or,
(3) ¢’ containsafeature constraint on V, say, V.£ = W.

For each case, we can find a constraint ¢’ such that ¢ & ¢’ is satisfiable and disentails v .
Then, ¢ & ¢’ dso disentails 3. (¢ & U = X), i.e, ¢ & ¢’ — -3U. (¢ & U = X) is
valid. Clearly, thisis sufficient to show that ¢ & —3U. (¢ & U = X) issatisfiable.

(1) V:se ¢'; then, according to the third condition of Proposition 12, ¢ contains either
no sort constraint on X or one of the form X : § wheres < . Thus, weset ¢’ = X : ¢/,
in the first case, for some sort s incompatible with s, i.e,, such that sA s’ = L. In the
second case, we choose s’ suchthatsA s’ = L ands’ < .

(2 V=X&V =Y e, then, either V: s € ¢’ and we are in Case (2), or, according
to the last condition of Proposition 12, at most one of X and Y issortedin ¢. If Y : s€ &,
weset ¢' = X: 5 forsomesort s suchthatsAs = L. If noneof X and Y issorted in ¢,
weset¢’ = Y:s& X: g forsomesortss, s suchthat sns = L.

(3) V.41 = V71 € ¢'; then, ¢ contains no feature constraint X.¢; = _, according to the
fourth condition of Proposition 12. Without loss of generality, we can assume that ¢ does
not contain redundant conjuncts.® There exists a sort s such that 1 contains a conjunct of
theformV.l1 =V, & Vi.lp =Vo & ... & V1.8 =V, & Vs, for somen > 1.

Thus, weset ¢’ = Xfy = X3 & Xg.bp = X0 & ... & Xp_1.n = Xn & X, @ &, for some
new variables Xy, ..., X, and somesort s suchthat sAs = 1. O

8That is, we assume that every variablein v has at least one sort constraint and that redundant constraintsin
areremoved. A redundant constraint in v isone of theform X.£ = Y & Y : T where Y doesnot occur elsewhere
in 7. Since we interpret features as total functions, thisis not a proper restriction: redundant constraints can be
moved into the functional expression or the body of the guarded clause without changing the declarative or the
operational semantics. On the other hand, if this assumption isfulfilled, then the entailment of 1 & U = X by ¢
does not depend on whether features are interpreted as total or partial functions.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1297

THEOREM 2. (ENTAILMENT) Let v’ beanormal form of ¢ relativeto ¢. Then, ¢
entails 3. (v & U = X) if and only if ¢’ isa functional binding. Moreover, ¢ & ¢’ isa
solved OSF constraint.

Proor. If ¥ is a conjunction of equations representing a functional binding, then
3V. ¢ isvalid; thus, sois ¢ — FUIV. ¢'. By invariance of relative simplification
(Corallary 5), it followsthat ¢ — 3. 1 isvalid, too.

If ' has a different form then, either ¢4/ = L, or ¢’ contains conjuncts that are not a
functional binding. The fact that ¢ — 3. ¢ isnot valid istrivia in thefirst case. In the
other case, since the context ¢ isaways assumed in solved form and, thus, satisfiable, then
it follows from Proposition 14. [

CoROLLARY 7. Let ¢ be the relative-simplification normal form of v & U = X
relative to ¢. Then, the context entails the guard if and only if the conjunction ¢ & ' is
the solved form of the conjunction ¢ & v & U = X.

Proor. Thisisanimmediate consequence of Theorem 2 and Proposition 13. [

3.3 Independence

Thefollowing theorem states that the OSF constraint system has theindependence property
[Lassez et al. 1988]. It is well known that in any constraint system with this property it
is possible to solve constraints that are conjunctions of constraints and negated constraints
by testing entailment. Namely, ¢ & —3JU1y1 & ... —~TUny, is satisfiable if and only if
¢ does not entail 3.), for every i = 1,...,n. Here 3U; abbreviates the existential
quantification of variablesin Var(«i) — Var(¢).

Clearly, ¢ entails 3U4;. ¢ if and only if ¢ entails 3U3U;. i[U;i/X] & Ui = X, where
we introduce a new variable U; for every X; € Var(¢) N Var(v;). Hence, given that the
independence property holds, we can use the relative-simplification algorithm in order to
check satisfiahility of conjunctions of positive and negative OSF constraints.

For the formulation of the theorem, et us make a few assumptionsthat do not incur any
loss of generality. First, weassumethat 24 = Var(v), U; € U, and Var(¢) N Var(i) = 0.
Second, since they correspond to different existential quantification scopes, we will
assumeli NU; = () fori # j. Finaly, we again assume that +; does not contain redundant
constraints (see footnote 8).

THEOREM 3. (INDEPENDENCE) A constraint ¢ entails the disunction of the con-
straints 3. (vi & Ui = Xi), fori =1,...,k if and only if it entails one of them.

Proor. Theif-directionistrivial. It issufficient to show that if ¢ & —324. (¢ & U; =
X) issatisfiablefor every i, then¢ & Ai_; | —3Ui. (¢i & U; = X) issatisfiable.

Extending the proof technique of Proposition 14, we will find a constraint ¢’ such that
¢ & ¢' issatisfiable and disentails{, foral i = 1, ..., k. Asaconsequence, ¢ & ¢’ adso
disentails 3. (¢ & U; = X;). Thatis, ¢ & ¢’ — —3U;. (¢ & U; = X) isvalid. Clearly,
thisshowsthat ¢ & A,_; —3Ui. ¥i & Ui = Xissdtisfiable.

According to Theorem 2, if ¢ & —3U;. (¢i & U; = X) is satisfiable, then ¢, the
normal form of ¢; & U; = X relativeto ¢ isnot a conjunction of equations representing a
functional binding.

Thus, one of the three following cases is true, for some V; € Var(+{) bound to some
Xi € Var(¢),i.e, Vi =X € ¢

(1) «{ containsasort constraint on Vi, say, V; : s, or,
ACM Transactions on Programming L anguages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1298 . H. Ait-Kaci and A. Podelski

(2) ¢ containstwo equationson V;, say, Vi = X & V, = Y;, or,
(3) ¢ containsafeature constraint on Vi, say, Vi.6; = W,.

(1) If Vi:s € ¢, then ¢ contains either no sort constraint on X; or one of the form
Xi . § wheres < g, according to the third condition of Proposition 12. Let U; = X,
forij = 1,..., m, bethefamily of all equations occurring in the disjuncts binding a local
variable Uj to that same global variable X;. We add to ¢ the sort constraint X; : 5" where
' is some sort that is incompatible with those in the sort constraints U;, : s, and, in case
Xi 1 § € ¢,isfurthermoreasubsort of §, §' < §. We can always add such asort §' to the
signature without changing the meaning of the program thanks to our definition of OSF
algebra. That is, we do not require that a sort denotes the union of the sets denoted by its
subsorts (although the dual holds true: a sort denotes the intersection of the sets denoted
by its supersorts).

