Compiling Order-Sorted Feature Unification

Hassan Ait-Kaci and Martin Vorbeck
{hak,vorbeck}@cs.sfu.ca

Intelligent Software Group
School of Computing Science, Simon Fraser University

Burnaby, British Columbia - Canada VHA 156

Phone: +1 (604) 291-5589
fax: +1 (604) 291-3045

February 1996

Abstract

Order-sorted feature (OSF) structures have become a popular tool in
constraint-based programming. Whether used in computational linguis-
tics, declarative graphics, or general object-oriented logic programming,
OSF structures are appealing because they capture simply and formally
the notion of record objects carrying partial information specified as at-
tribute/range constraints. A unification operation allows conjoining OSF
structures to form objects corresponding to their intersection. The expres-
sive power of OSF structures is further enhanced when sorts are allowed
to be defined in terms of other OSF structures, or even further asin LIFE,
with relational constraints inherited along the sort hierarchy. These sort
definitions offer the functionality of classes imposing structural and rela-
tional constraints on objects. Formally, OSF sort definitions form a first-
order logical theory—an OSF theory. Constraint solving in the context of
an OSF theory is called OSF theory unification. Recently, a formal sys-
tem was studied that proposed a complete set of reduction rules for OSF
theory unification. The appeal of this system is that it relies on a lazy un-
folding of sort definitions driven by the actual presence of features in the
structure to normalize. However, although this system is operational as
formally described, it has been a challenge to implement efficiently. The
problem is to compile an OSF theory into a linear sequence of abstract
machine instructions in the spirit of logic programming compilers. This
paper presents an informal but accurate overview of a compilation scheme
that meets this challenge.

Keywords: Object-Oriented Logic Programming, Order-Sorted Feature The-
ory, Compilation, Abstract Machine Instructions

1 Introduction

Order-sorted feature (OSF) terms have been used in Logic Programming [5, 10]
to model objects. They also have been the data structure of choice in computa-
tional linguistics [7]. OSF terms are most suitable for those purposes essentially
thanks to their unification operation. Integrating OSF terms in a Prolog-like
language (as done in LIFE [2]) can thus easily be done at the formal level. How-
ever, if a compiler in the spirit of the Warren Abstract Machine (WAM) [11, 1]
is desired, an appropriate instruction set cum memory architecture must be
carefully designed to account for the partial order on sorts as well as the ex-
tensibility of features. Such a compiling scheme was devised in [4] and further
refined in [9]. This scheme amounts essentially to adapting a standard WAM (for
predicate definitions and backtracking), with modified unification instructions
for the OSF term unification part.

The usefulness of OSF structures is greatly magnified when sort symbols are
allowed to be defined in terms of other OSF structures or, as in the case of
LIFE, with relational constraints. In fact, even with only the former kind of
sort definitions, one obtains a Turing-complete calculus. In [6], such a calculus is
formalized as solving OSF constraints in the context of a first-order theory. This
calculus 1s expressed into a complete set of confluent normalization rules which
do not anticipate the presence of features in a formula to normalize, but instead
rely on a lazy sort definition unfolding scheme driven by the materialization of
features as induced by the resolution process.

Up until now, it has not been shown how such a lazy unfolding scheme could
be integrated in the WAM framework. This paper does so by extending the
basic compilation scheme introduced in [4]. Tt goes even further in that it
also accounts for sort definitions containing relational constraints; ¢.e., Prolog-
resolvable predicates. To our knowledge, no one has yet published an instruction
set to implement this kind of sort definitions. Several implementation techniques
of sort definition variants have been proposed (including our own) [2, 7, 8], but
none have exposed a scheme in the spirit of the WAM: all are interpretative or
based on a translation to Prolog, failing to offer the tight integration that we
seek.

We will explain our compilation technique in an incremental manner, using the
following order: the compilation of sort definitions without coreferences (i.e.,
variables occurring more than once) or constraints, then with coreferences, then
with constraints, and finally with partially-ordered sorts constrained in arbitrary
ways.

2 Notation and Terminology

We next introduce a few necessary basic notions and notations. We assume that
the reader is familiar with the WAM concepts as described in [11, 1]. Although

not a prerequisite, it is also preferable that the reader have some familiarity
with the syntax of LIFE [2]. However, although our formulation uses the specific
syntax of LIFE, other variant notations could be used as well [7, §].

