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1. Introduction

The first part of this paper focuses on syntactic properties of record-like type structures. A syntax of structured
types is introduced as labelled infinite trees, which may be seen as extrapolated from the syntax of first-order
terms as used in algebraic semantics [8, 14, 15]. However, since the terms defined here are not to be interpreted
as operations, the similarity is purely syntactic. A calculus of partially-ordered record structures is presented. It
is then extended to variant record structures through a powerlattice construction. The second part deals with
solving recursive type equations in a lattice of variant records. An operational semantics of type structure
rewriting is first informally described. Then, a fixed-point semantics is discussed. Finally, a discussion of the
correctness of the former with respect to the latter concludes the paper.

2. A Calculus of Type Subsumption

The notion of subtyping has recently been integrated as a feature in some programming languages, although in
a limited fashion. For example, in PASCAL it is provided only for so-called simple types like enumeration or
range types. For more complex types, in general, subtyping is not implicitly inferred. For example, in ADA, one
must declare explicitly most subtyping relationships. This is true even in those formalisms like KL-ONE [5] or
OBJ [11] where subtyping is a central feature. The only formalism which may be used for implicit subtyping is
provided by first-order terms in PROLOG as first-order term instantiation. However, even this representation is
limited as a model for partially ordered type structures. Nevertheless, it is of great inspiration for what is
desired, which is a practical system of type structures which must have at least as much expressive power as
offered by, say, classical record structures, as well as the capability of efficiently automating subtyping
inference, and the construction of new structures from old ones.

A specific desideratum can be informally sketched as follows. a structured data type must have:

® a head symbol which determines a class of objects being restricted;

e attributes (or fields, or slots, etc.,) possessed by this type, which are typed by structured types
themselves;

 core ference constraints between attributes, and attributes of attributes, ¢tc., denoting the fact that
the same substructure is to be shared by different compositions of attributes.

Then, a type structure t is a subtype of a type structure v, if and only if:

o the class denoted by the head of t, is contained in the class denoted by the head of t,; and,
# all the attributes of t, are present in t, and have types which are subtypes of their counterparts in
Ty and,

1Research described in this paper was done while the author was at the University of Pennsylvania, Philadelphia.
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» all the coreference constraints binding in ¢, are also binding in t,.

For example, understanding the symbols student, person, philadelphia, cityname to denote sets of
objects, and if student < person and philadelphia < cityname denote set inclusion, then the type:

student{id => name(last => X:string);
lives_at => Y:address{city => philadelphia);
father => person{id => name(last => XJ);
lives_at => Y));

should be a subtype oft

person{id => name;
lives_at => address(city => cityname);
father => persomn);
The letters X, Y in this example denote coreference constraints as will be explained. Formalizing the above
informal wish is what this section attempts to achieve.

2.1. A Syntax of Structured Types

Let X be a partially ordered signature of type symbols with a top element T, and a bottom element | . Let L
be a set of label symbols, and let T be a set of tag symbols, both non-empty and countably infinite. I shall
represent type symbols and labels by strings of characters starting with a lower-case letter, and tags by strings
of characters starting with an upper-case letter.

A simple “type-as-set* semantics for these objects is elaborated in [1]. It will suffice to mention that type
symbols in X denote sets of objects, and label symbols in L denote the ¢ntension of functions. This semantics
takes the partial ordering on type symbols into set inclusion, and label concatenation as function composition.
Thus, the syntax of terms introduced next can be interpreted as describing commutative composition diagrams
of attributes.

In 2 manner akin to tree addressing as defined in {8, 12, 13], I define a term domain on L to be the skeleton
built from label symbols of a such a commutative diagram. This is nothing but the graph of arrows that one
draws to picture functional maps. Formally,

Definition 1: A term [or tree} domain A on L is a set of finite strings of labels of L such that:

o Ais prefiz-closed; ie,ifu,v € L*and u.v € Athenu € 4;
o Ais finitely branching; i.c., if u € A, then theset {u.a € 4 | a € L} is finite.

It follows from this definition that the empty string ¢ must belong to all term domains. Elements of a term
domain are called {term) addresses. Addresses in a domain which are not the prefix of any other address in the
domain are called leaves. The empty string is called the root address. For example, if L = {id, born, day,
month, year, first, last, father}, a term-domain on L may be 4, = {¢, born, born.day,
born.month, borm.year, id, id.last, father, father.id, father.id.first}. A term domain
need not be finite; for instance, the regular expression 4, = a(ba)*+(ab)¥, where a, b € L, denotes a
regular set {on {a,b}, say)} which is closed under prefixes, and finitely branching; thus, it is a term domain and
it is infinite.

Given a term domain A, an address w in A, we define the sub-domain of A at address w to be the term domain
A\w = {¥’ | w.w* € A}. In the last example, the sub-domair at address born of A, is the set {¢, day,
month, year}, and the sub-domain of 4, at address 3.1 is A, itself.

Definition 2: A term domain A is a regular term domain if the set of all sub-domains of A defined
as Subdom (4) = {A\w | w € A} is finite.

In the previous examples, the term domain A1 is a finite (regular) term domain, and A2 is a regular infinite
term domain since Subdom(4,) = {Az' b. Az}‘ In what follows, I will consider only regular term-domains.
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The *flesh* that goes on the skeleton defined by a term domain consists of signature symbols labelling the
nodes which are arrow extremities. Keeping the *arrow graph® picture in mind, this stands for information
about the origin and destination sets of the arrow representation of functions. As for notation, I proceed to
introduce a specific syntax of terms as record-like structures. Thus, a term has a head which is a type symbol,
and a body which is a (possibly empty} list of pairs associating labels with terms in a unique fashion -- an
assoctation list. An example of such an object is shown in figure 2-1.

person(id => name;
born => date(day => integer;
month => monthname;
year => integer);
father =» person);

Figure 2-1: An example of a term structure

The domain of a term is the set of addresses which explicitly appear in the expression of the term. For example,
the domain of the above term is the set of addresses {¢, 1d, born, born.day, bormn.month, born.year,
father}.

