
1

Classifying and Querying Very Large
Taxonomies with Bit-Vector Encoding

Hassan Aı̈t-Kaci ⋆1 and Samir Amir ⋆2

⋆ LIRIS—Département Informatique, Université Claude Bernard Lyon 1

Villeurbanne, France

1
hassan.ait-kaci@univ-lyon1.fr

2
samir.amir@univ-lyon1.fr

Abstract—This article addresses the question of how efficiently Semantic Web (SW) reasoners perform in processing (classifying and

querying) taxonomies of enormous size. We use a bit-vector encoding technique to implement taxonomic concept classification and

Boolean-query answering. We describe the technique we have used, which achieves high performance, and discuss implementation

issues. We compare the performance of our implementation with those of the best existing SW reasoning systems over several very

large taxonomies under the exact same conditions for so-called TBox reasoning. The results show that our system is among the best

for concept classification and several orders-of-magnitude more efficient in terms of response time for query answering. We present

these results in detail and comment them. We also discuss future work regarding how our method could be further optimized to handle

even larger ontologies without performance degradation.

Index Terms—Scalable Taxonomic Reasoning, Bit-Vector Encoding, Implementation Techniques

✦

1 INTRODUCTION

THERE exist many and varied formal systems purporting

to express and use knowledge for inference. However,

despite this variety, they all share a common trait: knowledge

is always organized into an “is-a” conceptual taxonomy where

a concept denotes the set of all its instances. In such a

taxonomy, a concept C1 is deemed a subconcept of a concept

C2 whenever the set denoted by C1 is a subset of the set

denoted by C2. This is what “C1 is-a C2” means. For example,

“employee is-a person” means that all instances of the concept

employee are also instances of the concept person. Hence,

reasoning performance in all such systems will need to rely

in a crucial way upon the performance of the underlying

taxonomic reasoning. In particular, it will be necessary to

identify all the maximal concepts that are subconcepts of two

given concepts, those that are minimal superconcepts of two

given concepts, or those that are incompatible with a given

concept. These operations correspond respectively to concept

conjunction (i.e., intersection of the denoted sets), concept

disjunction (i.e., union of the denoted sets), and concept

negation (i.e., complement of the denoted set). Therefore, basic

Propositional Algebra is central to all taxonomic reasoners.

The issue, then, is to enable the efficient evaluation of

propositional expressions involving propositional symbols rep-

resenting partially-ordered concepts making up these concep-

tual taxonomies. However, conceptual taxonomies can be of

enormous size, making such evaluation a challenge to perform

efficiently.

In this document, we address two topics in the above

context: (1) robust and scalable taxonomic reasoning; and,

(2) evaluation of semantic web technologies for such rea-

soning. Regarding the first topic, we demonstrate how a

method for taxonomic reasoning based on bit-vector encoding

we have implemented is both robust and scalable on very

large taxonomies derived from real-life ontologies. As for

the second topic, we proceed to a comparative evaluation of

the best existing Semantic Web (SW) reasoners on the same

taxonomies under the same conditions. This comparative study

illustrates clearly the mutual stance in terms of performance

for each reasoner with respect to one another. It also does so

for our system, thus putting its performance in context with

the state of the art.

We measured the performance of our system and compared

it with those of the best existing SW reasoning systems over

several very large taxonomies under the exact same conditions

for so-called TBox reasoning.1 The results show that our

system is among the best for concept classification and several

orders-of-magnitude more efficient in terms of response time

for query answering. We present these results in detail and

comment them. We also discuss future work regarding how out

method could be further optimized and can be made to scale up

to even larger taxonomies without performance degradation.

The rest of this paper is organized as follows. In Section 2,

we explain the principle upon which our method is based and

discuss its implementation and use for taxonomic reasoning.

1. In Semantic Web lingo, a Knowledge Base (KB) is defined as a formal
ontology consisting of two parts (or “boxes”): (1) a Terminological Box
(abbreviated as TBox); and, (2) an Assertional Box (abbreviated as ABox).
The TBox contains the formal axioms that define the structure and semantic
properties of the actual instance data; which instance data constitute the ABox.
In Database lingo, the TBox corresponds to the schema and the ABox to the
actual data.

2

In Section 2.1, we explain the formal principles underpinning

our method. In Section 2.2, we make some important remarks

dealing with implementation. In Section 3, we report our

experimental work in the context of state of the art in Semantic

Web reasoning, which is cover in Section 3.1. In Section 3.2,

we describe our experimental setup. In Section 3.3, we present

the results of these experiments, and discuss these results in

Section 3.4. We conclude in Section 4 with a summary of

our contribution and perspectives. In the appendix, we give a

detailed formal specification of a memory-efficient representa-

tion for extremely large binary codes, and an overview of the

tool we have implemented to verify the claims of this paper,

and web service we have set up to access it.

2 OUR METHOD

2.1 Principle

In this section, we give a self-contained summary of the

method we have implemented in order to measure its per-

formance for classification of bare taxonomies and query

answering of Boolean queries.

Our method is an implementation in Java of a technique

described in [1]. It consists in representing the elements of

a taxonomy (i.e., an arbitrary poset) as bit vectors. Thus,

each element has a code (a bit vector) carrying a “1” in

the position corresponding to the index of any other elements

that it subsumes. In this manner, the three Boolean operations

on sorts are readily and efficiently performed as their corre-

sponding operations on bit-vectors. However, for this to be

possible, these bit vectors must be encoded as the reflexive

transitive closure of the “is-a” relation obtained from subsort

declarations.

How to compute such a closure has been well-known—e.g.,

the Warshall-Strassen method using clever matrix multiplica-

tion tricks [2]–[4]. However, for a poset of n elements, this

method has quite a large time complexity—even with the best

known algorithm to date, it is O(n2.23727) [5], [6].2 In fact,

in practice, the straightforward O(n3) in-place multiplication

method known as Warshall’s Algorithm [8], [9] is used in most

cases.

Figure 1 gives Java code for Warshall’s algorithm performed

“in-place” on the binary codes of sorts stored in an array

SORTS. The array SORTS contains the set of sorts as bit-set

objects. A bit-set object has a field named “code” which is a

bit vector. The class of bit vectors is endowed with a method

get(int) that returns the value of its bit in the specified

position as a boolean, and a method set(int,boolean)

that sets its bit in the specified position to the specified Boolean

value.

Now, while Warshall’s algorithm may be viable for rela-

tively small posets, it simply becomes unusable for posets of

the size of the taxonomies we are considering.

Note, however, that transitive-closure methods need pay

such a high performance cost only due to the fact that they are

2. To the best of our knowledge, this is the latest best bound as of 2011.
However, these algorithms are not implementable due to prohibitive size of
constants. For more recent work on parallelizing Strassen’s algorithm, see [7].
This, however, requires special harware (GPGPUs).

int n = SORTS.size();

for (int k = 0; k < n; k++)

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

if (!SORTS[i].code.get(j)))

SORTS[i].code.set(j,

SORTS[i].code.get(k)

&&

SORTS[k].code.get(j));

Fig. 1: Java code for “in-place” Warshall’s algorithm

devised for arbitrary graphs. But concept taxonomies are not

arbitrary graphs. Namely, a necessary condition for a set of

partially-ordered concepts to be semantically consistent is that

its graph must be acyclic. Thus, a consistent taxonomy must

be a directed-acyclic graph (or dag) with a least element (⊥)

and a highest element (⊤). In [1], it is shown that for such a

dag, an O(n) transitive-closure algorithm exists and is proven

correct. This method is described as Algorithm 1.

Algorithm 1 Taxonomy Classification Algorithm

1: procedure CLASSIFY

2: L← Parents(⊥);
3: while L 6= ∅ do

4: for all x ∈ L do

5: x.code← 2x.index ∨
∨

y∈Children(x) y.code;
6: x.coded← true;
7: end for

8: L←
⋃

x∈L Parents(x);
9: for all x ∈ L do

10: if ∃y ∈ Children(x) and ¬y.coded then

11: L← L− {x};
12: end if

13: end for

14: end while

15: end procedure

The procedure CLASSIFY assumes that each sort s is

provided with a set denoted as “Parents(s)” and a set denoted

as “Children(s)” (viz., from the “is-a” declarations of members

of the taxonomy). Each sort is an object that has a field (called

“code”), which is its bit vector representation (initialized to

be all zeroes). A sort also has an integer field (called “index”)

which is unique per sort (viz., its index in the taxonomy).

Finally, a sort also has a Boolean field (called “coded”), which

denotes whether or not this sort has been encoded yet (it is

initially set to false).

Algorithm 1 computes the reflexive-transitive closure of

a the “is-a” relation on the set of sorts comprising a tax-

onomy [1].3 This algorithm can be explained as follows. It

proceeds layer by layer, starting with the parents of ⊥ (i.e.,

the minimal sorts in the taxonomy) [Line 2], assigning a code

to each element in the current layer to be the bitwise or of its

children and also setting the bit in its index position [Line 5].

