
Functions as Passive Constraints in LIFE
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LIFE is a programming language proposing to integrate logic programming, functional programming, and
object-oriented programming. It replaces first-order terms with

�
-terms, data structures that allow computing

with partial information. These are approximation structures denoting sets of values. LIFE further enriches the
expressiveness of

�
-terms with functional dependency constraints. We must explain the meaning and use of

functions in LIFE declaratively, as solving partial information constraints. These constraints do not attempt to
generate their solutions but behave as demons filtering out anything else. In this manner, LIFE functions act
as declarative coroutines. We need to show that the

�
-term’s approximation semantics is congruent with an

operational semantics viewing functional reduction as an effective enforcing of passive constraints. In this article,
we develop a general formal framework for entailment and disentailment of constraints based on a technique
called relative simplification. We study its operational and semantical properties, and we use it to account for
functional application over

�
-terms in LIFE.

Categories and Subject Descriptors: D. [Software]: Programming Techniques; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory---semantics; syntax; D.3.2 [Programming Languages]: Language
Classifications---applicative languages; concurrent, distributed, and parallel languages; nonprocedural lan-
guages; D.3.3 [Programming Languages]: Language Constructs and Features---concurrent programming
structures; coroutines; data types and structures; E. [Data]: Data Structures---graphs; trees

General terms: Design, Languages
Additional Key Words and Phrases:

�
-terms, committed-choice languages, concurrent constraint programming,

coroutining, first-order terms, matching, relative simplification, residuation, unification

The paradox of culture is that language [...] is too linear, not comprehensive
enough, too slow, too limited, too constrained, too unnatural, too much a
product of its own evolution, and too artificial. This means that [man] must
constantly keep in mind the limitations language places upon him.

EDWARD T. HALL, Beyond Culture.

1. INTRODUCTION

Logic programming frameworks that exploit the separation of relational resolution and
constraint solving have recently been introduced. Among the preeminent, Constraint Logic
Programming (CLP) [Jaffar and Lassez 1987], the guarded Horn clause scheme of Maher
(ALPS) [Maher 1987], Concurrent Constraint Programming (CCP) [Saraswat and Rinard
1990], and Kernel Andorra Prolog (KAP) [Haridi and Janson 1990] do so to a full extent by
being parameterized with respect to an abstract class of constraint systems. Additionally,
ALPS, CCP, and KAP require a test for entailment and disentailment between constraints.
This yields advanced control mechanisms such as coroutining and synchronization through
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committed choice and deep constraint propagation.
LIFE [Aı̈t-Kaci and Podelski 1993b] is a CLP language over order-sorted feature

constraints augmented with effective functional dependencies. Evaluating functional
dependencies involves constraint entailment/disentailment since passing arguments to
functions is done by matching as opposed to unification. Thus, LIFE employs a related,
but limited, suspension scheme called residuation to enforce deterministic functional
application. In this work, we extend the guarded Horn clause scheme of Maher [1987] and
present a logical semantics of the general residuation scheme used in LIFE.

This will involve three things essentially. First, we will develop a general residuation
framework for guarded Horn clauses over arbitrary constraint systems with an incremental
constraint simplification system. Doing so, we will give a logical reading of guarded rules
as first-order formulae and exhibit operational and semantical properties of the framework.
Second, we will develop a correct and complete operational scheme for testing entailment
and disentailment of order-sorted feature constraints. To that end, we will introduce a
general technique, which we dub relative simplification, that amounts to normalizing a
formula in the context of another. Last, we will use this general residuation framework
on the particular instance of functional application over the order-sorted features terms of
LIFE. In particular, we will characterize functional application over LIFE’s structures in
terms of their logical, set-theoretic, and algebraic accounts.

1.1 The Task

LIFE extends the computational paradigm of logic programming in two essential ways:

---using a data structure richer than that provided by first-order constructor terms, and

---allowing interpretable functional expressions as bona fide terms.

The first extension is based on � -terms, which are attributed partially ordered sorts denoting
sets of objects [Aı̈t-Kaci 1986; Aı̈t-Kaci and Nasr 1986]. In particular, � -terms generalize
first-order constructor terms in their role as data structures in that they are endowed
with a unification operation denoting set intersection. This gives an elegant means to
incorporate a calculus of multiple inheritance into symbolic programming. Importantly, the
denotation-as-value of constructor terms is replaced by the denotation-as-approximation
of � -terms. As a result, the notion of a fully defined element, or ground term, is no longer
available. Hence, familiar tools such as variable substitutions, instantiation, unification,
etc. must be reformulated in the new setting [Aı̈t-Kaci and Podelski 1993b].

The second extension deals with building into the unification operation a means to reduce
functional expressions using definitions of interpretable symbols over data patterns.1 Our
basic idea is that unification is no longer seen as an atomic operation by the resolution rule.
Indeed, since unification amounts to normalizing a conjunction of equations, and since this
normalization process commutes with resolution, these equations may be left in a normal
form that is not a fully solved form. In particular, if an equation involves a functional
expression whose arguments are not sufficiently instantiated to match a definiendum pattern
of the function in question, it is simply left untouched. Resolution may proceed until the
arguments are proven to match a definition from the accumulated constraints in the context

1Several patterns specifying a same function may possibly have overlapping denotations. Therefore, the order of
the specified patterns defines an implicit priority, as is usual in functional programming using first-order patterns
(e.g., Harper et al. [1988]).
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[Aı̈t-Kaci and Nasr 1989]. This simple idea turns out invaluable in practice. Here are a few
benefits.

---Such nondeclarative heresies as the is predicate in Prolog and the freeze metapredicate
in some of its extensions [Colmerauer 1982b; Naish 1986] are not needed.

---Functional computations are determinate and do not incur the overhead of the search
strategy needed by logic programming.

---Higher-order functions are easy to return or pass as arguments since functional variables
can be bound to partially applied functions.

---Functions can be called before the arguments are known, freeing the programmer from
having to know what the data dependencies are.

---It provides a powerful search-space pruning facility by changing ‘‘generate-and-test’’
search into demon-controlled ‘‘test-and-generate’’ search.

---Communication with the external world is made simple and clean [Bonnier and
Maluszyński 1988].

---More generally, it allows concurrent computation. Synchronization is obtained by
checking entailment [Maher 1987; Saraswat and Rinard 1990].

There are two orthogonal dimensions to elucidate regarding the use of functions in LIFE:

---characterizing functions as approximation-driven coroutines, and

---constructing a higher-order model of LIFE approximation structures.

This article is concerned only with the first item, and therefore considers the case of
first-order rules defining partial functions over � -terms.

1.2 The Method

The most direct way to explain the issue is with an example. In LIFE, we can define
functions as usual; say:

fact � 0 � � 1 �
fact � N : int ��� N 	 fact � N 
 1 ���
More interesting is the possibility to compute with partial information. For example:

minus � negint ��� posint �
minus � posint �
� negint �
minus � zero ��� zero �

Let us assume that the symbols int, posint, negint, and zero have been defined as sorts
with the approximation ordering such that posint � zero � negint are pairwise incompatible
subsorts of the sort int (i.e., posint � zero ����� negint � zero ����� posint � negint ��� ).
This is declared in LIFE as int : ��� posint; zero; negint � . Furthermore, we assume the sort
definition posint : ��� posodd; poseven � , i.e., posodd and poseven are subsorts of posint
and mutually incompatible.

The LIFE query Y � minus � X : poseven � ? will return Y � negint. The sort poseven of
the actual parameter is incompatible with the sort negint of the formal parameter of the
first rule defining the function minus. Therefore that rule is skipped. The sort poseven is
more specific than the sort posint of the formal parameter of the second rule. Hence, that
rule is applicable and yields the result Y � negint.
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The LIFE query Y � minus � X : string � will fail. Indeed, the sort string is incompatible
with the sort of the formal parameter of every rule defining minus.

Thus, in order to determine which of the rules, if any, defining the function in a given
functional expression will be applied, two tests are necessary:

---verify whether the actual parameter is more specific than or equal to the formal
parameter;

---verify whether the actual parameter is at all compatible with the formal parameter.

What happens if both of these tests fail? For example, consider the query consisting of
the conjunction:

Y � minus � X : int ��� X � minus � zero � ?
Like Prolog, LIFE follows a left-to-right resolution strategy and examines the equation
Y � minus � X : int � first. However, both foregoing tests fail, and deciding which rule to use
among those defining minus is inconclusive. Indeed, the sort int of the actual parameter
in that call is neither more specific than, nor incompatible with, the sort negint of the
first rule’s formal parameter. Therefore, the function call will residuate on the variable X.
This means that the functional evaluation is suspended pending more information on X.
The second goal in the query is treated next. There, it is found that the actual parameter
is incompatible with the first two rules and is the same as the last rule’s. This allows
reduction and binds X to zero. At this point, X has been instantiated, and therefore the
residual equation pending on X can be reexamined. Again, as before, a redex is found for
the last rule and yields Y � zero.

The two tests above can in fact be worded in a more general setting. Viewing
data structures as constraints, ‘‘more specific’’ is simply a particular case of constraint
entailment. We will say that a constraint disentails another whenever their conjunction is
unsatisfiable, or, equivalently, whenever it entails its negation. In particular, first-order
matching is the process of deciding entailment between constraints consisting of equations
over first-order terms. Similarly, deciding unifiability of first-order terms amounts to
deciding ‘‘compatibility’’ in the sense used informally above.

The suspension/resumption mechanism illustrated in our example is repeated each time
a residuated actual parameter becomes more instantiated from the context, i.e., through
solving other parts of the query. Therefore, it is most beneficial for a practical algorithm that
tests entailment and disentailment to be incremental. This means that, upon resumption,
the test for the instantiated actual parameter builds upon partial results obtained by the
previous test. One outcome of the results presented in this article is that it is possible
to build such a test, namely, an algorithm deciding simultaneously two problems in an
incremental manner---entailment and disentailment. Relative simplification of constraints
is the technique that we have devised to do that.

Consequently, although motivated by our concern for LIFE, this technique is relevant
to general concurrent constraint logic programming, whose paradigm of concurrency rests
on a new effective discipline for procedure parameter passing that can be described as
‘‘call-by-constraint entailment’’ (as opposed to Prolog’s call-by-unification).

1.3 Relation to Other Work

It is important that we situate the contribution of this article with respect to those of others.
Indeed, there are some subtle issues that may cause confusion and need to be explicated.
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What we recount has close ties with the ALPS system of Maher [1987] and the
work of Smolka [1991] characterizing residuation in terms of guarded rules. The main
contribution of Maher was the formal insight explaining (1) the commit condition in the
residuation mechanism as logical entailment of the guard constraint and (2) reduction
via the residuation mechanism as equivalence transformations. As a result, he could
give committed-choice languages a logical semantics. Smolka introduced the notion of a
guarded rule. Such a rule expresses directly that its (atomic) head is equivalent to its body
if and only if its guard is entailed by the context. Hence, the residuation mechanism itself
is thereby justified logically.

In both Maher’s and Smolka’s schemes, a program has two components. The first
component consists of a Horn clause program from which one derives the denotational
semantics. The operational semantics is derived from the other component. This component
consists either (1) of guarded Horn clauses (which one obtains from the syntax of Horn
clauses by explicitly writing one conjunction symbol as the guard operator) or (2) of guarded
rules (which one adds to the Horn clause program, in accordance with its denotational
semantics). There is an issue as to whether this dichotomy is at all necessary. It would
better to have a single view of a program having only one component (consisting of
first-order logic formulae without special symbols for control annotations) which declares
the denotational and the operational semantics. This is indeed what is achieved by our
scheme.

It is well known that, in general, committed-choice programs do not have a declarative
semantics.2 That is, a predicate definition with two or more clauses cannot in general be
translated to a consistent first-order formula (i.e., with a nontrivial model). We give here
a necessary and sufficient condition when this is yet the case. That is, we characterize
committed-choice programs which do have a consistent denotational semantics. Roughly,
this condition is a compatibility and a closed-world assumption on the guards. Importantly,
this result extends the declarative semantics results of Maher [1987] for the case of
incompatible guards to the more general case of compatible guards. Given a guarded
Horn clause program satisfying the compatibility condition, one can give a program in our
scheme with equivalent operational semantics (and with a denotational semantics).

The other contribution of our scheme is to describe formally a general implementation
technique for proving guards incrementally, called relative simplification, and to incor-
porate it with the delay mechanism. We have abstracted its essential properties from
the systems that we have developed for proving guards in two specific contexts: one for
(unsorted) feature logic [Aı̈t-Kaci et al. 1994] and the one we report in this article for the
order-sorted case (i.e., the system of Section 3, presented in abridged form by Aı̈t-Kaci and
Podelski [1993a]). In the operational semantics of their respective schemes, Maher [1987]
and Smolka [1991] do not deal with practical proofs of guards. In particular, Smolka
formulates the proof of entailment of the guard as the simplification of the conjunction of
the context constraint and the negated guard constraint to false. Regarding implementation,
this would lead to a nonincremental proof system. In contrast, we present an operational
semantics for residuation that is based on an incremental algorithm that can be simultane-
ously used for doing both tests: entailment and disentailment, namely, in the case of terms,
matching and (non)unification.

Finally, it is important to observe that neither Maher nor Smolka explicate goal reduction

2Formally, these are programs with guarded Horn clauses, guarded rules, or also the committed-choice combinator
[Haridi et al. 1992].
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in the presence of negation in guards, whereas we do.
Although our common work with Smolka [Aı̈t-Kaci et al. 1994] was the first publication

using relative simplification, the concept was first introduced by us as early as June 1991
[Aı̈t-Kaci and Podelski 1991]. There, we developed the system we present in this article
as a more general one than the one described by Aı̈t-Kaci et al. [1994]. In fact, the work
presented by Aı̈t-Kaci et al. [1994] was the result of Smolka’s suggestion that we work out
the simpler case of unsorted partial-feature logic before we publicize the more complex
and more general system we report here. Indeed, it turned out that taking into account
the hierarchy on sorts is a nontrivial extension of the case of pairwise incompatible sorts
treated by Aı̈t-Kaci et al. [1994]. Subtle complexities arise, for example, when three
sorts are incompatible, but pairwise compatible. Further, we present here the first truly
incremental system in the sense that none of its rules introduces an operation that has to be
undone upon residuation (when neither entailment nor disentailment can be proven). Thus,
for example, two variables from the resolvent are never bound together. This property
leads to a more complex system than the system of Aı̈t-Kaci et al. [1994].

