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1. Introduction 
The first part of this paper focuses on syntactic properties of record-like type structures. A syntax of structured 

types is introduced as labelled infinite trees, which may be seen as extrapolated from the syntax of first-order 

terms as used in algebraic semantics [8, 14, 15]. However, since the terms defined here are not to be interpreted 

as operations, the similarity is purely syntactic. A calculus of partially-ordered record structures is presented. It 

is then extended to variant record structures through a powerlattice construction. The second part deals with 

solving recursive type equations in a lattice of variant records. An operational semantics of type structure 

rewriting is first informally described. Then, a fixed-point semantics is discussed. Finally, a discussion of the 

correctness of the former with respect to the latter concludes the paper. 

2. A Calculus of  Type Subsumptlon 
The notion of subtyping has recently been integrated as a feature in some programming languages, although in 

a limited fashion. For example, in PASCAL it is provided only for so-called s imple  types like enumeration or 

range types. For more complex types, in general, subtyplng is not impl ic i t ly  inferred. For example, in ADA, one 

must declare explicit ly most subtyping relationships. This is true even in those formalisms like KL-ONE [5] or 

OBJ [11] where subtyping is a central feature. The only formalism which may be used for implicit subtyping is 

provided by first-order terms in PROLOG as first-order term instantiation. However, even this representation is 

limited as a model for partially ordered type structures. Nevertheless, it is of great inspiration for what is 

desired, which is a practical system of type structures which must have at least as much expressive power as 

offered by, say, classical record structures, as well as the capability of efficiently automating subtyping 

inference, and the construction of new structures from old ones. 

A specific des ideratum can be informally sketched as follows, a structured data type must have: 

• a head symbol which determines a class of objects being restricted; 
a attributes (or f ields,  or slots, ete.,) possessed by this type, which are typed by structured types 

themselves; 
• coreferenee cons train ts  between attributes, and attributes of attributes, etc., denoting the fact that 

the same substructure is to be shared by different compositions of attributes. 

Then, a type structure t I is a subtype of a type structure t 2 if and only if: 

• the class denoted by the head of t 1 is contained in the class denoted by the head of t2; and, 
• all the attributes of t 2 are present in t 1 and have types which are subtypes of their counterparts in 

t2; and, 

1Research described in this paper was done while the author was at the University of Pennsylvania, Philadelphia. 



159 

• all the coreference constraints binding in t 2 are also binding in t 1. 

For example, understanding the symbols s t u d e n t ,  p e r s o n ,  p h i l a d e l p h i a ,  c l tyname  to denote sets of 

objects, and if s t u d e n t  ~ p e r s o n  and p h i l a d e l p h i a  < c l tyname denote set inclusion, then the type: 

should be a subtype of: 

student(id => name(last => X:strlng); 
lives at => Y:address(elty => philadelphia); 
father=> person(Id => name(last => X); 

llves_at => Y)); 

person(ld => name; 
lives at => address(city => cltTaame); 
father => person) ; 

The letters X, Y in this example denote coreference constraints as will be explained. Formalizing the above 

informal wish is what this section attempts to achieve. 

2.1. A Syn tax  of  S t r u c t u r e d  Types  

Let Z~ be a partially ordered signature of type symbols with a top element 7-, and a bottom element _J_. Let L 

be a set of label symbols, and let T be a set of tag symbols, both non-empty and countably infinite. I shall 

represent type symbols and labels by strings of characters starting with a lower-case letter, and tags by strings 

of characters starting with an upper-case letter. 

A simple "type-as-set" semantics for these objects is elaborated in [1]. It will suffice to mention that type 

symbols in /~ denote sets of objects, and label symbols in L denote the intension of functions. This semantics 

takes the partial ordering on type symbols into set inclusion, and label concatenation as function composition. 

Thus, the syntax of terms introduced next can be interpreted as describing commutative composition diagrams 

of attributes. 

In a manner akin to tree addressing as defined in [8, 12, 13], I define a term domain on L to be the skeleton 

built from label symbols of a such a commutative diagram. This is nothing but the graph of arrows that one 

draws to picture functional maps. Formally, 

Defini t ion 1: A term (or tree) domain /% on L is a set of finite strings of labels of L such that: 

a/% is prefiz-closed; i.e., if u , v  E L* and u . v  E A then u E/%; 
•/% is f ini tely  branching; i.e., if u E/%, then the set {u. a 6 /% t a q L)  is finite. 

It follows from this definition that the empty string e must belong to all term domains. Elements of a term 

domain are called (term) addresses. Addresses in a domain which are not the prefix of any other address in the 

domain are called leaves. The empty string is called the root address. For example, if L = { i d ,  b o r n ,  day, 

month,  y e a r ,  f i r s t ,  l a s t ,  f a t h e r ) ,  a term-domain on L may be A 1 = (e ,  b o r n ,  b o r n . d a y ,  

b o r n . m o n t h ,  b o r n . y e a r ,  l d ,  l d . l a s t ,  f a t h e r ,  f a t h e r . i d ,  f a t h e r . i d . f i r s t ) .  A term domain 

need not be finite; for instance, the regular expression /%2 = a (ba )*+(ab )* ,  where a ,  b q L, denotes a 

regular set (on {a ,b} ,  say) which is closed under prefixes, and finitely branching; thus, it is a term domain and 

it is infinite. 

Given a term domain A an address w in A, we define the sub-domain of/% at address w to be the term domain 

/%\w = {w ° I w.w ° E /%). In the last example, the sub-domain at address b o r n  of/%1 is the set {e, day, 

month, y e a r ) ,  and the sub-domain of/%2 at address a . b  is/%2 itself. 

Defini t lon 2: A term domain/% is a regular term domain if the set of all sub-domains of A defined 
as Subdom(/%) = {/%\w I w q A} is finite. 

In the previous examples, the term domain /%1 is a finite (regular,) term domain, and /%2 is a regular infinite 

term domain since Subdom(/% 2) = {/%2' b./%2), In what follows, I will consider only regular term-domains. 
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The "flesh" tha t  goes on the skeleton defined by a term domain consists of signature symbols labelling the 

nodes which are arrow extremities. Keeping the "arrow graph" picture in mind, this stands for information 

about the origin and destination sets of the arrow representation of functions. As for notation, I proceed to 

introduce a specific syntax of terms as record-like structures. Thus, a term has a head which is a type symbol, 

and a body which is a (possibly empty) list of pairs associating labels with terms in a unique fashion -- an 

association list. An example of such an object is shown in figure 2-1. 

person(Id => name; 
b o r n  => d a t e ( d a y  => i n t e g e r ;  

m o n t h  => monthname; 
y e a r  => I n t e g e r ) ;  

f a t h e r  => p e r s o n ) ;  

Figure 2-1: An example of a term structure 

The domain of a term is the set of addresses which explicitly appear in the expression of the term. For example, 

the domain of the above term is the set of addresses (e ,  l d ,  b o r n ,  b o r n . d a y ,  b o r n . m o n t h ,  b o r n . y e a r ,  

f a t h e r ) .  