@ HVi=X&Vi=Yiey,andV:s ¢y (otherwise we are in Case (2)), then we
addto ¢’ theconjuncts X;.¢; = Z & Z € s& Y.l = Z{ & Zj € S. Heresand s’ aretwo
incompatible sorts, and the ¢’ s are pairwise different features that do not occur in ¢ and
Y, fori=1,... k

(3) Finally, we consider the set | of al indicesi, i = 1,...,k, for which Case (3), but
neither Case (1) nor Case (2) applies. Thus, fori € |, ¢/ containsa feature constraint of the
form V;.¢4; = V. According to our assumption this constraint is not a redundant conjunct;
i.e., there existsa sort 5 such that v; contains, in fact, a conjunct of the form

Vi =VE&VER=V2E . &V =&V,
for somen > 1. Weadd to ¢’ the conjunct
X b =xtext2=xe& ... &xXti=x"& X :d,
for some new variables X!, . . ., X" and for some sort § incompatible with s.

If there are several disuncts w{i with exactly the same chain of feature constraints
starting in a variable bound to the same global variable, then § must be chosen to be
incompatible with the sortsin al of these chains. More precisdly, if, fori; = 1,..., m, the
digunct 1/»{1 contains the conjunct

Vil =VE&VIE=VE& &V =V &V s,
then § ischosen assome sort such that s, A § = L foralij,ij=1,....m O

4. FUNCTIONAL APPLICATION OVER %-TERMS

In this section, we show the use of the general scheme of Section 2 on the specific instance
of LIFE's functiona applications. That is, we explicate how our genera residuation
scheme can be used to explain functional application over ¢-terms.

A -term is a constraint describing a data structure. Hence, as an expression,
it can be further constrained by being conjoined with other functional and relational
congtraints. We will call such an expression a constrained -term. For example,
X :cons(tl = T : list) & length(T) = L & L : even is a constrained w-term specifying
lists of odd lengths.

A constrained i¢-term is an expression of the form ¢» & C wherevy isa¢-termand C a
possibly empty conjunction of OSF constraints and relational atoms.®

9The concrete syntax in LIFE for a constrained +/-termis+ | C. Thisisread as*‘+) such that C.”’
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1299

InLIFE afunction f is defined by
f(p1) — e

f(pn).—> €.

wherepy, ..., pn arey-termsand ey, . . ., €, are constrained -terms. We assume that the
variables occurring in each rule f(p;) — & are different. We shall use ¥ for Var(p;) and
Vi for Var(e). Again, for ease of notation and without loss of generality, we consider only
the case of unary function symbolsf.

The above form of function definition is in fact syntactic sugar for a collection of n
guarded Horn clauses of the form

i—1
f(U,V):-U:p & A-U:p [V:e.
j=1

fori = 1,...,n,andthus, asseeninthe previous section, for aconjunction of n+1 guarded
rules. The symbol f; is a binary relation symbol associated to f. We shall aso use the
functional constraint notation Y = f (X) as sugaring for therelational atomf,(X, Y), and the
congtraint Y : f(t) with thefunctional expressionf (t) assugaringfor 3X. X: t & Y = f(X).

We have everything ready now, with the general scheme of residuation of Section 2, to
explain the operational semantics of functional reduction in LIFE as a matter of instance.
Indeed, that scheme is sufficiently general to account for argument matching seen as
constraint entailment and priority of rule order, thanks to negative constraints imposing
disentailment of previous patterns.

We makethisexplicitin the form of the following two propositions. They areimmediate
instances of Proposition 2 and Proposition 8, respectively.

ProposiTION 15. Theresolvent R& ¢ & Y : f(t) isequivalent to the resolvent
IXWUTV,. R& ¢ & X:t&Y: g & X:p

if the context ¢ & X : t disentails the OSF constraints X : pj for j = 1,...,i — 1, and if
it entails the OSF constraint X : p;. That is, if the conjunctions¢ & X : t & X : p; are
unsatisfiablefor j = 1,...,i — 1, and theimplication ¢ & X :t — 3. X: piisvalid.

ProposiTiON 16. If,forj=1,...,i,the OSF constraint X : p; simplifies to the OSF
constraint 4 relativeto¢ & X : tsuchthaty; = L, ... ,¢j—1 = L, andv; isafunctional
binding,° then theresolvent R& ¢ & Y : f(t) is equivalent to the resolvent

IXAUFV,. R& ¢ & X t& Y:g & ¥j.

To express functional application in the framework of the calculus of subsumption and
unification of -terms, we use a fact that follows directly from Propositions 20 and 21.
Namely, theimplication X : t — 324;. X : p; isvalidif and only if the ¢-term t is subsumed
by the ¢-term p;. The OSF constraint X : t & X : p; is unsatisfiable if and only if the
-term t is nonunifiable with the y-term p;.

We will say that the equality t = p between two -terms is satisfied under a valuation
o in aninterpretation A, if and only if A, o =t = piff [t]*~ = [p]*?, i.e., if thetwo
1-terms have the same denotation under «.

10Recall, from Section 3, that a functional binding is a conjunction of variable equalities Ui = X;, i = 1,...,n
whereall the variables U; are mutually distinct.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1300 . H. Ait-Kaci and A. Podelski

ProposiTioN 17. If the ¢-termt is nonunifiable with the ¢-terms py, ..., pi—1 and
if it is subsumed by the y-term p;, then the functional expression f(t) is equivalent to the
expression g constrained by t = p;. Formally,

Y f(t) & WUIV..Y:q&t=p @)
isvalid. If t is nonunifiablewith the ¢-terms py, . . ., pn, then f(t) isequivalent to L.

Proor. The statement follows from Proposition 15 together with the fact that A, o =
X (X:t& X:p)ifandonlyif A, e Et=p. O

4.1 Endomorphisms and Functional Application

We have related functional reduction to the view of y-terms as constraints and as sets.
In order to be complete with respect to the three (logical, term-as-set, and agebraic)
characterizations of the information contents of ¢-terms, we now give an agebraic
characterization of functional application as graph pattern matching. Thisview generalizes
the familiar notion of matching by computing substitutions.