1.4 Organization of Article

In Section 2, we explain residuation in a general framework, introducing the concept of
relative simplification as a general proof-theoretic method for proving guards in concurrent
constraint logic languages using guarded rules. In Section 3, we develop a specific
relative simplification system for order-sorted feature constraints, the data structures of
LIFE. Section 4 ties the operational semantics of function reduction with the semantics of� -terms as approximation structures. Finally, we conclude with Section 5, giving a brief
recapitulation of this article’s contribution and a few perspectives.

Throughout, we use the terminology and notation introduced by Aı̈t-Kaci and Podelski
[1993b]. So, we provide an appendix where we recall all the necessary formalism
accounting for LIFE’s structures and operations. It is meant to make this document
self-contained. The reader already familiar with those notions could ignore it altogether,
although reading it may provide a timely summary.

2. A GENERAL RESIDUATION FRAMEWORK

2.1 Overview

The technique of residuation---delaying reduction and enforcing determinism by allowing
only equivalence reductions---does not have to be limited to functions. Therefore, we
explain it for the general case of relations. Intuitively, the arguments of a relation that
are constrained by the guard are its input parameters and correspond to the arguments of
a function. Also, although in the current version of LIFE the guards corresponding to a
function’s arguments are mutually exclusive, we will develop a scheme that does not need
this restriction.

A program in our scheme, which uses logical formulae called guarded rules, can
characterize the denotational and the operational meaning of a program in the ALPS
scheme of Maher [1987], which uses guarded Horn clauses. Namely, a definition by n
guarded Horn clauses corresponds to the conjunction of n + 1 guarded rules.

We will relax the requirement of Maher that the guards of one relation should be mutually
exclusive. While this requirement is not part of the general ALPS scheme, it is essential
for the denotational-semantics results. Since adding guarded rules promotes determinate
reduction, the possibility of doing so with possibly overlapping guards is important for
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efficiency. For example, the and predicate on three boolean arguments can be specified
with nine guarded Horn clauses, instead of just two, namely (we will introduce the syntax
formally later):

and � X � Y � Z � :- X � false � � Z � false;
Y � false � � Z � false;
X � true � � Y � Z;
Y � true � � X � Z;
Z � true � � X � true � Y � true;
X � Y � � X � Z;
X �� Y � � Z � false;
X �� Z � � X � true � Y � false � Z � false;
Y �� Z � � X � false � Y � true � Z � false �

If the constraint system provides a test of entailment that allows negated constraints in
the context, we can add five more rules (this test is treated by Ramachandran and Van
Hentenryck [1993]):

and � X � Y � Z � :- X �� true � � X � false � Z � false;
Y �� true � � Y � false � Z � false;
X �� false � � X � true � Y � Z;
Y �� false � � Y � true � X � Z;
Z �� false � � X � true � Y � true � Z � true �

The question is: when do we still obtain the denotational-semantics results, having
dropped the requirement that Maher put on the guards? It is clear that generally this is
not possible. We introduce a compatibility condition for guarded rules and show it to be
necessary and sufficient for the existence of a model of guarded Horn clauses.

In the scheme of Maher [1987], the denotational semantics is obtained by ignoring the
operational semantics. That is, the control construct guard is given a first-order logic
reading (i.e., conjunction) that is orthogonal to its operational significance. Namely, we see
guarded Horn clauses as defining a relation r by considering them as simple Horn clauses.
This amounts to using Clark’s completion, yielding a definite equivalence [Clark 1978]. In
the scheme of Smolka [1991], a relation r is first defined by a definite equivalence defining
the semantics of this relation, and only then guarded rules are added, which define the
derivations. In our scheme, the specification of a relation r, done solely by guarded rules,
defines its semantics and the derivations.

Furthermore, the definition of reduction in our guarded-rule reduction scheme extends
the one of Smolka. Namely, it avoids useless redundancies in the syntactic formulation of
guarded rules and in the operational semantics of reduction, as will be explained next.3

In every guarded-clause language, a resolution step produces a new environment,
namely, the conjunction of the old environment, which is the constraint part of the
resolvent (the context), and the guard. This conjunction affects the variables in the body
(namely, in LIFE, the right-hand-side expression of a function definition) after successfully
executing the corresponding guard; i.e., it ‘‘constrains’’ them in a semantical sense.

For example, if (in the Herbrand constraint system) Y � f � a � is the context and Y � f � X �
is the guard and Z � X is the body, then X is constrained to be equal to a. Practically, the

3We mean ‘‘useless redundancy,’’ not as a pleonasm, but as a deliberate opposition to ‘‘useful redundancy’’
serving a pragmatic purpose (see also footnote 6).
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matching proof is done by unification, which yields the instantiation of the body variable
X, namely, X � a. In order to compute the new environment, this unification should,
of course, not be repeated. In fact, it is avoided in our scheme, whereas in Smolka’s
scheme the guard Y � f � X � has to occur in the body for a second time, and the unification
f � a ��� f � X � has to be repeated.

The example above can be generalized to all constraint systems where the proof of the
entailment/disentailment of the guard can be done by a new operational method that we
call incremental relative simplification of the guard with respect to the context. In this
method, the proof of entailment has as a consequence (somewhat like a side-effect) that
the conjunction of the context and the guard is in solved form, as if normalized by the
constraint solver. For example, relative simplification of the guard Y � f � X � relative to
the context Y � f � a � yields the constraint X � a. Hence, we say that an occurrence of
the variable X in the body is then instantiated. This method applies in particular to the
order-sorted feature (OSF) constraint system used in LIFE, as we show in Section 3.

In summary, our scheme captures the practically relevant case where the variables in
the body are already instantiated through the corresponding guard’s entailment proof. So,
one thing our scheme brings out formally is the justification and accommodation of the
implementer’s natural idea that repeated constraint-solving work should be avoided.

Independently of its benefits when used in a guarded language, relative simplification is
an implementation strategy for entailment/disentailment proofs. As such, it formalizes and
justifies the standard approach of proving matching by doing unification and checking the
bindings. Furthermore, it is operationally more powerful since it is incremental; i.e., no
redundant work is done. For example, the test of matching through unification followed by
the check whether global variables have been bound is not incremental; bindings of global
variables effected for a test have to be undone afterward.

The rest of this section details the general scheme that we have just overviewed. We
first present guarded rules and give an operational and denotational semantics for them.
We explain how they relate to guarded Horn clauses and give examples. Considering
incremental relative-simplification systems in general, we exhibit some properties that
indicate how these might be constructed from a unification system, or more generally,
from a constraint solver. Finally, we combine all these notions to derive the operational
semantics of residuation.

2.2 Guarded Horn Clauses and Guarded Rules

We assume a ranked alphabet � of relational symbols. A relational atom is an expression
of the form r � X1 � � �!�"� Xn � where r #$� and the Xi’s are mutually distinct variables. For
notational convenience, we will write such a relational atom simply as r � X � . Also, when
equating tuples, we will write a sequence X1

�� U1 � �!� �%� Xn
�� Un simply as X

�� U.
Also, we assume a class of logical formulae (called constraints), noted & , � , �!� � , closed

under conjunction and including the false constant � and the true constant ' and a model
or a class of models (possibly specified by axioms), to which satisfiability and validity
will refer in the following. As usual, an empty conjunct is considered the same as ' . We
assume that the constraint systems come with a test of satisfiability and entailment (which
is provided, e.g., by a relative simplification system).

A guarded rule is a logical sentence of the form(
U

(*) �,+ G � + r � U �.- /102� B 343 (1)

where
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---the guard G is a constraint;
---the head r � U � is a relational atom;
---the body B is of the form R & & , where R, the relational part, is a (possibly empty)

conjunction of relational atoms, and & , the constraint part, is a (possibly true) constraint
formula;

---
) � Var � G ��
.� U � and 05� Var � B �6
5� )87 � U �9� .

Later we will see that the guard G can be a conjunction of a constraint and negated
conjuncts. We first consider the case where G is a constraint.

As an example, X � false �:� and � X � Y � Z �;- Z � false � is the guarded rule which
corresponds to the first of the guarded Horn clauses specifying the and predicate given
above. We will formalize this correspondence later.

A (constrained) resolvent R is a (possibly existentially quantified) formula of the form
R & & , where R consists of a (possibly empty) conjunction of relational atoms, and & , its
context, is a (possibly true) constraint formula. In the following, we will consider only
the derivation of resolvents without quantifiers. Indeed, only the matrix of a quantified
resolvent is rewritten (adding possibly more quantifications).

We will call the variables in Var � R � global and denote them generically as X � Y � Z � etc.
The variables in a rule are called local. Except for the case of explicit examples, local
variables are generically named U � V � W � etc. The variables that are local to the body
are within a quantification scope contained in that of those variables that are also in the
guard. Local and global variables will always be assumed distinct, by implicit renaming if
necessary, so as to avoid capture.

A guarded-rule reduction derives the resolvent of the form

R � R & r � X � & &
by application of the guarded rule of the form above to the resolvent

R <=�>/ U / ) /102�?� R & B & & & G & U �� X �
if (and only if) the context & of the resolvent R entails the guard of the rule, i.e., if&@� / U / ) �1� G & U

�� X �
is valid.4ACB,D,EFD�G�HJI,HKD,LNMFO

A guarded-rule reduction is an equivalence transformation (of a
resolvent to the derived resolvent).ACB,DPDRQRO

The entailment condition says that the context & is equivalent to its conjunction
with the instantiated guard,&�- & & / U �S/ ) � G & U

�� X �T- / U / ) �?�U& & G & U
�� X ���

The resolvent R � R & r � X � & & is equivalent to/ U / ) �V� R & r � U � & & & G & U
�� X ���

Since the variable U and the variables in
)

are universally quantified, the guarded rule can
be written as

4Our definition of guarded rules is the same as, but our definition of guarded-rule reduction is different from,
what is defined by Smolka [1991], which does not include the guard in the derived resolvent R W . We will explain
the effect of this difference in Section 2.4.
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+ r � U � & G 3 - /102�?� B & G ���
It follows that R is equivalent to

/ U / ) /102�?� R & & & B & G & U
�� X ���

Two Remarks. First, the existential quantification /10 of the variables local to the body
may not be pulled out; i.e., the guarded rule may not be written � ( �;+ G � + r � U �.- B 3X3*�
Second, let us assume that the constraint & entails the guard G. Then, although & is
equivalent to / U / ) �Y�U& & G & U

�� X � , the conjunction B & & is generally not
equivalent to the quantified formula / U / ) �1� B & & & G & U

�� X � . Namely, the guard G
generally shares variables with the body B of the guarded rule. Roughly, the conjunction& & G & U

�� X provides the instantiation of input parameters used in the body B of the
guarded rule.

All conjuncts in the guard that do not share variables other than U (the variables in the
head) with the body, may be omitted in the derived resolvent. We will exploit this next
when we define guarded-rule reduction with guards which contain negations as conjuncts.
It is clear that variables in the scope of a negated existential quantifier do not occur in the
body.

Generally, a guard G in a guarded rule of the form (1) is a conjunction of the form

G � G0 &
kZ

j [ 1 \ / ) j � Gj (2)

where G0 � � �!�%� Gn are constraints. We will always assume that the sets
)

j � Var � Gj �S
=� U �
are pairwise disjoint, as well as disjoint from

)
and from 0 .

We now define guarded-rule reduction by application of the guarded rule (1) with
the guard (2): The resolvent R � R & r � X � & & derives to the resolvent R< �/ U / ) /?02�,� R & B & & & G0 & U

�� X � (hence, without the negated conjuncts of the
guard) if (and only if) the context & of the resolvent entails the guard. This means that
(1) the implication&@� / U / ) �1� G0 & U

�� X �
is valid and (2) the conjunctions& & Gj & U

�� X

for j � 1 �!� � �]� k are unsatisfiable.ACB,D,EFD�G�HJI,HKD,L�^_O
Guarded-rule reduction is as well an equivalence transformation

under the definition for guards with negations.ACB,DPDRQRO
The proof of Proposition 1 can be rephrased with the new form of G. Under the

entailment assumption, the context & is equivalent to & & \ / ) j �V� Gj & U
�� X � , and since

Gj does not share variables with B, B & & is equivalent to B & & & \ / ) j �V� Gj & U �� X � .
This means that the conjuncts \ / ) j �Y� Gj & U �� X � can be omitted in the derived
resolvent.

A guarded-rule program can be given a logical semantics (and a reasonable operational
semantics) only if every collection of n guarded rules with the same head in the program,
namely,(

U
(*)

i � + Gi � + r � U �.- /10 i � Bi 3`3 � (3)
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(where
)

i � Var � Gi �a
$� U � and 0 i � Var � Bi �a
 + ) i
7 � U � 3 , for i � 1 �!� �!�%� n) comes with

a guarded rule called the ‘‘otherwise’’ rule (which might be left implicit) of the form(
U �R+ \ / ) 1G1 & � � � & \ / ) nGn � + r � U �.- �b343*� (4)

We assume the guards Gi to be of the general form, as in (2).
Whenever they are consistent, the n + 1 guarded rules above define the relation r. This

follows from the next fact.ACB,D,EFD�G�HJI,HKD,L�c_O
The following formula is a logical consequence of the n + 1 guarded

rules given in (3) and (4):(
U � + r � U �.- d

i [ 1 egfgfgfge n / ) i /10 i �V� Gi & Bi � 3 � (5)

ACB,DPDRQRO
The proof for the h part of the formula (5) is clear. For the � part we consider

the two cases whether or not \ r � U � , and therefore r � U �Y->� , holds in an interpretation.
In the first case, there is nothing to show. In the second case, we use the � n + 1 � st guarded
rule, the ‘‘otherwise’’ rule, by contraposition.