The example in figure 2-1 shows a possible description of what one may intend to use as a structure for a 

person. The terms associated with the labels are to restrict the types of possible values that  may be used under 

each label. However, there is no explicit constraint, in this particular structure, among the sub-structures 

appearing under distinct labels. For instance, a person bearing a last-name which is not the same as his father's 

would be a legal instance of this structure. In order to capture this sort of constraints, one can tag the addresses 

in a term structure, and enforce identically tagged addresses to be identically instantiated. For example, if in 

the above example one is to express that  a person's father's last-name must be the same as that  person's last- 

name, a better representation may be the term in figure 2-2. 

persou(td => n a m e ( l a s l ~  => X:strlng); 
b o r n  => d a t e C d a y  => i n t e g e r ;  

month => monthn~e; 
y e a r  => i n t e K e r )  ; 

father => persou(ld => name(last => X:strlng))); 

Figure 2-2" An example of tagging in a term structure 

Def in i t i on  3: A term is a triple ( A , ¢ , T )  where A is a term domain on L, ¢ is a symbol function 

from L* to ~U such that  ~b(L*-A) = (T}, and r is a tag function from A to T. A term is finite 
(reap. regular) if its domain is finite (reap. regular). 

Such a definition illustrated for the term in figure 2-2 is captured in the table in figure 2-3. Note the wsyntactlc 
sugar ~ implicitly used in figure 2-2. Namely, I shall omit writing explicitly tags for addresses which are not 

sharing theirs. In the sequel, by "term" it  will be meant "regular term". 

Given a term t = ( A , ¢ , r ) ,  an address w in z~, the subterm o f  t at address w is the term t \ w  = 

(A\W,¢\W,T\W) where ¢\w:  L* --* E a n d  r\w: A\w -~ 7"are defined by: 

• ¢\wCw') = ¢(w,w') Vw" ~ L*; 
• r\w(w') = r(w.w') Vw" E ~\w. 

From these definitions, i t  is clear that  t \ e  is the same as t .  In example of figure 2-2, the subterm at address 

f a t h e r ,  l d  is name ( l a s t  => X: s t r i n g ) .  

Given a term t = (~ ,~b , r ) ,  a symbol f ,  (reap., a tag X, a term %,') is said to occur in t if there is an address w 
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e person X 0 
ld  name X 1 
l d . l a s t  s t r l n  K X 
born date  X 2 
born,day  In teger  X 3 
born.month monthname X 4 
born .year  in teger  X 5 
fa ther  person X s 
f a t h e r . i d  name X 7 

f a t h e r , i d . l a s t  s~r lng X 

F i g u r e  2-3:  ( A , ¢ , r ) - d e f i n i t i o n  of the t e rm in figure 2-2 

in z~ such t h a t  ¢ ( w )  = f (reap., r (w)  = X, t \ w  = t ' ) .  The  following proposi t ion is immedia te  and follows 

by definition. 2 . 

P r o p o s i t i o n  4: Given s te rm t = ( A ,  ¢ ,  r ) ,  the  following s t a t emen t s  are equivalent:  

• t is a regular  term; 
• The number  of subterms occurring in t is finite; 
• The number  of symbols  occurring in t is finite; 
• The  number  of tags  occurring in t is finite. 

I t  follows tha t  a eoreference re la t ion on a regular  t e rm domain  has  finite index. 

D e f i n i t i o n  5: In a term, any two addresses bear ing the same tag  are said to corder .  Thus, the 
coreferenee re la t ion ~ of a t e rm t = ( A , ¢ , r )  is a re la t ion defined on A as the kernel of the tag  
function r, i.e., ~ = K e r ( r )  = ~ r  -1. 

W e  immedia te ly  note  t h a t  ~ is an equivalence re la t ion since i t  is the kernel  of a function. A ~-elass is called a 

coreferenee class. For  example,  in the t e rm in figure 2-2, the addresses f a t h e r . i d . l a s t  and i d . l a s t  

corder .  

A te rm t is referentially consistent if the same sub te rm occurs a t  al l  addresses in a coreference class. T h a t  is, if 

C is a coreference class in Xi/~ then t \ w  is identical for all addresses w in C. Thus,  if a t e rm is referential ly 

consistent,  then  by definit ion for any  wl ,  w 2 in A,  if  r (w  1) = r (w 2) then  for al l  w such t h a t  w l . w E  A, 

necessarily w 2 . w E ~ also, and r (w 1 . w) = r (w 2 . w). Therefore,  if a t e rm is referent ial ly consistent,  ~ is in fact  

more than  a s imple equivalence relation: i t  is a right-lnvariant equivalence, or a right-congruence, on A T h a t  

is, for any two addresses w 1, w 2, if wl~w 2 then w 1 .w~w2.w for any w such t h a t  w 1 .w G A and w 2 .w E A. 

D e f i n i t i o n  8: A well-formed term (wft) is a t e rm which is referent ial ly consistent.  

I shall  use th is  proper ty  to  just i fy  another  syntact ic  "sweetness":  whenever  a tag  occurs in a t e rm wi thou t  a 

subterm,  wha t  is meant  is t h a t  the subterm elsewhere referred to in the t e rm by an address bear ing this  tag  is 

impl ic i t ly  present.  If there  is no such subterm,  the impl ic i t  sub te rm is T .  For  example,  in the t e rm f o o ( 1 1  => 

X; 1 a => X : b a r ;  1 s => ¥ ;  14 => Y), the sub te rm a t  address 11 is b a r ,  and the subterm a t  address 14 is 

T -  In w h a t  follows, 7-  will  never  be wr i t t en  explici t ly in a term.  

Note t h a t  i t  is  quite possible to consider in f in i te  t e rms  such as shown in figure 2-4. For  example,  a t  the 

addresses f a t h e r  and  f a t h e r ,  s o n .  f a t h e r ,  is a phenomenon which I call cyclic tagging. 

Syntact ical ly ,  cycles may  also be present  in more pathological  ways  such as p ic tured in figure 2-5, where one 

mus t  follow a p a t h  of cross-references. 