If a function is defined over first-order terms, say, in the form f(p) — e, then the
function applied to the term t yields the expression o(e) if the term t matches the pattern
p via the matching substitution o, i.e., f(t) = o(e) if o(p) = t. Thisis not so obvious for
1-terms. Let ustake, for example, theidentity function on «-terms, which isdefined in the
formf(X: T) — X: T. When applied to the y-term t = X : s(¢ = X' : s), the function
returns the same «-term. However, this does not exhibit, as expected for first-order terms,
asubstitution o suchthat (X : T) = X : (£ = X' : s). Rather, theinstantiation map from
ptotisexpressed thanksto a more general notion of refinement that we describe next.

Recall that an approximation ordering C on «-terms is induced by the ordering on ¥,
the OSF graph algebra (see Section 5). An endomorphism v is said to be principa in a set
of endomorphismsif for every endomorphism+’ in this set there exists an endomorphism
psuchthaty’ = po~.

We define the application of an endomorphism on a constrained «-term of the form
1/} = 1/)0 & /\E“:l(rk(Yk) & Yy 1/)k) by

m
y(¥) = (o) & M\ (re(Yi) & Yic: 7(x)).-
k=1
Let f(p) — e definethe function f, and let t beay-term suchthat p C t. Lety bea
principal OSF endomorphism among al thosethat map p intot. The next proposition states
precisely thefollowingfact: applying therule meansthat f (t) = f(y(p)) = y(e) = v(f(p)).
In other words, principal OSF endomorphisms preserve functional application (i.e.,
functional evaluation and OSF approximation commute).

ProposiTION 18. If no+y-termisapproximated by bothtandp; forj=1,...,i —1,
and t is approximated by p;, then the functional expression f(t) reduces to the -term
v(&), where~ isa principal endomorphismmapping p; ont, i.e.,

f(t) =y(e), if y(p) =t (8

If no y-termis approximated by both t and p; for i = 1, . .., n, then the functional -term
f(t)is L.

11Note that, in (8), we use the metalogical equal sign (=), as opposed to the logical one (=). This means that
in any resolvent we can replace the expression on the one side by the expression on the other side and obtain a
resolvent that is equivalent up to existential quantification of new variables.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1301

Proor. By Proposition 20, we know that the conditionsin Proposition 18 on the OSF
graphs are equivalent to the conditions in Proposition 17 on the corresponding -terms. In
particular, thisimpliesthe existence of the principal endomorphism~ with~(p;) = t. From
Propositions 21 and 22, we know that X : t & X : p; isequivalentto X : y(pi) & ¢ where
¢ isafunctional binding (of variables of p; to variables of t). Moreover, the equivaence

m m

/\Ykm/;k&X:t&X:pi - /\Yki’r(ibk)&XZ'r(pi)&(b

k=0 k=0
isvalid. Now, if g isof theform 4o & Apl;(r(Yk) & Yi: vk), thenYo: e & X:t& X:
pi isequivalent to v(Yo : &) & X : y(pi) & ¢. Up to existential quantification of new
variables occurring only in ¢, this formulais equivalentto y(Yo : @) & X : 4(pi). Thus,
Equation (8) follows from Proposition 17. [

The proposition above justifies the intuition of functional application over -terms. The
variables of the pattern p; in the function definition are instantiated by variables of the
calling term t, together with their sorts and their attached subterms, so that p; becomes
syntactically equal tot; then the variablesin the expression g are instantiated accordingly,
so that becomes the expression to which f(t) is rewritten.

The variablesin g that are not shared by the pattern p; must not be instantiated; thisis
the reason why we require the endomorphism mapping p; on t to be principal.

For example, let thefunctionf bedefinedintheform f(U: T) — U : T({=U:T).
Appliedtothe y-termt = X: s(¢ = X' : s), thefunction returnsf(t) = U’ : T({ = (X:
s(¢ = X' : 9))). Here, the principal endomorphism~y mapsU : T on X : s({ = X' : s) and
istheidentity elsewhere. In particular, v does not unnecessarily refine the sort of U’.

The endomorphic approximation ordering is very interesting when used on the graph
representations of i-terms. It isin fact an immediate generalization of first-order term
matching. Moreconveniently, if agraph 1 approximatesagraph 1, with an endomorphism
7, this approximation is characterized exactly by amapping y,, : Var(¢1) — Var(y;) that
can be constructed inductively as follows:?

(1) 7y (Root(y1)) = Root(y2);
(2) for every X; € Var(vy1) and for every feature £ € F such that £(X;) = Yi, then
7 (Y1) = £(7,, (X))

It is clear that this construction is well defined by the very definition of endomorphic
approximation. In fact, amapping such as+,, canbe extendedto all variablesy,, : V — V;
it can be defined simply from v as,, (Root(v)) = Root(y(+)), foral ¢ in .

For example, provided that married_person < person, smith < name, male < gender,
and female < gender, then the term

Xi : person(lastname = X, : name,
spouse = X3 : person(lastname = X,
spouse = Xy : person),
sex = Xs @ gender)

approximates the term

12Given an OSF graph), we use the notation Root(+) to designate its root variable, Sort,, (X) to designate the
sort of the variable X in +, and £,, (X) = Y to express thefact that +» has an arc labeled £ between nodes X and .
(When no ambiguity may arise, we omit the subscript 2.)

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1302 . H. Ait-Kaci and A. Podelski

Y1 : married_person(lastname = Y, : smith,
spouse = Y3 : married_person(lastname = Ya,
sex = Y, : female,
spouse = Y1),
sex = Y5 : male)

with the endormorphic mapping of variables: v,, (X1) = Y1, 7, (X2) = Y2, 7, (X3) = VY3,
7 (X4) = Y1, and v, (Xs) = Ys.

As for a matching algorithm, the basic unification rules of Figure 7 are sufficient.3
Evidently, if the basic unification yields L, then this shows disentailment. Otherwise, we
will exhibit conditions on the obtained variable bindings that characterize entailment.

First, observethat after normalizing a consistent OSF term using Rules (B.1)--(B.5), the
variable equalities|eft in the solved form generate an equivalence relation on the variabl es.
We call variable coreference this equivalence relation.

Giventwo y-terms), and v, to decidewhether ¢, C 13 and, if so, to computethe prin-
cipal endomorphic mapping yy from Var(+;) to Var(y1) (the ‘*matching substitution’’),
we proceed asfollows.

(1) let] bethey-term obtained from v by completing it with new variables sorted with
T at any path occurrence of 1, that isnot in 1.

(2) Let ¢ bethe normal form of the OSF clause: Root(1) = Root(2) & ¢} & 2.