Still, not every conjunction of guarded rules has a model. In fact, in order to be a model
an interpretation must satisfy the following compatibility condition.

nZ
i e j [ 1

i (
U

(*)
i
(*)

j � + Gi & Gj � �j/10 i � Bi - /10 j � Bj � 32k � (6)

This condition is trivially fulfilled if the guards are mutually exclusive.ACB,D,EFD�G�HJI,HKD,L@lPO
Every model of the definite equivalence (5) and the compatibility

condition (6) is a model of the conjunction of the n + 1 guarded rules of the form (1), and
vice versa.ACB,DPDRQRO

By (5), Gi & /10 i � Bi implies r � U � . If Gi & r � U � holds in an interpretation,
then, by (5), there exists some j such that Gj & /10 j � Bj holds. But then, by (6), /10 i � Bi

holds also. The � n + 1 � st guarded rule is an immediate consequence of (5). The other
direction follows from Proposition 3 for (5) and from combining the guarded rules pairwise
for (6).m D,B,D,nSnpo,BSqrMFO

If the compatibility condition is valid, then a guarded-rules program
has a least model.ACB,DPDRQRO

It is a well-known fact that a system of predicate definitions such as (5) has
a least model extending the model of the theory of the constraint domain (see Jaffar and
Lassez [1987] and Höhfeld and Smolka [1988]). The statement then follows from the
assumption and Proposition 4.

A guarded Horn clause is of the form ‘‘H :- G � � B’’ where H, the head, is a relational
atom; G, the guard, is a constraint formula; and, B, the body, is of the form R & & ,
where R, the relational part, is a (possibly empty) conjunction of relational atoms, and& , the constraint part, is a (possibly true) constraint formula. In the case of constraint
systems with a relative simplification system, the guard G can be a conjunction of positive
and negated constraints. We first consider the case where G is a conjunction of positive
constraints.
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Here is an example of a guarded Horn clause defining deterministic list concatenation:5

concat � X � Y � Z � :- X : nil � � Y
�� Z �

concat � X � Y � Z � :- X : cons & X � hd �� V & X � tl �� W � �
Z : cons & Z � hd �� V & Z � tl �� L & concat � W � Y � L ���

Let H � r � U � where r #@� and U is a variable. Let
) � Var � G �4
s� U � and0t� Var � B ��
u� )u7 � U �9� . Then, the guarded Horn clause H :- G � � B corresponds to the

guarded rule of the form (1).
For example, the guarded rules corresponding to our foregoing definition of concat are:(

U1 � U2 � U3+ � U1 : nil ��v+ concat � U1 � U2 � U3 �w- U2
�� U3 3*�(

U1 � U2 � U3 � V � W �+ � U1 : cons & U1 � hd
�� V & U1 � tl �� W ��v+ concat � U1 � U2 � U3 �-r/ L �S� U3 : cons & U3 � hd

�� V & U3 � tl �� L & concat � W � U2 � L �x��3`3V�
Since any constraint system can be trivially augmented to express tuples (although doing

so may increase its expressive power significantly), we may assume the relational symbol
r in the head to be a unary predicate. This amounts to replacing r � U1 � � �!�%� Un � :- G � � B
with r � U � :- U ��y� U1 � �!� �%� Un � & G � � B. Here, the constraint with tuple notation
U ��z� U1 � �!� �%� Un � is just a shorthand for the specific constraint encoding multiple
arguments in the system being considered. For instance, in our OSF constraint system,
U

���� U1 �!� �!�%� Un � stands for U � 1 �� U1 & � �!� & U � n �� Un.
With unary relation symbols, the guarded rules corresponding to our foregoing definition

of concat are:(
U

(
X �+�� U � 1 �� X & X : nil ��v+ concat � U �-{/a� Y � Z �*�|� U � 2 �� Y & U � 3 �� Z & Y

�� Z ��343*�(
U

( � X � V � W �*�+�� U � 1 �� X & X : cons & X � hd
�� V & X � tl �� W ��v+ concat � U �-{/a� Y � Z � L �V�� U � 2 �� Y & U � 3 �� Z & Z : cons & Z � hd

�� V & Z � tl �� L &
concat � W � Y � L �P��323V�

In the first rule, the variable X does not occur in the rule’s body; thus, we can write it

5In this example, we use the syntax of OSF constraints expressing the nature of the data expected by the rules.
Namely, V : s stands for ‘‘variable V is in sort s,’’ V } ~ }� W stands for ‘‘feature ~ of variable V is equal to
variable W,’’ and V

}� W ‘‘variable V is equal to variable W.’’ Hence the guards in the two rules of this example
constrain X to be, respectively, the emply list nil and a nonempty list cons with a head feature hd equal to V and
a tail feature tl equal to W.
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U �+ / X �|� U � 1 �� X & X : nil ��v+ concat � U �-{/a� Y � Z �*�|� U � 2 �� Y & U � 3 �� Z & Y

�� Z ��343*�
This is also true for X in the second rule, but not for V nor W, since the scope of these two
variables extends over the guard and the body.

The collection of the guarded Horn clauses r � U � :- Gi � � Bi (where i � 1 �!� � �]� n) with
the same head in a given program stands for the conjunction of n+1 guarded rules, namely,
n of the form 3 and one, the ‘‘otherwise’’ rule, of the form 4. In our examples, the � n + 1 � st
guarded rule (the ‘‘otherwise’’ rule) is always left implicit.

A model of a guarded Horn clause program is a model of the corresponding guarded-rules
program, hence the following.m D,B,D,nSnpo,BSq�^_O

If the compatibility condition is valid, then a guarded Horn clause
program has a least model.

For example, this allows us to show that the program for the and predicate given above
has a declarative semantics.

For the sake of completely relating our approach to others, let us mention one idea that is
not (yet) implemented in LIFE. Given a program consisting of definite clauses, one can add
explicit guarded rules that are logical consequences of the program [Smolka 1991]. Now,
assume a relation r declared by the definite clauses r � X ��h / Ui �1& i & Ri, i � 1 � �!� ��� k.
Thus, the completed form of r is

r � X ��- kd
i [ 1

+ / Ui �p& i & Ri 3 �
Then, the following guarded rules are always immediate consequences of this definition.

\ / U1 �p& 1 & � � � & \ / Ui � 1 �p& i � 1 &

\ / Ui+1 �V& i+1 & �!� � & \ / Uk �V& k � + r � X �.-�/ Ui � Ri & & i 3
for i � 1 �!� �!�%� k. These guarded rules can be left implicit. Although semantically redundant,
these additions are of great pragmatic use for efficient reductions. In fact, adding them
is paramount to enabling the immediate reduction of a determinate goal, i.e., one whose
definition offers only one alternative in its context.6 This appears to be related to what
has been quoted to us as the ‘‘Andorra Principle’’ [Haridi and Janson 1990], a strategy
of preferentially selecting goals that have at most one alternative, and is a basic principle
underlying the Andorra Model [Santos Costa et al. 1991].

2.3 Incremental Relative-Simplification Systems

If G is a guard of the general form, as in (2), and & is the context of a given resolvent, then
we say that the context entails the guard if the validity condition and the unsatisfiability
conditions in Proposition 2 are fulfilled. We say that the context disentails the guard if
the implication &�� \ / U / ) �x� G & U

�� X � is valid, or if one of the implications&�� / U / ) j �R� Gj & U
�� X � is valid, for j � 1 �!� � ��� k. Again, disentailment is not the

negation of entailment, i.e., the two problems are not dual to each other. Thus, a guarded
rule system needs to carry out two different tests.

6This is an example of a useful redundancy (see also footnote 3).
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If the context & of a resolvent R entails the guard, then the context of any resolvent
derived from R entails the guard, too. In other words, a context can only become stronger
in each derivation step; i.e., constraints are added as conjuncts. The same holds for
disentailment.

If the context & neither entails nor disentails the guard, there might still be a derivative of
R whose context entails, or disentails, the guard. This is why incrementality is important.
In the case where both tests fail, for the context & of the current resolvent R, the proof that
has determined this will be continued by the proof for the strengthened context & & & < of
a resolvent R < derived from R, instead of starting from scratch. That is, the proof of the
guard ‘‘stalls’’ in the context of R; the proof of the guard in the context of R < ‘‘resumes’’
it.

The following observation is useful for deriving an entailment test from a constraint
normalization system.ACB,D,EFD�G�HJI,HKD,L��_O

The context & entails the guard G if and only if the conjunction& & � G & U
�� X � is equivalent to & & G < for some formula G < such that G < is valid.ACB,DPDRQRO

If G < is valid, then &�� G < is also valid. Therefore, & is equivalent to& & G < . According to the assumption, & & � G & U
�� X ��- & & G < is valid. Thus, & is

equivalent to & & � G & U
�� X � . This shows that &@� / U / ) � G & U

�� X � is valid. For
the other direction, it is sufficient to choose G < � +"� G & U

�� X ��� \ &a3 . Clearly, then& & � G & U
�� X � is equivalent to & & G < , and also G < is valid.

The ‘‘only if’’ direction in this proposition is crucial for practical purposes. Given &
and G, the formula G < has to be effectively found, and its validity has to be effectively
determined.

In what follows, & and � are two constraints where & is a context formula assumed be
consistent such that Var �j�x�P� Var �U&,�x��� .m D,B,D,nSnpo,BSq�c_O

If the guard consists of a positive constraint, say � , then the context
entails the guard, i.e., &�� / U / ) �1�j� & U �� X � is valid, if and only if the conjunction& & � & U �� X is equivalent to & & � < for some formula � < such that / U / ) �p� < is valid.ACB,DPDRQRO

The proof is a straightforward rephrasing of the previous proof.

The corollary gives the idea about how one generally intends to obtain the formula G <
from Proposition 5, namely, by applying a suitable constraint normalization system on the
conjunct & & � & U

�� X successively, as long as this is possible, without modifying & .
Clearly, the main difficulty is completeness; that is, whether under entailment, one can
actually derive a constraint & & � < such that / U / ) �p� < is valid.m D,B,D,nSnpo,BSq�lPO

The context & disentails the guard � , i.e., &@� \ / U / ) �?�U� & U
��

X � is valid if and only if & & � & U
�� X is equivalent to & & � .ACB,DPDRQRO

We only need to note that if& & / U / ) �V�j� & U
�� X ��- & & / ) <j�p��<

is valid, then also

& & \ / U / ) �V�j� & U
�� X �.- & & \ / ) < �p� < �

Again, it is clear how one may try to obtain the disentailment proof, namely, by applying
the constraint solver on the conjunct & & � & U �� X successively, as long as this is
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possible without modifying & , or until one arrives at & & � . Again, the difficulty is
completeness. That is, whether under disentailment, one can actually derive � in this way.

Definition
MaO��

Relative-Simplification System � A reduction system is a relative-simp-
lification system if, given the context constraint & , the guard constraint � , and the binding
U

�� X of the variable U in � to the variable X in & , it reduces � & U
�� X to a constraint� < with 0t� Var �j� < ��
 Var �U&,� such that

--- /?02�*� < is valid if and only if & entails � ; i.e., &�� / U / ) ���U� & U
�� X � is valid;

--- � < ��� if and only if & disentails � ; i.e., &�� \ / U / ) �V�U� & U
�� X � is valid.

Moreover, at each intermediate simplification step deriving a constraint � < with 0@�
Var �U� < ��
 Var �j&,� the following relative-simplification invariant must hold:& & / U ���U� & U

�� X � is equivalent to & & /102�V� < �
An important property for efficient implementation of the entailment and disentailment

tests is incrementality. This means, intuitively, no undoing, i.e., the ability to reuse work
done in previous tests. Technically, this is the case if the constraint simplification steps
used for the tests are the same whether the resolvent is given at once, or whether it is built
up gradually at each goal reduction step (and the tests are applied following each reduction
step). This is facilitated by the conjoining effect of goal reduction that builds a new context
by conjunction of a rule’s body constraints to the existing context. Formally, let & i, i # IN,
be a sequence of contexts obtained by goal reduction, i.e., such that & i+1 �s& i & & <i , for
any i.

Definition
^,O��

Incremental Constraint System � A constraint system is said to be in-
cremental if the sequence of constraint simplification steps used for n successive appli-
cations of the entailment and disentailment tests applied to the & i’s and the guard � , for
i � 0 �!� � ��� n, is one of the nondeterministic paths of constraint simplification performing
the tests directly on & n and � .ACB,D,EFD�G�HJI,HKD,L��_O�� m DRL,QVnp�,�1LP�a�uD,Qt�`�?npoVI,H��,�u�1H��4E1npH�QVHK�aoVI,HKDRL � It is possible
to transform a relative-simplification system into an incremental one simply by closing the
simplification relation with respect to the following condition. If � simplifies to � < relative
to & , and � simplifies to � <g< relative to & & & < , then also:

--- � simplifies to � < relative to & & & < , and

--- � < simplifies to � <g< relative to & & & < .ACB,DPDRQRO
Observe that the relative-simplification invariant still holds if one considers

every simplification relative to & also as a simplification relative to & & & < . Namely, if&t�v�j��-�� < � is valid, then so is & & & < �:�U��-�� < � . The remaining conditions of
Definition 1 are trivially fulfilled.