2Also estsblished in [8] 
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person(id => name(last => X:string); 
born => date(day => integer; 

month => monthname; 
year => integer); 

father => Y:person(Id => name(last => X:strlng); 
son => person(father => Y))); 

Figure  2-4- An example of simple cyclic tagging in a term structure 

fO0(l I => Xl:fOO1(k I => X2); 
12 => X2:foo2(k 2 => Xs); 

11 :> Xi:fO%(k I => Xi.1); 

i => X :foo (k => Xl)); 

Figure  2-5: An example of complex cyclic tagging in a term structure 

A term is referentially acyclic if there is no cyclic tagging occurring in the term. A cyclic term is one which is 

not referentially acyclic. Thus, the terms in figures 2-4 and 2-5 are not referentially acyclic. A wft is then best 

pictured as a labelled directed graph as illustrated in figure 2-6 which is the graph representation of the wft 

below. Thus, labels act as arcs between nodes bearing type symbols. Tags are physical pointers to nodes, 

indicating which nodes ace shared. 

Xo:f,(l ~ => x~:f~(l 2 => X2; 

1 s => fs); 
14 => X2; 
1 s => fs(le => XI; 

17 => Xs:fs; 
i s => xs ) ,  
zg :> x o)) 

I I s g 
1 

Figure  2-8: Graph representation of a wft 

In figure 2-6, the similarity with finite states diagrams is not coincidental. And thus, it follows that a term is 

referentially acyclic if and only if its term domain is finite. Also, any term (cyclic or not) expressed in the 

above syntax is a regular term. 
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The set of well-formed terms is denoted ~Y-5. The set of well-formed acyclic terms is denoted )g~r/~ 7" and is a 

subset of ~T~. 

I shall not give any semantic value to the tags aside from the coreference classes they define. The following 

relation a on ~TT is to handle tag renaming. This means that a is relating wft's which are identical up to a 

renaming of the tags which preserves the coreference classes. 

Defini t ion 7: Two terms t, 1 = (A 1 '¢1 ' r l )  and 1;2 = (A2'~b2'r2) are alphabetical variants of one 

another (noted 1;1 a 1;2) if and only if: 

1. A 1 = z52; 
2. K e r ( r  1) = Ker ( r2) ;  
3. ¢ 1 = % ,  

Interpreting these structures as commutative diagrams betweens sets, it comes thut the symbols ~ and 1 

denote, respectively, the whole universe -- nanything ~ -- and the empty set -- nineonsistent #. Hence, a term in 

which the symbol _]_ occurs is to be interpreted as being inconsistent. To this end, we can define a relation ~ on 

~ ) T T -  smashing - ,  where 1;1~1; 2 if and only if .J_ occurs in both t t and 1;2' to be such that all equivalence 

classes except [.J_] are singletons. Clearly, if _l_ occurs in a term, it also occurs in all terms in its a-class. In 

the way they have been defined, the relations a and 1[ are such that their union ~ = a t.J ~ is an equivalence 

relation. Thus, 

Defini t ion 8: A e-type is an element of the quotient set ~ = ~YT/~.  An acyclle C-type is an 
element of the quotient set ~0 = ~jr~ T /~ .  

2.2. T h e  S u b s u m p t l o n  Ordering 
The partial ordering on symbols can be extended to terms in a fashion which is reminiscent of the algebraic 

notion of homomorphie extension. I define the subsumption relation on the set • as follows. 

Definit ion 9: A t e r m  ~1 ~ ( A l ' ~ l ' r l )  18 subsumed by a term "6 2 = ( A 2 , ¢ 2 , r  2) (noted 
t l ~ t 2 )  , if and only if either, tl~_l_; or, 

I. A 2 _C ~1; 
2. K e r ( r  2) C K e r ( r l ) ;  

3, ¢1(w) < ¢2(w), Vw E L*. 

It is easy to verify that a subsumption relation on ~ defined by [1;1] ~ [1;2] if and only if 1;1-----1;2 is well-defined 

(i.e., it does not depend on particular class representatives) and it is an ordering relation, s 

This notion of subsumption is related to the (in)famous IS -A  ordering in semantic networks [5, 6], and the tuple 

ordering in the so-called semantic relation data model [4]. It expresses the fact that, given a C-type 1;, any 

C-type 1:," defined on at least the same domain, with at least the same coreference classes, and with symbols at 

each address which are less than the symbols in 1; at the corresponding addresses, is a subtype of 1;. Indeed, such 

a t "  is more specified than 1;. 

The =homomorphie" extension of the ordering on E to the subsumption ordering on • can be exploited further. 

Indeed, if least upper bounds (LUB) and greatest lower bounds (GLB) are defined for any subsets of ,U, then this 

property carries over to fit 

T h e o r e m  10: If the signature ,U is a lattice, then so is ~. 

Rather than giving formal definitions for the meet and join operations on if', let us illustrate the extended lattice 

31a the sequel, I shall use the (abusive) convention of denoting a ~type by one of it8 class representatives, understandi.g that what is 
meant is modulo tag rs.aminy and ~masMng. 
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T 

person witch monarch 

adul t  ch i ld  en 

t e e ~ _ q u e e n  

/ 

F i g u r e  2-7:  A s ignature  which is a la t t ice  

operat ions wi th  an example.  Figure  2-7 shows a s ignature  which is a f inite (non-modular)  latt ice.  Given this  

s ignature ,  the two types in figure 2-8 a d m i t  as meet  and  join the types in figure 2-9. 

child(knows => X:person(knows => queen; 
hates  => Y:monarch); 

hates => child(knows => Y; 
likes => wlcked_queen); 

l i k e s  => X); 

adult(knows => adult(knows => witch); 
hates => person(knows => X:monarch; 

likes => X)); 

F i g u r e  2-8." Two wft ' s  

person(knows => person; 
hates => person(k~ows =>monarch; 

l i k e s  => monarch)); 

teenager(knows => X:adult(knows => wlckedqueen;  
hates => Y:wickedqueen);  

hates  => child(knows => Y; 
l i k e s  => Y); 

likes => X); 

F i g u r e  2-9:  LUB and GLB of the two types in figure 2-8 

The  reader is referred to  [1] for the detai led definit ions of the meet  and join operat ion on ~. I t  suffices here to 

say t h a t  they are essential ly extensions of the unif icat ion [15, 20] and generalization [19] operat ions on regular 

f irst-order terms. Indeed, these operat ions are special cases of my definit ions when (i) ~ is a flat latt ice,  (il} a 
coreferenee class may  conta in  more than  one element i f f  al l  of i t s  elements are leaves and the  symbols  occurring 

a t  these leaves are res t r ic ted to be 7-.  

An i m p o r t a n t  r emark  is t h a t  the set ~P0 of acyclic C-types also has  a la t t ice  s t ructure .  