A tp-term is an expression X : s(fy = t1,..., fn = tn) where X is a variable, s
is a sort symbol, f; is a feature symbol (for ¢ =1,...,n, and n > 0), and ¢; is a
h-term.

The sort s is called the root sort of the ¥-term. The sort symbols are assumed
partially ordered into a sort hierarchy with a topmost symbol noted @ (i.e., for
any sort s, s < @).

The notation for a ¥-term may be lightened by omitting the “X :” part if the
variable X does not occur again in any subterm. If n = 0, the “(...)” part is also
omitted. A variable X occurring without an explicit sort stands for the ¥-term
X : @. Finally, when features are numerical positions, we omit them altogether
as in regular Prolog terms (e.g., s(a, b, ¢) stands for s(1 = a,2 = 6,3 = ¢)).

Here is an example of a ¢-term:

X : person(name = id(first = string,
last = Y : string),
spouse = person(name = id(last = Y),
spouse = X)).

Without loss of generality, we shall assume that any two sorts s; and s, have a
greatest lower bound (glb) noted s; Asa. This operation corresponds to unifying
the two sorts. The special sort L denotes failure of unification. This unification
operation is extended to ¢-terms as explained in, say, [5].

A sort definition associates to a sort s a ip-term with root sort s. The notation
we use is:

DX is(fi=t, o fo =)

A constrained sort definition 1s a sort definition together with a Prolog-resolvable
goal sequence. It is written:

DX is(fi=t, ot | C

where C' is a goal constraint with the same syntax as the body of a Prolog
clause in which terms have been replaced by #-terms. The above notation is
pronounced “feature f; of s is ¢y, ..., feature f, of s is ¢,,, such that C.” The
clause C' is often called the “such-that” constraint of s.

As in LIFE, we use the notation “s; < s3.” to specify that a sort s; is less than
a sort so. The partial order generated by these declarations constitutes the sort
hierarchy along which structural and “such-that” constraints are inherited.

Variables occurring in a sort definition, whether in the i¢-term structure or the
“such-that” constraint if there is one, are all local to this definition. A variable
that occurs in the “such-that” constraint but not in the rest of the definition
is called a constraint variable. All other variables in a definition are called
structural variables. For example the sort definition:

2 s(XLY, Z) | p(X, YY), (X, U), (U, Z)

has one constraint variable (I/) and three structural variables (XY, 7).

Our compilation scheme for sort definitions is based on delaying the enforcing
of constraints on a structural variable until such variable materializes as the
value of a feature in a query [6]. This avoids looping unnecessarily on recursive
definitions. For example, with the sort definition :: person(spouse = person) a
query like X = person would loop unless we adopt our scheme, since the sort
definition of person is recursively applied to the feature spouse. By contrast, in
our scheme, the sort definition of person will be invoked for the feature spouse
only when this feature is actually present. For example, this may happen if a
subsequent query is X.spouse = Y .1

In addition, when coreferences are involved, this lazy scheme must be clever to
enforce equality constraints. For example, consider the sort definition:

o P person(name = id(first = string,
last = S : string),
spouse = person(name = id(last = S),
spouse = P))

and the query:
X = person(name = Q(last = string),
spouse = Q(spouse = @,
name = Q(last = “smith”)))
Then the result of unfolding the definition for person yields:?
X = person(name = id(last = N : “smith”),

spouse = person(spouse = X,
name = id(last = N))).

3 Heap Representation

We will adopt an internal representation for ¢-terms which is a straightforward
adaptation of the standard WAM heap representation. It i1s best illustrated

1We often use the notation X.f = Y to indicate that the subterm of X under feature f is
Y. In other words, the expression X.spouse =Y is equivalent to X = @(spouse = Y).
2In this example, it is assumed, of course, that “smith”<string.

HEAP FHEAP

CREF SORT FTAB FEAT TERM

1 1 person | 1 t1 | name 2

21 2 |id ta spouse | b
31 3 |string | NIL .
41 4 strin NIL .

J to | forst 3

5| b | person | i3 Tasi 1

6] 6 |id iy as
t3 | name 6
spouse 1

t
Figure 1: Heap representation of ¢-term (1)

on an example. Consider the y-term (1); its heap representation is given in
Figure 1.