Generally, it is not evident how to transform the specification of a nonincremental
relative-simplification system (e.g., by rewrite rules) into an incremental one (e.g.,
by adding or modifying the rules). Our experience is limited to cases (essentially
to the constraint systems over finite or rational first-order trees [Colmerauer 1982a;
Colmerauer 1984] or feature trees [Aı̈t-Kaci et al. 1994; Smolka and Treinen 1992]) where
incrementality came for free.
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2.4 Operational Semantics of Residuation

We assume a constraint system with an incremental relative-simplification system as
described in the previous section. Let the relation r be specified by n guarded Horn clauses,
each of the form r � U � :- G � � B, corresponding to n+1 guarded rules, each of the form (1).
Let the guard G be of the form

G �>� 0 &
Z

j [ 1 egfgfgfge k \ / ) j �S� j �
Let us consider the hypothetical reduction of the resolvent R � R & r � X � & & to the

new resolvent

R <=�>/ ) <0 /102�?� R & & & B & ��<0 &
Z

j [ 1 egfgfgfge k \ / ) <j �p��<j ���
where the constraints � j & U �� X simplify to � <j relative to the context & , with
Var �U� j �
� )

j and Var �U� <j ��
 Var �U&,�x� ) <j for j � 0 � 1 �!� �!�j� k.ACB,D,EFD�G�HJI,HKD,L� _O�� m DRB,B,�F�aI,L,�FG G¡D,Qt�4�1¢P�P�aI,HKDRL � The reduction transforming
the resolvent R into the resolvent R < is always a correct reduction step: R < implies R; i.e.,
all solutions of R < are solutions of R.ACB,DPDRQRO

This follows from Proposition 3 and the relative-simplification invariant.

The reduction step from the resolvent R to the resolvent R< is also a complete reduction
step: (with Proposition 7) R is equivalent to R< . Equivalently, we have the following.ACB,D,EFD�G�HJI,HKD,L�£_O�� m DR�`E1nS�1I,�1L,�FG G=DRQt�`�1¢��P�aI,HKD,L � If / ) <0 �S� <0 is valid and � <j �� , for each j � 1 � �!� �%� k, then the solutions of R < and R coincide. Moreover, R< is then
equivalent to R & & & � <0 & B.ACB,DPDRQRO

This follows from Proposition 2 and the relative-simplification invariant.

In the case of relative-simplification systems based on constraint solvers (e.g., imple-
menting unification), & & � <0 is already essentially the solved form of & & � 0. This is the
case for OSF constraints (see Section 3), and also of Prolog terms. That is, our scheme
captures the practically important case when the conjunction of the context and the guard
has already been solved through the guard proof.

For comparison, let us consider the guarded-rule reduction defined by Smolka [1991].
There, the ‘‘commit condition’’ is that the conjunction of the context & and the negated
guard \ � be a constraint that simplifies to � , the inconsistent constraint. Under this
condition, the resolvent & & r � x � & R reduces to & <g< & R < & R if the (renamed) guarded
rule �t�¤� r � X �2-�& < & R < � is used, and the constraint & & & < simplifies to & <g< .

A consequence of this on the syntactic formulation of guarded rules is that, in Smolka’s
scheme, the part of the guard that constrains variables in the body must be repeated in the
constraint & < in the body of the guarded rule. That is, the guarded rule(

U
(*) � + G � + r � U �.- /102� B 343

must be written in the form(
U �R+P/ ) � G � + r � U �t- / ) /102�?� G & B ��3`3V�

As a result, in Smolka’s operational semantics of guarded-rule reduction, the simplification
of the constraint & & & < must repeat the simplification of the conjunction of the context
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and the guard.7 Thus, for constraint systems with relative simplification, our formulation
has an advantage in efficiency. Namely, it is only necessary to normalize the constraints
in B, but not those in G, in conjunction with the resolvent’s context in the case where that
guarded rule is applied.

The next proposition considers the case of disentailment. Here, of course, no instantiation
is effectuated. It states that the reduction step from resolvent R to the resolvent R < can be
excluded whenever R < is equivalent to � . Equivalently, we have the following.ACB,D,EFD�G�HJI,HKD,L�¥_O��"¦1o,H�nS�,B,�5D,Qt�4�1¢P�P�aI,HKDRL � The set of solutions of R < is empty,
if � <0 �v� , or if / ) <j �p� <j is valid, for at least one of j � 1 � �!� ��� k.ACB,DPDRQRO

This follows from Proposition 3 and Definition 1.

The foregoing propositions might suggest several possibilities for fine details of the
operational semantics concerning resolvents with residuations, i.e., relational atoms r � X �
for which none of the guards of the n + 1 guarded rules for r is entailed. The answer of
the query could be given by the residuated resolvent, i.e., with the relational atom r � X � .
Or, in order to make the answer more refined, it could be given by the disjunction of all
resolvents R< that are not equivalent to � .

The constraint part of such a resolvent R< can be further tested for satisfiability. Possibly,
it contains negated constraints. Assuming that the constraint system has the independence
property (see Theorem 3), such a constraint part can be tested for satisfiability by testing
entailment of each of the negated constraints by the positive constraint.

3. ENTAILMENT AND DISENTAILMENT OF OSF CONSTRAINTS

In the following, we use & as the context formula. It is assumed to be an OSF constraint
in solved form, although not necessarily coming from dissolving a single � -term. The
variables in & are global. We shall use § to designate the set of global variables Var �U&,�
and the letters X, Y, Z, �!� � , for variables in § . We use � , a dissolved � -term, as the guard
formula. The variables in � are local to � , i.e., Var �U&,�P� Var �j�x�w��� . We shall use

)
to

designate the set of local variables Var �U�
� and the letters U, V, W, � �!� , for variables in
)

.
The letter U will always designate the root variable of � . We also refer to & as the actual
parameter, and � as the formal parameter. By extension, we will often use the qualifiers
global/local, actual/formal, and context/guard, with all syntactic entities, e.g., variables,
formulae, constraints, or sorts.

We thus must study a proof system that decides two problems simultaneously:

---the validity of the implication
( § + &¨�©/ ) �V�U� & U

�� X � 3 ;
---the unsatisfiability of the conjunction & & � & U

�� X.

The first test is called a test for entailment of the guard by the context, and the second, a test
for disentailment. This second test is equivalent to testing the validity of the implication( § + &¨� \ / ) ���U� & U �� X � 3 .

Since both tests amount to deciding whether the context implies the guard or its
negation, all local variables are existentially quantified, and all global variables are
universally quantified.

The relative-simplification system for OSF constraints is given by the rules in Figures 1,
2, and 3. An OSF constraint � simplifies to � < relative to & by a simplification rule ª if ««F¬
7Of course, this is because Smolka did not know about relative simplification at the time of his formulation (nor
did we, as a matter of fact!).
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Feature Decomposition:

(F.1)
� & U � ­ �� V & U � ­ �� W� & U � ­ �� V & W �� V

Relative Feature Decomposition:

(F.2)
� & U

�� X & U � ­ �� V� & U �� X & V �� Y
if X } ~ }� Y ®°¯

Relative Feature Equality:

(F.3)
� & U

�� X1 & U
�� X2 & V

�� Y1� & U �� X1 & U �� X2 & V �� Y1 & V �� Y2

if X1 } ~ }� Y1 ®°¯ , X2 } ~ }� Y2 ®°¯
and V

}� Y2 ±® �
Variable Introduction:

(F.4)
� & U

�� X1 & U
�� X2� & U �� X1 & U �� X2 & V �� Y1 & V �� Y2

if X1 } ~ }� Y1 ®°¯ , X2 } ~ }� Y2 ®°¯
and Y1 ±® Var ² �,³ and Y2 ±® Var ² �,³
where V is a new variable

Fig. 1. Simplification relative to & : Features.

is an instance of ª and if the applicability condition (on & and � ) is satisfied. We say that� simplifies to � < relative to & if it does so in a finite number of steps.
The relative-simplification system preserves an important invariant property: a global

variable never appears on the left of a variable equality constraint in the formula being
simplified. Thus, an equality U

�� X is a directed relation binding the local variable U to
the global variable X. Furthermore, a global variable is never eliminated by a local one, or
vice versa.

A set of bindings Ui
�� Xi, i � 1 �!� � �]� n is a functional binding if all the variables Ui are

mutually distinct.
Effectuality of Relative Simplification. The solved OSF constraint & entails (resp.,

disentails) the OSF constraint / U ��� U �� X & �x� if and only if the normal form � < of� & U
�� X relative to & is a conjunction of equations making up a functional binding

(resp., is the false constraint � < ��� ).
There are two technical remarks to be made. First, observe that in our formulation of

the entailment/disentailment problem, the implication contains only one equality U
�� X

binding only one global variable. However, this is not a restriction. Equality constraints
U1

�� X1 �!� � �]� Un
�� Xn can be equivalently replaced by adding X1

�� X � 1 & � �!� & Xn
��

X � 1 to the context & and U1
�� U � 1 & �!� � & Un

�� U � n & U
�� X to � , where X and U are

new. That is, one obtains the conjunction of one equality U
�� X and a guard that, again, is

a dissolved � -term.
Second, the fact that � is a dissolved � -term rooted in U ensures that the test of

entailment of � & U
�� X by & does not depend on whether the implication holds in all

OSF interpretations, or only in ´ , or µ . This is not necessarily so if U is not the root of� . Indeed, let us assume that U is not the root of � ; for example, take � to be V � ­ �� U.
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Sort Intersection:

(S.1)
� & U : s & U : s <� & U : s � s <

Sort Containment:

(S.2)
� & U

�� X & U : s� & U
�� X

if X : s W ®¶¯ , and s W�· s

Sort Refinement:

(S.3)
� & U

�� X & U : s� & U
�� X & U : s � s < if X : s W ®¶¯ , and s ¸ s WS¹ s

Relative Sort Intersection:

(S.4)
� & U

�� X & U
�� X <� & U

�� X & U
�� X < & U : s � s < if X : s ®�¯ , X W : s W ®°¯ ,

s ¸ s WV¹ s, s ¸ s WV¹ s W ,
and U : s W W ±® �

, for any sort s W W
Sort Inconsistency:

(S.5)
� & U : ��

Fig. 2. Simplification relative to & : Sorts.

Relative Variable Elimination:

(E.1)
� & U

�� X & V
�� X� [U º V] & U

�� X & V
�� X

if V ® Var ² �_³ , V
}� X ±® �

,
and U »� V

Equation Entailment:

(E.2)
� & U

�� X & U
�� Y� & U

�� X
if X � Y or if X

}� Y ®°¯ .

Fig. 3. Simplification relative to & : Equations.
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Extended Feature Decomposition:

(X.1)
� & U � ­ �� U < & U � ­ �� U <g<� & U � ­ �� U < & U � ­ �� U <g< & U <g< �� U < if U W »¼ }½ U W W

Extended Sort Intersection 1:

(X.2)
� & U : s & U : s <� & U : s & U : s � s < if s ¸ s WV¹ s W W for any s W W

such that U : s W W ® �
Extended Sort Intersection 2:

(X.3)
� & U : s & U : s <� & U : s & U : s < & U : s � s < if s ¸ s WV¹ s W W for any s W W

such that U : s W W ® �
Fig. 4. Rules extending basic simplification.

Clearly, while
(

X + '��>/ U / V �U� & U
�� X � 3 holds in ´ and µ , it does not hold in all

OSF algebras where it is not guaranteed that every element is the ­ -image of some other
element. In ´ (and µ ), this is the case since any element X is the ­ -image of at least one
element, namely, '��J­¿¾ X � .

Effectuality of relative simplification is the central result of this section. We now
proceed through the technical details aimed at establishing its claim in the form of two
theorems: Theorems 1 and 2.

3.1 Termination of Relative Simplification

To show that relative simplification of OSF constraints always terminates, we introduce
an additional set of rules, shown in Figure 4, extending basic simplification. These rules
are not meant to be used in the effective operation of basic simplification, but only serve
in our proof argument. The idea is that relative simplification of a guard � relative to a
context & can be ‘‘simulated’’ by normalizing the formula & & � & U

�� X using basic
simplification (Figure 7 in the Appendix) together with the rules of Figure 4. It is not a
real simulation, however, since Rules (B.1)--(B.5) destroy the context as a side effect. The
point is that one application of a relative-simplification rule can be made to correspond to
at least one application of one of Rules (B.1)--(B.5), (X.1)--(X.3). Since this latter system
can be shown to terminate, then so can relative simplification.

Rules (X.1)--(X.3) perform essentially the same work as Rules (B.1) and (B.2) except
that they do no erase parts of the formula. In Rule (X.1), we denote by À �[ the
reflexive, symmetric, and transitive closure of �� (that is, the equivalence relation on the
variables occurring in the constraint that is generated by the �� -pairs between variables in
the constraint).ÁP�1�4�`oÂMaO

The basic-simplification rules (B.1)--(B.5) extended with rules (X.1)--(X.3)
define equivalence transformations; furthermore, they are terminating.ACB,DPDRQRO

The first statement is clear. The proof of the second statement is an extension
of the termination proof of the basic simplification rules (B.1)--(B.5) [Aı̈t-Kaci and
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Podelski 1993b]: (X.1) can be applied only a finite number of times, since the number of
equivalence classes partitioning the finite set of variables occurring in the constraint that is
to be simplified decreases by 1 with each application. (X.2) and (X.3) can be applied only
a finite number of times, since they can be applied at most once for every sort occurring in
the constraint that is to be simplified.ÁP�1�4�`o�^,O

Let � & U
�� X simplify to � < relative to & by a relative-simplification step

not using Rule (F.4). Then, & & � & X
�� U simplifies to & < & � <g< by at most one extended

basic-simplification step and a finite number of variable elimination (B.3), where � < and� <g< are equal up to variable renaming.ACB,DPDRQRO
It can be seen that each relative simplification rule, except for (F.4), corre-

sponds to one or several extended basic-simplification rules. Rules (F.1)--(F.3) correspond
to Rules (B.1) and (X.1). Rules (S.1)--(S.4) correspond to Rules (B.2), (X.2) and (X.3).
Rules (E.1)--(E.2) correspond to Rule (B.3). This, and the fact that extended basic-
simplification rules are equivalence transformations, allow us to conclude.ÁP�1�4�`o�c,O

Let � simplify to � < of the form � & U1
�� X1 & U1

�� X2 by an application
of Rule (F.4) relative to & . Then, � & U1

�� X1 simplifies to the same constraint � < by an
application of Rule (F.3) relative to & .ACB,D,EFD�G�HJI,HKD,LNMVÃ_O

The relative-simplification rules are terminating.ACB,DPDRQRO
This is proved by induction on n, using Lemmas 2 and 3. For every relative-

simplification chain � 1 & U1
�� X1 �!� � �]�%� n & Un

�� Xn relative to & , there exists an
extended basic-simplification chain of length n + k, where k Ä 0. This chain starts with
the basic constraint & & � & X1

�� U1 & X
�� U, where X

�� U stands for the equations
we have added so that each global variable X is bound to some local variable U (which, if
necessary, is chosen new).