T h e o r e m  11:  If  • is  a lat t ice,  then  so is ~0" However ~0 is not a subla t t ice  of kk 

The join operat ion is the same, bu t  the meet operat ion is modified so t h a t  if  the GLB in ~ of two acyclic terms 

contains a cycle, then  their  GLB in ~P0 is _l_. However, ~0 is not  a sublat t ice  of ~, since the meet in ~P of two 
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acyclic wft 's  is not  necessarily acyclic. Consider, for example 4 

t t = f(l I => X : f; 12 => f(l~ => X)) 

%~ = f(iz => X : f; 12 => X) 

t I A t. 2 = f(l I => X : f(l 3 => X) ; 12 => X) 

2.3, A D i s t r i b u t i v e  L a t t i c e  o f  Types 
Accepting the =type-as-set" interpretation of the calculus of ~b-types, it is yet necessary to wonder whether 

lattice-theoretic properties of meet and join reflect those of intersection and union. Unfortunately,  this is not 

the case wi th  ~. The lattice of ~/~types is not so convenient as to be distributive, even if the signature E is itself 

distributive. As a counter-example, consider the flat (distributive) lattice E = {7- ,  a ,  f • J_}.  Indeed, 

! A Cf(1 => a) V a) = f 

(t A f(l => a)) V (f A a) = f(l => a) 

and this proves that Y/YFis not distributive, s 

This is not the only ailment of ~YT as a type system. Recall that in order to obtain the benefit of a lattice 

structure as stated in theorem 10, there is a rather strong demand that the type signature S be itself a lattice. 

For a signature that would be any poset, this nice result is unfortunately lost. In practice, programs deal with 

finite sets of primitive types. Even then, it would be quite unreasonable to require that all meets and joins of 

those primitive types be explicitly defined. What should be typically specified in a program is the minimal 

amount of type information which is to be relevant to the program. Clearly, such a signature of type symbols 

should be not necessarily more than a finite incompletely specified poser of symbols. 

It is hence necessary to go further than the construction of P#TT in order to obtain a satisfactory type system 

which would not make unreasonable demand for primitive type information. Fortunately, it is possible not to 

impose so drastic demands on L? and yet construct a more powerful lattice than ~Y-~ i.e., a distributive lattice. 

The idea is very simple, and is based on observing that the join operation in • is too ~greedy = . Indeed, if one 

wants to specify that an object is of type foo or bar when no explicit type symbol in L~ is known as their GLB, 

then T is returned. Clearly, it is not correct to infer that the given object is of type WanythingS just because E 

does not happen to contain explicitly a symbol for the GLB foo and bar. All that can be correctly said is that 

the given object is of disjunctive type fooVbar. 

I next give a brief summary of a construction of such a more adequate type lattice. It may be construed as a 

powerdomain construction to handle indeterminacy [17]; in our case, variant records. It is not possible to detail 

this construction here. The interested reader is referred to [1]. 

A poset is Noetherian if it does not contain infinitely ascending chains. Given a set S, the set ~(S) of finite 

non-empty subsets of maximal elements of S is called the restricted power of S. If S is a Noetherian poser, the 

set ~[S] of all such subsets of maximal elements is called the complete restricted power of S. Given a 

Noetherian poser S, and S'__S, ~(S') is the set of maximal elements of S'. 

I shall call £ the set £[~], and £0 the set P[t~o]. Clearly, £0 is a subset of £. I shall denote a singleton {t} in £ 

simply by ~. 

4A similar phenomenon happens in unification of first-order terms where it is reason for the so-called "occur-cAex.k # testing whether a 
variable occurs in a term when trying to unify that variable with the term. 

5A similar result was pointed out by G.PIotkin in [18]. 
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D e f i n i t i o n  12:  Subsumpt ion  in £ is defined by, T 1 __. T 2 if and only if every C-type in T 1 is 

subsumed by  some C-type in T 2. 

Let ' s  define a nota t iona l  va r i an t  of elements of £ which will  have the advan tage  of being more compact 

syntact ica l ly .  Consider  the object  shown in figure 2-10. The  syn tax  used is s imi la r  to  the one which has 

expressed C-types up to now. However, sets of te rms  ra ther  t h a t  te rms may occur a t  some addresses. 

person(sex  => <ma le ,  female);  
fa ther  => Y:person(sex => male); 
mother => Z:persos ( sex  => female);  
parent  => ~Y, Z));  

F i g u r e  2-10:  Example  of a e- term 

This notation may be viewed as a compact way of representing a sets of e-types. For example, the object in 

figure 2-10 represents a set of four e-types which can be obtained by expansion, keeping one element at each 

address. Such terms are called e-terms. An e-term can be transformed into a set of ~-types - its ¢-¢xpanslon; 

i.e., the e-expansion of an e-term is the set of all possible e-types which can he inductively obtained by keeping 

only one e-type at each address. The reader familiar with first-order logic could construe this process as being 

similar to transforming a logical formula into its disjunctive normal form. 

We are now ready to construct a distributive lattice of e-types. First, we relax the demand that the signature E 

be lattice. Assuming it is a Noetherian poset we can embed it in a meet-semilattice P[~ preserving existing 

GLB's. Then, we can define the meet operation on • so that whenever the meet of two symbols in not a 

singleton, the result is expanded using ~b-expansion. 

Theorem 13: If the signature E is a Noetherian poset then so is the lattice ~0; but the lattice ~ is 

not  Noetherian.  

The following counter-example exhibi ts  an infini tely ascending chain of wfts in k~. For  any a in L and any f in 

~U, define the  sequence t a = ( A  n. ~b n , rn) ,  n ~_ 1 as follows: 

A a : a*; 

AJ~; = AJKer(~) = <<e), <a> ..... <a'-i), a'.a*). 

This clearly defines an infinite strictly ascending sequence of regular wft's since, for all n_~0: 

A. I C An; 

In our syntax, this corresponds to the sequence: 

t o = x : f(a => x), 

t I = f(a => x : f(a => x)). 

t s = f(a => f(a => x : !(a => x))) ..... 

t n = f(a => f(a => ... f(a => x : f(a => x))...)) .... 
< . . . .  rL+ l  a ' s  . . . .  • 

We define two binary operations Vl and Li on the set £0" For any two sets T i and T 2 in £0: 
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T t 17 T 2 = ~ ( ( t  I t = t, lA t  2, t, 1 E T1, t 2 E T2}); 

T 1 II T 2 = ~ (T  1 U T2). 

where A is the meet operation defined on ~0' Then, for any poset E containing -r- and _J_, 

T h e o r e m  14. The poset £0 is a distributive lattice whose meet is Iq, whose join is II, and whose top 

and bottom are { T }  and {_1_}. 