Each time an element is encoded, it is marked to be so by

3. op. cit., pages 125–126.

http://chuck.ferzle.com/Notes/Notes/DiscreteMath/Warshall.pdf
http://en.wikipedia.org/wiki/Coppersmith-Winograd_algorithm

3

setting its coded flag to true [Line 6]. Then, a new layer is

computed from the current one as the union of all it parents

[Line 8] from which any sort that has at least one child not

encoded is removed [Line 11]. Indeed, by construction, such

sorts can always be reached later. This proceeds until an empty

layer is obtained [Line 3]—which is when all sorts have been

encoded.

This algorithm’s main loop [Lines 3–14] clearly visits each

sort exactly once, and is thus linear. The auxiliary computation

of the next layer [Lines 8–13] has comparatively marginal

cost as it can be made efficient using constant access-time

data structures for the sets of parents and children, making set

operations on them negligible. Also proceeding bottom up has

a clear performance advantage for dags such as most concept

taxonomies, where sorts tend to have many less parents than

they have children.

It is this method that we have implemented, tested, and

compared with the best SW reasoners we could retrieve, to

run on the very large taxonomies we extracted from existing

publicly accessible ontologies of enormous size. The real

bonus of this method is, of course, that all three Boolean

operations on sorts stay virtually O(1) irrespective of the size

of the taxonomy nor that of the number of concepts in the

query. The result of any such query is the set of sorts with

codes in the set of maximal common lower-bounds of the

computed code.4 All the above claims are clearly demonstrated

on all the performance graphs we are reporting in the next

section.

As for incrementality, removing a sort amounts simply to

erasing its index position in all codes that have it set. Adding

a sort (through a new “is-a” declaration s1 < s2) is done by

restarting the bottom up propagation of the loop [Lines 3–

14] starting from the parents of lower of the two sorts, after

having reset all its ancestors to the uncoded status. In case of

several new “is-a” declarations, the same procedure is applied

but starting from the union of the parents of the minimal new

sorts after resetting all their ancestors to the uncoded status.

2.2 Implementation

In this section, we discuss implementation issues dealing with

detecting and identifying potential cycles in a taxonomy being

encoded, and decoding codes into sorts.

2.2.1 Detecting Cycles

This section adds some information concerning the detection

and identification of potential cycles in a set of “is-a” decla-

rations specifying a taxonomy.

Problem

Since it expresses a subset ordering among concepts, a taxon-

omy is supposed to be a directed acyclic graph (dag). However,

it may be possible that mistakes occur whereby the “is-a”

declarations among concepts contain inconsistencies in the

form of cycles. To detect such cycles is thus useful for a

classification tool to allow reporting them for correction to

the user.

4. See Section 2.2.

If the general O(n3) Warshall algorithm is used to compute

transitive-closure codes for all sorts in the taxonomy, then

an existing maximal cycle will necessarily imply that all its

elements are given equal codes. Indeed, by transitivity, the

code of an element denotes the set of all its descendants. But

all the elements of a cycle have the same set of descendants,

and so their codes must be equal. Such a cycle is in fact an

equivalence class for the least equivalence relation containing

the declared “is-a” pairs.

One could eliminate all such cycles by collapsing them into

a single sort (the class representative), obtaining the quotient

set, which is then a dag. However, this is not desirable since

such cycles are in all cases errors resulting from inconsistent

declarations. In this case, they should be flagged as errors and

their contents identified.

Reporting such cycles efficiently can be done by performing

a topological reordering of the taxonomy according to the

codes that would guarantee that sorts of equal codes are con-

tiguous. Thus, a maximal cycle must be a maximal contiguous

sequence of equal-coded sorts in this topological reordering of

the taxonomy.

However, for the reasons discussed earlier in this paper,

it is not feasible to use Warshall’s algorithm to compute

the transitive closure on very large taxonomies. In addition,

reordering such a very large taxonomy using QuickSort will

be on average O(n logn) with a prohibitive, although very

rare, O(n2) worst case [10].5

Note that using our bottom-up encoding to compute the

transitive closure of a taxonomy is correct only if it is a dag. If

there are cycles in it, it will necessarily terminate with some of

its elements left without code. This is because in Algorithm 1

a layer computed from a previous one [Line 8] removes any

sort that has at least one child not encoded [Line 11]. This

is correct for a dag since such sorts will always be reached

later through a different longer path from ⊥. But the existence

of a cycle will make this assumption incorrect. For example,

declaring both s1 ≺ s2 and s2 ≺ s1 will cause both s1 and

s2 (and all their ancestors) to be removed from any layer to

be encoded.

Therefore, the best we can expect with the bottom-up encod-

ing method is that it always terminate in at most n iterations

for a taxonomy of n elements. If the taxonomy is indeed a dag,

all sorts will be correctly encoded. But if there are cycles, it

will detect this to be the case (by checking that there remain

non-encoded sorts upon termination). However, it does not

have any possiblity to identify how many maximal cycles there

are and which sorts compose them. It is because all it knows

is that bottom-up encoding left some elements non-encoded—

which happens if and only if there are cycles. However, it does

not have specific information allowing identification of which

exact (maximal) cycle(s) they are.

Solution

There is a simple and feasible way to proceed. It is enough

to collect the non-encoded sorts after a bottom-up encoding

in a new set to be classified using Warshall’s method and

5. en.wikipedia.org/wiki/Quicksort

http://en.wikipedia.org/wiki/Quicksort

4

topologically reordered. This is feasible then because such a

set is relatively much smaller than the full declared taxonomy.

In this way, all cycles can be identified as maximal contiguous

elements and reported as errors.

Let us now define such a topological ordering. Recall that

a taxonomy of n sorts is represented as an array of size n of

Sort objects that are characterized by three fields; the sort’s:

1) index—its offset in the array;

2) code—its bit-vector encoding;

3) name—its name.

Using this precedence test on sorts, we can thus obtain a

unique topological (total) ordering of a taxonomy whereby a

sort s is said to precede another sort s′ iff, in this order:6

1) s.code < s′.code; or,

2) s.code = s′.code and s.index < s′.index; or,

3) s and s′ are unrelated, and:

• |s.code| < |s′.code|; or,

• |s.code| = |s′.code| and,

firstDiff(s.code, s′.code)
<

firstDiff(s′.code, s.code).

The expression |c| for a code c denotes this code’s car-

dinality (i.e., its number of bits set to true). The expression

firstDiff(c, c′) for two codes of equal cardinality c and c′

denotes the lowest 1-bit position in c that is 0 in c′. So the last

condition ranks sorts according to the number of descendants,

and when such are equal, according to the descendant of lowest

differing index.

This ordering on sorts will keep lesser sorts and sorts of

lesser cardinality at lower ranks. Same-cardinality codes (i.e.,

sort with same number of subsorts) are ranked according

to lowest index of the subsort contained in one but not

the other. For example, code c = 1000111 ({0, 1, 2, 6})
is toplogically less than code c′ = 0101011 ({0, 1, 3, 5})
because firstDiff(c, c′) = 2 and firstDiff(c′, c) = 3,

and 2 < 3.

It is not difficult to see that such a topological reordering

will always end up with equally encoded elements being

contiguous, while sorts with a greater number of lower bounds

will be at higher ranks. In this manner, it is easy to identify all

cycles in one single sweep of the taxonomy array as maximal

sequences of contiguous equal codes of length at least 2.

On the Wikipedia taxonomy, the above method could iden-

tify 13 cycles: 12 of length 2 (i.e., x is-a y and y is-a x)

and 1 of length 3 (i.e., x is-a y and y is-a z and z is-a x).

There were also 49 warnings of cycles of length 1, which are

harmless redundancies (i.e., x is-a x). All these cycles were

removed in the final Wikipedia taxonomy we used in our tests

and measurements.

2.2.2 Decoding

We now turn to decoding—i.e., relating bit-vector codes to the

sorts they denote.

By construction of transitive closure, Algorithm 1, the bit

vector of a sort at index i (0 ≤ i ≤ n− 1) has a 1 in position

6. The ordering on bit-vector codes is simply defined as c1 ≤ c2 iff c1 =

c1 & c2.

K L

H I J

F G

C D E

A B

Fig. 2: Example of a small “is-a” taxonomy

Index Code Sort

11 101110111111 L

10 011111111111 K

9 001010111111 I

8 000110111111 J

7 000010011011 G

6 000001101111 H

5 000000101111 F

4 000000011000 E

3 000000001000 B

2 000000000101 C

1 000000001011 D

0 000000000001 A

TABLE 1: Transitive-closure codes for sorts in Figure 2

j (0 ≤ j ≤ n − 1) if and only if the sort at index j is its

subsort. Therefore, a sort’s bit vector has 1s in all and only the

positions of its descendant sorts. For example, the taxonomy

shown as Figure 2 containing 12 sorts (other than ⊤ and ⊥)

will result in the encoding shown as Table 1. Since there are

12 sorts in this taxonomy, all codes in this taxonomy have 12

bits. The top and bottom elements (⊤ and ⊥) are implicit both

in Figure 2 and in Table 1. So the code for bottom is all 0s,

and the code for ⊤ is all 1s.