This representation is explained as follows. A -term is essentially a labeled
sorted graph: the nodes contain sort and structure-sharing information and the
edges are labeled with feature names. This justifies separating the conventional
single heap area in memory into two: HEAP and FHEAP. The area HEAP is where
nodes are stored and FHEAP contains tables associating feature names to nodes.
Therefore a HEAP cell consists of three fields:

e CREF: the coreference field, an index into HEAP. This determines whether
this term i1s unbound or bound to another. If it is unbound, the value of
this field 1s the index of its own HEAP cell.

e SORT: the sort field, a (representation of) the sort symbol of the root of
this term.

e FTAB: the feature table field, an index into FHEAP containing the associa-
tion table between feature symbols and the node address in HEAP of the
subterms. If there are no subterms, this field is set to NIL.

Similarly, the feature heap FHEAP consists of tables whose entries are cells made
out of two fields:

e FEAT: the feature field.

e TERM: the term field. This is information about the subterm under a
feature. In general, it will be an index into HEAP (as shown in the example).

However, 1t may also contain information relevant to part of code for
constructing the subterm, (e.g., suspensions as will be seen).

4 Basic Sort Definitions

We will first describe our compilation scheme for the simple case of basic sort def-
initions; 7.e., without coreferences nor constraints. The instructions we present
use the same set of registers conventionally used in the WAM for so-called {em-
porary variables; i.e., the X registers.

Consider the following basic sort definition:
o person(name = id(first = string, last = string)). (2)
The compiled code for (2) looks as follows:

L_person: intersect_sort X0 person
wait_on_feature X0 name X1 L1
proceed

Li: intersect_sort X1 id
wait_on_feature X1 first X2 L2
wait_on_feature X1 last X3 L3

proceed

L2: intersect_sort X2 string
proceed

L3: intersect_sort X3 string
proceed

The meaning and run-time behavior of these instructions is as follows:

intersect sort Xi s Refine the root sort r of the ¥-term in register Xi to the
glb of v and s. Fail if this is 1.3

wait_on _feature Xi f Xj L Check whether the #)-term in register Xi has a
feature f:

e feature is present: Bind Xj to this feature and execute the code at L.

e feature not present: Create an entry in the feature table of the term
in Xi for feature £, but initialize its contents to a pair indicating:
1. the register (Xj) to which the value of this feature will be bound,
2. the address L of the code to be executed.

proceed This i1s the standard WAM instruction that simply proceeds to the
caller.

3This is the same instruction defined in [4] and used in [9].

We assume that when the above code is executed, X0 is initialized with the HEAP
address of the y-term for which the sort unfolding is being executed.

Note that the wait_on_feature instruction “overloads” the type of value in-
dexed by a feature in the feature table. It is safe to do so since the information
needed for the actual code corresponding to the subterm under a missing feature
is precisely what we save there. This information is then removed and used to
resume correctly with the execution of this code when the feature appears—at
which point, the value for the feature in the table will indeed point to the sub-
term in the heap. This scheme actually binds a missing feature to a suspension
that is triggered back into action upon the feature materialization. We skip
here the details of appropriately tagging this overloading.

5 Accommodating Coreferences

We now consider the case of definitions in which variables can be used to corefer-
ence different subterms. We must make sure that these subterms are all unified
as they become available. The technique we use is similar to the handling of
so-called permanent variables in the WAM. In our context, because its definition
differs for that of the WAM’s permanent variable, we call a (sort) environment
variable any variable occurring in a sort definition more than once—i.e.; any
coreference variable.

To preserve the information that different subterms are referred to by the same
variable, we use an environment containing coreference variables for a sort def-
inition. This environment is allocated at the outset of the code for a sort
definition, and is the exact same as in the WAM, and contains a slot for each
environment variable (i.e., each coreference). We follow the WAM’s naming
convention, calling these slots Yy, ...,Y,. When the environment is created,
these slots are initialized to NIL. Each time a coreferenced subterm appears, it
is unified with the contents of its corresponding slot.

Let us illustrate this on the following sort definition:

o P married_person(name = Q(last = X)),
spouse = married_person(name = Q(last = X),
spouse = P)).