It is not possible to define lattice operations for £ because ~/is not Noetherian. Hence, the set of maximal 

elements of a set cannot be defined for all sets. However, if only finite sets of regular wft's are considered, then: 

T h e o r e m  15= The poser ~(~) of f ini te  sets of incomparable regular wft 's is a distributive lattice. 

However, it is not complete. It is also true that ~(~0 ) C £(~) and ~(~0 ) is a distributive lattice, but it is not a 

sublattice of £. In general, the GLB of elements of ~(~0 ) is a lower bound of the GLB of these elements taken in 
£c~). 

A Brouwerian lattice L is a lattice such that for any given elements a and b, the set (x  E L I a A x _< b} 

contains a greatest element, written as a--~b. An interesting point is that (i) any Brouwerian lattice is 

distributive but, not conversely; and (ii} any Boolean lattice is Brouwerian, but not eonveraely [3}. Thus, the 

class of Brouwerian lattices lies strictly between the class of distributive lattices and the class of Boolean lattices. 

T h e o r e m  10: If the signature L" is a Noetherian poset then the lattice £0 of all sets of finite wfts is 

a complete Brouwerian lattice. 

To answer the question that might be hovering in the reader's mind, 6 the fact that the lattice £0 is a complete 

Brouwerian lattice reveals itself invaluable for showing the existence of solutions to systems of equations. Apart 

from its lattice theoretic properties, a Brouwerian lattice is interesting as it forms the basis of an intnitionistic 

propositional logic, due to L.E.J.Brouwer [7, 10]. 

Unfortunately, theorem 16 does not hold for £ the lattice of all regular terms since the lattice £ is not complete. 

On the other hand, I do not know whether £ is Brouwerian. 

3 .  P r o g r a m s  a s  R e c u r s i v e  T y p e  E q u a t i o n s  

Consider the equations in figure 3-1. Each equation is a pair made of a symbol and an e-term, and may 

intuitively be understood as a definition. I shall call a set of such definitions a knowledge base. 7 

Defini t ion 17" A knowledge base is a function from •-{.1_} to £0 which is the identity almost 

everywhere except for a finite number of symbols. 

So far, the partial order on ~ has been assumed predefined. However, given a knowledge base, it is quite easy to 

quickly infer what I shall call its implicit symbol ordering. For example, examining the knowledge base in figure 

3-1, it is evident that the signature E must contain the set of symbols { l i s t ,  cons ,  n ± l ,  append,  

a p p e n d 0 ,  append_l},  and that the partial ordering on E is such that n l l  < 11s1~, cons  < 1 1 s t ,  

append_0 < append,  append_l  < append. In general, this ordering can always be extracted from the 

specification of a knowledge base. 

Defini t ion 18: A knowledge base is well-deflned if and only if it admits an implicit symbol 
ordering. 

6Namely, uSo what,'... ~ 

7Or program, or type environment... Nevertheless, knowledge base is a deliberate choice since what is defined is in essence an abstract 
semantic network. 
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l l s t  = {all,  cons}; 

append = {append_O, append_l}; 

append_O = 
(front => nil; 
back => X:list; 
whole => X); 

append_l = 
( f r o s t  => cons(head => X; t a l l  => Y ) ;  
back => Z:llst ;  
whole => cons(head => X; t a l l  => U); 
pa tch  => a p p e n d ( f r o n t  => Y; back => Z; whole => U ) ) ;  

Figure  3-1" A specification for appending two lists 

I want to describe an interpretation of any given type in the context of this knowledge base so that expanding 
the input aeeording to the specifications wilt produce a consistently typed object. A ~-type is evaluated by 

"expanding ~ its root symbol if its knowledge base value is not itself; i.e., substituting the root symbol by its 

knowledge base value by taking the meet of this value and the ~-type whose root symbol has been erased 

(replseed by T) .  If the root symbol is mapped to itself by the knowledge base, the process is applied recursively 

to the subterms. Recalling the "type-as-set" semantics of ~-types and t-types, this process essentially computes 

unions and intersections of sets. The symbol substitution process is to be interpreted as importing the 

information encapsulated in the symbol into the context of another type. 

Let's trace what the interpreter does, one step at a time, on an example. Let's suppose that the knowledge base 

in figure 3-1 is defined. Consider the following input: 

append(front => cons(head => 1; 
tai l  => cons(head => 2; 

tail => nil)); 

back => cons(head => 3, 
tail => nil)); 

Next, the interpreter expands append into {append 0, append_l}:  

{appeud_O(frost => cons(bead => 1; 
ta l l  => cons(head => 2; 

tail => nil)); 

back => cons(head => 3; 

tall => nil)), 

append_l(front => cons(head => 1; 

tall => cons(he~d => 2; 

tail => nil)); 

back => cons(head => 3; 

tail => nil))>; 

Each of these two basic e-terms is further expanded according to the definitions of their heads. However, the 

first one (append_O) yields / since the meet of the subterms at f r o n t  i s / .  Hence, by ~-reduction, we are 

left with only: 
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(front => cons(head => i; 
tall => cons(head => 2; 

tall => all)); 

back => cons(head => 3; 
tall => nil); 

whole => cons(head => I: 

tall => U): 
patch => append(front => cons(head => 2; 

tail => nll); 

hack => cons(head => 3: 
tall => nil): 

whole => U)); 

The process eon~nues, expanding the subterms: 8 

(front => cons(head => 1; 
t a i l  => cons(head => 2 ;  

t a l l  => nil)); 
back => c o n s ( h e a d  => 3; 

t a i l  => n i l ) ;  
w h o l e  => c o n s ( h e a d  => 1 ;  

t a l l  => c o n s ( h e a d  => 2 ;  
tall => U)); 

patch => (front => cons(head => 2; 
tall => nil): 

hack => cons(head => 8; 
tail => nil); 

patch => append(front => nil; 
back => cons(head => 3; 

t a l l  = >  n i l ) ;  
whOle => U); 

whole => cons(head => 2; 
tail => U))); 

Finally, the following term is obtained which cannot be further expanded. The interpretation of append has 

thus correctly produced a type whose whole  is the concatenation of its f r o n t  to its end. The result could be 

isolated by projection on the field whole  if desired. The attr ibute p a t c h  is the history of the computation. 