(3) If gisnot L thenlet~y (resp.,v2) bethecanonical surjection of Var(«]) (resp.,Var (v2))
onto the coreferenceclassesof ¢, i.e., thefunction that mapsavariabletoitscoreference
class.

Then,

THEOREM 4. 1, C ¢ with principal OSF endomorphism if and only if ¢ isnot L
and y; isa sort-preserving bijection.* Then, v,, = 77 072 © Var(y,) — Var(y1) isthe
corresponding endomor phic variable mapping.

Proor. First of all, let us observe that completing v into ¢} with feature occurrences
of 1, with new T-sorted variables is an equivalence transformation thanks to totality of
features. In other words, 11 and ¢ are equivalent. Let X1 = Var(y]) and X> = Var(y,).
Theformulag isof theform ¢ & ¢ where consistsonly of sort and feature constraintsand
¢ consists only of equality constraints. These variable equalities generate the coreference
relation. Let [X] denote the coreference class of X.

If 1 is asort-preserving bijection, then for every variable X of ¢, v; *([X]) isthe unique
variable of ¢} that is element of this coreference class. Then, we can transform ¢ into an
equivaent formula ¢ by replacing every variable X by 71‘1([X]) in ¢ and replacing £ by
e = Axex, X = 7, (X). Note that this is an equivalence-preserving transformation since
¢ is, by construction, of theform ¢ & ¢’, and the coreferencerel ations generated by ¢ and
¢’ areidentical. It isimportant to realize that this statement would not be true if we had
used v instead of 7. Indeed, then, ¢ would have been of the form ¢ & ¢’ & &’ where
' consisted of additional feature constraints corresponding to occurrences of 1, missing

in 1.

13gee Appendix.
14By sort-preserving, we mean: VYV € Var(i1), Sorty, (V) = Sortg(v1(V)).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1303

Clearly, it istrue that VA1. (v < 3IAo. (¥; & ¢’)). This shows that VX;. (¢] <
3X,. (Root(v1) = Root(v2) &] & 7)) and, thus, VA7, (¢; — 3JA,. (Root(y1) =
Root(12) & 7)) isvalid, and thus ¢, C ;.

Conversely, if ¢, C 41, thenalso V4. (] — 3X>. (Root(y1) = Root(¢2) & 7)) is
valid, and, thus, also Y4y (¢ < 3J&. ¢). But this means (1) that ¢ does not contain
equalities binding two variables of v, to each other and (2) that ¢ does not contain a sort
constraint stronger than the one in 1 on the (same or corresponding) variable of ;. [

Note that the completion of 1 with occurrences from s, donein Step 1 is necessary to
determine the bijection 1, and thus the mapping v,,, with no loss of information. For
example, if 1 = f(a, h) and 2 = f(X, h(X)), then ¢, [Z 1. However, using ¢4 instead of
the completed ¢} = f(a, h(U)) and normalizing does result in a sort-preserving bijection
while, using ¢}, it does not.

4.2 Semantics of Functional Application

If afunction is defined over ¢-terms, then this meansthat it can be applied to set-denoting
objects to return set-denoting objects. We will first consider the meaning of pointwise
functional application given an OSF algebra .4 and a valuation « in .A. This extends
naturally to the meaning of functional application on sets, given just an OSF algebra . A.
The function f4* maps elements to elements of the domain D4 of A. In fact, f4
describes a partial, at most n-point, function:
i—1
fA2d) = d if de [p]** - JIn]* andd’ € [a]*“ for somei.
j=1

They-termspy, . . ., P, are not necessarily digoint. Instead of using an explicit negation
operator, we give a deterministic meaning to the top-down order in the function definition
in the above way. That is, we define the function 4« for only those valuations o where
[pQ*« isdigoint from [pi]#4, . . ., [pi—1]*. Implicitly, we make the «-terms p; digjoint
by giving them the denotations [p]** — ([pa]* U. ..U pi_1]*), fori = 1,...,n. Note
that, for two +-terms 141 and 1)», the set 4] is digoint with [12]** — [++]*, but
generally not with [4,]4« — [1]*®. For example, take, = X : intand ¢, = Y : real,
and define some o where a(X) = 3, «(Y) = 4.

The function f#, i.e,, f interpreted in A, maps elements (and, by extension, sets) to
subsets of the domain D4,

fAd) = {d'|Ja € Val(A). FA(d) = d'}.

The denotation of the functional application of f on the i-term t under avaluation « in
the interpretation A is:

If ()14 = FAII4*).
Thus, A, | Y f(X: t)if and only if «(X) € [t]** and a(Y) = f4#(a(X)) for some
B e Val(A).

The denotation of the functional application of f on the i-term t in the interpretation .A
isIf(O1* = AT

Example 1. Wedefinetheidentity functionidon ¢-termsby theruleid(X: T) — X: T.
Then, id4(D) = D for any subset D C D*. If we confuse singletons and their elements,
we may write id4(d) = d for elements d of the domain of A. If s is any sort,

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1304 . H. Ait-Kaci and A. Podelski

then [id(X : 9)]* = [X : s]* = s*. In fact, the denotation of the function id
applied on any -term is equal to the denotation of the i-term. The denotation under
a given vauation « is the value of the element on which the function is applied,
[id(X: T[4 = [X: T14 = {a(X)}.

Example2. We define the function any by the rule: any(X : T) — Y : T. The
application of thisfunction on ay-term ¢ yieldsalwaysthesort T,any(¢)) = Y: T = T.
Note that [any]4“(a(X)) = a(Y). Thus, any*(D) = D for any subset D C D4, and
[any(X : |4 = DA,

Example 3. For afixed sort s, we define the function sorts by therulesorts(X : s) — X:
T. Now, sort ([X : T]*®) yields {a(X)} if a(X) € s* and () otherwise. This function
“‘type-checks’ the variable X. Operationally, this means that the function call sorts(X)
will residuate until X is known to be in the sort s and then fire, or, until it is known to be
out of the sort s and fails.

What about the interpretation of the syntactic object f in an OSF algebra .A? The
function f is generally not completely specified in that not one function is singled out in
every interpretation 4. Indeed, LIFE cal culates with approximationsof functions, just asit
does for values of the universe. Thus, f denotes, under each interpretation .A, the set of all
partial functions ¢ : D* +— D# suchthat, if ¢(d) = d’, then there exists an .A-valuation o
such that f4-*(d) = d'.