Let us first consider codes obtained without using negation.

In other words, let us first restrict ourselves to decoding the

result of only positive queries—i.e., ones involving sorts of

an encoded taxonomy using a Boolean expression of its sorts’

bit-vector codes using bitwise and, or—but not not. This

always results in a bit vector. In order to determine what sorts

this resulting bit vector corresponds to, there are two cases:

either the resulting bit vector is that of an existing sort, or it

is not.

In the first case, in order to speed up determining the sort

of the bit vector, all codes are stored in a hash table mapping

a code to its sort. In this way, evaluating for example “F & G”

in the taxonomy of Figure 2, which results in the bit-vector

code 000000001011, the sort can be retrieved in this hash

table to be associated with the code—sort D in our example.

In the second case, the code resulting from a query eval-

uation does not correspond to an existing sort. For example

5

Index Code Sort

8 100000000 poodle

7 010000000 canary

6 001000000 ostrich

5 100100000 dog

4 100110000 canid

3 110101000 pet

2 100110100 carnivore

1 111111111 animal

0 011000001 bird

TABLE 2: Transitive-closure codes for sorts in Figure 3

evaluating “I & J” in the taxonomy of Figure 2 yields the

code 000010111111, which does not correspond to any

specific sort in Table 1. However, semantically, this code is

necessarily a minimal upper bound of the set denoted by the

resulting sort if it existed. Hence, if we wish to express the

resulting sort in terms of existing sorts, it is semantically the

union of all the sorts whose codes are maximal lower bounds

of the resulting code. In order to compute what sorts are in this

set of maximal upper bounds, it suffices to retrieve all the sorts

at index i such that there is a 1 at position i in the resulting

code and keep only the maximal ones. In our example, the

code 000010111111 has a 1 in positions 0, 1, 2, 3, 4, 5 and

7. This means that its subsorts are A, D, C, B, E, F, and G.

However, among these, only F and G are maximal. Therefore,

the result of the query “I & J” is the disjunctive sort {F ; G}.

While the above decoding scheme is correct for positive

queries, it is not so however if the query made use of negation.

To see this, let us consider the taxonomy shown as Figure 3

and its encoding: shown as Table 2.

Let us now consider the (negative) query: “!canid.” The

code resulting from evaluating this query is the complement

of the sort “canid”—namely, 011001111. The decoding

method that we used above will yield the maximal elements

in index set {0, 1, 2, 3, 6, 7}—viz., {bird, animal, pet,

ostrich, canary, poodle}; namely, {animal}, which is

obviously wrong. This decoding is incorrect because a negated

code can no longer be interpreted as having a ‘1’ in a position

corresponding to a subsort. Indeed, for such a code, a ‘1’

in position i means that sort of index i is either a supersort

or unrelated. (This is because it comes from negating ‘0’ at

position i in the complement where that meant “sort of index

i is not a subsort of this sort.”)

This means that if a code to be decoded results from opera-

tions involving at least one negation, it must be ensured that all

the 1s in it are “genuine” indicators of lower bounds (which

may not be the case if such a ’1’ came from complementing a

’0’ by negation).

In order to do that, let us consider the case of negating a

sort expression s. If we compute the code of !s by switching

all 1s to 0s and vice versa in the code of s, this will not work

(as explained above). However, if we change a 1 in position

i to a 0 in the code of !s whenever the sort of index i is a

supersort of a sort corresponding to a 0 in the code of !s,

then we will be left with a code having a 1 only in positions of

actual subsorts of !s. With such a code, the decoding method

for positive-query coded can then compute the correct set of

maximal lower bounds of !s.

Given a code to be decoded, we call its set of “undesirables”

the set of (indices of) ancestors of sorts corresponding to

0s in this code. Clearly, by the very semantics of encoding,

these indices cannot be 1s in the code to be decoded. For if

they were, so should be their descendants—but such is not

the case since they are precisely defined as ancestors of sorts

corresponding to a 0 in the code. So, if we switch off any 1 in

the code to be decoded that corresponds to an “undesirable,”

we are left only with a code that can now be decoded with

the method described above for codes invoving no negation—

since we are now guaranteed that all the 1s denote actual

subsorts. Finally, note that for a code resulting from operations

involving no negation, the set of “undesirables” is necessarily

empty. Indeed, in this case, there can be no 0 in a position of

a descendant of an actual ancestor.

In our example above, for the code 011001111 resulting

from the evaluation of “!canid,” the “undesirables” are the

set of ancestors of sorts of indices {4, 5, 8} (that is, the set of

sorts {canid, dog, poodle}). This set is the set of indices

{1, 2, 3, 4} (or sorts {animal, carnivore, pet, canid}).
Switching off undesirable bits gives the code: 011000001.

This set of indices ({0, 6, 7}) denotes the set of sorts {bird,

ostrich, canary}. Keeping only maximal elements, this

yield the (correct) answer: “bird.”

For efficiency reasons, once a bit-vector code has been

decoded, it is stored in a cache (a hash table) associating the

code to the set of sorts whose codes are its maximal lower

bounds. In this way, should the same code appear again as a

result, it is first looked up in this cache to avoid the need to

compute again its set of maximal lower bound sorts.

Finally, note that decoding a bit vector is only necessary for

extracting the end result of a query in terms of defined sorts.

All intermediate computation need not refer at all to the sorts

and deal only with bit vectors, whether or not they correspond

to defined sorts. There is no loss of information doing so as

the encoding plunges the taxonomy in the minimal Boolean

lattice containing it [1].

3 EXPERIMENTAL WORK

3.1 The State of the Art

In this section, we give a brief description of the SW reasoners

that we have used for our comparative experiments. Note

that we have limited our selection to systems that are full-

fledged reasoners, and not just classifiers. This is because

our interest goes beyond concept classification and includes

Boolean query answering as well. This rules out systems such

as ELK7 [11], CEL8 [12], CB9 [13], etc., that do not support

query answering.

We retrieved and installed the following SW reasoners:

1) FaCT++;10

2) HermiT;11

7. www.cs.ox.ac.uk/isg/tools/ELK/

8. code.google.com/p/cel/

9. code.google.com/p/cb-reasoner/

10. owl.cs.manchester.ac.uk/fact++/

11. www.hermit-reasoner.com/

http://www.cs.ox.ac.uk/isg/tools/ELK/
http://code.google.com/p/cel/
http://code.google.com/p/cb-reasoner/
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/
http://www.cs.ox.ac.uk/isg/tools/ELK/
http://code.google.com/p/cel/
http://code.google.com/p/cb-reasoner/
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/

6

animal

carnivore pet bird

canid

dog canary ostrich

poodle

Fig. 3: Example of a small animal “is-a” taxonomy

3) Pellet;12

4) TrOWL;13

5) Racerpro;14

6) SnoRocket.15

FaCT++ (Fast Classification of Terminologies) is a rea-

soner developed at the University of Manchester [14]. It is

based on the Description Logic fragment SHOIQ [15]. It is

implemented in C++ as a deductive tableau [16] adapted to

the specifics of this logic. It is claimed to use a wide range

of heuristic optimizations. FaCT++ provides TBox reasoning

(subsumption, satisfiability, classification) and partial support

for ABox processing (retrieval).

HermiT is also a reasoner for a (slight extension) of the De-

scription Logic fragment SHOIQ (called SHOIQ+) [17].

It is based upon hypertableau reasoning, an optimized version

of tableau reasoning [18]. It purports to provide a faster

process for classifying ontologies. The main optimization of

hypertableau vs. tableau that it tries to minimize nondeter-

minism in the treatment of disjunctions and is more memory-

efficient. HermiT provides TBox reasoning, with the ability of

checking the consistency of an ontology and inferring implicit

relationships between concepts.

Pellet is a free open-source Java-based reasoner [19]. It,

too, is based on the tableau algorithm and supports the

Description Logic fragment SHOIN (D). It provides TBox

reasoning (subsumption, satisfiability, and classification) and

ABox reasoning (retrieval, conjunctive query answering). It

uses many optimization techniques and supports entailment

checks and ABox querying through its interface.

TrOWL (Tractable reasoning infrastructure for OWL 2) was

developed at the University of Aberdeen [20]. This is a system

that starts by transforming an ontology from OWL-DL to

OWL-QL [21] in order to classify it in polynomial time.