(front => cons(head => 1 :  
tail => cons(head => 2; 

tall => nll)); 

back => cons(head => 3; 
tall => nil); 

whole => cons(head => I; 
t a i l  => cons(head => 2 ;  

t a i l  => cons(head => 3 ;  
tall => nil))); 

patch => (front => cons(head => 2; 
tall => nil); 

b a c k  => c o n s ( h e a d  => 3 ;  
tall => nil); 

patch => (front => nil; 
back => cons(head => 3; 

tall => nil); 
whole => cons(head => 3; 

%all => nil)); 

WhOle => coss(head => 2; 
tall => cons(head => 3; 

tall => all)))); 

Computation in KBL amounts essentially to term rewriting. In fact, i t  hears much resemblance with 

computation with non-deterministic program schemes [9, 16], and macro-languages and tree grammars [14]. This 

section at tempts a formal characterization of computation in KBL along the lines of the algebraic semantics of 

8For what remains, I shall leave out the details of cleaning-up .L by R-reduction. 
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tree grammars [2, 14]. Symbol rewriting presented in this section is very close to the notion of second-order 

substitution defined in [8] and macro-expansion defined in [14]. 

It is next shown that a KBL program can be seen as a system of equations. Thanks to the lattice properties of 

finite wft's, such a system of equations admits a least f'L~ed-point solution. The particular order of computation 

of KBL, the #fan-out computation order", which rewrites symbols closer to the root first is formally defined 

and shown to be maximal; i.e., it yields "greater" e-types than any other order of computation. Unfortunately, 

the complete "correctness u of KBL is not established. That is, it is not known (yet) whether the normal form of 

a term is equal to the IrLxed-point solution. However, as steps in this direction, two technical lemmas are 

conjectured to which a proof of the correctness is corollary. 

All wft 's considered hereafter are f inite.  Hence, I shall not bother mentioning the adjective "finite" when 

dealing with wft's for the rest of this paper. 

3.1. W i t  s u b s t i t u t i o n  
I next introduce and give some properties of the concept of wft substitution. Roughly, given a wft t such that  a 

symbol f occurs at  address u in t ,  one can substitute some other wft t '  for f at  address u in t by "pasting-in" 

t '  in t a t  that  address. 

Given a wft t ~ ( A , ¢ , r )  and some string u in L*, I define the wft u , t  to be the smallest wft containing t at 

address u; tha t  is, u. t = (u .  A u .  ¢ ,  u, ~) where 

• u . A  = {w E / - *  ] w = u . v .  v E A ) ;  
• u . ¢ ( w )  = i f  w = u . v  then ¢ ( v )  else T ;  
• u . r  : u . A  --, T such that u . r ( v )  = u . r (w)  i f f  v = u . v ' ,  w = u.w" and 

r C v ' )  = T ( w ' ) .  

This can be better visualized as the wft obtained by attaching the wft t at the end of the string u. 

Let u l ,  1=1 . . . . .  n be mutually non-eoreferring addresses in A and let f l '  1=1 . . . .  .,n be symbols in E. 

Then, the wft t [ u l : f  1, . . .  , u n : f  n] is the wit  (A,g~,r) ,  where ~b coincides with ¢ everywhere except for the 

eoreference classes of the u i ' s  where ~b( [u i]  ) = f l  for 1=1 . . . . .  n. It is clear that  the term obtained is still 

well-formed. 

D e f i n i t i o n  19: Let t = ( A , ¢ 0 r ) b e  a wft and u some address in A and let t '  be a wft. The term 

t i t ' / u ]  is defined as t i t ' / u ]  = t [ u : T ]  A u . t ' .  

This operation must not be confused with the classical tree grafting operation which replaces a subtree with 

another tree. The operation defined above super-imposes a term on a subterm with the exception of the root 

symbol of that  subtree which becomes equal to the root of the replacing tree. Note that  _j_ may result out of 

such a substitution. To illustrate this operation, if t is the wft 

(front => cons(head => X 1 : I; 
tall => X~ : cons(head => 2; 

tail => nil)); 
hack => X s : cons(head => 3; tall => nil); 
whole => cons(bead => Xi; tail => ](4); 
patch => append(front => X2; back => Xs; whole => X4)); 

and t "  is the wft 

(front :> cons(head :> X; tall :> Y); 
back => Z; 
whole => cons(head => X; tall => U); 
patch => append(front => Y: back => Z; whole => U)); 

then t [t'/patch] is 
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( f r o n t  => c o n s ( h e a d  => X 1 : i ;  

tail => X~ : cons(head => X s : 2; 

t~ll = >  X s : nil))~ 

b~ck => X s : cons(he~d => 3; 

t~ll => nil): 

whol~ :> cons(head => XI: 

tall => X 7 : cons(head => XS; 

ta i l  => x~)): 
patch => ( f r o n t  => X~; 

back => XS: 

p a t c h  => a p p e n d ( f r o n t  => Xs; 

back => Xs; 
whole => X 4) ; 

whole :> X?)). 

Next, I give a series of "surgical m lemmas about this substitution operation which will be needed in proving key 

properties of KBL's computation rule. The first lemma states the intuitively clear fact that which address is 

picked out of a coreference class in a substitution does not affect the result. This is made apparent as depicted 

in figure 3-2. 

F igure  3-2: Substitution at coreferring addresses 

L e m m a  20: Let t = ( A , ¢ , r )  and t "  be wft's, and let ul, u 2 be two coreferring addresses in z~. 

Then, ( t [ t ' / u l ] ) [ t ' / u  2] = t [ t ' / u  1] = t [ t * / u  2] = ( t [ t ' / u 2 ] ) [ t ' / u l ]  

An address u c o v e r s  an address v in a wft if there exists an address u ° in [u] such that v = u" .  w for some w 

in L*. That is, u covers v in t if v occurs in t \ u .  

Next, it is important to analyze the extent to which a sequence of substitutions is affected by the particular 

order in which they are performed. Specifically, order of two substitutions will not matter if the addresses do 

not cover each other; however, order of substitutions will matter if one of the two addresses covers the other. 

We first need a small technical lemma. 

Lemma 21." If u and v are addresses in a wft t which do not cover each other, then for any wft t', 

(t[u:T] ^ u.t')[v:T] = t[u:T,v:T] ^ u.t" 

The next lemma gives a sufficient condition for commutativity. 

Lemma 22: Let t = (z~,¢,r), tl, t 2 be wft's, and let ul, u 2 he two addresses in A which do not 

cover each other. Then, 

( t  [ t l / u  1] ) [ t~ /u  2] = ( t  [ t 2 /u  2]) [ t / u ~ ]  

The second lemma complements the previous one and shows that the order of substitution matters for covering 

addresses. However, the wft resulting from performing the "outermost" substitution first subsumes the wft 
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resulting from performing the "innermost = substitution first. The picture in figure 3-3 may help illustrate the 

argument. 