Since, according to Lemma 1, extended basic-simplification chains are finite, so are
relative-simplification chains.

3.2 Correctness and Completeness

We first note another consequence of the lemmata of the last section. Let 0 stand for the
new local variables introduced by Rule (F.4).ACB,D,EFD�G�HJI,HKD,LNM1MFO

Let � & U
�� X simplify to � < relative to & . Then, & & � & U

�� X
and /10Y�1�j& & � < � are equivalent.ACB,DPDRQRO

Let us first assume that � & U
�� X simplifies to � < relative to & , not using

Rule (F.4). Then, & & � & U
�� X and & & � < are equivalent by Lemmas 1 and 2. Let� & U

�� X simplify to � & U
�� X & V

�� X1 & V
�� X2 relative to & , by an application of

Rule (F.4). Clearly, & & � & U
�� X and & & / V �1�j� & U

�� X & V
�� X1 � are equivalent.

Thus, with Lemma 3, we can apply the first part of the proof on � & U
�� X & V

�� X1.

The next corollary states a property that is important for showing that relative simplification
can be used for proving entailment, the invariance property.m D,B,D,nSnpo,BSq��_OÅ�"ÆjL,�po,B,H�o,LP�a�uD,Qt�`�?npoVI,H��,�u�1H��4E1npH�QVHK�aoVI,HKDRL � If � & U �� X
simplifies to � < relative to & , then / ) ���U& & � & U

�� X � and / ) /102�
�U& & � < � are
equivalent.

It is helpful to list systematically the normal-form properties of the relative-simplification
system.
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Redundant Sort Elimination:

(R.1)
& & X : s& if U

}� X ® �
, and

U : s W ® �
for some s WS· s

Redundant Feature Elimination:

(R.2)
& & X <1 �� X1 � ­ & X <2 �� X2 � ­& & X <1 �� X1 � ­ if U

}� X1 ® �
, U

}� X2 ® �
Entailed Sort Redundancy Elimination:

(R.3)
& & X1 : s & X2 : s& & X1 : s

if U
}� X1 ® �

, U
}� X2 ® �

Fig. 5. Redundancy elimination rules.ACB,D,EFD�G�HJI,HKD,LNMV^_O
The constraint � is in normal form relative to & if and only if all

the following conditions are satisfied:

--- � is in solved form;
---a global variable X may occur in � only in the form �� X;

---if X
�� #Ç& , then X does not occur in � ;

---if V
�� X #È� , and

�� X � ­`#È& , then
�� V � ­É�#Ç� ;

---if V
�� X #È� , and X : s #Ç& , and V : s < #Ê� , then s <,Ë s;

---if � V
�� X � V �� Y ��Ì�� , and � X < �� X � ­Í� Y < �� Y � ­9��Ì�& , then � W

�� X < � W �� Y < ��Ì� , for some variable W;

---if � V
�� X � V �� Y ��ÌÎ� , and � X : s1 � Y : s2 �@ÌÎ& , then V : s #Ï� , for some sort s

such that s Ð s1 and s Ð s2.ACB,DPDRQRO
By inspection of the relative-simplification rules.ACB,D,EFD�G�HJI,HKD,LNMVc_O

Let � < be a normal form of � & U
�� X relative to & . Let & < be the

constraint obtained from & eliminating all redundancies according to the rules of Figure 5,
and removing bindings V �� of new variables introduced by (F.4). Then, the constraint& < & � < is a solved form of the constraint & & � & U

�� X, up to variable renaming.ACB,DPDRQRO
According to Proposition 11, & & � & U

�� X is equivalent to /102�a& & � < ,
where 0 stands for the new variables. According to the last three conditions of Propo-
sition 12, Rules (R.1), (R.2), or (R.3) perform equivalence transformations. Thus, if
applications of these rules modify & < to & <g< , then & < & � < is equivalent to & <g< & � < .

According to the first four conditions of Proposition 12, & <g< & � < is in solved form
up to variable eliminations via Rule (B.3). More precisely, these variable eliminations
are applications of Rule (B.3) using new equations of the form V

�� X introduced by
Rule (F.4). They produce possibly equations of the form X

�� Y between global variables;
then, further variable eliminations consist of applications of Rule (B.3) using these new
equations. As a last step, these new equations are removed in order to obtain a constraint
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that is exactly equivalent to & & � & U
�� X, and not just up to existential quantification

of new variables.m D,B,D,nSnpo,BSq��_O
If the normal form of � & U

�� X relative to & is not � , then& & � & U
�� X is satisfiable.ACB,DPDRQRO

We showed elsewhere that a constraint is satisfiable if and only if it has a
solved form[Aı̈t-Kaci and Podelski 1993b]. That is, its basic normal form is different from� . The statement then follows from Proposition 13.Ñ`Ò,�FDRB,�1�>MFO��]Ó°HKG��1L,IVo,H�nS�`�1L,I � Let � < be a normal form of � & U

�� X relative
to & . Then, & disentails / ) �V�j� & U

�� X � if and only if � < ��� .ACB,DPDRQRO
If � < ��� , then

( §N�j&Ô� \ / ) /102�1� < � is valid. From Corollary 5, it follows
that

( §��U&5� \ / ) ��� & U
�� X � is valid, too. If � < ��Õ� , then Corollary 6 can be

applied.ACB,D,EFD�G�HJI,HKD,LNMplPO
If the normal form � < of � & U

�� X relative to & is not a
conjunction of equations representing a functional binding, then & & \ / ) �V�U� & U

�� X �
is satisfiable.ACB,DPDRQRO

The assumption on the form of � < means that one of the three following cases
is true, for some V # Var �j� < � bound to some X # Var �U&,� , i.e., V

�� X #Ê� < :
(1) � < contains a sort constraint on V, say, V : s, or,
(2) � < contains two equations on V, say, V

�� X & V
�� Y, or,

(3) � < contains a feature constraint on V, say, V � ­ �� W.

For each case, we can find a constraint & < such that & & & < is satisfiable and disentails � < .
Then, & & & < also disentails / ) �R�U� & U �� X � , i.e., & & & < � \ / U �R�U� & U �� X � is
valid. Clearly, this is sufficient to show that & & \ / ) �V�U� & U �� X � is satisfiable.

(1) V : s #Ç� < ; then, according to the third condition of Proposition 12, & contains either
no sort constraint on X or one of the form X : s < where s Ë s < . Thus, we set & < � X : s <g< ,
in the first case, for some sort s <g< incompatible with s, i.e., such that s � s <g< �Ö� . In the
second case, we choose s <g< such that s � s <g< ��� and s <g< Ð s < .

(2) V
�� X & V

�� Y #È� < ; then, either V : s #È� < and we are in Case (2), or, according
to the last condition of Proposition 12, at most one of X and Y is sorted in & . If Y : s #È& ,
we set & < � X : s < for some sort s < such that s � s < ��� . If none of X and Y is sorted in & ,
we set & < � Y : s & X : s < for some sorts s � s < such that s � s < ��� .

(3) V � ­ 1
�� V1 #5� < ; then, & contains no feature constraint X � ­ 1

�� , according to the
fourth condition of Proposition 12. Without loss of generality, we can assume that � does
not contain redundant conjuncts.8 There exists a sort s such that � contains a conjunct of
the form V � ­ 1

�� V1 & V1 � ­ 2
�� V2 & � �!� & Vn � 1 � ­ n

�� Vn & Vn : s, for some n Ä 1.

Thus, we set & < � X � ­ 1
�� X1 & X1 � ­ 2

�� X2 & � �!� & Xn � 1 � ­ n
�� Xn & Xn : s < , for some

new variables X1 �!� � �]� Xn and some sort s < such that s � s < ��� .

8That is, we assume that every variable in
�

has at least one sort constraint and that redundant constraints in
�

are removed. A redundant constraint in
�

is one of the form X } ~ }� Y & Y : × where Y does not occur elsewhere
in
�

. Since we interpret features as total functions, this is not a proper restriction: redundant constraints can be
moved into the functional expression or the body of the guarded clause without changing the declarative or the
operational semantics. On the other hand, if this assumption is fulfilled, then the entailment of

�
& U

}� X by ¯
does not depend on whether features are interpreted as total or partial functions.
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Functions as Passive Constraints in LIFE � 1297Ñ`Ò,�FDRB,�1�¤^_O��]ØCL,IVo,H�np�4�1L,I � Let � < be a normal form of � relative to & . Then, &
entails / ) �?�U� & U

�� X � if and only if � < is a functional binding. Moreover, & & � < is a
solved OSF constraint.ACB,DPDRQRO

If � < is a conjunction of equations representing a functional binding, then/ ) /10Y�P� < is valid; thus, so is &t�Ù/ U /?02�P� < . By invariance of relative simplification
(Corollary 5), it follows that &=�Ú/ ) �p� is valid, too.

If � < has a different form then, either � < �Ö� , or � < contains conjuncts that are not a
functional binding. The fact that &Û�©/ ) �1� is not valid is trivial in the first case. In the
other case, since the context & is always assumed in solved form and, thus, satisfiable, then
it follows from Proposition 14.m D,B,D,nSnpo,BSq� _O

Let � < be the relative-simplification normal form of � & U
�� X

relative to & . Then, the context entails the guard if and only if the conjunction & & � < is
the solved form of the conjunction & & � & U

�� X.ACB,DPDRQRO
This is an immediate consequence of Theorem 2 and Proposition 13.

3.3 Independence

The following theorem states that the OSF constraint system has the independence property
[Lassez et al. 1988]. It is well known that in any constraint system with this property it
is possible to solve constraints that are conjunctions of constraints and negated constraints
by testing entailment. Namely, & & \ / ) 1 � 1 & �!� � \ / ) n � n is satisfiable if and only if& does not entail / ) i ��� i, for every i � 1 � � �!�%� n. Here / ) i abbreviates the existential
quantification of variables in Var �j� i ��
 Var �U&,� .

Clearly, & entails / ) i �1� i if and only if & entails / ) i / Ui �1� i[Ui º Xi] & Ui
�� Xi, where

we introduce a new variable Ui for every Xi # Var �j&,��� Var �U� i � . Hence, given that the
independence property holds, we can use the relative-simplification algorithm in order to
check satisfiability of conjunctions of positive and negative OSF constraints.

For the formulation of the theorem, let us make a few assumptions that do not incur any
loss of generality. First, we assume that

)
i � Var �j� i � , Ui # )

i, and Var �U&,�V� Var �j� i ���Ü� .
Second, since they correspond to different existential quantification scopes, we will
assume

)
i � )

j �8� for i �� j. Finally, we again assume that � i does not contain redundant
constraints (see footnote 8).Ñ`Ò,�FDRB,�1�¤c_O��]ÆUL,¢��1E1�1L,¢��1LP�a� � A constraint & entails the disjunction of the con-
straints / ) i �V�U� i & Ui

�� Xi � , for i � 1 � �!� �%� k, if and only if it entails one of them.ACB,DPDRQRO
The if-direction is trivial. It is sufficient to show that if & & \ / ) i �V�U� i & Ui

��
Xi � is satisfiable for every i, then & & Ý i [ 1 egfgfgf e k \ / ) i �V�j� i & Ui

�� X � is satisfiable.
Extending the proof technique of Proposition 14, we will find a constraint & < such that& & & < is satisfiable and disentails � <i , for all i � 1 � � �!�%� k. As a consequence, & & & < also

disentails / ) i �?�U� i & Ui
�� Xi � . That is, & & & < � \ / ) i �V�j� i & Ui

�� Xi � is valid. Clearly,
this shows that & & Ý i [ 1 egfgfgf e k \ / ) i �p� i & Ui

�� X is satisfiable.
According to Theorem 2, if & & \ / ) i �
�U� i & Ui

�� Xi � is satisfiable, then � <i , the
normal form of � i & Ui

�� Xi relative to & is not a conjunction of equations representing a
functional binding.

Thus, one of the three following cases is true, for some Vi # Var �U� <i � bound to some
Xi # Var �U&,� , i.e., Vi

�� Xi #Ç� <i :
(1) � <i contains a sort constraint on Vi, say, Vi : si, or,
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(2) � <i contains two equations on Vi, say, Vi
�� Xi & Vi

�� Yi, or,
(3) � <i contains a feature constraint on Vi, say, Vi � ­ i

�� Wi.

(1) If Vi : si #8� <i , then & contains either no sort constraint on Xi or one of the form
Xi : s <i where si Ë s <i, according to the third condition of Proposition 12. Let Uij

�� Xi,
for ij � 1 � � �!�"� m, be the family of all equations occurring in the disjuncts binding a local
variable Uij to that same global variable Xi. We add to & the sort constraint Xi : s <g<i where
s <g<i is some sort that is incompatible with those in the sort constraints Uij : sij , and, in case
Xi : s <i #È& , is furthermore a subsort of s <i , s <g<i Ð s <i. We can always add such a sort s <g<i to the
signature without changing the meaning of the program thanks to our definition of OSF
algebra. That is, we do not require that a sort denotes the union of the sets denoted by its
subsorts (although the dual holds true: a sort denotes the intersection of the sets denoted
by its supersorts).