Under this transformation, conjunctive query answering and

12. clarkparsia.com/pellet/

13. trowl.eu/

14. www.racer-systems.com/products/racerpro/

15. research.ict.csiro.au/software/snorocket

consistency checking remain the same as for OWL-DL. In

addition, TrOWL can generate a database schema for storing

normalized representations of OWL-QL ontologies.

Racerpro is a commercial version of RACER (Renamed

ABoxes and Concept Expression Reasoner) [22], [23]. It im-

plements a reasoner for the description logic SHIQ. RACER

provides both TBox and ABox reasoning. It supports all the

optimizations of FaCT++ as well as new techniques for dealing

with number restrictions and ABoxes.

Snorocket [24] was proposed as a high-performance im-

plementation of a polynomial-time classification algorithm for

the lightweight Description Logic EL [25].16 It was primarily

meant to be optimized for classifying SNOMED CT. It can

process only conjunctive queries.

3.2 Experiment setup

We extracted the bare concept taxonomies gathered from

four very large ontologies. Here they are, listed in order of

increasing sizes:

1) Wikipedia—this is an ontology derived from the

Wikipedia online database (size: 111,599 sorts);17

2) BioModels—this is an ontology of various biological

models (size: 182,651 sorts);18

3) MeSH—(Medical Subject Headings) this is an ontology

of the National Library of Medicine (size: 286,381

sorts);19

4) NCBI—this is the National Center for Biotechnology

Information’s ontology of all known living organisms

(size: 903,617 sorts).20 This taxonomy (the largest) is

a “bare” taxonomy—i.e., it contains partially “is-a”

ordered classes symbols (concepts), bu no properties

(roles).

16. Description Logics in the EL-family are weaker versions that provide
existential roles (∃r.C) but no universal roles (∀r.C).

17. www.h-its.org/english/research/.../wikitaxonomy.php

18. bioportal.bioontology.org/ontologies/3022

19. www.nlm.nih.gov/mesh/meshhome.html

20. www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

http://clarkparsia.com/pellet/
http://www.trowl.eu/
http://www.racer-systems.com/products/racerpro/
http://research.ict.csiro.au/software/snorocket
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties
http://clarkparsia.com/pellet/
http://trowl.eu/
http://www.racer-systems.com/products/racerpro/
http://research.ict.csiro.au/software/snorocket
http://www.franz.com/agraph/racer/
http://www.ihtsdo.org/snomed-ct/
http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
http://bioportal.bioontology.org/ontologies/3022
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
http://bioportal.bioontology.org/ontologies/3022
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

7

We focused only on bare conceptual taxonomic reasoning.21

That is, we considered no roles, just sorts—a sort being defined

as a monadic concept in a partially ordered “is-a” taxonomy.

The “reasoning” on such sorts amounts to propositional logic.

In other words, this boils down to computing Boolean expres-

sions consisting of sorts and the three operations: and, or,

not. Seen another (equivalent) way, these operations applied

to set-denoting expressions are interpreted respectively as set

intersection, union, and complementation. The topmost sort

⊤ denotes the set of all things, and the bottommost sort ⊥
denotes the empty set—i.e., the set of no thing.

Section 3.3 reports the results of our comparative exper-

iments of our Java implementation of our method with the

state-of-the-art reasoners on bare conceptual taxonomies using

only propositional-logic queries.

3.3 “Just the Facts, Ma’am!”

This section reports the results of our experiments with the

six reasoners that we retrieved (FaCT++, HermiT, Pellet,

Racerpro, TrOWL, SnoRocket) and ours (CEDAR). All runs

for all reasoners were carried out for exactly the same queries

under the exact same conditions (on an Intel Core Duo CPU,

2.20 Ghz, 64-bit processor, running Windows 64, with 250 GB

SATA HDD, and 16 GB main memory).

3.3.1 Classification

Figure 4 shows the comparative classification time perfor-

mances for each reasoner on each of the large taxonomies we

have selected. This makes six out of the seven reasoners. We

did not consider SnoRocket in these classification-performance

graphs because we realized that that system does not actually

perform any preliminary classification, but does so on demand

at query time.

While our system’s classification time (CEDAR—the left-

most performance on all graphs) is not always the best, it

is always among the three best out of six, the worst being

systematically TrOWL. This latter point may be due to the fact

that it involves a preliminary compilation from DL to QL. Be

that as it may, one can accept a longer classification time if

it means faster query answering. In this regard, as illustrated

next, our system definitely keeps a huge margin over all the

others. It is to be noted also that TrOWL is faster at query

answering relatively to the others (although still quite worse

than our system on all tested taxonomies). This, again, may be

justified by the longer classification time. On the other hand,

HermiT, that is among the better classifiers, is always the worst

for query answering. This is shown next.

3.3.2 Querying

For each of the seven reasoners, Figure 5 shows the com-

parative query response time performances for two kinds of

queries. If some reasoners are missing on some of these

graphs, it is because they could not provide an answer before

a time-out period that we set to 30 minutes.

21. See Section 3.4 for a discussion concernining this point.

In order not to “compare apples and bananas,” we only

tested the various taxonomic reasoners by submitting posi-

tive queries—i.e., queries containing only conjunctions and

disjunctions, but no negation. This is because the OWL-

API reasoners follow a so-called “Open-World Assumption”

(OWA),22 while CEDAR obeys a “Closed-World Assumption”

(CWA).23 Indeed, when no negation is used in a query, in

both CWA and OWA reasoners, it will evaluate to the same

result—viz., same set of minimal upper bounds and same set

of maximal lower bounds.

The first series of graphs (leftmost column) are for

mixed conjunctive and disjunctive queries, of the form:

s1 & . . . & sn/2 & (sn/2+1 | . . . | sn), for n =
10, 20, . . . , 100.24 We made one exception for SnoRocket, for

which the queries were all conjunctive since the latest system

available does not support disjunctive queries.

The second series of graphs (rightmost column) are for

purely disjunctive queries of the form: s1 | . . . | sn, for

n = 10, 20, . . . , 100. We did not include SnoRocket in this

series of tests since, again, the system we retrieved does not

support disjunctive queries.

In both series of graphs, it is clear that our system (CEDAR)

systematically achieves the best performance. Moreover, it

does so by several orders of magnitude (recall that the scale

of time is logarithmic).

3.4 Discussion

Although the graphs reported in Figure 5 speak for them-

selves, it is interesting to get an appreciation of the relative

performances for query answering of all the reasoners we have

tested. In order to do so, Tables 3 and 4 sum up the facts

displayed in the graphs by taking the average over all query

sizes (viz., from 10 to 100 concepts), giving the maximum

of these averages the value 100, and showing all the other

averages as percent values.

Empty cells mean that the reasoner was never able to

provide an answer within our time-out limit (which, again,

was set to 30 minutes). On the “BioModels” taxonomy, Pellet

stumbles into a Java runtime error for some unknown reason.

Table 3 shows these figures for the mixed conjunctive and

disjunctive queries. Table 4 shows these figures for purely

disjunctive queries. Again, SnoRocket does not appear in the

latter because it could not be tested on disjunctive queries

(hence the N/A entries).

The reason why we limited our study to bare propositional

reasoning is that this is (or ought to be) the most basic

capability of any ontological reasoner. Any further capability

in a more complete ontology based on a taxonomy (e.g.,

reasoning with roles—existential and/or universal, cardinality

constraints, etc..) must be conjugated with the basic proposi-

tional reasoning on taxonomic sorts. In fact, in such systems,

a “complex” concept is typically a sort conjoined with some

additional role-related expression. Thus, one can see bare

22. http://c2.com/cgi/wiki?OpenWorldAssumption

23. http://c2.com/cgi/wiki?ClosedWorldAssumption

24. We use “&” to denote “and,” and “|” to denote “or.”

http://c2.com/cgi/wiki?OpenWorldAssumption
http://c2.com/cgi/wiki?ClosedWorldAssumption

8

(a) Wikipedia (b) BioModels

(c) MeSH (d) NCBI

Fig. 4: Classification time per reasoner per taxonomy

Boolean taxonomic sort reasoning as sheer abstract interpre-

tation of complex-concept reasoning [26].

Now, in terms of implementing such reasoners, it comes as

evidence that efficiency must start with the simpler form of

reasoning since it is part of all further reasoning. In fact, taking

advantage of commutativity and associativity of conjunction,

it may even be a technique of optimizing the process of

ontological reasoning. Indeed, taking a complex expression

such as involving a Boolean combination of expressions such

of the form s & s-properties, ignoring the s-properties parts as

a first pass will narrow the original expression to its essential

remaining maximal sorts.

In order to carry out these experiments, we also developed

a tool with an easy-to-use GUI that lets a user run these tests

for any listed reasoner and taxonomy. This tool is available for

download from the CEDAR Project’s website for anyone to

verify our results.25 Also, a video clip of these demos showing

these experiments in vivo, and a web service for running these

demos on line are available online.26 In this way, our results

may hopefully not have to be taken on faith, but could be

verified de visu by anyone who might wish to check them on

their own.