5. CONCLUSION

Our original motivation was to provide a formal account of the precise manner in which
functional application is used in the resolution scheme of LIFE. This involved doing
three things essentially. We developed a general residuation framework for guarded Horn
clauses over arbitrary constraint systems with an incremental constraint simplification
system. Doing so, we have given alogical reading of guarded rules asfirst-order formulae
and exhibited operational and semantical properties of the framework. Second, we gave a
correct and complete operational schemefor testing entailment and disentailment of order-
sorted feature constraints. To that end, we introduced a general technique, that we dubbed
relative simplification, that amounts to normalizing a formula in the context of another.
Last, we used this general residuation framework on the particular instance of functional
application over the order-sorted features terms of LIFE. In particular, we characterized
functional application over LIFE's structures in terms of their logical, set-theoretic, and
algebraic accounts.

As for perspectives, one important issue begs the question. Namely, it would be
interesting to build function denotationsinto the OSF models. Indeed, whilethe framework
of thisarticle givesa natural meaning to function symbols, it does not consider the latter as
““first-class'’ objects---i.e., the OSF interpretationsused here are not functionally compl ete.
We plan to study a means of construction using well-known techniques & la Dana Scott
to extend domains of OSF agebras to be functionally complete. That should involve
the machinery of classical Scott-style constructions. Another dimension to that endeavor
would be that of seeing al functions as features of objects. This intriguing perspective
could indeed lead to interesting model constructions.

Another avenue for further work on the foundations that we have just cast is the use
of the new discipline for procedure parameter passing in concurrent systems described
as ‘‘call-by-constraint entailment.’”” This is along the lines of what has been proposed

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1305

by Maher [1987] and Saraswat and Rinard [1990], and realized to some extent in AKL
[Haridi and Janson 1990]. The novelty that our scheme suggests is the possihility to
derive automatically an effective means to realize this from the operational semantics of a
given constraint solver. Then, it should be practically possible for concurrent constraint
programming languagesto use any constraint system to control suspension and resumption
of execution.

APPENDIX

We give here a detailed summary of the technical terminology and notation used in this
article. For athorough investigation of these notions, the reader is referred to Ait-Kaci and
Podelski [1993b].

We start with the notion of OSF algebras. They are the semantic structures interpreting
complex data objects built out of features and partialy ordered sorts. Mathematically, an
OSF algebra formalizes access into the parts making up a piece of datum as well as their
categorization. We then introduce OSF constraints. They are important since, although
they are formal objectsthat are part of alogical formalism, they are also quite primitive to
constitute a low-level implementation logic.’®> We then formalize v-terms since they not
only congtitute a syntactically pleasant and convenient surface language for data objects
in LIFE, but also comprise a syntactic OSF algebra. Namely, they are representations of
values of the domain of the standard interpretation. Finally, we summarize a few facts
about thisformalism that are relevant as related to the global contents of the article.

OSF Algebras and OSF Constraints

The building blocks of OSF algebras are sorts and features.
An order-sorted feature signature (or simply OSF signature) is a tuple (S, <, A, F)
such that
---S isaset of sorts containingthesorts T and L ;
---< isadecidable partial order on S suchthat | istheleast and T isthe greatest element;
(8, <, A) isalower semilattice (SA S is called the grestest common subsort of sorts s
and s);
---F isaset of feature symbals.

An OSF signature has the following interpretation. An OSF algebra over the signature
(8, <, A, F)isastructure

A= (D) (SA)SES) (£A>ze}'>
such that

---D*# isanonempty set, called the domain of A (or, universe);

--for each sort symbol sin S, s* is a subset of the domain, in particular, T4 = D# and
1A =0;

---the greatest lower bound (GLB) operation on the sortsis interpreted as the intersection,
i.e, (sAS)A =st Ng fortwosortssand s in S;

--for each feature ¢ in F, ¢* is atotal unary function from the domain into the domain,
i.e, 4 : DA — DA.

15N fact, the reader familiar with implementation techniques of Prolog [Ait-Kaci 1991] should recognize that
they are of the exact same granularity as WAM term representation and instructions.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1306 . H. Ait-Kaci and A. Podelski

The notion of OSF agebra calls naturally for a corresponding notion of homomorphic
tranformation preserving its structure appropriately. Namely,

Definition 3. (OSF Homomorphism) An OSF homomorphismy : A — B between
two OSF algebras A and B isafunction y : D* — D such that

-y (¢A(d)) = ¢8(y(d)) foral d € D4;
—y(st) C 5.

It is straightforward to verify that OSF algebras together with OSF homomorphisms
form a category. We call this category OSF.
Let V be acountably infinite set of variables.

Definition 4. (OSF Constraint) Anatomic OSF constraintisoneof (1) X : s, (2) X =
X', or (3) X.£ = X', where X and X’ arevariablesinV, sisasortin S, and ¢ isafeaturein
F. An OSF constraint is a conjunction of atomic OSF constraints.

One reads the three forms of atomic OSF constraints as, respectively, ‘X lies in sort
s’ “Xisequd to X', and ‘X is the feature ¢ of X" The set Var(¢) of variables
occurring in an OSF constraint ¢ is defined in the standard way. OSF constraints will
always be considered equal if they are equal modulo the commutativity, associativity,
and idempotence of conjunction *‘&."" Therefore, a constraint can also be formalized as
the set consisting of its conjuncts. As usual, the empty conjunction corresponds to the
propositional constant interpreted as true.

Let A be an OSF agebra. We call Val(A) = {a : V — D*} the set of all possible
valuationsin theinterpretation .A. The semantics of OSF constraintsis straightforward.

An OSF constraint ¢ is satisfiable in an OSF algebra A, if there exists a valuation
a1V +— D* suchthat A, o |= ¢, where:

AalEX:s ifandonlyif a(X) € st;
AaEX=Y ifandonlyif «o(X)=a(Y);
AaEXe=Y ifandonlyif 4(a(X)) = a(Y);
AaE & ¢ ifandonlyif AapEdand A ol ¢

Y-Terms

We now introduce the syntactic objectsthat we intend to use as expressions of approximate
descriptions to be interpreted as subsets of the domain of an OSF algebra. Later, we
will use them as well as representations of values constituting the domain of a specific
interpretation.

Definition 5. (¢-Term) A y-term ¢ is an expression of the form X : s(¢; =

¥1, ..., n = n), where:

---Xisavariablein V called the root of ;

---sisasort different from L in S;

-y, ..., ¢, are pairwise different featuresin F,n > 0;

-1, ..., ¥ areagan y-terms; and,

---no variable Y occurring in i isthe root variable of more than one nontrivial y-term (i.e.,
differentthan Y : T).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1307

Notethat the equation aboveincludesn = 0 asabase case. That is, the simplest i-terms
areof theform X : s,
We can associate to a ip-term

1/):XZS(€1:>1/)1,...,fn:>’l/)n)
the OSF constraint

d(h)= X:s & Xl =Yy & ... & Xly=Y,
& (1) & ... & o(¢n)

where Yy, ..., Y, aretherootsof ¢, .. ., ¢y, respectively. We say that the OSF constraint
#(¢) is obtained from dissolving the y-term ¢, and refer to the OSF constraint as the
dissolved ¥-term. We will often deliberately confuse a -term + with its dissolved form
é(¢) and refer to ¢() Simply as ¢.