The example in figure 2-1 shows a possible description of what one may intend to use as a structure for a
person. The terms associated with the labels are to restrict the types of possible values that may be used under
each label. However, there is no explicit constraint, in this particular structure, among the sub-structures
appearing under distinct labels. For instance, a person bearing a last-name which is not the same as his father’s
would be a legal instance of this structure. In order to capture this sort of constraints, one can fag the addresses
in a term structure, and enforce identically tagged addresses to be identically instantiated. For example, if in
the above example one is to express that a person’s father’s last-name must be the same as that person’s last-
name, a better representation may be the term in figure 2-2.

person(id => pame(last => X:string);
bvorn => date{day => integer;
month => monthname;
year => integer);
father => person(id => name{last => X:string)));

Figure 2-2: An example of tagging in a term structure

Definition 3: A term is a triple (A,4,7) where A is a term domain on L, ¢ is a symbol function
from L" to £ such that $(L*~4) = {T}, and 7 is a tag function from A to T. A term is finite
(resp. regular) if its domain is finite (resp. regular).

Such a definition illustrated for the term in figure 2-2 is captured in the table in figure 2-3. Note the "syntactic
sugar " implicitly used in figure 2-2. Namely, I shall omit writing explicitly tags for addresses which are not
sharing theirs. In the sequel, by *term® it will be meant "regular term®.

Given a term t = (A,¥,D, an address w in A, the subterm of t at address w is the term t\w =
(A\w,Y\w,\w) where p\w: L* — X and A\w: A\w — Tare defined by:

o P\w(w’) = ¢(w.w') Vw' € L%;
o AW(W) = r(w.w') Vv’ € A\w.

From these definitions, it is clear that t\e is the same as t. In example of figure 2-2, the subterm at address
father.1d is name(last => X:string).

Givenaterm t = (4,¥,7), a symbol £, (resp., a tag X, a term ") is said to occur in ¥ if there is an address w
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Addresses (A} Symbols (V) Tags ()
e person %o
id name Xy
1d .last string X
born date Xy
born.day integer }(3
born.month monthname X 4
born.year integer )(s
father person )(6
father.id name )L,
father.id.last string X

Figure 2-3: (A, 4,7 -definition of the term in figure 2-2

in A such that ¢(w) = £ (resp., r(w)
by definition.? .

it

X, t\¥w = t’'). The following proposition is immediate and follows

Proposition 4: Given a term t = (A, ¢, 1), the following statements are equivalent:

e t is a regular term;

o The number of subterms occurring in t is finite;
o The number of symbols occurring in t is finite;
o The number of tags occurring in t is finite.

It follows that a coreference relation on a regular term domain has finite index.

Definition 8: In a term, any two addresses bearing the same tag are said to corefer. Thus, the

core ference relation k of a term t = (A,+¢,7) is a relation defined on A as the kernel of the tag
1

function 7; t.e.,, & = Ker(r) = rer*.
We immediately note that k is an equivalence relation since it is the kernel of a function. A x-class is called a
coreference class. For example, in the term in figure 2-2, the addresses father.id.last and id.last
corefer.

A term t is referentially consistent if the same subterm occurs at all addresses in a coreference class. That is, if
C is a coreference class in A/x then t\W is identical for all addresses w in C. Thus, if a term is referentially
consistent, then by definition for any v, W, in A, if r(wl) = r(wz) then for all w such that ¥, .we 4,
necessarily W, W€ A also, and r(w1 W) = ‘r(wz,w). Therefore, if a term is referentially consistent, « is in fact
more than a simple equivalence relation: it is a right-invariant equivalence, or a right-congruence, on A. That

is, for any two addresses w,, w,, if W xw, then W, .wkw,.w for any W such that w, . W€ A and w,.W € A,

1

Definition 8: A well-formed term (wit) is a term which is referentially consistent.

I shall use this property to justify another syntactic "sweetness®: whenever a tag occurs in a term without a
subterm, what is meant is that the subterm elsewhere referred to in the term by an address bearing this tag is
implicitly present. If there is no such subterm, the implicit subterm is 7. For example, in the term f oo(l1 =>
X; 1, => X:par; l3 =Y 1, = Y), the subterm at address 1, is bar, and the subterm at address 1, is
T. In what follows, T will never be written explicitly in a term.

Note that it is quite possible to consider infinite terms such as shown in figure 2-4. For example, at the
addresses father and father.son.father, is a phenomenon which I call eyclic tagging.

Syntactically, cycles may also be present in more pathological ways such as pictured in figure 2-5, where one
must follow a path of cross-references.

2Also established in 8]
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person(id => name(last => X:string);
born =» date(day =»> integer;
month => monthname;
year => integer);
father => Y:person{id => name(last => X:string);
son => person(father => Y)));

Figure 2-4: An example of simple cyclic tagging in a term structure

foo(l => X :foo (k => XD
1, = X,:fo0,(k, => X);

1, = X oo {k, => X, 3;

1, = X oo (k => X))
Figure 2-5: An example of complex cyclic tagging in a term structure

A term is referentially acyelic if there is no cyclic tagging occurring in the term. A cyclic term is one which is
not referentially acyclic. Thus, the terms in figures 2-4 and 2-5 are not referentially acyclic. A wft is then best
pictured as a labelled directed graph as illustrated in figure 2-6 which is the graph representation of the wit

below. Thus, labels act as arcs between nodes bearing type symbols. Tags are physical pointers to nodes,
indicating which nodes are shared.