Finally, it is worth pointing out that once a taxonomy has

been classified, it may be saved on disk to be reloaded without

25. cedar.liris.cnrs.fr/data/CEDAR-V1.0.zip

26. cedar.liris.cnrs.fr/demos.html

any penalty and reused over and over.27 This is akin to compil-

ing a program and not needing to recompile it for each use. In

this regard, we do not understand the relative importance given

in SW literature to performance of ontology classification

as opposed to that of query answering. In programming-

language technology, what is of prime importance is runtime

performance, not compile-time performance.

4 CONCLUSION

In this paper, we have presented an implementation of a

Boolean Logic taxonomic reasoner based on bit-vector encod-

ing. We have implemented such a reasoner in Java, and have

compared its performances to those of six among the most

renown Semantic Web reasoners on bare taxonomies. This

demonstrated that the best exisiting Semantic Web reasoners

fail to live up to performances that can be easily achieved

using bit-vector encoding. This is true even, and especially,

when applied to very large taxonomies. Focusing only on pure

Boolean taxonomic reasoning—which is at the core of every

SW reasoner—the results of our measurements show that our

system achieves performances for Boolean query answering

that are several orders of magnitude better than those of the

state of the art.

27. We implemented such a facility, of course—see Appendix.

http://cedar.liris.cnrs.fr/data/CEDAR-V1.0.zip
http://cedar.liris.cnrs.fr/demos.html

9

(a) Wikipedia/Mixed Queries (b) Wikipedia/Disjunctive Queries

(c) BioModels/Mixed Queries (d) BioModels/Disjunctive Queries

(e) MeSH/Mixed Queries (f) MeSH/Disjunctive Queries

(g) NCBI/Mixed Queries (h) NCBI/Disjunctive Queries

Fig. 5: Comparative performance graphs for query response times per taxonomy

10

Taxonomy FaCT++ HermiT TrOWL Pellet Racerpro SnoRocket CEDAR

Wikipedia 100 0.13 0.51 0.21 0.000233

BioModels 100 0.13 Error 0.24 0.000074

MeSH 100 1.17 8.29 2.60 0.000530

NCBI 5.78 100 19.75 0.002627

TABLE 3: Relative normalized average percentiles of performance times for mixed queries

Taxonomy FaCT++ HermiT TrOWL Pellet Racerpro SnoRocket CEDAR

Wikipedia 74.65 2.86 100 N/A 0.00719

BioModels 100 4.68 Error N/A 0.00258

MeSH 67.50 3.01 100 N/A 0.00141

NCBI 100 5.10 N/A 0.00141

TABLE 4: Relative normalized average percentiles of performance times for disjunctive queries

There are several optimizations that may still be performed

to our basic method. The technique known as code modulation

(explained in detail in [1]) can take advantage of a taxonomy’s

specific shape to minimize drastically code space. This makes

so-modulated bit-vector encoding very scalable as explained

in [1]. Indeed, modulated encoding reduced code size to a

logarithmic function of non-modulated encoding. Code mod-

ulation being independent of the encoding technique, it can be

applied to any method. Each module can in fact use different

encoding methods each adapted to its specific topology. It can

thus be used recursively (i.e., one can modulate a module)

with the encoding technique most appropriate to the topology

of the module being encoded.

Another optimization to minimize classification time could

be to perform lazy encoding.28 In other words, one could only

encode the sorts relevant to a query and cache intermediate

results. The price to pay would be at query time, although

only the first time a subset of the concepts it involves are

used.

As for further work, we are extending this work to

unification-based Knowledge Representation known as Order-

Sorted Feature (OSF) constraint logic [27]. While OSF logic

uses functional features, we can use them to represent roles

using aggregates. The advantage is that role-based reasoning is

thus made simpler since it relies on Logic-Programming unifi-

cation technology made possible by functional attributes [28],

[29]. This is akin to compiling DL-based relational roles into

aggregate-valued functional features. OSF sorts have also a

“memoizing” effect whereby no property needs to be proven

again once it has been established for any supersort [27].

APPENDIX

In Section A, we give an overview of an implementation

specification for representing very large bit vectors, reducing

memory consumption while retaining efficient operations. In

our experiments, this alternative code representation was used

only for saving an encoded taxonomy on disk and reloading

it as a pre-encoded order. But for taxonomies of even larger

size than those used in our experiments, it could be used for

lattice operations as well.

28. In the same manner as we have noticed that SnoRocket does.

APPENDIX A
COMPACT CODES

While the foregoing sections present a method for encoding

elements of a partially ordered set based on transitive closure,

the data structure it relies on is that of a binary word—i.e., a

bit vector. With such a structure, all boolean operations—and,

or, not—are thus very efficient. This representation also eases

computation of the transitive closure since setting a bit on or

off is trivially accommodated.

However, while this representation is convenient and time-

efficient for relatively small posets of the order of a few

hundred elements, it quickly becomes space-inefficient for

large posets of hundreds of thousands, or millions of elements.

In what follows, we define an alternative representation

of indexed bit sets that offers the advantage of being more

compact than bit vectors while retaining time-efficient boolean

and bit-setting operations. It is also the format we use to

save/load encoded taxonomies on/from disk. In Section A.1,

the basic data structure is defined. In Section A.2, bit setting

and unsetting operations are defined. In Section A.3, the three

boolean operations—conjunction, disjunction, and negation—

are defined. In Section A.4, some implementation considera-

tions are discussed.

A.1 Bit Code Representation

The idea is intuitively simple. It consists of representing a bit

vector as a finite array of k (k ∈ N) pairs of integer indices

〈li, ui〉, for i = 0, . . . , k − 1, such that, for all indices i =
0, . . . , k − 2:

0 ≤ li < ui < li+1 < uk−1. (1)

We shall refer to such a sequence k pairs, k ∈ N,

{ 〈li, ui〉 | i = 0, . . . , k − 1 } as a compact code. For k = 0,

this is written as the empty sequence {}.

Given a compact code representation of a bit vector V, each

pair 〈l, u〉 represents a maximal contiguous sequence of 1’s

(hereafter referred to as a “packet”) in V. Thus, the i-th packet

of a bit vector is represented as the pair of indices 〈li, ui〉 such

that li is the index of the lowest bit in the packet, and ui is

the index of the first 0-bit following the packet.

11

For example, the compact code of the bit vector

0011111001111000000110000 corresponds to the se-

quence of packet pairs:29 { 〈4, 6〉, 〈12, 16〉, 〈18, 23〉 }.
The empty bit vector (containing all 0’s) is represented as

the empty sequence {}. The length of a bit vector represented

by a compact code sequence of k pairs (or packets) is uk. The

size of a compact code C of k pairs (or packets) is k (i.e., its

number of packets).

A.2 Bit Operations

Let C = { 〈li, ui〉 | i = 0, . . . , k } be a compact code of k

packets (k > 0). Given a number n ∈ N, and a compact code

C of k packets as defined above, we say that:30

• n is within a packet of C iff ∃i ∈ [0, k− 1] such that li ≤
n < ui—in which case we shall write C.packet(n) = i;

• n is between packets of C iff either one of the three

statements holds:

1) n < l0; or,

2) uk−1 ≤ n; or,

3) ∃i ∈ [0, k − 2] such that ui ≤ n < li+1.

If a number n is between packets of a compact code C of

size k, we define two functions C.prev(n) and C.next(n)
for each of the three possible respective cases above as follows

(where the symbol ‘?’ means “undefined”):

1) C.prev(n)
def
== ? and C.next(n)

def
== l0;

2) C.prev(n)
def
== uk and C.next(n)

def
== ?;

3) C.prev(n)
def
== ui and C.next(n)

def
== li+1.

For such a number n, we say that:

• n is left-adjacent in C if n = C.next(n)− 1;

• n is right-adjacent in C if n = C.prev(n);
• n is adjacent in C if it is both left-adjacent and right-

adjacent in C.

Note that if n is between packets and adjacent, this nec-

essarily means that the two packets on each side are only

separated by a single 0-bit (the bit in position n in the denoted

bit vector).

N.B.: In all the compact code expressions to follow, we use

the implicit convention that a packet with undefinable bounds

is simply omitted. Thus, we will always use the notation

{ 〈l0, u0〉, . . . , 〈lk−1, uk−1〉 } to denote a compact code, where

k ≥ 0 up to the above conventions regardless of the actual

number of packets. For example, for k = 0 this will correspond

to the empty code {}, and for k = 1, this will correspond to

the single-packet code { 〈l0, u0〉 }.
We define the following bit-setting operations on C. These

methods operate “in place” by modifying a code C that

invokes them.

• C.set(n), for n ∈ N, which sets the n-th bit of the bit

vector denoted by C to 1.