(2) If Vi
�� Xi & Vi

�� Yi #È� <i , and Vi : si �#È� <i (otherwise we are in Case (2)), then we
add to & < the conjuncts Xi � ­ i

�� Zi & Zi # s & Yi � ­ i
�� Z <i & Z <i # s < . Here s and s < are two

incompatible sorts, and the ­ i’s are pairwise different features that do not occur in & and� i, for i � 1 � �!� ��� k.
(3) Finally, we consider the set I of all indices i, i � 1 �!� � �]� k, for which Case (3), but

neither Case (1) nor Case (2) applies. Thus, for i # I, � <i contains a feature constraint of the
form Vi � ­ i

�� V1
i . According to our assumption this constraint is not a redundant conjunct;

i.e., there exists a sort si such that � i contains, in fact, a conjunct of the form

Vi � ­ i
�� V1

i & V1
i � ­ 2

i
�� V2

i & �!� � & Vn � 1
i � ­ n

i
�� Vn

i & Vn
i : si �

for some n Ä 1 � We add to & < the conjunct

Xi � ­ 1
i

�� X1
i & X1

i � ­ 2
i

�� X2
i & � �!� & Xn � 1

i � ­ n
i

�� Xn
i & Xn

i : s <i �
for some new variables X1

i �!� �!�%� Xn
i and for some sort s <i incompatible with si.

If there are several disjuncts � <ij with exactly the same chain of feature constraints
starting in a variable bound to the same global variable, then s <i must be chosen to be
incompatible with the sorts in all of these chains. More precisely, if, for ij � 1 � � �!�"� m, the
disjunct � <ij contains the conjunct

Vij � ­ i
�� V1

ij & V1
ij � ­ 2

i
�� V2

ij & � �!� & Vn � 1
ij � ­ n

i
�� Vn

ij & Vn
ij : sij �

then s <i is chosen as some sort such that sij � s <i ��� for all ij, ij � 1 � � �!�%� m.

4. FUNCTIONAL APPLICATION OVER � -TERMS

In this section, we show the use of the general scheme of Section 2 on the specific instance
of LIFE’s functional applications. That is, we explicate how our general residuation
scheme can be used to explain functional application over � -terms.

A � -term is a constraint describing a data structure. Hence, as an expression,
it can be further constrained by being conjoined with other functional and relational
constraints. We will call such an expression a constrained � -term. For example,
X : cons � tl ¾ T : list � & length � T � �� L & L : even is a constrained � -term specifying
lists of odd lengths.

A constrained � -term is an expression of the form � & C where � is a � -term and C a
possibly empty conjunction of OSF constraints and relational atoms.9

9The concrete syntax in LIFE for a constrained
�

-term is
�ÔÞ

C. This is read as ‘‘
�

such that C.’’
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In LIFE a function f is defined by

f � p1 �x� e1 �
...

f � pn �x� en �
where p1 � �!� �%� pn are � -terms and e1 � � �!�"� en are constrained � -terms. We assume that the
variables occurring in each rule f � pi �w� ei are different. We shall use

)
i for Var � pi � and0 i for Var � ei � . Again, for ease of notation and without loss of generality, we consider only

the case of unary function symbols f .
The above form of function definition is in fact syntactic sugar for a collection of n

guarded Horn clauses of the form

fr � U � V � :- U : pi &
i � 1Z
j [ 1 \ U : pj � � V : ei �

for i � 1 � �!� ��� n, and thus, as seen in the previous section, for a conjunction of n+1 guarded
rules. The symbol fr is a binary relation symbol associated to f . We shall also use the
functional constraint notation Y �� f � X � as sugaring for the relational atom fr � X � Y � , and the
constraint Y : f � t � with the functional expression f � t � as sugaring for / X � X : t & Y

�� f � X � .
We have everything ready now, with the general scheme of residuation of Section 2, to

explain the operational semantics of functional reduction in LIFE as a matter of instance.
Indeed, that scheme is sufficiently general to account for argument matching seen as
constraint entailment and priority of rule order, thanks to negative constraints imposing
disentailment of previous patterns.

We make this explicit in the form of the following two propositions. They are immediate
instances of Proposition 2 and Proposition 8, respectively.ACB,D,EFD�G�HJI,HKD,LNMV�_O

The resolvent R & & & Y : f � t � is equivalent to the resolvent/ X / ) i /10 i � R & & & X : t & Y : ei & X : pi

if the context & & X : t disentails the OSF constraints X : pj for j � 1 � �!� �%� i 
 1, and if
it entails the OSF constraint X : pi. That is, if the conjunctions & & X : t & X : pj are
unsatisfiable for j � 1 � �!� ��� i 
 1, and the implication & & X : t � / ) i � X : piis valid.ACB,D,EFD�G�HJI,HKD,LNMV�_O

If, for j � 1 � �!� �%� i, the OSF constraint X : pj simplifies to the OSF
constraint � j relative to & & X : t such that � 1 �����C� � �C�%� i � 1 ��� , and � i is a functional
binding,10 then the resolvent R & & & Y : f � t � is equivalent to the resolvent/ X / ) i /10 i � R & & & X : t & Y : ei & � i �

To express functional application in the framework of the calculus of subsumption and
unification of � -terms, we use a fact that follows directly from Propositions 20 and 21.
Namely, the implication X : t �y/ ) i � X : pi is valid if and only if the � -term t is subsumed
by the � -term pi. The OSF constraint X : t & X : pi is unsatisfiable if and only if the� -term t is nonunifiable with the � -term pi.

We will say that the equality t
�� p between two � -terms is satisfied under a valuationß in an interpretation à , if and only if àÔ� ßuá � t

�� p iff [[t]] â e ã � [[p]] â e ã , i.e., if the two� -terms have the same denotation under ß .

10Recall, from Section 3, that a functional binding is a conjunction of variable equalities Ui
}� Xi, i � 1 äj}�}j}"ä n

where all the variables Ui are mutually distinct.
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If the � -term t is nonunifiable with the � -terms p1 � �!� �%� pi � 1 and

if it is subsumed by the � -term pi, then the functional expression f � t � is equivalent to the
expression ei constrained by t �� pi. Formally,

Y : f � t �t- / ) i /10 i � Y : ei & t
�� pi (7)

is valid. If t is nonunifiable with the � -terms p1 �!� �!�"� pn, then f � t � is equivalent to � .ACB,DPDRQRO
The statement follows from Proposition 15 together with the fact that àÔ� ßtá �/ X �V� X : t & X : pi � if and only if àå� ß5á � t

�� pi.

4.1 Endomorphisms and Functional Application

We have related functional reduction to the view of � -terms as constraints and as sets.
In order to be complete with respect to the three (logical, term-as-set, and algebraic)
characterizations of the information contents of � -terms, we now give an algebraic
characterization of functional application as graph pattern matching. This view generalizes
the familiar notion of matching by computing substitutions.

If a function is defined over first-order terms, say, in the form f � p ��� e, then the
function applied to the term t yields the expression æ�� e � if the term t matches the pattern
p via the matching substitution æ , i.e., f � t �x��æ�� e � if æ�� p �w� t. This is not so obvious for� -terms. Let us take, for example, the identity function on � -terms, which is defined in the
form f � X : '°�w� X : ' . When applied to the � -term t � X : s ��­`¾ X < : s � , the function
returns the same � -term. However, this does not exhibit, as expected for first-order terms,
a substitution æ such that æ�� X : '°��� X : s ��­`¾ X < : s � . Rather, the instantiation map from
p to t is expressed thanks to a more general notion of refinement that we describe next.

Recall that an approximation ordering ç on � -terms is induced by the ordering on ´ ,
the OSF graph algebra (see Section 5). An endomorphism è is said to be principal in a set
of endomorphisms if for every endomorphism è < in this set there exists an endomorphismª such that è < ��ª`éwè .

We define the application of an endomorphism on a constrained � -term of the form���>� 0 & Ý m
k [ 1 + rk � Yk � & Yk : � k 3 by

è,�U�
�t�>è,�j� 0 � &
mZ

k [ 1

+ rk � Yk � & Yk : è,�j� k �j3V�
Let f � p �2� e define the function f , and let t be a � -term such that p ç t. Let è be a

principal OSF endomorphism among all those that map p into t. The next proposition states
precisely the following fact: applying the rule means that f � t ��� f �Kè,� p ���
�8è,� e �w�8è,� f � p ��� .
In other words, principal OSF endomorphisms preserve functional application (i.e.,
functional evaluation and OSF approximation commute).ACB,D,EFD�G�HJI,HKD,LNMV£_O

If no � -term is approximated by both t and pj for j � 1 �!� �!�"� i 
 1,
and t is approximated by pi, then the functional expression f � t � reduces to the � -termè,� ei � , where è is a principal endomorphism mapping pi on t, i.e.,

f � t ���uè,� ei ��� if èR� pi �x� t � (8)

If no � -term is approximated by both t and pi for i � 1 �!� �!�"� n, then the functional � -term
f � t � is � .11

11Note that, in (8), we use the metalogical equal sign ( � ), as opposed to the logical one (
}� ). This means that

in any resolvent we can replace the expression on the one side by the expression on the other side and obtain a
resolvent that is equivalent up to existential quantification of new variables.
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By Proposition 20, we know that the conditions in Proposition 18 on the OSF

graphs are equivalent to the conditions in Proposition 17 on the corresponding � -terms. In
particular, this implies the existence of the principal endomorphism è with è,� pi �
� t. From
Propositions 21 and 22, we know that X : t & X : pi is equivalent to X : è,� pi � & & where& is a functional binding (of variables of pi to variables of t). Moreover, the equivalence

mZ
k [ 0

Yk : � k & X : t & X : pi - mZ
k [ 0

Yk : è,�U� k � & X : è,� pi � & &
is valid. Now, if ei is of the form � 0 & Ý m

k [ 1 � rk � Yk � & Yk : � k � , then Y0 : ei & X : t & X :
pi is equivalent to è,� Y0 : ei � & X : è,� pi � & & . Up to existential quantification of new
variables occurring only in & , this formula is equivalent to è,� Y0 : ei � & X : è,� pi � . Thus,
Equation (8) follows from Proposition 17.

The proposition above justifies the intuition of functional application over � -terms. The
variables of the pattern pi in the function definition are instantiated by variables of the
calling term t, together with their sorts and their attached subterms, so that pi becomes
syntactically equal to t; then the variables in the expression ei are instantiated accordingly,
so that ei becomes the expression to which f � t � is rewritten.

The variables in ei that are not shared by the pattern pi must not be instantiated; this is
the reason why we require the endomorphism mapping pi on t to be principal.

For example, let the function f be defined in the form f � U : ';�È� U < : '��J­¿¾ U : ';� .
Applied to the � -term t � X : s ��­`¾ X < : s � , the function returns f � t ��� U < : '���­¿¾�� X :
s �J­Y¾ X < : s �"��� . Here, the principal endomorphism è maps U : ' on X : s �J­Y¾ X < : s � and
is the identity elsewhere. In particular, è does not unnecessarily refine the sort of U < .

The endomorphic approximation ordering is very interesting when used on the graph
representations of � -terms. It is in fact an immediate generalization of first-order term
matching. More conveniently, if a graph � 1 approximates a graph � 2 with an endomorphismè , this approximation is characterized exactly by a mapping è*ê : Var �j� 1 �xë� Var �j� 2 � that
can be constructed inductively as follows:12

(1) è ê � Root �U� 1 ���x� Root �U� 2 � ;
(2) for every X1 # Var �U� 1 � and for every feature ­Ç#8ì such that ­X� X1 �Å� Y1, thenè ê � Y1 ����­X�Kè ê � X1 �����
It is clear that this construction is well defined by the very definition of endomorphic
approximation. In fact, a mapping such as è*ê can be extended to all variables è*ê : 0të�Ú0 ;
it can be defined simply from è as è*ê�� Root �U�
���w� Root �íè,�U�
��� , for all � in ´ .

For example, provided that married person Ë person, smith Ë name, male Ë gender,
and female Ë gender, then the term

X1 : person � lastname ¾ X2 : name �
spouse ¾ X3 : person � lastname ¾ X2 �

spouse ¾ X4 : person ���
sex ¾ X5 : gender �

approximates the term

12Given an OSF graph
�

, we use the notation Root ² �_³ to designate its root variable, Sort îa² X ³ to designate the
sort of the variable X in

�
, and ~ î ² X ³ � Y to express the fact that

�
has an arc labeled ~ between nodes X and Y.

(When no ambiguity may arise, we omit the subscript
�

.)
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Y1 : married person � lastname ¾ Y2 : smith �
spouse ¾ Y3 : married person � lastname ¾ Y2 �

sex ¾ Y4 : female �
spouse ¾ Y1 ���

sex ¾ Y5 : male �
with the endormorphic mapping of variables: è ê � X1 �C� Y1, è ê � X2 �2� Y2, è ê � X3 �2� Y3,è*ê�� X4 �x� Y1, and èVê�� X5 ��� Y5.

As for a matching algorithm, the basic unification rules of Figure 7 are sufficient.13

Evidently, if the basic unification yields � , then this shows disentailment. Otherwise, we
will exhibit conditions on the obtained variable bindings that characterize entailment.

First, observe that after normalizing a consistent OSF term using Rules (B.1)--(B.5), the
variable equalities left in the solved form generate an equivalence relation on the variables.
We call variable coreference this equivalence relation.

Given two � -terms � 1 and � 2, to decide whether � 2 ç8� 1 and, if so, to compute the prin-
cipal endomorphic mapping èSï from Var �U� 2 � to Var �U� 1 � (the ‘‘matching substitution’’),
we proceed as follows.

(1) let � <1 be the � -term obtained from � 1 by completing it with new variables sorted with' at any path occurrence of � 2 that is not in � 1.

(2) Let & be the normal form of the OSF clause: Root �j� 1 � �� Root �j� 2 � & � <1 & � 2.

(3) If & is not � then let è 1 (resp., è 2) be the canonical surjection of Var�j� <1 � (resp.,Var �U� 2 � )
onto the coreferenceclasses of & , i.e., the function that maps a variable to its coreference
class.