Given the interpretation A, the denotation [[+/]*'* under a valuation « : V — D4 of a
-term « with root X is given as

[¥]4* ={deD* | a(X) = d, A, a | ¥}.

Note that thisis either the singleton {«(X)} or the empty set.
The type-as-set denotation of a-term ¢ is defined as the set of domain elements

[vI* = |J [vl*~

aeVal(A)
This amounts to saying that
[v]* = {d € D* | thereexists @ € Val(A) s.t. a(Z) = d, and A, « |= 3X Z: 4}

where Z isanew variable not occurring in ¢, X = Var(y), Z : ¢ standsfor Z = X & v,
and X € X isy’'sroot variable.

A y-term ¢ with root X corresponds to a unique rooted graph g that is the direct
trangdation of the constraint +» together with an indication of the root. The nodes of g are
exactly the variables of ;. A node Z islabeled by the sort sif the conjunction ¢ containsa
nontrivial sort constraint Z : s, and by the sort T, otherwise. For every feature constraint
Y.¢ = Z the graph g has a directed edge (Y, Z) that is labeled by the feature £. The root of
g isthe node X. Clearly, g isthe natural graphical representation of . For example, the
-term

Xq : person(name = X; : id(first = X3 : string,
last = X4 : string),
spouse = Xs : person(name = Xg : id(last = Xa),
spouse = X1)).

corresponds to the OSF graph shown in Figure 6.

Syntactic Interpretations

Among al OSF algebras, there are those whose domain elements are concrete data
structures. We call these syntactic interpretations. We will now present three important
examples obtained directly from the syntactic expressions of -terms. They turn out to be
canonical interpretations for OSF constraints.®

161f an OSF constraint is satisfiablein someinterpretation, thenit is also satisfiablein all canonical interpretations.
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1308 . H. Ait-Kaci and A. Podelski

name
4>{ X1t personl

spouse

Fig. 6. An OSF graph. X3 : string

spouse

| name
Xs : person

The most immediate syntactic OSF interpretation is the OSF algebra ¥ of -terms. The
domain of ¥ is the set of all v-terms, up to graph representation. That is, we identify
y-terms as values of ¥ if they are represented by the same graph. For example, the two
ytermsY i s(ly = X8, b= X)and Y : s(41 = X, £, = X : §) clearly correspond to
the same object. Indeed, they have the same OSF graph representation.

Sortss € S areinterpreted as

s’ = {y € DY | ¢ < s, wheres istheroot sort of the graph of +},

and features ¢ € F are interpreted as functions ¢¥ : DY — DY as follows. Let be a
y-term and g its graph. If (X,Y) is the edge of g labeled by ¢, then £7(g) is the y-term
represented by the maximally connected subgraph g’ of g rooted at the node Y. That is, ¢
is obtained by removing all nodes and edges that are not reachable by a directed path from
thenodeY.

If X does not have thefeature ¢, i.e., there is no outgoing edge from the root of g labeled
¢, then ¢¥ isthe y-term Z, ,, : T, for a new variable Z; ,, uniquely determined by the
feature £ and the ¥-term 4.

For example, taking v = X : T(¢1 =Y : 56, = X), we have &Y (¢) = Y : s,
G W)=, and 5 (1) = Zeyy T

We obtain two other examples of OSF algebras when we factorize the -term domain
by further identifying values. The first one identifies two -terms that are equal up to
variable renaming. The obtained domain obviously spans an OSF algebra. We call this
OSF algebra .

The second one is obtained from ¥y by further identifying two ¢-termsif their (possibly
infinite) treeunfoldingsareequal. A tree unfolding isobtained from a-term by associating
aunique nodeto every feature path. It iswell known that arooted directed graph represents
a unique rational tree [Courcelle 1983]. In our case, we obtain trees whose nodes are
labeled by sorts and whose edges are labeled by features. We call these (rational) OSF
trees. It is again clear that the set of all OSF trees spans an OSF algebra 7 .Y’

Formally, OSF agebras can also be introduced as logical structures, namely, models
providing interpretations for the sort symbols as unary predicates and the feature symbols
as unary functions, that satisfy the Sort Axiom saying, for all sortssand s/,

17T is essentially the feature tree structure of Ait-Kaci et al. [1994] and Backofen and Smolka[1992, Smolkaand
Treinen [1992)]. The differenceliesin our using partially ordered sorts and total, as opposed to partial, features.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1309

X:s& X:9d — X:sAfd.

Furthermore, both ¥, and 7 satisfy a Constructibility Axiom stating essentidly the
satisfiability of any OSF constraint ¢ coming from dissolving a v -term . More precisely,
if ¥ =Var(¢)and, fori=1,...,n,X.4 =Y ¢ ¢ for any varigble Y, and Y; ¢ Var(¢),
and X; € X, then this axiom states the validity of

VY1... VY. X . 0 & X141 =Y1 & ... & Xn.lnh = Yy,

The constructibility axiom is a generalization of the axiom of functionality, which isvalid
for first-order terms. Namely, the axiom that guarantees that, given a constructor symbol
f of rank n, an individual X = f(Yy,...,Y,) exists if individuals Y; exist, i = 1,...,n.
Formally, taking ¢ = X : f,

YY1 .o VY X X F&X1I=Y1& ... & Xin=Y,.

Theformwegivefor constructibility isindeed more general than plainfunctionality sinceit
states the existence of something that is not valid for first-order terms, e.g., self-referential
individuals. For example, 3X. X.£ = X is obtained as an instance of our axiom by taking
n=0and ¢ = XL =X

OSF Unification

We describe next how to determine whether an OSF constraint ¢ is consistent, i.e,, if itis
satisfiable in some OSF algebra.4---and, therefore, in particular in . Unification of two
1-terms reduces to this problem.

Definition 6. (Solved OSF Constraints) An OSF constraint ¢ is called solved if for
every variable X, ¢ contains

---at most one sort constraint of theform X : s, with L < s,
---at most one feature constraint of the form X.£ = Y for each ¢; and,
---no other occurrence of the variable X if it contains the equality constraint X = .