)(o:fx(l1 => )(lzla(l2 = X,:

1, => 1)
1, =X
1o => 1,0, = X
1, => X1
1g => X
1y => X))
1 1, 1 1,
16 17 18
18 12

Figure 2-8: Graph representation of a wft

In figure 2-6, the similarity with finite states diagrams is not coincidental. And thus, it follows that a term is

referentially acyclic if and only if its term domain is finite. Also, any term (cyclic or not) expressed in the
above syntax is a regular term.
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The set of well-formed terms is denoted WF7. The set of well-formed acyclic terms is denoted W47 and is a
subset of WFT.

I shall not give any semantic value to the tags aside from the coreference classes they define. The following
relation & on W#T is to handle tag renaming. This means that « is relating wit’s which are identical up to a
renaming of the tags which preserves the coreference classes.

Definition 7: Two terms b, = (A1 A ,'rl) and t, = (Az,d;z,rz) are alphabetical variants of one
another (noted t, o t,) if and only if:

1. 41 = Az;
2. Ker(r1) = Ker(rz);
3. ¢, = ¢,

Interpreting these structures as commutative diagrams betweens sets, it comes that the symbols T and |
denote, respectively, the whole universe -- "anything” -- and the empty set ~- "inconsistent”. Hence, a term in
which the symbol | occurs is to be interpreted as being inconsistent. To this end, we can define a relation | on
WFT — smashing -, where t,[v, if and only if | occurs in both t, and t,, to be such that all equivalence
classes except [ | ] are singletons. Clearly, if | occurs in a term, it also occurs in all terms in its o-class. In
the way they have been defined, the relations « and | are such that their union ~ == o U || is an equivalence
relation. Thus,

Definition 8: A ¢-type is an element of the quotient set ¥ — WFT/~s. An acyclic y~type is an
element of the quotient set ¥ = WFAT/re.

2.2. The Subsumption Ordering
The partial ordering on symbols can be extended to terms in a fashion which is reminiscent of the algebraic
notion of homomorphic extension. 1 define the subsumption relation on the set ¥ as follows.

Definition 9: A term v, == (A,,9,,7,) is subsumed by a term t, = (4,,9,,7,) (noted
t, <t,), if and only if either, t = | ; or,

1. 4, € 4;;

2. Ker(s) C Ker(r);

3. ¢, (M < (0, Ywe L*.

It is easy to verify that a subsumption relation on ¥ defined by [tll =< [t2] if and only if t, <t, is well-defined

(i.e., it does not depend on particular class representatives) and it is an ordering relation.?

This notion of subsumption is related to the (in)famous /S-A ordering in semantic networks [5, 6], and the tuple
ordering in the so-called semantic relation data model [4]. It expresses the fact that, given a y-type t, any
y~type t* defined on at least the same domain, with at least the same coreference classes, and with symbols at
each address which are less than the symbols in t at the corresponding addresses, is a subtype of t. Indeed, such
a t’ is more specified than t.

The "homomorphic” extension of the ordering on X' to the subsumption ordering on ¥ can be exploited further.
Indeed, if least upper bounds (LUB) and greatest lower bounds (GLB) are defined for any subsets of X, then this
property carries over to ¥.

Theorem 10: If the signature X is a lattice, then so is ¥.

Rather than giving formal definitions for the meet and join operations on ¥, let us illustrate the extended lattice

3In the sequel, I shall use the (abusive) convention of denoting a ¢-type by one of its class representatives, understanding that what is
meant is modulo tag renaming and smashing.
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person witch monarch
adult child queen
teenager wicked_queen

Figure 2-7: A signature which is a lattice

operations with an example. Figure 2-7 shows a signature which is a finite (non-modular) lattice. Given this
signature, the two types in figure 2-8 admit as meet and join the types in figure 2-9.

child (knows => X:person(knows => queen;
hates => Y:monarch);
hates => child(knows => Y;
likes => wicked_queen);
1ikes => X);

adult(knows => adult(knows => witch);
hates => person(knows => X:monarch;
likss => X)),

Figure 2-8: Two wit’s

person(knows => person;
hates => person(knows => monarch;
likes => monarch));

teonager (knows => X:adult(knows => wicked_queen;
hates => Y:wicked queen);
hates => child(knows => Y;
1likes => Y);
likes => X);

Figure 2-9: LUB and GLB of the two types in figure 2-8

The reader is referred to [1] for the detailed definitions of the meet and join operation on W. It suffices here to
say that they are essentially extensions of the uni fication [15, 20] and generalization [19] operations on regular
first-order terms. Indeed, these operations are special cases of my definitions when (i) 2 is a flat lattice, (i) a
coreference class may contain more than one element :ff all of its elements are leaves and the symbols occurring
at these leaves are restricted to be T .

An important remark is that the set Wo of acyclic ¢~types also has a lattice structure.

Theorem 11: i X' is a lattice, then so is L 2% However !PG is not a sublattice of ¥.