Figure  3-3: Substitutions at covering addresses 

Lemma 23: If two addresses u i and u 2 in a wft t are such that u i covers u2, then 

( t  [t2/u 2] ) [ t i /u 1] -< (~ [ t t /u 1] ) [t2/u 2] 
for any wft's t l  and t 2. 

The objective of these lemmas is to help show that the particular order of performing substitution performed by 

the KBL interpreter yields an e-type that subsumes all e-types obtained by any other order of computation. 

Next, the Jan-out  computa t ion  theorem 2{} is proposed to that effect, using the above technical lemmas. 

The following notion will be useful in expressing an ordering on the addresses of a wft. The notion of radius of 

an address is a measure how "close to the root = an address is; that is, the shortest (in length) in the coreference 

its class. Given a string u in L*, [ul denotes its length; i.e., the number of labels which constitute u. 

Defini t ion 24: Let t = ( A , ¢ , r )  be a wft; then, the radius  of an address u in A is defined as p(u)  
= Min({ lv l  I v e [u ]} ) .  

That such a minimum number exists for all classes is clear. Recall that lemma 20 states that a substitution can 

be performed at any address in a eoreference class with the same result. For this reason, it will be implicit in all 

substitutions considered hereafter that the address at which the substitution is performed is a minimal length in 

its class. 

Defini t ion 25: A sequence of addresses ul, 1=1 . . . . .  n of a wft 1~ is in nfan-out  ~ order if and only 

if l < J  implies p (u  l)  < p ( u j ) .  

For example, in the wft: 

t = f,(1, => xi:f2(t = => x2; 
1 s => fs) ; 

14 => x2; 
16 => f4(16 => xl; 

17 => Xs;fs; 
:8 => xs)) 

the sequence e, 15.18, 14, 18.17, 11.1 s is in fan-out order. However, the sequence c, l s . 1  e, 14, 11.13, 

1 s is not. In the sequel, I shall lighten the notation ( t  [ t i / u  1] ) [ t2 /u  2] to t [ t l / u l ]  [t2/U2]. 

The following theorem is a consequence of the temmas just presented. 

T h e o r e m  26: Let t be a wft, and U = {u 1 . . . . .  u n} a set of mutually non-core]erring addresses of 

t, such that the sequence ul,  1=1 . . . . .  n is in fan-out order. Let ~r be a permutation of the set 
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{1 . . . . .  n} such that lr(ut) , l = l  . . . . .  n is also in fan-out order. Then, for any set of wft's 

{ t  1 . . . . .  in ) ,  

t [ t l / u  1 ] . . . [~ ,n /un ]  = t [ t  (1)/U ( 1 ) ] . . .  [ t  (n)/Un(n)]. 

Moreover, if the permutation ~ destroys fan-out order, then 

t [ t t / U l ] - - .  [ tn/u n] -~ t [ t  (I)/U~.(I)].., [t~(n)/U~(n)]" 

Substitution is extended to e-types as follows: for any t in k~0, T in £0' and any u in A ,  

t i T / u ]  = {_{t.eTt[t ' /U].  

(i) 

(2) 

3.2. Symbol  Rewr i t ing  Sys t ems  

Defini t ion 27: A Symbol Rewriting System (SRS) on ~ is a system S of n equations S : s I = El, 

wheres  I E ~ a n d E t E £ 0 ,  f o r l  = 1 . . . . .  n. 

Given such a system S, I shall denote by E the subset {s  1 . . . . .  s n} of E of S-expandable symbols, and N the 

set ,U-E of non-S-expandable symbols of E. An example of a SRS is given by figure 3-1. There, we have E = 

{ l l s t ,  append,  append_O, append_l}  and N = { a l l ,  cons ) .  

Definit ion 28: Let S: s 1 = T 1 be a SRS. It defines a one-step rewriting relation ~-~ on £0 as 

follows: T 1 ~-+ T 2 if and only if there is a wft 5 E T 1, some address u in A t and some index 

iE (1  . . . . .  n} for which C t (u )=s t ,  such that T 2 = ( T l - { t } )  U t [ E J u ] .  

In words, this expresses the fact that the e-type T 2 is obtained from the e-type T 1 by picking out some element 

of T1, substituting for one of its occurrences of some expandable symbol the right-hand side of this symbol in S, 

and adjoin the result to the set keeping only maximal elements. This process is illustrated by the first step of 

the trace of KBL shown on page 11. 

I shall denote by ~* for k_>O the relation ~, composed with itself k times, and by g* the reflexive and 
oo k transitive closure of ~" ; that is, the relation Uk= 0 ~-~. 

In the foregoing, the notation for the sets ~' of C-types and £ of c-types was implicitly understood to depend on 

the signature of symbols /~. Whenever it will be necessary to make this more explicit I shall use the notation 

~'[L'] and £ [L-~]. 

D e f i n i t i o n  29: Let S be a SRS, and t be a wft. The S-normal form of an e-type T is defined as 

~(T) = U{T" e £o[N] I r ~ T'} 

That is the LOB of all terms containing no more expandable symbols that can be rewritten from T. Since £0 is a 

complete lattice, this is well-defined. Notice that a normal form is defined as a join of all possible rewriting of 

an e-type. Thus, by theorem 26, we can restrict this definition only to sequences of rewritings in fan-out order 

without losing anything in the definition of a normal form. 

To lighten notation, I shall make use of vector notation to denote elements of £3 the set of n-tuples of e-typss ; 

e.g, T = <T 1 . . . . .  T > ,  T i E £0' 1=1 . . . . .  n. Hence, a symbol rewriting system S of n equations, is denoted 

by a single vector equation ~+ = E . Given such a SRS, I shall use either indices in {1 . . . . .  n} or the symbols 

s I to index the components of a vector T+ m" £0'~" t'.e., Tsl = T~. There should be no confusion since the s i ' s  will 

be assumed distinct. Vector rewriting is the appropriate obvious extension to vectors of e-types of the ~+ 

relation, and so is the definition of vector normal form ~(T+). 
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Given a SRS S: ~' = E* and a wft t ,  X ( t ,  ~ )  denotes the set of (minimum radius) addresses in t whose symbols 

are S-expandable. That  is, 

X ( t , ~ )  = {u 6 A t I C t ( u )  = s t ,  f o r s o m e  i=1 . . . . .  n}.  

Any indexing of X ( t , W )  = {u 1 . . . . .  u m} will be assumed to be a / a n - o u t  index ing .  That  is, one such that the 

sequence (u  1 . . . . .  u m) is in fan-0ut order. For  example, taking the wft  t on page 15 and ~ = <f2" f4" f s  > we 

h a v e X ( t , ~ ' )  = {11, 1 s ,  l s . l r } .  