This definition has two coreference variables: P and X. The code now looks as
follows:

L_married_person: allocate 2
intersect_sort X0 married_person
set YO X0
wait_on_feature YO name X1 L1
wait_on_feature YO spouse X2 L2
proceed

L1: intersect_sort X1 @
wait_on_feature X1 last Y1 L
proceed

L2: intersect_sort X2 married_person
wait_on_feature X2 name X3 L3
wait_on_feature X2 spouse YO L
proceed

L3: intersect_sort X3 Q@
wait_on_feature X3 last Y1 L
proceed

L: proceed

Notice how P and X are mapped to the environment slots YO and Y1 respectively.
Also note that the wait_on_feature instruction’s arguments may be either X
registers or Y environment slots. As done in the WAM, we shall denote by V
such an ambivalent argument. The meaning of this instruction is:

wait_on _feature Vi f Yj L The meaning is essentially the same as before,
with two important differences:

e If feature f is not present, store in Yj the suspension address L, create
an entry for feature £ in the feature table of the term in Vi and set
its value to the current sort environment and a pointer to Yj.

e If feature f is present:
— if Yj 1s NIL, set it to the value of feature £;
— if Yj is an address in the (sort) code area, set Yj to the value of
feature £, and proceed at the address that was contained in Yj.
— if Yj is a heap address, unify Yj which the value of feature £.%

Note that an instruction wait_on_feature Vi £ Xj L still behaves as indi-
cated in the previous section. The case above concerns its behavior only when
its third argument is an environment variable. For this, we still use a suspen-
sion/resumption scheme as indicated by a feature presence or absence. This,
again, is done thanks to an overloading of a missing feature value in its table. It
is different than the previous case, however, since what is stored in the feature
table 1s the environment and the corresponding variable. However, this environ-
ment variable is itself overloaded to contain the resumption address. Whereas in
the basic (non-coreference) case, the resumption address is stored in the feature
table, it is now stored in the appropriate environment variable.

The meaning of the set instruction is:
set Yi Xj Set Yi to the value of Xj.

The set instruction is needed, because when a sort definition is called, only the
register X0 is set to point to the ¢-term which is to be unfolded. Thus we need
to initialize YO if it is to hold the same value as X0.

*The unification algorithm is straightforward y-term unification and is given in detail in [4].

6 Scheduling Sort Unfolding

We need to clarify one important issue: when and how are sort unfolding calls
requested and executed? During execution, a request to unfold a sort definition
s for a given ¥-term ¢ may be generated. To handle such requests, we maintain
a job gqueue which contains entries such as: “call sort definition L_s for ¢.” Fur-
thermore, there are also requests generated by the resumption of a suspension
originating from a wait_on_feature instruction. That is, when a missing fea-
ture materializes, the constraint indicated by the wait_on_feature Vi £ Vj L
must be enforced. Therefore, the job queue may also contain entries such as:
“call L with Xj :=Vi.f in the environment E.”, or such as “unify Yj with Vi.£
wm environment E.”

The requests scheduled in this way in the job queue must be executed at ap-
propriate times; namely, when all the registers Xi can be safely reused. This is
typically the case immediately before a predicate call, or before exiting a pred-
icate definition—au.e., after proceed. Thus, these instructions must be altered
to examine first the job queue and execute any scheduled requests as appropri-
ate before proceeding as conventionally expected. We thus systematically use a
new instruction return in the place where a proceed is warranted in predicate
code. Notice the fine difference between this return instruction and the usual
proceed. Indeed, return works essentially the same way as proceed, but it also
checks and possibly runs jobs off the queue. Using the usual WAM proceed in
sort code instead of return is necessary as no job scheduling may be done there,
since this may overwrite the X registers.

It is important to realize that we do not need to save registers from a suspended
sort unfolding computation. The allocated environment variables are sufficient
to retain all necessary information. Indeed, if a feature is missing, a suspension
is set up. When this feature becomes available, the code for the suspension
(which is a subset of the code for the original sort definition) is executed with the
register corresponding to the root of this subterm properly initialized. Any other
registers in this piece of subcode will be initialized through wait_on_feature
instructions deriving from the subterm root register. Any references to other
subterms necessarily correspond to coreferences in the sort definition and thus
have been allocated into environment variables. Thus we can safely call pieces
of subcode of a sort definition without saving registers.

7 Constrained Sort Definitions

Constrained sorts in the form :: s | C' are handled in the same way as the
structural constraints on features. One problem regarding a “such-that” con-
straint is that it may contain constraint variables; i.e., which do not appear
in the structure of the term. Hence, the lazy scheme that waits for structural
variables to materialize as the value of features cannot work for such constraint

variables. The operational semantics we present here will execute any literal ¢;
in C'= {e1,...,cnt assoon as all its structural variables are active. A structural
variable is active as soon as one of the feature paths leading to 1t is present in
the -term for which the sort definition is being executed.