We can show that an OSF constraint in solved form is always satisfiable [Ait-Kaci and
Podelski 1993b]. Now, by Definition 5, the OSF constraint obtained as the dissolved form
of any v-term + is defacto in solved form.'® Hence, such aconstraint is always satisfiable.
It is so, in particular, in the canonical interpretation ¥ with, interestingly enough, the
valuation that assignsto each variable X in ¢ thevaluein DY that isthe very +-term rooted
in X in . For this reason, a 1-term can also be seen as a variable substitution.

Given an OSF constraint ¢, it can be normalized by choosing nondeterministically and
applying any applicable rule among the transformations rules shownin Figure 7 until none
applies. A rule transforms the numerator into the denominator. The expression ¢[X/Y]
stands for the formula obtained from ¢ after replacing all occurrencesof Y by X.

THEOREM 5. (OSF CoNSTRAINT NORMALIZATION) The rules of Figure 7 are
solution preserving, finite terminating, and confluent (modulo variable renaming). Fur-
thermore, they always result in a normal form that is either the false constraint | or an
OSF constraint in solved form.

For our purposes, the constraint ¢ to be normalized will be of theform ¢ & ¥, & X3 =
Xz; i.e., the conjunction of the dissolved -terms 1 and v, together with an equation

18More precisely, thisistrueif we forget superfluoustrivial sort constraints of theform X : T.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1310 . H. Ait-Kaci and A. Podelski

Feature Decomposition:
Y& UL=VE&UL=W

(B.1) . .
P&ULZVEW=V

Sort Intersection:
Y& U:s&U:¢

(B.2)
»&U:isAE

Variable Elimination:

P& U=V ;

Fig.7. Basicsimplification. B3 — ifU € Var(y)
Y[V/Ul & U=V andU #V

Inconsistent Sort:

& X: L
(B.4) 1&7

Variable Clean-up:

&U=U
(B.5) d}i

identifying their root variables X; and X;. If ¢ normalizes to the false constraint, then
the two -terms are nonunifiable. Otherwise, the resulting solved OSF constraint is a
conjunction of equality constraints and of the dissolved form of some v-term. This-term
is the most general unifier of 1 and v, up to variable renaming. We shall see that this
y-term has two equivalent order-theoretic characterizations (see Propositions 21 and 22).

OSF Orderings

In this section, we first introduce the notion of endomor phic approximation that captures
precisely and elegantly object inheritance. We also show how it relates to the logic and
type views.

Endomorphisms on agiven OSF algebra A, i.e., homomorphisms from .4 to .4, induce
anatural partia ordering.

Definition 7. (Endomorphic Approximation) On each OSF algebra.4 an approxima-
tion preorder C 4 isdefined such that, for two elementsd and e in D, d approximates e if
and only if e isan endomorphic image of d. Formally,

dC4 e iff v(d) = e for some endomorphism « : A — A.

We shall omit subscripting C_4 and write C when A = ¥. Notice that this ordering on -
terms as values of the domain of ¥ trandates into an information-theoretic approximation
ordering on -terms as types.

We note that endomorphisms on ¥ are graph homomorphisms with the additional sort-
compatibility property. A node labeled with sort s is always mapped into a node labeled
with s or asubsort of s. An edge |abeled with afeatureis mapped into an edge labeled with
the same feature. Thus, endomorphic approximation captures exactly object-oriented class
inheritance. Indeed, if an attribute is present in aclass, then it is also present in a subclass

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1311

with asort that isthe same or refined. Since featuresare total functions, this also takes care
of introducing a new attribute in a subclass: it refines T. Note also, that the restriction of
7 to the set of nodes defines a variable binding; it corresponds to the notion of a matching
substitution for first-order terms.

The following fact holds [Ait-Kaci and Podelski 1993b].

ProprosiTION 19. (¥-TERMS as FILTERs) Thedenotation of ay-termin® isthe
set of all -termsit approximates, i.e.,

[v1” = {¢' € DY |y C '}

The next ordering is the type ordering on -terms that we informally called **more
specificthan’’ in Section 1.2.

Definition 8. (¢-Term Subsumption) A -term ¢ is subsumed by a ¢-term ¢ if and
only if the denotation of ¢ is contained in that of ' in all interpretations. Formally,

v <y iff W14 C v
for all OSF agebras A.

In fact, it is sufficient to limit the above statement to the OSF algebra ¥ only, i.e,
[¥1” < [¥'1”.

The next and last ordering isalogical ordering on ¢-terms.

Definition 9. (¢-TermEntailment) A -term ¢ entailsay-term ¢’ if and only if, as
constraints, v implies the conjunction of ¢’ and X = X’; more precisdly,

Y=y iff By —TU X=X &)
where X, X’ aretheroots of ¢ and ¢’ and i/ = Var(y').

It isimportant to realize that this formulation is not actually correct in general. Here, we
limit the statement to the validity of the implication in the OSF algebra ¥ only (namely,
using Ew). This would not be sufficient in the more general case of arbitrary OSF
constraints [Ait-Kaci and Podelski 1993b]. This weaker form is acceptable here only

because the constraints in question are obtained by dissolving -terms and because their
root variables are bound together.

ProPosITION 20. (SEMANTIC TRANSPARENCY OF ORDERINGS) The four fol-
lowing statements are equivalent.

1Q vCv (v isan approximation of ');

(2 ' <y (¢' isasubtype of 1);

Q) =y (4 entails ¢);

(4 [v]¥ C¥'1% (thesetof v-termsfiltered by 1/ iscontained in theset of +-terms
filtered by ¥').

The following two propositions are straightforward. Let 1, and 1, be two i-terms
with variables renamed apart, i.e., such that Var(y1) N Var(¢,) = 0. Let X; and X,
be their respective root variables. Let ¢ be the normal form of the OSF constraint
Y1 & Yo & Xg = Xo.

ProprosiTION 21. (-TERM UNIFICATION) The normal form ¢ is the false con-
sgtraint if and only if [14]* N [¥2]* = 0, for all OSF algebras .A. Otherwise, ¢ is the
conjunction of equality constraints and of the dissolved version of some -term . This
y-termisthe <-GLB of 1 and ¥, upto variablerenaming, i.e., [¢]* = [¥1]* N [204.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

1312 . H. Ait-Kaci and A. Podelski

ProprosIiTION 22. ((E-LUB oF Two %-TERMs)) Thewy-termy aboveisapprox-
imated by both 1 and ¢, and istheleast v -termfor C (i.e., approximating all other ones)
with this property.