The join operation is the same, but the meet operation is modified so that if the GLB in W of two acyclic terms
contains a cycle, then their GLB in !I'o is | . However, !I'o is not a sublattice of ¥, since the meet in ¥ of two
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acyclic wft’s is not necessarily acyclic. Consider, for example4

¢, =23, =>X:1; 1

s = 1(1, = X))

2

, =t(11=>X:!; 12=>X)

AL =10, X Q>0 5, =X
2.3, A Distributive Lattice of Types

Accepting the "type-as-set® interpretation of the calculus of t-types, it is yet necessary to wonder whether
lattice-theoretic properties of meet and join reflect those of intersection and union. Unfortunately, this is not
the case with ¥. The lattice of y~types is not so convenient as to be distributive, even if the signature X is itself
distributive. As a counter-example, consider the flat (distributive) lattice ¥ = {T, a, £, |} Indeed,

f A ({1 =>8) Va)=1

(ALt =>a)V I Aa)=10=>a)

and this proves that W77 is not distributive.®

This is not the only ailment of WFT as a type system. Recall that in order to obtain the benefit of a lattice
structure as stated in theorem 10, there is a rather strong demand that the type signature X be itself a lattice.
For a signature that would be any poset, this nice result is unfortunately lost. In practice, programs deal with
finite sets of primitive types. Even then, it would be quite unreasonable to require that all meets and joins of
those primitive types be explicitly defined. What should be typically specified in a program is the minimal
amount of type information which is to be relevant to the program. Clearly, such a signature of type symbols
should be not necessarily more than a finite incompletely specified poset of symbols.

It is hence necessary to go further than the construction of W¥T in order to obtain a satisfactory type system
which would not make unreasonable demand for primitive type information. Fortunately, it is possible not to
impose so drastic demands on X and yet construct a more powerful lattice than WFT; i.e., a distributive lattice.
The idea is very simple, and is based on observing that the join operation in ¥ is too *greedy”. Indeed, if one
wants to specify that an object is of type £00 or bar when no explicit type symbol in X is known as their GLB,
then T is returned. Clearly, it is not correct to infer that the given object is of type "anything” just because X
does not happen to contain explicitly a symbol for the GLB f00 and bar. All that can be correctly said is that
the given object is of disjunctive type foovbar.

I next give s brief summary of a construction of such a more adequate type lattice. It may be construed as a
powerdomain construction to handle indeterminacy [17]; in our case, variant records. It is not possible to detail
this construction here. The interested reader is referred to [1].

A poset is Noetherian if it does not contain infinitely ascending chains. Given a set S, the set 2% of finite
non-empty subsets of mazimal elements of S is called the restricted power of 8. If 8 is a Noetherian poset, the
set 2057 of all such subsets of maximal elements is called the complete restricted power of S. Given a
Noetherian poset S, and S’CS, R(8") is the set of maximal elements of S°.

1 shall call £ the set 2”'], and £, the set el¥%!, Clearly, £, is a subset of £. I shall denote a singleton {t} in £
simply by ©.

4A similar phenomenon happens in unification of first-order terms where it is reason for the so-called "occur-check” testing whether a
variable occurs in a term when trying to unily that variable with the term.

S similar result was pointed out by G.Plotkin in [18].
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Definition 12: Subsumption in £ is defined by, T, T T, if and only if every y-type in T, is
subsumed by some ¢-type in T,.

Let’s define a notational variant of elements of £ which will have the advantage of being more compact
syntactically. Consider the object shown in figure 2-10. The syntax used is similar to the one which has
expressed y~types up to now. However, sets of terms rather that terms may occur at some addresses.

person(sex => {male, femalel};
father => Y:person(sex => male);
mother => Z:person(sex => female);
parent => {Y, Z});

Figure 2-10: Example of a e-term

This notation may be viewed as a compact way of representing a sets of y-~types. For example, the object in
figure 2-10 represents a set of four y-types which can be obtained by expansion, keeping one element at each
address. Such terms are called e-terms. An e-term can be transformed into a set of y-types — its y-expansion;
i.e., the y-expansion of an e-term is the set of all possible y-types which can be inductively obtained by keeping
only one y-type at each address. The reader familiar with first-order logic could construe this process as being
similar to transforming a logical formula into its disjunctive normal form.

We are now ready to construct a distributive lattice of e-types. First, we relax the demand that the signature Z
be lattice. Assuming it is a Noetherian poset we can embed it in a meet-semilattice elf preserving existing
GLB’s. Then, we can define the meet operation on ¥ so that whenever the meet of two symbols in not a
singleton, the result is expanded using y~expansion.

Theorem 13: If the signature X' is a Noetherian poset then so is the lattice WD; but the lattice ¥ is

not Noetherian.

The following counter-example exhibits an infinitely ascending chain of wfts in ¥. For any a in L and any £ in
Z, define the sequence &, = (An.tf)n,fn), n > 1 as follows:

AR

YAy =1;
Ak = A [ker(r) = ({e}, (@}, ... "'}, a".a%)

This clearly defines an infinite strictly ascending sequence of regular wit’s since, for all n>0:

A CA;

L n

V(A < ¢, (A )

n+t

K., C kK.
In our syntax, this corresponds to the sequence:

t, =X I(a => X),

ot
It

f(a => X @ £{a = X)),
t, = £(a=> t(a => X : 1(a =>X))), ...,

t =f(a=> (s => ... £{a=>X: 1{a =>X))...0), ...
Cmrmw ¥l B’ —-——>

We define two binary operations 1 and L on the set £0. For any two sets T, and T, in £0:
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T, NT,=RU{t | £t =8AL, L €T, t, € TN

T, UT, = ®R(T, U Ty
where A is the meet operation defined on WOA Then, for any poset X containing T and |,

Theorem 14: The poset £, is a distributive lattice whose meet is 1, whose join is U, and whose top
and bottom are {T) and { { }.

It is not possible to define lattice operations for £ because ¥ is not Noetherian. Hence, the set of maximal
elements of a set cannot be defined for all sets. However, if only finite sets of regular wft’s are considered, then:

Theorem 15: The poset 29 of finite sets of incomparable regular wit’s is a distributive lattice.