This granularization of the set of constraints C' = {e1, ..., ¢, } forces the code of
each constraint ¢; to be encapsulated as a subset of code to be executed whenever
the above condition is met. That 1s, each constraint c¢; is called individually
and this call will suspend until all the structural variables are active. As with
structural coreferences, all constraint variables occurring at least twice in C'
must be saved in the sort environment.

To clarify this compilation scheme, let us compile:
2 s(XLY, Z) | p(X, YY), (X, U), (U, Z)

L_s: allocate 4
intersect_sort X0 s
wait_on_feature X0 1 YO L1
wait_on_feature X0 1 Y1 L2
wait_on_feature X0 1 Y2 L3
call Lp
call Lqg
call Lr
proceed

L1: intersect_sort YO @
proceed

L2: intersect_sort Y1 @
proceed

L3: intersect_sort Y2 @
proceed

Lp: delay YO
delay Y1
[set-up call for p]
call p
proceed

Lq: delay YO
[set-up call for q]
call g
proceed

Lp: delay Y2
[set-up call for r]
call r
proceed

We have one new instruction:

10

delay Yi do nothing if Yi has a defined value; otherwise, create a suspension
in Yi which points to the next instruction and calls proceed.

This way, all the constraints p,q,r are invoked simultaneously and as soon
as one of them finds all its required variables to be active, it executes. It 1s
important to realize the following: the suspension on Yi which is created by
a delay instruction will only be reactivated when this Yi becomes bound to
a value. This will necessarily happen as soon as one feature path leading to
the 1-term corresponding to Yi materializes, because of the wait_on_feature
instructions which initialize the slot ¥Yi. Thus the wait_on_feature sets up
the suspension from the missing feature to the environment slot variable and
delay adds the suspension from the slots to the actual constraints in ¢;. This
technique avoids distributing the suspension to all the feature paths leading to
the delayed upon variable.

We omitted the precise instructions for setting up the actual calls to the pred-
icates, as they are similar to any WAM-based Prolog compilation scheme (see
for example [4]). The two main instructions that are used in the context of
1h-terms are:

push_sort s Vi : create a new i-term on the heap with root sort s and set Vi
to point to its location.

set_feature Xi f Vj : set Vj to the feature f of the 1-term at address Xi.

8 Sort Hierarchy

The basic mechanism is to encode the hierarchy into the sort definitions. Given
a sort definition for s, and a set of parents s1,...,s,, the code for s will contain
calls to each parents s;. These calls will be conditional ones, because they should
only be executed if the parent sort has not yet been unfolded. Indeed, since we
do allow multiple inheritance, it is important to avoid multiple executions of the
same sort unfolding. This is achieved by maintaining a set of sorts legacy(s) to
inherit from for a given sort s being unfolded. When we encounter a conditional
call to a sort definition, we check whether this sort is a member of the legacy(s)
set and, if so, execute the call. The set legacy(s) is always easy to compute as
we shall see below.

The Filter Set S; is the set of all ancestors of the sort s;. A new instance of a
sort may appear in only three possible ways:

e a new instance of a sort s is created: the whole set of ancestors S must

be unfolded. Thus legacy(s) := S.

e a sort s’ is refined to a lower sort s (typically by an intersect_sort
instruction). In this case, all the ancestors “in between” s and s’ must be
unfolded, i.e., legacy(s) := SN S".

11

e a sort s is created through unification of two sorts s; and s,. Here we

would unfold the following: legacy(s) := S N (S1 U Sq).

The complement operation on sets of sorts is with respect to the set of all sorts
in the hierarchy.

With an appropriate encoding (e.g., bit-vectors), these operations are cheap
(constant time) [3].

Let us look at an example, using the hierarchy in figure 2.

Figure 2: A simple sort hierarchy

person

employee married_person

married_employee

Assume the following definition of employee:

o employee(job = job_name,
corp = C': string,
boss = employee(job = manager,
corp = (1))
| top-500(C).

The sorts person and married_person are defined as in the examples in the
previous sections, and the sort married_employee has no sort definition.

The (abbreviated) code for these four sorts is now as follows:

L_person: intersect_sort X0 person
wait_on_feature X0 name X1 L1
proceed

L_employee: allocate 1

intersect_sort XO employee

wait_on_feature X0 job X1 L2
wait_on_feature X0 corp YO L3
wait_on_feature X0 boss X2 L4

12

call L_top_500
ccall L_person
proceed
L_top_500: delay YO
[set-up call for top_500]
call top_500

proceed

L_married_person: allocate 2
intersect_sort XO married_person
set YO X0

wait_on_feature YO name X1 L5
wait_on_feature YO spouse X2 L6
ccall L_person
proceed

L_married_employee: intersect_sort X0 married_employee
ccall L_employee
ccall L_married_person
proceed

The instruction ccall L_s’ in the code of sort s checks whether the sort definition
to be called (i.e., s') is a member of the set legacy(s). If so it removes it from
that set and executes the call. Otherwise, it does nothing.