• C.set(n,m), for n,m ∈ N, n < m, which sets to 1
all the bits from position n (inclusive) to position m

(exclusive) of the bit vector denoted by C.

29. Recall that a bit vector is written with its lowest bit to the right.

30. In what follows, we shall use the “dot” notation of object-oriented
methods to denote all functions or operations on codes.

• C.unset(n), for n ∈ N, which sets the n-th bit of the

bit vector denoted by C to 0.

• C.unset(n,m), for n,m ∈ N, n < m, which sets to

0 all the bits from position n (inclusive) to position m

(exclusive) of the bit vector denoted by C.

For m ≤ n, both C.set(n,m) and C.unset(n,m) are

no ops—i.e., they leave C unchanged. Since set(n) is equiv-

alent to set(n, n + 1), we will just give the methods for

set(n,m) and similarly for unset(n).

A.2.1 Bit setting

There are four cases to consider for which performing

C.set(n,m) modifies C as follows.

If n is within a packet in C (say, C.packet(n) = i) and

m is within a packet in C (say, C.packet(m) = j), then, if

i = j, C.set(n,m) leaves C unchanged. Else (if i < j),31

then C becomes:

{ . . . , 〈li, uj〉, . . . }.

If n is within a packet in C (say, C.packet(n) = i) and

m is between packets in C, then C becomes:

{ . . . , 〈li, uj〉, . . . }
if m is left-adjacent in C and C.next(m) = lj;

{ . . . , 〈li,m〉, . . . }
otherwise.

If n is between packets in C and m is within a packet in

C (say, C.packet(m) = j), then C becomes:

{ . . . , 〈li, uj〉, . . . }
if n is right-adjacent in C and C.prev(n) = ui;

{ . . . , 〈n, uj〉, . . . }
otherwise.

If both n and m are between packets in C, then C becomes:

{ . . . , 〈li, uj〉, . . . }
if n is right-adjacent in C and C.prev(n) = ui, and

if m is left-adjacent in C and C.next(m) = lj;

{ . . . , 〈li,m〉, . . . }
if n is right-adjacent in C and C.prev(n) = ui, and

if m is not left-adjacent in C;

{ . . . , 〈n, uj〉, . . . }
if n is not right-adjacent in C, and

if m is left-adjacent in C and C.next(m) = lj;

{ . . . , 〈n,m〉, . . . }
otherwise.

A.2.2 Bit unsetting

Here again, there are four cases to consider for which per-

forming C.unset(n,m) modifies C as follows.

31. Note that i 6= j implies necessarily that i < j (by Condition (1) and
since n < m).

12

If both n and m are between packets in C: if C.prev(n) =
C.prev(m) (or, equivalently, if C.next(n) = C.next(m)),
then C.unset(n,m) leaves C unchanged; else, C becomes:

{ . . . , 〈li, C.prev(n)〉, 〈C.next(m), uj〉, . . . }.

If n is within a packet in C (say, C.packet(n) = i) and

m is between packets in C, then C becomes:

{ . . . , 〈li−1, ui−1〉, 〈C.next(m), uj〉, . . . }
if n = li, where C.next(m) = lj ;

{ . . . , 〈li, n〉, 〈C.next(m), uj〉, . . . }
else (i.e., if n > li), where C.next(m) = lj .

If n is between packets in C and m is within a packet in

C (say, C.packet(m) = j), then C becomes:

{ . . . , 〈li, C.prev(n)〉, 〈lj+1, uj+1〉, . . . }
if m = uj − 1, where C.prev(m) = ui;

{ . . . , 〈li, C.prev(n)〉, 〈m,uj〉, . . . }
else (i.e., if m < uj − 1), where C.prev(m) = ui.

If both n is within a packet (say, C.packet(n) = i), and

m is within a packet (say, C.packet(m) = i) in C, then C

becomes:

{ . . . , 〈li−1, ui−1〉, 〈lj+1, uj−1〉, . . . }
if n = li, and

if m = uj−1;

{ . . . , 〈li−1, ui−1〉, 〈m,uj〉, . . . }
if n = li, and

if m < uj−1;

{ . . . , 〈li, n〉, 〈lj+1, uj−1〉, . . . }
if n > li, and

if m = uj−1;

{ . . . , 〈li, n〉, 〈m,uj〉, . . . }
if n > li, and

if m < uj−1.

A.3 Boolean Operations

Let:

C = { 〈li, ui〉 | i = 0, . . . , k − 1 }

and:

C′ = { 〈l′i, u
′
i〉 | i = 0, . . . , k′ − 1 }

be two compact code pair sequences, with k ≥ 0 and k′ ≥ 0.

A.3.1 Conjunction

Invoking C.and(C′) will modify C according to C′ by

unsetting all the bits in C that are between packets in C′,

leaving C′ unchanged.

If C = {}, then C is left unchanged; else, if C′ = {}, then

C becomes {}.
Else (i.e., if k > 0 and k′ > 0), C is modified by invoking:

• C.unset(0, l′0); and,

• C.unset(u′
i, l

′
i+1), for i = 0 up to i = k′ − 1; and,

• C.unset(u′
k′−1, uk−1).

Note that in practice, when proceeding in the above order,

as soon the first argument of any unset(. . .) is greater than

or equal to uk−1, there is no need to perform the unsetting

nor proceed any further.

A.3.2 Disjunction

Invoking C.or(C′) will modify C according to C′ by setting

all the bits in C that are within packets in C′, leaving C′

unchanged.

If C′ = {}, then C is left unchanged; else, if C = {}, then

C becomes (a copy of) C′.

Else (i.e., if k > 0 and k′ > 0), C is modified by invoking:

• C.set(l′i, u
′
i), for i = 0 up to i = k′ − 1.

A.3.3 Negation

Since a bit vector is open-ended, we may define its negation

only up to a length at least greater than its highest 1-

bit position. This operation is denoted as C.not(n). Thus,

{}.not(n), is undefined for any n ≥ 0.

Otherwise, for a non-empty code C = { 〈l0, u0〉, . . . ,

〈lk−1, uk−1〉 } and n ≥ uk−1, C.not(n) modifies C to

become:

{ 〈0, l0〉, . . . , 〈ui, li+1〉, . . . , 〈uk−1, n〉 }.

Again, following our convention, if l0 = 0, 〈0, l0〉 being

undefinable, the first element of C.not(n) is〈u0, l1〉. Similarly,

if n = uk−1, then 〈uk−1, n〉 is undefinable and the last element

of C.not(n) is 〈uk−2, lk−1〉.

A.4 Implementation Considerations

We need to come up with a data structure for representing a

compact code that would enable retaining maximal efficiency

in the bit setting and unsetting operations, and hence in the

boolean operations that rely on them.

Most frequently used operations on such a data structure C

for an integer n are:

• C.packet(n)—for n inside a packet in C, returning that

packet number;

• C.prev(n)—for n between packets in C, returning the

upper index of the packet preceding n;

• C.next(n)—for n between packets in C, returning the

lower index of the packet following n;

• adding/removing a packet.

Because the elements of a code sequence are ranges

rather than integers, one cannot expect hashed O(1) time

access to find out whether a given integer lies within or

between packets. So structures such as defined by the Java

classes java.util.HashSet or java.util.Linked-

HashSet cannot be used.

In order to make these operations at most O(log(k)) time

for a compact code of size k, one way is to represent a

compact code as a balanced binary tree of pairs of bit position

spans 〈li, ui〉, taking advantage of the ordering imposed by

condition (1).

Thus, the java.util.TreeSet class looks like a con-

venient choice, since it offers the required data structure

properties in addition to defining methods such as first,

13

last, higher, lower, add, remove, etc., as well as an

order-respecting iterator.

On the other hand, the java.util.TreeSet is missing

a replace method—which is critically needed for setting and

unsetting bits. It is also missing an insert method that splices

a new sequence of packet pairs into an existing compact

code, which may also be often used. One must resort to

several add/remove method invocations to replace or insert

elements, which incur new searches (and possible intermediate

rebalancing of the tree) each time. This is a waste since

replacing and inserting can be done in O(1) time when having

already found the required elements, and only one (final)

O(log(k)) tree rebalancing.

Hence, rather than relying on the ready-to-use

java.util.TreeSet class, it may be more beneficial

to implement a new specific class for a compact code as a

doubly linked list and a balanced binary tree adapted for

the specific nature of its pair elements. This would make

transparent the double links of each pair element and ease

replacement and insertion.32

A.5 Discussion

A similar data structure was proposed by researchers in data

and knowledge bases in [30]. However, the authors did not

use that representation for lattice operations as we do here.