However, it is not complete. It is also true that 2% C 29 and 2%’ is a distributive lattice, but it is not a

sublattice of £. In general, the GLB of elements of 2% is a lower bound of the GLB of these elements taken in
)
2.

A Brouwerian lattice L is a lattice such that for any given elements 8 and b, theset {x € L | a A x < b}
contains a greatest element, written as a—b. An interesting point is that (i) any Brouwerian lattice is
distributive but, not conversely; and (ii) any Boolean lattice is Brouwerian, but not conversely [3]. Thus, the
class of Brouwerian lattices lies strictly befween the class of distributive lattices and the class of Boolean lattices.

Theorem 16: If the signature X' is a Noetherian poset then the lattice £, of all sets of finite wfts is
a complete Brouwerian lattice.

To answer the question that might be hovering in the reader’s mind,'i the fact that the lattice £0 is a complete
Brouwerian lattice reveals itself invaluable for showing the existence of solutions to systems of equations. Apart
from its lattice theoretic properties, a Brouwerian lattice is interesting as it forms the basis of an intuitionistic
propositional logie, due to L.E.J.Brouwer {7, 10].

Unfortunately, theorem 16 does not hold for £ the lattice of all regular terms since the lattice £ is not complete.
On the other hand, I do not know whether £ is Brouwerian.

3. Programs as Recursive Type Equations
Consider the equations in figure 3-1. Each equation is a pair made of a symbol and an e-term, and may
intuitively be understood as a definition. I shall call a set of such definitions a knowledge base.”

Definition 17: A knowledge base is a function from Z-{ |} to £; which is the identity almost
everywhere except for a finite number of symbols.

So far, the partial order on X has been assumed predefined. However, given a knowledge base, it is quite easy to
quickly infer what I shall call its implicit symbol ordering. For example, examining the knowledge base in figure
3-1, it is evident that the signature X must contain the set of symbols {l1ist, comns, nil, append,
append 0, append_1}, and that the partial ordering on X' is such that nil1 < 1ist, cons < 1list,
append 0 < append, append 1 < append. In general, this ordering can always be extracted from the
specification of a knowledge base.

Definition 18: A knowledge base is well-defined if and only if it admits an implicit symbol
ordering.

8Nmne]y, *So what?...”

70r program, or type environment... Nevertheless, knowledge base is a deliberate choice since what is defined is in essence an abstract
semantic network.
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1ist = {ail, coms};
append = {append_0, append 1};

append 0 =
(front => nil;
back => X:list;
whole => X);

eppend 1 =
(froat => cons(head => X; tail => Y¥);
back => Z:1list;
whole => cons(head => X; tail => U);
patch => append(front => Y; back => Z; whole => U));

Figure 3-1: A specification for appending two lists

1 want to describe an interpretation of any given type in the context of this knowledge base so that ezpanding
the input according to the specifications will produce a consistently typed object. A iy-type is evaluated by
*expanding” its root symbol if its knowledge base value is not itself; i.e., substituting the root symbol by its
knowledge base value by taking the meet of this value and the t-type whose root symbol has been erased
(replaced by T'). If the root symbol is mapped to itself by the knowledge base, the process is applied recursively
to the subterms. Recalling the “type-as-set® semantics of ¢-types and y-types, this process essentially computes
unions and intersections of sets. The symbol substitution process is to be interpreted as importing the
information encapsulated in the symbol into the context of another type.

Let’s trace what the interpreter does, one step at a time, on an example. Let’s suppose that the knowledge base
in figure 3-1 is defined. Consider the following input:

append (front => cons(head => 1;
tall => cons(head => %;
tail => nil));
back => cong(head => 3;
tall => nil});

Next, the interpreter expands append into {append_O, append_1}:

{append_O(front => cons(head => 1;
tall => cons(head => 2;
tall => nil));
back => cons(head => 3;
tail => nil)),

append_1(front => cons(head => i;
tail => comns{head => 2;
tail => n11)};
back => cong{head => 3;
tail => nil))};

Each of these two basic e-terms is further expanded according to the definitions of their heads. However, the
first one (append_O) yields | since the meet of the subterms at front is | . Hence, by R-reduction, we are
left with only:
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(front => cong(hend => 1;
tail => cons(head => 2;
tall => nil));
back => cons(head => 3;
tail => n1l);
whole => cons(head => {;
. tail => U);
patch => append(front => cons(head => 2;
tail => nil);
back => cong(head => 3;
tail => nil);
whole => U));

The process continues, expanding the subterms:>

(front => cons(head => 1;
tail => cons(head => 2;
tail = nil));
back => cons(head => 3;
tail => nil);
whole => cons(head => {;
tall => cons(hensd => 2:
tail => W);
patch => {front => cons(hesd => 2;
tail => nil);
back => cons(hesd => 3;
tall => nil);
patch => append (front => nil;
back => cons(head => 3;
tail => nil);
whole => U);
whole => cons(head => 2;
tall =» U)));

Finally, the following term is obtained which cannot be further expanded. The interpretation of append has
thus correctly produced a type whose whole is the concatenation of its front to its end. The result could be
isolated by projection on the field whole if desired. The attribute patech is the history of the computation.