Then,Ñ`Ò,�FDRB,�1�ylPO � 2 çÜ� 1 with principal OSF endomorphism è if and only if & is not �
and è 1 is a sort-preserving bijection.14 Then, è ê �8è � 1

1 é6è 2 : Var �U� 2 �xë� Var �U� 1 � is the
corresponding endomorphic variable mapping.ACB,DPDRQRO

First of all, let us observe that completing � 1 into � <1 with feature occurrences
of � 2 with new ' -sorted variables is an equivalence transformation thanks to totality of
features. In other words, � 1 and � <1 are equivalent. Let § 1 � Var �j� <1 � and § 2 � Var �j� 2 � .
The formula & is of the form � & ð where � consists only of sort and feature constraints andð consists only of equality constraints. These variable equalities generate the coreference
relation. Let [X] denote the coreference class of X.

If è 1 is a sort-preserving bijection, then for every variable X of & , è � 1
1 � [X] � is the unique

variable of � <1 that is element of this coreference class. Then, we can transform & into an
equivalent formula & by replacing every variable X by è � 1

1 � [X] � in � and replacing ð byð < ��Ý X ñpò 2
X ���è*ê�� X � . Note that this is an equivalence-preserving transformation since& is, by construction, of the form � <1 & ð < , and the coreference relations generated by ð andð < are identical. It is important to realize that this statement would not be true if we had

used � 1 instead of � <1. Indeed, then, & would have been of the form � 1 & � < & ð < where� < consisted of additional feature constraints corresponding to occurrences of � 2 missing
in � 1.

13See Appendix.
14By sort-preserving, we mean: ó V ® Var ² � 1

³ ä Sort î 1 ² V ³ � Sort ô�²öõ 1 ² V ³K³ }
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Clearly, it is true that
( § 1 ���U� <1 - /?§ 2 �R�U� <1 & ð < ��� . This shows that

( § 1 �R�U� <1 -/1§ 2 �P� Root �j� 1 � �� Root �U� 2 � & � <1 & � 2 �"� and, thus,
( § 1 ���U� <1 � /?§ 2 �,� Root �j� 1 � ��

Root �j� 2 � & � 2 �"� is valid, and thus � 2 ç8� 1.
Conversely, if � 2 ç8� 1, then also

( § 1 �V�j� <1 � /1§ 2 ��� Root �U� 1 � �� Root �U� 2 � & � 2 ��� is
valid, and, thus, also

( § 1 �a�j� <1 - /1§ 2 �F&,� . But this means (1) that & does not contain
equalities binding two variables of � 1 to each other and (2) that & does not contain a sort
constraint stronger than the one in � 1 on the (same or corresponding) variable of � 1.

Note that the completion of � 1 with occurrences from � 2 done in Step 1 is necessary to
determine the bijection è 1 , and thus the mapping è ê , with no loss of information. For
example, if � 1 � f � a � h � and � 2 � f � X � h � X ��� , then � 2 �ç8� 1. However, using � 1 instead of
the completed � <1 � f � a � h � U ��� and normalizing does result in a sort-preserving bijection
while, using � <1, it does not.

4.2 Semantics of Functional Application

If a function is defined over � -terms, then this means that it can be applied to set-denoting
objects to return set-denoting objects. We will first consider the meaning of pointwise
functional application given an OSF algebra à and a valuation ß in à . This extends
naturally to the meaning of functional application on sets, given just an OSF algebra à .

The function f â e ã maps elements to elements of the domain D â of à . In fact, f â e ã
describes a partial, at most n-point, function:

f â e ã � d �È� d < if d # [[pi]] â e ã 
 i � 1÷
j [ 1

[[pj]] â and d <a# [[ei]] â e ã for some i.

The � -terms p1 �!� � ��� pn are not necessarily disjoint. Instead of using an explicit negation
operator, we give a deterministic meaning to the top-down order in the function definition
in the above way. That is, we define the function f â e ã for only those valuations ß where
[[pi]] â e ã is disjoint from [[p1]] â°� �!� ��� [[pi � 1]] â . Implicitly, we make the � -terms pi disjoint
by giving them the denotations [[pi]] â e ã 
t� [[p1]] â 7 � � � 7 [[pi � 1]] â � , for i � 1 � �!� �%� n. Note
that, for two � -terms � 1 and � 2, the set [[ � 1]] â e ã is disjoint with [[ � 2]] â e ã 
 [[ � 1]] â , but
generally not with [[ � 2]] â e ã 
 [[ � 1]] â e ã . For example, take � 1 � X : int and � 2 � Y : real,
and define some ß where ß � X �x� 3 � ß � Y ��� 4.

The function f â , i.e., f interpreted in à , maps elements (and, by extension, sets) to
subsets of the domain D â ,

f â � d �$�v� d < á / ß # Val ��àÉ��� f â e ã � d �x� d <��*�
The denotation of the functional application of f on the � -term t under a valuation ß in

the interpretation à is:

[[f � t � ]] â e ã � f â � [[t]] â e ã ���
Thus, àÔ� ßuá � Y : f � X : t � if and only if ß � X �2# [[t]] â e ã and ß � Y �x� f â e ø + ß � X � 3 for someù # Val ��àÉ� .

The denotation of the functional application of f on the � -term t in the interpretation à
is [[f � t � ]] âr� f âY� [[t]] âC� .

Example 1. We define the identity function idon � -terms by the rule id � X : '°��� X : ' .
Then, id â2� D �w� D for any subset D Ì D â . If we confuse singletons and their elements,
we may write id â2� d �å� d for elements d of the domain of à . If s is any sort,
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then [[id � X : s � ]] â�� [[X : s]] â�� s â . In fact, the denotation of the function id
applied on any � -term is equal to the denotation of the � -term. The denotation under
a given valuation ß is the value of the element on which the function is applied,
[[id � X : ';� ]] â e ã � [[X : ' ]] â e ã ��� ß � X �ú� .

Example 2. We define the function any by the rule: any � X : '°�¡� Y : ' . The
application of this function on a � -term � yields always the sort ' , any �j�x�C� Y : '���' .
Note that [[any]] â e ã + ß � X � 3 � ß � Y � . Thus, any âY� D �2� D â for any subset D Ì D â , and
[[any � X : s � ]] â e ã � D â .

Example 3. For a fixed sort s, we define the function sorts by the rule sorts � X : s �x� X :' . Now, sort âs � [[X : ' ]] â e ã � yields � ß � X �ú� if ß � X �Y# s â and � otherwise. This function
‘‘type-checks’’ the variable X. Operationally, this means that the function call sorts � X �
will residuate until X is known to be in the sort s and then fire, or, until it is known to be
out of the sort s and fails.

What about the interpretation of the syntactic object f in an OSF algebra à ? The
function f is generally not completely specified in that not one function is singled out in
every interpretation à . Indeed, LIFE calculates with approximations of functions, just as it
does for values of the universe. Thus, f denotes, under each interpretation à , the set of all
partial functions û : D â5ë� D â such that, if û
� d �x� d < , then there exists an à -valuation ß
such that f â e ã � d ��� d < .
5. CONCLUSION

Our original motivation was to provide a formal account of the precise manner in which
functional application is used in the resolution scheme of LIFE. This involved doing
three things essentially. We developed a general residuation framework for guarded Horn
clauses over arbitrary constraint systems with an incremental constraint simplification
system. Doing so, we have given a logical reading of guarded rules as first-order formulae
and exhibited operational and semantical properties of the framework. Second, we gave a
correct and complete operational scheme for testing entailment and disentailment of order-
sorted feature constraints. To that end, we introduced a general technique, that we dubbed
relative simplification, that amounts to normalizing a formula in the context of another.
Last, we used this general residuation framework on the particular instance of functional
application over the order-sorted features terms of LIFE. In particular, we characterized
functional application over LIFE’s structures in terms of their logical, set-theoretic, and
algebraic accounts.

As for perspectives, one important issue begs the question. Namely, it would be
interesting to build function denotations into the OSF models. Indeed, while the framework
of this article gives a natural meaning to function symbols, it does not consider the latter as
‘‘first-class’’ objects---i.e., the OSF interpretations used here are not functionally complete.
We plan to study a means of construction using well-known techniques à la Dana Scott
to extend domains of OSF algebras to be functionally complete. That should involve
the machinery of classical Scott-style constructions. Another dimension to that endeavor
would be that of seeing all functions as features of objects. This intriguing perspective
could indeed lead to interesting model constructions.

Another avenue for further work on the foundations that we have just cast is the use
of the new discipline for procedure parameter passing in concurrent systems described
as ‘‘call-by-constraint entailment.’’ This is along the lines of what has been proposed
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by Maher [1987] and Saraswat and Rinard [1990], and realized to some extent in AKL
[Haridi and Janson 1990]. The novelty that our scheme suggests is the possibility to
derive automatically an effective means to realize this from the operational semantics of a
given constraint solver. Then, it should be practically possible for concurrent constraint
programming languages to use any constraint system to control suspension and resumption
of execution.

APPENDIX

We give here a detailed summary of the technical terminology and notation used in this
article. For a thorough investigation of these notions, the reader is referred to Aı̈t-Kaci and
Podelski [1993b].

We start with the notion of OSF algebras. They are the semantic structures interpreting
complex data objects built out of features and partially ordered sorts. Mathematically, an
OSF algebra formalizes access into the parts making up a piece of datum as well as their
categorization. We then introduce OSF constraints. They are important since, although
they are formal objects that are part of a logical formalism, they are also quite primitive to
constitute a low-level implementation logic.15 We then formalize � -terms since they not
only constitute a syntactically pleasant and convenient surface language for data objects
in LIFE, but also comprise a syntactic OSF algebra. Namely, they are representations of
values of the domain of the standard interpretation. Finally, we summarize a few facts
about this formalism that are relevant as related to the global contents of the article.

OSF Algebras and OSF Constraints

The building blocks of OSF algebras are sorts and features.
An order-sorted feature signature (or simply OSF signature) is a tuple ü�ý4��Ð��%�2��ì¡þ

such that

--- ý is a set of sorts containing the sorts ' and � ;
--- Ð is a decidable partial order on ý such that � is the least and ' is the greatest element;
--- üJý`��Ð¶�%�xþ is a lower semilattice (s � s < is called the greatest common subsort of sorts s

and s < );
--- ì is a set of feature symbols.

An OSF signature has the following interpretation. An OSF algebra over the signatureü�ý4��Ð��%�2��ì¡þ is a structureà���ü D â �;+ s â 3 s ñ ÿ �;+J­ â 3�� ñ�� þ
such that

---D â is a nonempty set, called the domain of à (or, universe);
---for each sort symbol s in ý , s â is a subset of the domain, in particular, '`âu� D â and�4â5�Ü� ;
---the greatest lower bound (GLB) operation on the sorts is interpreted as the intersection,

i.e., � s � s < �jâb� s ât� s < â for two sorts s and s < in ý ;
---for each feature ­ in ì , ­�â is a total unary function from the domain into the domain,

i.e., ­�â : D â5ë� D â .

15In fact, the reader familiar with implementation techniques of Prolog [Aı̈t-Kaci 1991] should recognize that
they are of the exact same granularity as WAM term representation and instructions.
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The notion of OSF algebra calls naturally for a corresponding notion of homomorphic
tranformation preserving its structure appropriately. Namely,

Definition
c,O��

OSF Homomorphism � An OSF homomorphism è : à�ë� �
between

two OSF algebras à and
�

is a function è : D â5ë� D � such that

--- è + ­úâ4� d � 3 ��­�� + è,� d � 3 for all d # D â ;

--- è + s â 3 Ì s � .

It is straightforward to verify that OSF algebras together with OSF homomorphisms
form a category. We call this category OSF.

Let 0 be a countably infinite set of variables.

Definition
l�O��

OSF Constraint � An atomic OSF constraint is one of (1) X : s, (2) X ��
X < , or (3) X � ­ �� X < , where X and X < are variables in 0 , s is a sort in ý , and ­ is a feature inì . An OSF constraint is a conjunction of atomic OSF constraints.

One reads the three forms of atomic OSF constraints as, respectively, ‘‘X lies in sort
s,’’ ‘‘X is equal to X < ,’’ and ‘‘X < is the feature ­ of X.’’ The set Var �U&,� of variables
occurring in an OSF constraint & is defined in the standard way. OSF constraints will
always be considered equal if they are equal modulo the commutativity, associativity,
and idempotence of conjunction ‘‘&.’’ Therefore, a constraint can also be formalized as
the set consisting of its conjuncts. As usual, the empty conjunction corresponds to the
propositional constant interpreted as true.

Let à be an OSF algebra. We call Val ��à¡�°��� ß : 0�ë� D â`� the set of all possible
valuations in the interpretation à . The semantics of OSF constraints is straightforward.

An OSF constraint & is satisfiable in an OSF algebra à , if there exists a valuationß : 0.ë� D â such that àÔ� ß5á �8& , where:àå� ß5á � X : s if and only if ß � X �w# s â ;àå� ß5á � X
�� Y if and only if ß � X �x� ß � Y � ;àå� ß5á � X � ­ �� Y if and only if ­�â4� ß � X ���x� ß � Y � ;àå� ß5á ��& & & < if and only if àÔ� ß5á �8& and àÔ� ß.á �8& < �� -Terms

We now introduce the syntactic objects that we intend to use as expressions of approximate
descriptions to be interpreted as subsets of the domain of an OSF algebra. Later, we
will use them as well as representations of values constituting the domain of a specific
interpretation.

Definition
�,O�� � -Term � A � -term � is an expression of the form X : s ��­ 1 ¾� 1 �!� �!�"�j­ n ¾Ú� n � , where:

---X is a variable in 0 called the root of � ;

---s is a sort different from � in ý ;

---­ 1 � �!� �%�j­ n are pairwise different features in ì , n Ä 0;

--- � 1 � �!� �%�]� n are again � -terms; and,

---no variable Y occurring in � is the root variable of more than one nontrivial � -term (i.e.,
different than Y : ' ).
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Note that the equation above includes n � 0 as a base case. That is, the simplest � -terms
are of the form X : s.