Instead, they focused on using it for obtaining more compact

range-sequence codes for the transitive closure of the “is-a”

relation of a taxonomy. That representation is equivalent to

the one we specify here and to the one in [1]. Contrary to [1],

they define an element’s code as the union of index ranges

from the post-order arrangement of the a spanning tree of the

“is-parent-of” relation of a taxonomy. Each concept in the

taxonomy (i.e., each element in the poset) of post-order index

j is then encoded as the interval 〈i, j〉 where i is the smallest

post-order index of all its descendants. Although they did not

do it, it is easy to show that their representation is equivalent

to bit vectors. But they did not specify lattice operations on

their data structures as we do for ours in this document. What

they focused on was minimizing the total number of packets in

range codes. In order to do so, they suggest generating codes

based on the “optimal” spanning tree for generating the most

compact set of codes. The data structure and algorithm for

what they call “compressed transitive closure” do not maintain

dynamic interval consistency caused by potential adjacency as

we do here.33 Although they do cite [1], Agrawal et al. do so

only in the conclusion as they had just noticed its publication.

They suggest that their approach and that exposed in [1] might

be combined for processing large taxonomies. As far as we

know, no follow-up on this suggestion was carried out.

32. Actually, the java.util.TreeSet does maintain a doubly-linked
list for its elements in order to ensure its two ordered iterators (ascending and
descending). But this structure is not made public and one cannot splice in
new elements from a given found element. But it is a simple matter to modify
the source code of java.util.TreeSet.java and adapt it to what is
needed.

33. In fact, they see that only as a possible a posteriori optimization, but one
that would cause their optimal spanning-tree finding algorithm to be incorrect
if applied incrementally while it is executed.

It is clear how the work of [30], although orthogonal to ours,

could be adapted to our needs as well in order to improve its

space consumption. However, it is to be noted that their code-

compaction method requires a topologically ordered poset. For

very large taxonomies (over 1 million elements) the price

of sorting the taxonomy might be worth spending only for

once-for-all prepocessing prior to query time [31]. Also, the

question of incrementality is not addressed.

Finally, although this work has been motivated for obtaining

a compact representation of binary codes encoding a partial

order, it comes as evident that the data structure, and op-

erations on it, specified in this appendix can represent any

set of integers (or integer-indexed set) seen as a sequence of

intervals. Set intersection is realized as the conjunction de-

scribed in Section A.3.1; set union as the disjunction described

in Section A.3.2; and, set complementation as the negation

described in Section A.3.3. Therefore, it can readily be used

for this purpose as well.

ACKNOWLEDGEMENTS
This work was carried out as part of the CEDAR Project (Constraint
Event-Driven Automated Reasoning) under the Agence Nationale de la
Recherche (ANR) Chair of Excellence grant No ANR-12-CHEX-0003-01

at the Université Claude Bernard Lyon 1 (UCBL). The authors wish to
thank Prof. Mohand-Saı̈d Hacid and Dr. Rafiqul Haque for their constructive
feedback. The authors are solely responsible for the contents of this article,
including any remaining mistakes.

REFERENCES

[1] H. Aı̈t-Kaci, R. Boyer, P. Lincoln, and R. Nasr, “Efficient imple-
mentation of lattice operations,” ACM Transactions on Programming
Languages and Systems, vol. 11, no. 1, pp. 115–146, January 1989,
[Available online34].

[2] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, pp. 354–356, 1969.

[3] M. J. Fischer and A. R. Meyer, “Boolean matrix multiplication and
transitive closure,” in Proceedings of the 12th Annual Symposium on
Switching and Automata Theory, ser. SWAT’71. Washington, DC, USA:
IEEE Computer Society, 1971, pp. 129–131, [Available online35].

[4] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–
280, March 1990, [Available online36].

[5] A. Stothers, “On the complexity of matrix multiplication,” Ph.D. dis-
sertation, University of Edinburgh, Edinburgh, Scotland, UK, 2010,
[Available online37].

[6] V. V. Williams, “Breaking the Coppersmith-Winograd barrier,” Univer-
sity of California at Berkeley and Stanford University, 2011, [Available
online38].

[7] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Communication
costs os Strassen’s matrix multiplication,” Communications of the ACM,
vol. 57, no. 2, pp. 107–114, February 2014, [Available online39].

[8] S. Warshall, “A theorem on Boolean matrices,” Journal of the ACM,
vol. 9, no. 1, pp. 11–12, January 1962.

[9] H. S. Warren Jr., “A modification of Warshall’s algorithm for the
transitive closure of binary relations,” Communications of the ACM,
vol. 18, no. 4, pp. 218–220, April 1975, [Available online40].

[10] C. A. R. Hoare, “Algorithm 63: Partition, Algorithm 64: Quicksort,”
Communications of the ACM, vol. 4, no. 7, pp. 321–321, July 1961,
[Available online41].

34. hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf

35. rjlipton.files.wordpress.com/2009/10/matrix1971.pdf

36. www.sciencedirect.com/.../S0747717108800132

37. www.maths.ed.ac.uk/pg/thesis/stothers.pdf

38. www.cs.berkeley.edu/˜virgi/matrixmult.pdf

39. www.cs.berkeley.edu/˜odedsc/papers/SPAA12-CAPS.pdf

40. dl.acm.org/citation.cfm?id=360746

41. comjnl.oxfordjournals.org/content/5/1/10.full.pdf

http://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
http://rjlipton.files.wordpress.com/2009/10/matrix1971.pdf
http://www.sciencedirect.com/science/article/pii/S0747717108800132
http://www.maths.ed.ac.uk/pg/thesis/stothers.pdf
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf
http://www.cs.berkeley.edu/~odedsc/papers/SPAA12-CAPS.pdf
http://dl.acm.org/citation.cfm?id=360746
http://comjnl.oxfordjournals.org/content/5/1/10.full.pdf

14

[11] Y. Kazakov, M. Krötzsch, and F. Simančı́k, “Unchain my EL reasoner,”
in Proceedings of the 24th International Workshop on Description Logics,
R. Rosati, S. Rudolph, and M. Zakharyaschev, Eds., DL’11. Barcelona,
Spain: CEUR Workshop Proceedings, July 2011, [Available online42].

[12] F. Baader, C. Lutz, and B. Suntisrivaraporn, “CEL—a polynomial-
time reasoner for life science ontologies,” in Proceedings of the 3rd
International Joint Conference on Automated Reasoning, U. Furbach and
N. Shankar, Eds., IJCAR’06. Seattle, WA, USA: Springer-Verlag LNAI
Vol. 4130, August 2006, pp. 287–291, [Available online43].

[13] Y. Kazakov, “Consequence-driven reasoning for horn SHIQ ontolo-
gies,” in Proceedings of the 21st International Conference on Artificial
Intelligence, C. Boutilier, Ed., IJCAI’09. Pasadena, CA, USA: Asso-
ciation for the Advancement of Artificial Intelligence, July 2009, pp.
2040–2045, [Available online44].

[14] D. Tsarkov and I. Horrocks, “FaCT++ description logic reasoner: System
description,” in Proceedings of the 3rd International Joint conference on
Automated Reasoning, U. Furbach and N. Shankar, Eds., IJCAR’06.
Seattle, WA, USA: Springer-Verlag, August 2006, pp. 292–297, [Avail-
able online45].

[15] I. Horrocks and U. Sattler, “A tableau decision procedure for SHOIQ,”
Journal of Automated Reasoning, vol. 39, no. 3, pp. 249–276, July 2007,
[Available online46].

[16] Z. Manna and R. Waldinger, “Fundamentals of deductive program
synthesis,” in Combinatorial Algorithms on Words, ser. NATO ISI Series,
A. Apostolico and Z. Galil, Eds. Springer-Verlag, 1991, [Available
online47].

[17] R. Shearer, B. Motik, and I. Horrocks, “HermiT: A highly-efficient
OWL reasoner,” in Proceedings of the 5th International Workshop on
OWL Experiences and Directions, U. Sattler and C. Dolbear, Eds.,
OWLED’08. Karlsruhe, Germany: CEUR Workshop Proceedings,
October 2008, [Available online48].

[18] B. Motik, R. Shearer, and I. Horrocks, “Hypertableau reasoning for
description logics,” Journal of Artificial Intelligence Research, vol. 36,
no. 1, pp. 165–228, September 2009, [Available online49].

[19] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Journal of Web Semantics, vol. 5, no. 2,
pp. 51–53, June 2007, this is a summary; full paper: [Available online50].

[20] E. Thomas, J. Z. Pan, and Y. Ren, “TrOWL: Tractable OWL 2 rea-
soning infrastructure,” in Proceedings of the 7th Extended Semantic Web
Conference, L. Aroyo, G. Antoniou, E. Hyvnen, A. ten Teije, H. Stuck-
enschmidt, L. Cabral, and T. Tudorache, Eds., ESWC’10. Heraklion,
Greece: Springer-Verlag, May-June 2010, pp. 431–435, [Available on-
line51].

[21] R. Fikes, P. Hayes, and I. Horrocks, “OWL-QL—a language for deduc-
tive query answering on the Semantic Web,” Journal of Web Semantics,
vol. 2, no. 1, pp. 19–29, December 2004, [Available online52].