ACKNOWLEDGMENTS

We are grateful to Michael Maher for detailed comments on the form and contents of the
material of Section 2, and to Gert Smolka for stimulating discussions and his continuing
collaboration on issues related to the topic of thiswork. Many thanks also to Ralf Treinen
for reading all technical details thoroughly and reporting many errors and suggesting
corrections.

We aso wish to express our debt to the anonymous referees for their thorough and
constructive criticisms. As well, we express our gratitude to Andrew Appel and John
Mitchell for their thoughtful advice and the care they put in their editorial work.

Finally, we thank the members of the Paradise Project at PRL for many discussions
related to the contents of this article. In particular, we are indebted to Peter Van Roy for
his careful proofreading and commenting on the relative simplification rules, Roberto Di
Cosmo for his perspicacious questions on our general residuation framework, and Seth
Copen Goldstein for using our operational semantics as the basis of his compiler design
for LIFE.

REFERENCES

AT-Kacrt, H. 1991. Warren's Abstract Machine, A Tutorial Reconstruction. MIT Press, Cambridge, Mass.

AT-Kact, H. 1986. An agebraic semantics approach to the effective resolution of type equations. Theor.
Comput. i. 45, 293--351.

AT-Kact, H. AND NasRr, R. 1989. Integrating logic and functional programming. Lisp Symb. Comput. 2,
51--89.

AT-Kact, H. AND Nasr, R. 1986. LOGIN: A logic programming language with built-in inheritance. Logic
Program. 3, 185--215.

AT-Kaci, H. AND PoDELSKI, A. 1993a. Entailment and disentailment of order-sorted feature constraints.
In Proceedings of the 4th International Conference on Logic Programming and Automated Reasoning.
Lecture Notesin Computer Science, vol. 698. Springer-Verlag, New York, 1--18.

AT-Kaci, H. AND PobpELskI, A. 1993b. Towards a meaning of LIFE. J. Logic Program. 16, 3-4
(July-Aug.), 195--234.

AT-Kact, H. AND PoDELsKI, A. 1991. Functions aspassive constraintsin LIFE. PRL Res. Rep. 13 (June),
Paris Research Laboratory, Digital Equipment Corporation, Rueil-Malmaison, France.

AT-Kaci, H., PODELSKI, A., AND SMOLKA, G. 1994, A feature constraint system for logic programming
with entailment. Theor. Comput. Sci. 122, 263--283.

BACKOFEN, R. AND SmorkaA, G. 1992. A complete and decidable feature theory. DFKI Res. Rep.
RR-30-92, German Research Center for Artificial Intelligence, Saarbriicken, Germany.

BONNIER, S. AND MALUSZYNSKI, J. 1988. Towardsa clean amalgamation of logic programswith external
procedures. In Logic Programming. Proceedings of the 5th International Conference and Symposium.
MIT Press, Cambridge, Mass., 311--326.

CraArk, K. L. 1978. Negation asfailure. In Logic and Data Bases. Plenum Press, New Y ork, 293--322.

COLMERAUER, A. 1984. Equations and inequations on finite and infinite trees. In Proceedings of the 2nd
International Conference on Fifth Generation Computer Systems. ICOT, Tokyo, 85--99.

COLMERAUER, A. 1982a Prolog and infinite trees. In Logic Programming. Academic Press, New York,
153--172.

COLMERAUER, A. 1982b. Prolog Il: Manuel de référence et modéle théorique. Rapport technique (March),
Université de Marseille, Groupe d' Intelligence Artificielle, Faculté des Sciences de Luminy, Marseille,
France.

COURCELLE, B. 1983. Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 95--169.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

Functions as Passive Constraints in LIFE . 1313

HARIDI, S. AND JANsoN, S. 1990. Kernel Andorra Prolog and its computation model. In Logic Program-
ming, Proceedings of the 7th International Conference. MIT Press, Cambridge, Mass., 31--46.

HARIDI, S., JANSON, S., AND ParLamipessi, C. 1992. Structural operational semantics for AKL. Fut.
Gen. Comput. Syst., 409--421.

HARPER, R., MILNER, R., AND ToFTE, M. 1988. The definition of standard ML -- Version 2. Rep.
LFCS-88-62, Univ. of Edinburgh, Edinburgh, UK.

HoHuFELD, M. AND SMoLkA, G. 1988. Definite relations over constraint languages. LILOG Rep. 53
(October), IWBS, IBM Deutschland, Stuttgart, Germany.

JAFFAR, J. AND LAssEz, J.-L. 1987. Constraint logic programming. In Proceedings of the 14th ACM
Symposium on Principles of Programming Languages. ACM, New Y ork, 111--119.

LassEz, J.-L., MAHER, M., AND MaRIOoTT, K. 1988. Unification revisited. In Foundations of Deductive
Databases and Logic Programming. Morgan-Kaufmann, Los Altos, Calif., 587--625.

MAHER, M. 1987. Logic semantics for a class of committed-choice programs. In Logic Programming,
Proceedings of the 4th International Conference. MIT Press, Cambridge, Mass., 858--876.

Nai1sH, L. 1986. Negation and quantifiersin NU-Prolog. In Proceedings of the 3rd International Conference
on Logic Programming. Lecture Notes in Computer Science, vol. 225. Springer-Verlag, New York,
624--634.

RAMACHANDRAN, V. AND VAN HENTENRYCK, P. 1993. Incremental algorithms for constraint solving
and entailment over rational trees. In Proceedings of the 13th International Conference on Foundations
of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science, vol.
761. Springer-Verlag, New Y ork.

SaNTOs CosTA, V., WARREN, D. H. D, AND YaNG, R. 1991. Andorra-|: A parallel Prolog system that
transparently exploits both and- and or-parallelism. In Proceedings of the 3rd ACM SIGPLAN Conference
on Principlesand Practice of Parallel Programming. ACM, New Y ork, 83--93.

SARASWAT, V. AND RINARD, M. 1990. Concurrent constraint programming. In Proceedings of the 7th
Annual ACM Symposiumon Principles of Programming Languages. ACM, New Y ork, 232--245.

SMoLkA, G. 1991. Residuation and guarded rules for constraint logic programming. PRL Res. Rep. 12, Paris
Research Laboratory, Digital Equipment Corporation, Rueil-Ma maison, France. To appear in Constraint
Logic Programming: Selected Research. MIT Press, Cambridge, Mass.

SMoLKA, G.AND TREINEN, R. 1992. Recordsfor logic programming. In Logic Programming, Proceedings
of the Joint International Conference and Symposium on Logic Programming. MIT Press, Cambridge,
Mass., 240--254.

Received January 1993; revised June 1993, September 1993, and October 1993; accepted December 1993

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.

