
Is Computer Programming

a Science?

Hassan Aı̈t-Kaci

MPR Teltech NSERC Chair
Intelligent Software Systems

Simon Fraser University
Canada

Hassan Aı̈t-Kaci Is Computer Programming a Science?

Lecture Outline� Importance of programming� A poser, for your enlightenment...� What is computer programming?� The Von Neumann model� The prehistory of programming� The quest for abstraction� The C(++) phenomenon� The struggle of the ‘‘how’’ and the ‘‘what’’� The mathematics of programming� Programming computers of the future� Conclusion: Is programming a Science?� Bibliography

SFU President Lecture 1 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

Importance of programming...

Fact: on July 22, 1962, a rocket carrying Mariner I
-- an unmanned Venus probe -- had to be destroyed
less than 5 minutes after being launched.

Loss: estimated at $20 million.

Cause: the ground-control computer program guiding
the rocket should have contained:

IF NOT (in radar contact)
THEN (do not correct flight path)

But, the NOT was inadvertently left out...

This very program had been previously used without
problems for 4 lunar launches!

SFU President Lecture 2 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

A poser?

For your enlightenment...

...and your entertainment

Given: am�n array of whole numbers (i.e., a table ofm rows, where each row is a sequence of n numbers).

Step 1: sort each of the m rows independently in
ascending order.

Step 2: sort each of the n columns of the resulting
array independently in ascending order.

Question: are the rows of the final array still sorted?

SFU President Lecture 3 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

What is computer programming?

According to Bell Labs’ Ravi Sethi [9]:� A program is a specification of a computation.� A programming language is a notation for writing
programs.

The fundamental insight that makes mechanical com-
puting possible is to have realized the duality principle
whereby programs and data are the same!

Indeed: (computable) functions are numbers!

SFU President Lecture 4 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The Von Neumann Computer

The essential architecture of the modern computer is
known as the ‘‘Von Neumann model’’

Control Arithmetic Input/Output
Unit Unit Unit

Accumulator (A)
Register (R)m

Instructions and Data
Memory (M)

SFU President Lecture 5 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

Von Neumann Machine Instructions� Arithmetic:A A + M [i]A A�M [i]A A�M [i]: : :(A;R) (A modM [i]; A divM [i]): : :� Data Movement:A M [i]M [i] AR M [i]A R� Control Flow:

go toM [i]
if A � 0 go toM [i]

SFU President Lecture 6 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The prehistory of programming� Machine language� Assembly language� The FORTRAN insight

SFU President Lecture 7 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

Machine language

Basically, a machine’s basic cognitive unit is an on/off
switch, mathematically encodable as 0/1.

Hence, all numbers may be encoded (in radix 2) and,
by the duality principle, so can computable functions.

Machine Language: Any arbitrary encoding conven-
tion in radix 2 of the basic numbers and Von Neumann
basic instructions.

E.g.,

00001011110101000001
00100000110000001100
00000010000011000001

could be used to encode the program:

load some number into accumulator
add some number to accumulator
store accumulator contents in register

SFU President Lecture 8 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

Assembly language

Problem: Readability.

Solution: Mnemonic instructions.

E.g., write: rather than:

LOAD I 00001011110101000001
ADD J 00100000110000001100
STORE K 00000010000011000001

A single program, called an (instruction) assembler, is
needed to decode mnemonic instructions into binary
code.

Advantage: readability.

Problem: portability.

SFU President Lecture 9 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The FORTRAN insight

In the late 50’s, IBM’s John Backus suggested that
writing a formula like:K = I + J
was not only easier than:

LOAD I
ADD J
STORE K

but also could be executed on any machine provided a
single (machine-dependent) program called a compiler
was written for FORmula TRANslation:

FORTRAN
program

�! compiler �! machine
language
program

SFU President Lecture 10 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The quest for abstraction

Clearly, the more abstract the notation, the easier the
programming.

However, the more abstract the notation, the harder
the translation.

Hence, higher abstraction seems to go against pro-
gram efficiency!

Indeed, less fine-grained advantage may be taken of
the specific machines.

But also, the lower the level, the more error-prone,
and the harder to verify correctness.

SFU President Lecture 11 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The quest for abstraction (ctd.)