(front => cons(head => 1;
tail => cons(head =» 2;
tail => nil));
back => cons(head => 3;
tall => n1l);
whole => cons(head => 1;
tall => cons(head => 2;
tail =» cons(head => 3;
tail => nil)));
patch => (front => cons(head => 2;
tall => nil);
back => cons(head => 3;
tail => nril);
patch => (front => nil;
vack => cons(head => 3;
tail => nil);
whole => cons(head => 3;
tail = aild);
wholes => cons(head => 2;
tail => cons{head => 3;
tail => nil)d)d);

Computation in KBL amounts essentially to term rewriting. In fact, it bears much resemblance with
computation with non-deterministic program schemes [9, 16}, and macro-languages and tree grammars {14]. This
section attempts a formal characterization of computation in KBL along the lines of the algebraic semantics of

8For what remains, I shall leave out the details of cleaning-up ] by Rereducti
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tree grammars [2, 14]. Symbol rewriting presented in this section is very close to the notion of second-order
substitution defined in {8] and macro-expansion defined in [14].

It is next shown that a KBL program can be seen as a system of equations. Thanks to the lattice properties of
finite wft’s, such a system of equations admits a least fixed-point solution. The particular order of computation
of KBL, the "fan-out computation order”, which rewrites symbols closer to the root first is formally defined
and shown to be maximel; 1.e., it yields *greater” e-types than any other order of computation. Unfortunately,
the complete "correctness* of KBL is not established. That is, it is not known (yet) whether the normal form of
a term is equal to the fixed-point solution. However, as steps in this direction, two technical lemmas are
conjectured to which a proof of the correctness is corollary.

All wit’s considered hereafter are finite. Hence, 1 shall not bother mentioning the adjective *finite* when
dealing with wft’s for the rest of this paper.

3.1. Wit substitution
I next introduce and give some properties of the concept of wft substitution. Roughly, given a wit ¢ such that a2

symbol £ occurs at address u in t, one can substitute some other wft t’ for £ at address uin ¥ by "pasting-in"
t’ in ¥ at that address.

Given a wft t = (A,v,7) and some string u in L', 1 define the wft u.t to be the smallest wft containing % at
address u; that is, u.t = (u.4,u.¢,u.7) where

ceuA={wel* | w=uv, vEA}
o u. (W) = if w = u.v then ¢(v) else T;
eu.7 : u.A — T such that u.7(¥) = u.r7(w) iff v = uw.v’', % = u.w and
r(v*) = »(w*).
This can be better visualized as the wft obtained by attaching the wit © at the end of the string u.

Let uw, i=t,....n be mutually non-coreferring addresses in A and let £ 40 171,001 be symbols in X.
Then, the wit t’.[u1 LS FPIA 194 ¢ n] is the wit (A,$,7), where ¢ coincides with ¥ everywhere except for the
coreference classes of the ui’s where ¢( [ui]) = £, for 1=1,...,n. It is clear that the term obtained is still
well-formed.

Definition 19: Let t = (A, v, 7) be a wft and u some address in 4, and let t.* be a wft. The term
t[t’/ul is defined as t[t"/u] = t[w:T] A u.v”.

This operation must not be confused with the classical tree grafting operation which replaces a subtree with
another tree. The operation defined above super-imposes a term on a subterm with the exception of the root
symbol of that subtree which becomes equal to the root of the replacing tree. Note that | may result out of
such a substitution. To illustrate this operation, if t is the wft

(front => cons(head => X, : 1;
tail => X, : cons(head => 2;
vail => nil));
back => X, : cons(head => 3; tall => nil);
whole => cons(head => X ; tail => X0
patch => append(fromt => X,; dack => X ; whole => XJ3:

and t” is the wit

(front => cons(head => X; tail => Y);

back => Z;

whole => cons(head => X; tail =» U);

patch => append(front => Y; back => Z; whole => w;

then t[t'/patchl is
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{front => cons{(head => X, 0t
tail => X, : cons(head => X5t o2
tail => X, @ nil));
back => X, : cons{head => 3;
tail => nil);
whole => cons{head => X
tail => X,’ : cons{head => X_:
tail => X*});
patch => (front => X,

back => Xs;

patch => append (front => X;
back => X, ;
whole => X4);

whole => X.)).

Next, I give a series of *surgical* lemmas about this substitution operation which will be needed in proving key
properties of KBL’s computation rule. The first lemma states the intuitively clear fact that which address is
picked out of a coreference class in a substitution does not affect the result. This is made apparent as depicted
in figure 3-2.

Figure 3-2: Substitution at coreferring addresses

Lemma 20: Let t = (A,¢,7) and t*° be wit’s, and let u,, u, be two coreferring addresses in A.
Then, (tl[t’/u1)[t"/u,] = tlt'/u] = tlt'/u] = (L[t /0,10 [v /0]

An address u covers an address v in a wft if there exists an address u* in [u] such that v = u’.w for some w
* . » » .
in L. That is, u covers v in t if v occurs in t\u.

Next, it is important to analyze the extent to which a sequence of substitutions is affected by the particular
order in which they are performed. Specifically, order of two substitutions will not matter if the addresses do
not cover each other; however, order of substitutions will matter if one of the two addresses covers the other.
We first need a small technical lemma.

Lemma 21: If u and v are addresses in a wft t which do not cover each other, then for any wft ¢~
T Aut)[v:T] = t[w:T.v:T] A u.t”
The next lemma gives a sufficient condition for commutativity.

Lemma 22: Let t = (A,9,7), t,, &, be wit’s, and let w,, 4, be two addresses in A which do not
cover each other. Then,

(6[t,/9,1) [8,/0,] = (6[t,/u,1) [t,/u,]

The second lemma complements the previous one and shows that the order of substitution matters for covering
addresses. However, the wft resulting from performing the "outermost" substitution first subsumes the wft
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resulting from performing the “innermost* substitution first. The picture in figure 3-3 may help illustrate the
argument.

Figure 3-3: Substitutions at covering addresses

Lemma 23: If two addresses u,and y,ina wft t are such that u, covers u,, then
(t [tz/\iiz} ) [t1/“1] = (uiv /v, 1) {ty/u,]

for any wit’s v, and t,.