The objective here is to define the operation of applying a fan-out sequence of substi tut ions of e-types to a wft t 

at  M1 expandable addresses of t .  This operation is denoted t [T ' /~ ' ]  and defined as: 

t [TI~] = t [T%%)/u~] ... [T%%)lu,] (3) 

where {u t ..... u s} = X(t,~'). By theorem 26, it is evident that this is a well-defined operation. I shall 

condense notation in 3 to: 

t IT'll'] = t [T~t(u ) lu] uex(~,~) 

Let's illustrate this operation on a small example. Let's take ~' = <s i , s2> and T = <T I ,T2> with 

T t = { f ( 1 1  => X; 12 => X) ,  g} 

T 2 = h ( l  2 => X; i 3 => X) 

and the term 

t = s i ( l  I => s2;  13 => s l ) .  

The set of expandable addre~es for ~ in t thus i s :  

X(t,~) = {c, 11 , 12 } 

corresponding to the symbols (in fan-out order) s I , s2. ' s I . 

s I at  c: 

Hence, the sequence of substitutions starts with 

{ f(l i => X : s2; 
12 => X, 

1 s => S I) • 

g(l I => s2; 

i s => s I) } 

then continues with s 2 at 11: 

{ f(l I => X : h(l 2 => Y; i s => Y); 

12 => X; 

1 S => s I) * 

g(l i => h(l 2 => X; I s => X); 

I s => s,) } 

and finally ends with s I at  12: 
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{ f(l I => X : h(l 2 => Y; I e => Y); 

12 => X; 

I s => f(l I => Y : II; 12 => Y), 

g(l I => h(l 2 => X; i e => X); 

I s => hCl 2 => Y; I s => Y)), 

f(l I => X : h(l 2 => Y; I s => Y); 

12 => X; 

i s => g ) ,  
g(l t => h(l 2 => X; I s => X); 

i s => g) > 

which is the value of t IT ' /V]  

n ~ ~ n whose 1 th This  operat ion is extended to £0 to  vectors  of c-types as follows: T IT ' / V ]  is the vector  of £0 

component  is defined as 

(T IT " IV] ) 1 = LItETI t [~ " IV].  (4) 

D e f i n i t i o n  30:  An element  T of £~ is a solution of the equation V = E if and  only if 

n We now proceed to show t h a t  a SRS viewed as a sys tem of equations in £0 always  has  a solution which 
n corresponds to the least  f ixed-point  of a vector  function from £0 to itself. Such a function ~r is defined for a SRS 

V = E as follows: 

~(~') = ~ E~/v]. (5) 

P r o p o s i t i o n  31:  The function f f r o m  £0 to i tself  defined by 5 is continuous. 9 

As a result,  F h a s  a least  f ixed-point  given by 

co t k  -~ Y F =  Y * ( ~ _ )  = LJk= 0 (_J_).  

Now, since 

[ Y t / V ]  = Y F  

Y F i s  the solut ion of the equation V = E .  

Let ' s  take  again  a small  example to i l lustrate.  Consider the single equation: 

t r ee  = { leaf ,  node( le f t  => t r ee ;  r i g h t  => t ree)> 

wi th  l e a f  < t r e e ,  node < t r e e .  Hence, / tree(-~_ ) = { l e a f ) ;  then, t t r 2 e e ( i  ) is given by: 

{leaf, nods(left => leaf; right => leaf> 

s ( 1 )  is: and so t t r e e  

9This is where the fact that L 0 is a complete Brouwerian lattice is important. Indeed, the proof of this proposition uses a characteristic 

property of these structures. 
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(leaf, node(left => leaf; right => leaf), 

node(left => leaf; 
right => node(left => leaf; 

right => leaf)), 
node(left => node(left => leaf; 

right => leaf)); 

right => leaf), 
node(left => node(left => leaf; 

rlght => leaf)); 
right => node (left => leaf; 

right => leaf))} 

and so on... The reader should see now that the successive powers of the t r e e  component function t generate 

all possible binary trees. Indeed, the meaning of the type t r e e  is precisely 3rtree ( / )  the infinite set (e-type) of 

all such terms. Hence, solving type equation does give the meaning of recursively defined types. 

The reader may wonder at this point how the example given in the beginning of this section on appending two 

lists is related to computing a vector fixed-point. To see this, given a knowledge base KB, we can add a new 

equation called query of the form ? = E, where ? is a special symbol not already in ,U. Then, the anewer to the 

query is the component ( Y f ) ?  of the solution of the augmented system. 

3.3. C o r r e c t n e s s  
In order to establish that the fixed-point solution of a SRS does correspond to the value computed by KBL, it is 

necessary to establish the correctness of the KBL interpreter. Namely, one must show that the normal form 

obtained by infinite rewritings is equal to the least solution of the system of equations. 

Unfortunately, I have not (yet) worked out a complete proof for the correctness theorem. A "conditional ~ proof 

is obtained if two technical lemmas can be proved. These lemmas make intuitive sense and are extrapolations of 

similar facts for tree-grammars. 10 I conjecture them for now. 

For any T in £0 define 

~(~') : ~ u 5(; )  

and 

• (~') = Uk~o ~ k(~*) 

~ ~ n 
Then, provided that, for any T t' T2' T3' in £o' 

Lemm~ s2.- ~I ~ ~'~ impties ~E~3/~] E ~'IE~ *E ? /~ ] :  
and, 

then, 

L e m m a 3 3 : T 2  C T l [ ~ / ( ~ ) / ~ ' ]  implies Ti  ~ T2; 

T h e o r e m  34: y~r : ~ ( F )  . 

10See {14], pages 28-29, lemmas 2.38 and 2.39. 
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4. Conclusion 
I have described a syntactic calculus of partially ordered structures and its application to computation. A syntax 

of record-like terms and a *type subsumption" ordering were defined and shown to form a lattice structure. A 

simple "type-as-setU interpretation of these term structures extends this lattice to a distributive one, and in the 

case of finitary terms, to a complete Brouwerian lattice. As a result, a method for solving systems of type 

equations by iterated rewriting of type symbols was proposed which defines an operational semantics for KBL - 

a Knowledge Base Language. It  was shown tha t  a KBL program can be seen as a system of equations. Thanks 

to the lattice properties of finite structures, a system of equations admits a least fixed-point solution. The 

particular order of computation of KBL, the n fan-out  computat ion  order ~, which rewrites symbols closer to the 

root first was formally defined and shown to be maximal. Unfortunately, the complete "correctness w of KBL is 

not yet established. That  is, it is not known at this point whether the normal form of a term is equal to the 

fixed-point solution. However, as steps in this direction, two technical lemmas were conjectured to which a proof 

of the correctness is corollary. 
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