[22] V. Haarslev and R. Möller, “RACER system description,” in Proceed-
ings of the 1st International Joint Conference on Automated Reasoning,
R. Gore, A. Leitsch, and T. Nipkow, Eds., IJCAR’01. Siena, Italy:
Springer-Verlag, June 2001, pp. 701–706, [Available online53].

[23] V. Haarslev, K. Hidde, R. Möller, and M. Wessel, “The RacerPro
knowledge representation and reasoning system,” Semantic Web Journal,
vol. 1, pp. 1–11, March 2011, [Available online54].

[24] M. J. Lawley and C. Bousquet, “Fast classification in Protégé: Snorocket
as an OWL 2 EL reasoner,” in Proceedings of the 2nd Australasian
Ontology Workshop: Advances in Ontologies, T. Meyer, M. A. Orgun,
and K. Taylor, Eds., AOW’10. Adelaide, Australia: ACS, December
2010, pp. 45–50, [Available online55].

[25] F. Baader, S. Brandt, and C. Lutz, “Pushing the EL envelope,” in
Proceedings of the 19th International Joint Conference on Artificial In-

42. ceur-ws.org/Vol-745/paper_54.pdf

43. www.informatik.uni-bremen.de/.../ijcar06.pdf

44. ijcai.org/papers09/Papers/IJCAI09-336.pdf

45. www.cs.ox.ac.uk/Ian.Horrocks/.../2006/TsHo06a.pdf

46. link.springer.com/article/10.1007/s10817-007-9079-9

47. citeseer.ist.psu.edu/manna92fundamentals.html

48. www.cs.ox.ac.uk/ian.horrocks/.../2008/ShMH08b.pdf

49. www.jair.org/media/2811/live-2811-4689-jair.pdf

50. pellet.owldl.com/papers/sirin05pellet.pdf

51. homepages.abdn.ac.uk/jeff.z.pan/pages/pub/TPR2010.pdf

52. www.sciencedirect.com/.../S1570826804000137

53. www.racer-systems.com/technology/.../HaMo01e.pdf

54. www.semantic-web-journal.net/.../files/swj109_3.pdf

55. krr.meraka.org.za/˜aow2010/Lawley-etal.pdf

telligence, L. P. Kaelbling and A. Saffiotti, Eds., IJCAI’05. Edinburgh,
Scotland, UK: Morgan Kaufmann Publishers, July-August 2005, pp.
364–369, [Available online56].

[26] P. Cousot, “Abstract interpretation,” ACM Computing Surveys—
Symposium on Models of Programming Languages and Computation,
vol. 28, no. 2, pp. 324–328, June 1996, tutorial summary:[Available
online57].

[27] H. Aı̈t-Kaci, “Data models as constraint systems—A key to the Semantic
Web,” Constraint Processsing Letters, vol. 1, no. 1, pp. 33–88, November
2007, [Available online58].

[28] H. Aı̈t-Kaci and R. Di Cosmo, “Compiling order-sorted feature term
unification,” Digital Paris Research Lab, Rueil-Malmaison, France, PRL
Technical Note 7, December 1993, [Available online59].

[29] H. Aı̈t-Kaci, Warren’s Abstract Machine: A Tutorial Reconstruction.
Cambridge, MA, USA: The MIT Press, 1991, [Available online60].

[30] R. Agrawal, A. Borgida, and H. V. Jagadish, “Efficient management of
transitive relationships in large data and knowledge bases,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, J. Clifford, B. G. Lindsay, and D. Maier, Eds., ACM. Portland,
Oregon: SIGMOD Record 18(2), May/June 1989, pp. 253–262, [Avail-
able online61].

[31] H. Aı̈t-Kaci and S. Amir, “Classifying and querying very large
taxonomies—a comparative study to the best of our knowledge,”
CEDAR Project, LIRIS, Département d’Informatique, Université
Claude Bernard Lyon 1, Villeurbanne, France, CEDAR Technical
Report Number 2, May 2013, [Available online62].

ABOUT THE AUTHORS

Hassan Aı̈t-Kaci holds a PhD in Computer Science from the Univer-

sity of Pennsylvania (1984), and a Research Director Habilitation from

University of Paris 7 (1990) also in CS. He was a member of research

staff at MCC in Austin, TX, and at the Digital Paris Research Lab,

where he contributed with the LIFE programming language. In 1994,

he was appointed full professor at SFU, in Burnaby, BC, Canada,

where he held a senior NSERC Industrial Research Chair. In 2000, he

joined ILOG, a French multinational company specializing in developing high-

performance AI, OR, and Graphics software tools. After ILOG’s acquisition by

IBM in February 2009, he was a Senior Member of Technical Staff at IBM

Canada. Since January 2013, he is holding an ANR Chair of Excellence at the

Université Claude Bernard Lyon 1, France, heading the CEDAR project (Constraint

Event-Driven Automated Reasoning) at the LIRIS. Dr. Aı̈t-Kaci has contributed to

the formal design and efficient implementation of very high-level and multi-paradigm

programming environments (LogIn, LeFun, LIFE), and pioneered the use of constraints

for representing and processing knowledge. His interests are in automated reasoning,

knowledge representation, declarative computing, and language processing.

Samir Amir received his PhD degree from the University of Lille 1,

France, in 2011. His doctoral research focused on finding ways to

integrate heterogeneous multimedia metadata. Prior to this, he was

a research engineer at CNRS where he worked in several European

projects. After his doctorate, he was an Assistant Professor of Com-

puter Science at the University of Lille 1 until 2012. Since January

2013, he has been a postdoctoral researcher in the CEDAR project

at the LIRIS laboratory, Université Claude Bernard Lyon 1, France. His research in-

terests are in the area of database systems and Semantic Web; specifically, knowledge-

base reasoning for efficient-query compilation over Big Semantic-Web Data.

56. www.ijcai.org/papers/0372.pdf

57. www.di.ens.fr/˜cousot/AI/IntroAbsInt.html

58. www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf

59. hassan-ait-kaci.net/pdf/PRL-TN-7.pdf

60. wambook.sourceforge.net/

61. dbs.informatik.uni-halle.de/.../p253-agrawal.pdf

62. cedar.liris.cnrs.fr/papers/ctr2.pdf

http://ceur-ws.org/Vol-745/paper_54.pdf
http://www.informatik.uni-bremen.de/~clu/papers/archive/ijcar06.pdf
http://ijcai.org/papers09/Papers/IJCAI09-336.pdf
http://www.cs.ox.ac.uk/Ian.Horrocks/Publications/download/2006/TsHo06a.pdf
http://link.springer.com/article/10.1007/s10817-007-9079-9
http://citeseer.ist.psu.edu/manna92fundamentals.html
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2008/ShMH08b.pdf
https://www.jair.org/media/2811/live-2811-4689-jair.pdf
http://pellet.owldl.com/papers/sirin05pellet.pdf
http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/TPR2010.pdf
http://www.sciencedirect.com/science/article/pii/S1570826804000137
http://www.racer-systems.com/technology/contributions/2001/HaMo01e.pdf
http://www.semantic-web-journal.net/sites/default/files/swj109_3.pdf
http://krr.meraka.org.za/~aow2010/Lawley-etal.pdf
http://www.hassan-ait-kaci.net/
http://hassan-ait-kaci.net/pdf/meaningoflife.pdf
http://www.univ-lyon1.fr/
http://cedar.liris.cnrs.fr/
https://liris.cnrs.fr/front-page-en?set_language=en
http://www.hassan-ait-kaci.net/pdf/login-jlp-86.pdf
http://hassan-ait-kaci.net/pdf/logicfunctional.pdf
http://hassan-ait-kaci.net/pdf/meaningoflife.pdf
http://liris.cnrs.fr/~samir/
http://www.cnrs.fr/
http://cedar.liris.cnrs.fr/
https://liris.cnrs.fr/front-page-en?set_language=en
http://www.univ-lyon1.fr/
http://www.ijcai.org/papers/0372.pdf
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://hassan-ait-kaci.net/pdf/PRL-TN-7.pdf
http://wambook.sourceforge.net/
http://dbs.informatik.uni-halle.de/Lehre/DBS_IIa_SS02/p253-agrawal.pdf
http://cedar.liris.cnrs.fr/papers/ctr2.pdf

	Introduction
	Our Method
	Principle
	Implementation
	Detecting Cycles
	Decoding

	Experimental Work
	The State of the Art
	Experiment setup
	``Just the Facts, Ma'am!''
	Classification
	Querying

	Discussion

	Conclusion
	Appendix A: Compact Codes
	Bit Code Representation
	Bit Operations
	Bit setting
	Bit unsetting

	Boolean Operations
	Conjunction
	Disjunction
	Negation

	Implementation Considerations
	Discussion

	Acknowledgements
	References