The objective of these lemmas is to help show that the particular order of performing substitution performed by
the KBL interpreter yields an e-type that subsumes all ¢-types obtained by any other order of computation.
Next, the fan-out computation theorem 26 is proposed to that effect, using the above technical lemmas.

The following notion will be useful in expressing an ordering on the addresses of a wft. The notion of radius of

an address is a measure how "close to the root* an address is; that is, the shortest {in length) in the coreference
*

its class. Given a string u in L , }u| denotes its length; i.c., the number of labels which constitute u.

Definition 24: Let t = (A,4¢,7) be a wit; then, the radius of an address u in A4 is defined as p(u)
=Min({ivl | v € [ulD.
That such a minimum number exists for all classes is clear. Recall that lemma 20 states that a substitution can
be performed at any address in a coreference class with the same result. For this reason, it will be implicit in all

substitutions considered hereafter that the address at which the substitution is performed is a minimal length in
its class.

Definition 25: A sequence of addresses u,, 1=1,...,n of a wft  is in "fan-out” order if and only
if 1<) implies p(u,) Sp(uj).

For example, in the wit:

b= fl(lf.l = )(1:12(12 = Xg:
1, = !3);
i, = X2,
i, = 14(16 => Xx:
1, = Xa:fs;
1, => X))

the sequence e, 15.1,, 1,, 1;.1,, 1,.14 is in fan-out order. However, the sequence e, 1..15, 1,, 1,.1,,
1; is not. In the sequel, I shall lighten the notation (t [1;1/111]) [t,/u,] to tlt /u,] [t‘z/uzj .

The following theorem is a consequence of the lemmas just presented.

Theorem 26: Let t be a wft, and U = ‘{u1 R ,un} a set of mutually non-coreferring addresses of
t such that the sequence u,, i=1,...,n is in fan-out order. Let x be a permutation of the set
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{1,...,n} such that 1r(u1), i=1,...,n is also in fan-out order. Then, for any set of wft’s

{t,, ... 0}
tlt,/u,]. . [t /ud = t[tﬂm/u’“)] . £tx(n)/uﬂ(n)]. (1)
Moreover, if the permutation 7 destroys fan-out order, then
t[ti/u13 o [T’n/un] = t[tw(i)/“w(i)} T [T‘x(n)/uw(n):‘ . @)
Substitution is extended to e-types as follows: for any ¥ in &1'/0, T in £0’ and any uin 4,
¢[T/ul = Ut.gt[t'/u] .

3.2. Symbol Rewriting Systems

Definition 27: A Symbol Rewriting System (SRS) on X is a system S of n equations 8: s, = E,,
where 8, € ZandEiéa‘.)G,fori =1,...,n

Given such a system S, I shall denote by E the subset {81 PN 'sn} of X of S-expandable symbols, and N the
set Z-F of non-S-exzpandable symbols of 2. An example of a SRS is given by figure 3-1. There, we have £ =
{1list, append, append O, append 1} and N = {nil, cons}.

Definition 28: Let 8: 8, = T, be a sRS. It defines a one-step rewriting relation g on £, as
follows: T, g T, if and only if there is a wit t € T,, some address u in A, and some index

ie{1,...,n} for which ¢t(u)=si, such that T, = (Ti-{t}) [§] t[Ei/u].

In words, this expresses the fact that the e-type T, is obtained from the e-type T, by picking out some element
of T,, substituting for one of its occurrences of some expandable symbol the right-hand side of this symbol in 8,
and adjoin the result to the set keeping only maximal elements. This process is illustrated by the first step of
the trace of KBL shown on page 11.

I shall denote by ]év for k>0 the relation composed with itself k times, and by ;—» the reflexive and

transitive closure of g that is, the relation U‘;‘;o %*

In the foregoing, the notation for the sets ¥ of y-types and £ of ¢-types was implicitly understood to depend on
the signature of symbols . Whenever it will be necessary to make this more explicit I shall use the notation

V[Z] and £[2].

Definition 29: Let S be a SRS, and t be a wft. The S-normal form of an e-type T is defined as
N = (T € £IN] | T 3 T°}

That is the LUB of all terms containing no more expandable symbols that can be rewritten from T. Since £, is a
complete lattice, this is well-defined. Notice that a normal form is defined as a join of all possible rewriting of
an e-type. Thus, by theorem 26, we can restrict this definition only to sequences of rewritings in fan-out order
without losing anything in the definition of a normal form.

To lighten notation, I shall make use of vector notation to denote elements of £3 the set of n-tuples of e-types ;
e.g., '? =<T,,....T> T, € £o, i=1,...,n. Hence, a symbol rewriting system S of n equations, is denoted
by a single vector equation 8 = E . Given such a SRS, I shall use either indices in {1, ...,n} or the symbols
8, to index the components of a vector ; in £g; ie, T, s = T,. There should be no confusion since the s,’s will
be assumed distinct. Vector rewriting is the appropriate obvious extension to vectors of e-types of the

-
relation, and so is the definition of vector normal form N(T).
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.
Given a SRS 8: § = E and a wft t, X(t,8) denotes the set of (minimum radius) addresses in t whose symbols
are S-expandable. That is,

X(t,8) = {u € 4, 1 ¢y ) = s,, for some i=1,...,n}.