We can associate to a � -term�t� X : s ��­ 1 ¾y� 1 � � �!�"�j­ n ¾y� n �
the OSF constraint&��U�x�
� X : s & X � ­ 1

�� Y1 & �!� � & X � ­ n
�� Yn

& &��U� 1 � & �!� � & &��U� n �
where Y1 �!� � ��� Yn are the roots of � 1 � �!� �%�]� n, respectively. We say that the OSF constraint&��U�
� is obtained from dissolving the � -term � , and refer to the OSF constraint as the
dissolved � -term. We will often deliberately confuse a � -term � with its dissolved form&��U�
� and refer to &��j�x� simply as � .

Given the interpretation à , the denotation [[ � ]] â e ã under a valuation ß : 0.ë� D â of a� -term � with root X is given as

[[ � ]] â e ã ��� d # D â áXß � X �x� d ��àå� ß5á ���w�*�
Note that this is either the singleton � ß � X �ú� or the empty set.

The type-as-set denotation of a � -term � is defined as the set of domain elements

[[ � ]] â � ÷ã?ñ Val � â�� [[ � ]] â e ã �
This amounts to saying that

[[ � ]] â ��� d # D â á there exists ß # Val ��àÉ� s. t. ß � Z �
� d � and àÔ� ß5á ��/1§ Z : �w�
where Z is a new variable not occurring in � , §Â� Var �U�
� , Z : � stands for Z

�� X & � ,
and X #Ç§ is � ’s root variable.

A � -term � with root X corresponds to a unique rooted graph g that is the direct
translation of the constraint � together with an indication of the root. The nodes of g are
exactly the variables of � . A node Z is labeled by the sort s if the conjunction � contains a
nontrivial sort constraint Z : s, and by the sort ' , otherwise. For every feature constraint
Y � ­ �� Z the graph g has a directed edge � Y � Z � that is labeled by the feature ­ . The root of
g is the node X. Clearly, g is the natural graphical representation of � . For example, the� -term

X1 : person � name ¾ X2 : id � first ¾ X3 : string �
last ¾ X4 : string ���

spouse ¾ X5 : person � name ¾ X6 : id � last ¾ X4 ���
spouse ¾ X1 ��� .

corresponds to the OSF graph shown in Figure 6.

Syntactic Interpretations

Among all OSF algebras, there are those whose domain elements are concrete data
structures. We call these syntactic interpretations. We will now present three important
examples obtained directly from the syntactic expressions of � -terms. They turn out to be
canonical interpretations for OSF constraints.16

16If an OSF constraint is satisfiable in some interpretation, then it is also satisfiable in all canonical interpretations.
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Fig. 6. An OSF graph.
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The most immediate syntactic OSF interpretation is the OSF algebra ´ of � -terms. The
domain of ´ is the set of all � -terms, up to graph representation. That is, we identify� -terms as values of ´ if they are represented by the same graph. For example, the two� -terms Y : s ��­ 1 ¾ X : s < � ­ 2 ¾ X � and Y : s ��­ 1 ¾ X � ­ 2 ¾ X : s < � clearly correspond to
the same object. Indeed, they have the same OSF graph representation.

Sorts s #åý are interpreted as

s �Ç���9�.# D � á s <RÐ s � where s < is the root sort of the graph of �w�V�
and features ­¡#5ì are interpreted as functions ­ � : D � ë� D � as follows. Let � be a� -term and g its graph. If � X � Y � is the edge of g labeled by ­ , then ­ � � g � is the � -term
represented by the maximally connected subgraph g < of g rooted at the node Y. That is, g <
is obtained by removing all nodes and edges that are not reachable by a directed path from
the node Y.

If X does not have the feature ­ , i.e., there is no outgoing edge from the root of g labeled­ , then ­ � is the � -term Z� e « : ' , for a new variable Z� e « uniquely determined by the
feature ­ and the � -term � .

For example, taking � � X : '���­ 1 ¾ Y : s � ­ 2 ¾ X � , we have ­ �1 �j�x�Ç� Y : s,­ �2 �U�x�x��� , and ­ �3 �j�x�x� Z� 3 e « : ' .
We obtain two other examples of OSF algebras when we factorize the � -term domain

by further identifying values. The first one identifies two � -terms that are equal up to
variable renaming. The obtained domain obviously spans an OSF algebra. We call this
OSF algebra ´ 0.

The second one is obtained from ´ 0 by further identifying two � -terms if their (possibly
infinite) tree unfoldings are equal. A tree unfolding is obtained from a � -term by associating
a unique node to every feature path. It is well known that a rooted directed graph represents
a unique rational tree [Courcelle 1983]. In our case, we obtain trees whose nodes are
labeled by sorts and whose edges are labeled by features. We call these (rational) OSF
trees. It is again clear that the set of all OSF trees spans an OSF algebra µ .17

Formally, OSF algebras can also be introduced as logical structures, namely, models
providing interpretations for the sort symbols as unary predicates and the feature symbols
as unary functions, that satisfy the Sort Axiom saying, for all sorts s and s < ,
17 � is essentially the feature tree structure of Aı̈t-Kaci et al. [1994] and Backofen and Smolka [1992, Smolka and
Treinen [1992]. The difference lies in our using partially ordered sorts and total, as opposed to partial, features.
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X : s & X : s <=� X : s � s <U�
Furthermore, both ´ 0 and µ satisfy a Constructibility Axiom stating essentially the
satisfiability of any OSF constraint & coming from dissolving a � -term � . More precisely,
if §Â� Var �U&,� and, for i � 1 �!� � ��� n, Xi � ­ i

�� Y �#È& for any variable Y, and Yi �# Var �U&,� ,
and Xi #È§ , then this axiom states the validity of(

Y1 �!� �!� ( Yn �S/1§Ç�p& & X1 � ­ 1
�� Y1 & � �!� & Xn � ­ n

�� Yn �
The constructibility axiom is a generalization of the axiom of functionality, which is valid
for first-order terms. Namely, the axiom that guarantees that, given a constructor symbol
f of rank n, an individual X � f � Y1 � � �!�%� Yn � exists if individuals Yi exist, i � 1 � � �!�%� n.
Formally, taking &=� X : f ,(

Y1 �!� �!� ( Yn �S/ X � X : f & X � 1 �� Y1 & � � � & X � n �� Yn �
The form we give for constructibility is indeed more general than plain functionality since it
states the existence of something that is not valid for first-order terms, e.g., self-referential
individuals. For example, / X � X � ­ �� X is obtained as an instance of our axiom by taking
n � 0 and &¨� X � ­ �� X.

OSF Unification

We describe next how to determine whether an OSF constraint & is consistent, i.e., if it is
satisfiable in some OSF algebra à ---and, therefore, in particular in ´ . Unification of two� -terms reduces to this problem.

Definition
�,O��

Solved OSF Constraints � An OSF constraint & is called solved if for
every variable X, & contains

---at most one sort constraint of the form X : s, with � Ë s;
---at most one feature constraint of the form X � ­ �� Y for each ­ ; and,
---no other occurrence of the variable X if it contains the equality constraint X

�� Y.

We can show that an OSF constraint in solved form is always satisfiable [Aı̈t-Kaci and
Podelski 1993b]. Now, by Definition 5, the OSF constraint obtained as the dissolved form
of any � -term � is de facto in solved form.18 Hence, such a constraint is always satisfiable.
It is so, in particular, in the canonical interpretation ´ with, interestingly enough, the
valuation that assigns to each variable X in � the value in D � that is the very � -term rooted
in X in � . For this reason, a � -term can also be seen as a variable substitution.

Given an OSF constraint & , it can be normalized by choosing nondeterministically and
applying any applicable rule among the transformations rules shown in Figure 7 until none
applies. A rule transforms the numerator into the denominator. The expression & [X º Y]
stands for the formula obtained from & after replacing all occurrences of Y by X.Ñ`Ò,�FDRB,�1�¤�_O����¡�,¦ m DRLPG�I,B,o,H�L,I���D,B,�4o,npH��ÍoVI,HKD,L � The rules of Figure 7 are
solution preserving, finite terminating, and confluent (modulo variable renaming). Fur-
thermore, they always result in a normal form that is either the false constraint � or an
OSF constraint in solved form.

For our purposes, the constraint & to be normalized will be of the form � 1 & � 2 & X1
��

X2; i.e., the conjunction of the dissolved � -terms � 1 and � 2 together with an equation

18More precisely, this is true if we forget superfluous trivial sort constraints of the form X : × .
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Fig. 7. Basic simplification.
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�
& U

}� U�
identifying their root variables X1 and X2. If & normalizes to the false constraint, then
the two � -terms are nonunifiable. Otherwise, the resulting solved OSF constraint is a
conjunction of equality constraints and of the dissolved form of some � -term. This � -term
is the most general unifier of � 1 and � 2, up to variable renaming. We shall see that this� -term has two equivalent order-theoretic characterizations (see Propositions 21 and 22).

OSF Orderings

In this section, we first introduce the notion of endomorphic approximation that captures
precisely and elegantly object inheritance. We also show how it relates to the logic and
type views.

Endomorphisms on a given OSF algebra à , i.e., homomorphisms from à to à , induce
a natural partial ordering.

Definition
 ,O��

Endomorphic Approximation � On each OSF algebra à an approxima-
tion preorder ç â is defined such that, for two elements d and e in D â , d approximates e if
and only if e is an endomorphic image of d. Formally,

d ç â e iff èR� d �C� e for some endomorphism è : à�ë� àå�
We shall omit subscripting ç â and write ç when à ��´ . Notice that this ordering on � -
terms as values of the domain of ´ translates into an information-theoretic approximation
ordering on � -terms as types.

We note that endomorphisms on ´ are graph homomorphisms with the additional sort-
compatibility property. A node labeled with sort s is always mapped into a node labeled
with s or a subsort of s. An edge labeled with a feature is mapped into an edge labeled with
the same feature. Thus, endomorphic approximation captures exactly object-oriented class
inheritance. Indeed, if an attribute is present in a class, then it is also present in a subclass

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 4, July, 1994, Pages 1274--1313.



Functions as Passive Constraints in LIFE � 1311

with a sort that is the same or refined. Since features are total functions, this also takes care
of introducing a new attribute in a subclass: it refines ' . Note also, that the restriction ofè to the set of nodes defines a variable binding; it corresponds to the notion of a matching
substitution for first-order terms.

The following fact holds [Aı̈t-Kaci and Podelski 1993b].ACB,D,EFD�G�HJI,HKD,LNMV¥_O�� ��� Ñ`�1B,�;G oPG¨¦xH�n�I,�1BPG � The denotation of a � -term in ´ is the
set of all � -terms it approximates, i.e.,

[[ � ]] �Ç���X��<P# D � á �.çu��<j�*�
The next ordering is the type ordering on � -terms that we informally called ‘‘more

specific than’’ in Section 1.2.

Definition
£,O�� � -Term Subsumption � A � -term � is subsumed by a � -term � < if and

only if the denotation of � is contained in that of � < in all interpretations. Formally,�.Ðb��< iff [[ � ]] â Ì [[ ��< ]] â
for all OSF algebras à .

In fact, it is sufficient to limit the above statement to the OSF algebra ´ only, i.e.,
[[ � ]] � Ì [[ � < ]] � .

The next and last ordering is a logical ordering on � -terms.

Definition
¥,O�� � -Term Entailment � A � -term � entails a � -term � < if and only if, as

constraints, � implies the conjunction of � < and X
�� X < ; more precisely,���b� < iff á �©�.�y/ ) � X �� X < & � < �

where X, X < are the roots of � and � < and
) � Var �U� < � .

It is important to realize that this formulation is not actually correct in general. Here, we
limit the statement to the validity of the implication in the OSF algebra ´ only (namely,
using á � � ). This would not be sufficient in the more general case of arbitrary OSF
constraints [Aı̈t-Kaci and Podelski 1993b]. This weaker form is acceptable here only
because the constraints in question are obtained by dissolving � -terms and because their
root variables are bound together.ACB,D,EFD�G�HJI,HKD,L�^1Ã_O��"�1�?�`o,L,I,HK��Ñ`B,o,LPG�EXo,B,�?LP�?q�D,Q���B,¢��1B,H�L� �G � The four fol-
lowing statements are equivalent.

(1) �.ç8� < ( � is an approximation of � < );
(2) � < Ð8� ( � < is a subtype of � );

(3) � < �8� ( � entails � < );
(4) [[ � ]] � Ì [[ � < ]] � (the set of � -terms filtered by � is contained in the set of � -terms

filtered by � < ).
The following two propositions are straightforward. Let � 1 and � 2 be two � -terms

with variables renamed apart, i.e., such that Var �U� 1 �x� Var �j� 2 � ��� . Let X1 and X2
be their respective root variables. Let & be the normal form of the OSF constraint� 1 & � 2 & X1

�� X2.ACB,D,EFD�G�HJI,HKD,L�^FMFO�� ��� Ñ`�1B,�"!;L,H�QVHK�aoVI,HKD,L � The normal form & is the false con-
straint if and only if [[ � 1]] ât� [[ � 2]] âÜ�@� , for all OSF algebras à . Otherwise, & is the
conjunction of equality constraints and of the dissolved version of some � -term � . This� -term is the Ð -GLB of � 1 and � 2 up to variable renaming, i.e., [[ � ]] â5� [[ � 1]] â=� [[ � 2]] â .
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1312 � H. Aı̈t-Kaci and A. PodelskiACB,D,EFD�G�HJI,HKD,L�^1^_O���� ç#� Á�!%$ D,QÇI'&¡D �(� I,�?B,�°G ��� The � -term � above is approx-
imated by both � 1 and � 2 and is the least � -term for ç (i.e., approximating all other ones)
with this property.
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1982b. Prolog II: Manuel de référence et modèle théorique. Rapport technique (March),
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