Question: Other abstractions since FORTRAN?� Control flow:

-- imperative style (instruction-oriented, sequenc-
ing, iterative loops, : : :)

-- applicative style (expression-oriented, composi-
tion, recursion, : : :)

-- logical style (rule-oriented, conjunction, recur-
sion, : : :)

-- concurrency (multi-tasking, process communi-
cation, distribution, : : :)� Data structuring:

-- Structured types
-- Automatic memory management
-- Higher-order types
-- Abstract data types (encapsulation)
-- Polymorphism
-- Subtyping

SFU President Lecture 12 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The quest for abstraction (ctd.)� Program organization:

-- Modularity

-- Genericity

-- Object-orientation� Program safety:

-- Type checking

-- Abstract interpretation

-- Executable specification

-- Program verification

SFU President Lecture 13 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The C(++) tidal wave

A historical and sociological phenomenon.� unplanned, but endemic proliferation� simple, unpretentious, and very low-level� vehicle of a most successful system (UNIX)

American permissive pragmatism...

vs.... European formal austerity.� Everything’s allowed - at your own risks!� No type-checking, no memory management, no
encapsulation� Full operating system at finger tips� Purists hate it; hackers love it!

SFU President Lecture 14 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The C(++) tidal wave (ctd.)

Program efficiency vs. Programming efficiency� High-cost for prototyping� Encourage ‘‘bad style’’� Unmaintainable

C++ = C with type-checking, encapsulation, and inher-
itance.

SFU President Lecture 15 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

What vs. How: Holy Grail?

Procedural programming: tell how to proceed.� efficient� harder to verify and modify� verbose and error-prone� high investment to prototype

Declarative programming: state what is desired.� harder to optimize� easier to verify and modify� more concise and clearer� easy to prototype

SFU President Lecture 16 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

What vs. How: Holy Grail? (ctd.)� Functional Programming

+ Simple & powerful mathematics (�-Calculus)

+ Formal and uniform: easier reasoning and trans-
formability

+ Higher-order

+ Side-effect free, inherent parallelism

- Wasteful structures

- Unrealistic assumptions� Logic Programming

+ Simple & powerful (Predicate Calculus)

+ Formal and uniform...

+ Computation = non-deterministic logical infer-
ence

+ Easy to embed constraint propagation

- High-overhead for deterministic programs

- Hard to understand for neophytes

SFU President Lecture 17 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The mathematics of programming� Fundamental tools: discrete mathematics

-- Set theory

-- Formal logic

-- Universal algebra

-- Type theory

-- Category theory� Formal semantics

-- Axiomatic

-- Denotational

-- Operational� Formal correctness

-- ex post facto: program verification

-- a priori: specification refinement

-- ex nihilo: executable specification

SFU President Lecture 18 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

The future of programming

Proliferating computers are bringing about the most
profound revolution yet witnessed by humankind.

We, today’s living generations, will see tremendous
changes of every aspects of human life by the use of
computers.

The key vehicle for controlling computers is program-
ming. It is a formidable, though double-edged, weapon
to wield.

Lest we become victims of an ever-growing anarchic
maelstrom of ad hoc hackery, we must educate our-
selves to systematic programming.

SFU President Lecture 19 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

Is Programming a Science?

It should be!

...and it has, as all exact sciences do, a precise
mathematics.

The mathematics of computer programming is won-
derfully rich, yet barely explored and exploited.

The ‘‘vacuum call’’ of our present-day market exploita-
tion of this magical technology encourages a ‘‘pro-
gram first, then (maybe too late) think’’ culture, as
opposed to a systematic ‘‘think first, then design’’
attitude that mature science and engineering requires.

Will we live up to the challenge?

...History will tell.

SFU President Lecture 20 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

Bibliography

1. Mani Chandy and Jayadev Misra. Parallel Program Design:
A Foundation. Addison-Wesley, 1988.

2. Edsger Dijkstra. A Discipline of Programming. Prentice-
Hall, 1976.

3. Carl Gunter. Semantics of Programming Languages: Struc-
tures and Techniques. MIT Press, 1992.

4. Bruce MacLennan. Principles of Programming Languages:
Design, Evaluation, and Implementation. Holt, Rinehart,
and Winston, 1983.

5. Zohar Manna. Mathematical Theory of Computation.
McGraw-Hill, 1974.

6. Benjamin Pierce. Basic Category Theory for the Computer
Scientists. MIT Press, 1991.

7. Hartley Rogers. Theory of Recursive Functions and Effec-
tive Computability. McGraw-Hill, 1967.

8. David Schmidt. The Structure of Typed Programming Lan-
guages. MIT Press, 1994.

9. Ravi Sethi. Programming Languages: Concepts and Con-
structs. Addison-Wesley, 1989.

10. Simon Thompson. Type Theory and Functional Program-
ming. Addison-Wesley, 1991.

SFU President Lecture 21 January 19, 1995

Hassan Aı̈t-Kaci Is Computer Programming a Science?

SFU President Lecture 22 January 19, 1995