Any indexing of X(t,5) = {u,,... ,um} will be assumed to be a fan-out indexing. That is, one such that the
sequence {u,,...,u ) is in fan-out order. For example, taking the wit t on page 15 and g = <f,.f,.1.> we
have X(t.8) = {1,, 1;, 1.1}

The objective here is to define the operation of applying a fan-out sequence of substitutions of e-types to a wit ¢

at all expandable addresses of t. This operation is denoted t ['?/ 8] and defined as:

LIT/E] = v, /0] [Ty /0] ®)

where {u,, ..., 0.} = X(t,8). By theorem 28, it is evident that this is a well-defined operation. I shall
condense notation in 3 to:

v[1/F] = t[T‘bt(u)/u]ueX(t,E')

-
Let’s illustrate this operation on a small example. Let’s take § = <8 _,8,>and T = <T(.T,> with
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T, = {1, = X; 1, => X), g}

T, = hQ1

P = X; 13 = X)

2
and the term

t = 81(11 = 8,; 1, = 81)'

The set of expandable addresses for & in t thus is:
X(6,8) = {e, 1,, 1,}

corresponding to the symbols (in fan-out order) 8, 8y, B,. Hence, the sequence of substitutions starts with
8, at e:

then continues with s,at1;:

£, => X 81, = ¥; 1, => Y3
=> X;

=> s‘),

=> h(l2 => X 1, => X3

= sl) 3

ot

g1

[
R R

and finally ends with s y 8t 1y
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{1, =>X: 0y, =>Y; 1, =>1;

1
12 = X;
1, =>1Q, =>Y:1;1 =Y,
g(1, => h(l, = X; 1, => X);
1, => 0@, => ¥Y; 1, => Y)),
1(11 =X : 11(12 =Y; 1, => Y);
12 => X;
ls =g,
g(l, => n(l, =>X; 1, => X);
1, = g )

which is the value of ¢ ['I"/ 5]

This operation is extended to £g to vectors of e-types as follows: T [T */8"] is the vector of £8 whose 1%t
component is defined as

- —

(T [T'/E’])1 = t.eTt'[T */81]. (4)
Definition 30: An element T of £n is a solution of the equation & = E if and only if
E[T/8] =
We now proceed to show that a SRS viewed as a system of equations in £3 always has a solution which

corresponds to the least fixed-point of a vector function from £g to itself. Such a function Fis defined for a SRS

= E as follows:

AT) = E[T/51. ()
Proposition 81: The function #from £3 to itself defined by 5 is continuous.?
As a result, ¥ has a least fixed-point given by

Y7= 741D = uR, 7R
Now, since

E[Y7 /8] =

-

Y 7 is the solution of the equation 8 = E.
Let’s take again a small example to illustrate. Consider the single equation:

tree = {leaf, node(left => tree; right => tree))

with leaf < tree, node < tree. Hence, }’m_“

(J_) = {leaf}; then, 7 m_“ (__L) is given by:

{leaf, node(left => leaf; right => leat)
- .
(1) is:

and so .7” o

9This is where the fact that Lo is a complete Brouwerian lattice is important. Indeed, the proof of this proposition uses a characteristic
property of these structures.
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{leaf, node(left => leaf; right => leaf),
node(left => leaf;
right => node(left => leaf;
right => leaf)),
node(left => node(left =» leaf;
right => leaf));
right => leatf),
node(left => node(left => leaf;
right => leaf));
Tight => node{left => leaf;
right => leaf))}

and so on... The reader should see now that the successive powers of the tree component function 7 generate
-
all possible binary trees. Indeed, the meaning of the type tree ¢s precisely 7;, o (L) the infinite set (e-type) of

all such terms, Hence, solving type equation does give the meaning of recursively defined types.

The reader may wonder at this point how the example given in the beginning of this section on appending two
lists is related to computing a vector fixed-point. To see this, given a knowledge base KB, we can add a new
equation called query of the form ? = E, where ? is a special symbol not already in . Then, the answer to the
query is the component (Yf), of the solution of the augmented system.

3.3. Correctness

In order to establish that the fixed-point solution of a SRS does correspond to the value computed by KBL, it is
necessary to establish the correctness of the KBL interpreter. Namely, one must show that the normal form
obtained by infinite rewritings is equal to the least solution of the system of equations.

Unfortunately, I have not (yet) worked out a complete proof for the correctness theorem. A "conditional” proof
is obtained if two technical lemmas can be proved. These lemmas make intuitive sense and are extrapolations of
similar facts for tree—grammars‘m I conjecture them for now.

For any ? in £8 define
G(T) =T u AT
and

G*T) = LR 6 KM

— e e

Then, provided that, for any T |, T, T, in £,

Lemma 32: T, ;—» T, implies Tz[T3/§'] [ Ti{g *(TS)/§'];

and,

Lemma 83: T, C T,[N(&)/F] implies T, %" T,

then,

Theorem 34: Y¥ = 7/('8").

g4, {14}, pages 28-29, lemmas 2.38 and 2.39.



177

4. Conclusion

1 have described a syntactic calculus of partially ordered structures and its application to computation. A syntax
of record-like terms and a "type subsumption® ordering were defined and shown to form a lattice structure. A
simple "type-as-set® interpretation of these term structures extends this lattice to a distributive one, and in the
case of finitary terms, to a complete Brouwerian lattice. As a result, a method for solving systems of type
equations by iterated rewriting of type symbols was proposed which defines an operational semantics for KBL -
a Knowledge Base Language. It was shown that a KBL program can be seen as a system of equations. Thanks
to the lattice properties of finite structures, a system of equations admits a least fixed-point solution. The
particular order of computation of KBL, the "fan-out computation order”, which rewrites symbols closer to the
root first was formally defined and shown to be maximal. Unfortunately, the complete *correctness® of KBL is
not yet established. That is, it is not known at this point whether the normal form of a term is equal to the
fixed-point solution. However, as steps in this direction, two technical lemmas were conjectured to which a proof
of the correctness is corollary.
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