Note how the empty sort definition for married_employee did yield some code,
since 1t needs to request the unfolding of its parent sorts.

Let us suppose that we create a fresh instance of the sort married_employee. The
set legacy(married_employee) is set to {person, employee, married_person} and
the code for married_employee is called. When it reaches the conditional call
to L_employee, the sort employee is in the set legacy(married_employee) and
thus must be removed before the call. When reaching the call to L_top_500, we
must preserve legacy(married_employee). One way to do that is to save a pointer
to legacy(married_employee) in the environment of the sort being unfolded (in
this example, employee). This is because the constraint predicate call may in
turn awaken other sort unfoldings before proceeding. When the execution of
top_500 returns, the value of legacy(married_employee) is restored. The next
instruction is the conditional call to L_person. It also executes, since person
is a member of legacy(married_employee). Thus, legacy(married_employee) is
now equal to {married person}. Both calls proceed and the conditional call to
L_married_personis also performed, leaving legacy(married _employee) empty.
When the instruction ccall L_person in the code for married_person is en-
countered, nothing is done, as the sort person is not a member of current
legacy(married _employee). This shows also, that if there had been a “such
that” constraint in the sort definition of person, 1t would only have been exe-
cuted once, as expected.

Given a sort s, the set legacy(s) is clearly a local information that must be pre-
served while in tangential calls, and thus must be saved in the sort environment,

13

as argued in the above example. Note that the value of a legacy set may be
shared by several sorts (as in the example above). This is why a pointer to the
set, rather than the set itself 1s what 1s stored in the environment.

When a new sort symbol is created, and it has to be unfolded, a job will be
added to a job queue, indicating the address of the corresponding v-term that
needs to be unfolded, the code address for the sort definition, and its legacy
set of ancestors that will have to be unfolded for this new sort symbol. When
such a scheduled request becomes active, its legacy set is loaded into a sort
environment slot and execution proceeds as described above. Thus, as one may
appreciate, the bookkeeping overhead i1s minimal.

9 Conclusion

We have presented a compilation scheme for order-sorted feature structure uni-
fication which takes into account sort definitions, including coreferences, accom-
modating a sort hierarchy, as well as “such that” constraints. The compilation
scheme is simple and requires minimal bookkeeping overhead. Yet, 1t yields
an attractive semantics for the delayed, yet eager, unfolding of sort definitions.
This scheme is the basis of the implementation of a compiler for LIFE being de-
veloped at Simon Fraser University. Many optimizations and extensions can be
foreseen of, especially with the prospect of integrating diverse constraint solvers,
allowing for even more flexibility of the language.

References

[1] Hassan Ait-Kaci. Warren’s Abstract Machine. Series in Logic Program-
ming. MIT Press, Cambridge, MA, 1991.

[2] Hassan Ait-Kaci. An introduction to LIFE—programming with logic, in-
heritance, functions, and equations. In Dale Miller, editor, Proceedings
of the International Symposium on Logic Programming, pages 52—-68. MIT
Press, October 1993.

[3] Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient
implementation of lattice operations. ACM Transactions on Programming
Languagues and Systems, 11(1):115-146, January 1989.

[4] Hassan Ait-Kaci and Roberto Di Cosmo. Compiling order-sorted feature
term unification. PRL Technical Note 7, Digital Equipment Corporation,
Paris Research Laboratory, Rueil-Malmaison, France, December 1993.

[6] Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. Jour-
nal of Logic Programming, 16(3-4):195-234, July-August 1993.

14

[6]

Hassan Ait-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-
sorted feature theory unification. In Dale Miller, editor, Proceedings of
the International Symposium on Logic Programmaing, pages 506-524. MIT
Press, October 1993. (To appear in the Journal of Logic Programming,

1996.).

Bob Carpenter. The Logic of Typed Feature Structures, volume 32 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, Cambridge, UK, 1992.

Hans-Ulrich Krieger and Ulrich Schafer. Efficient parameterizable type ex-
pansion for typed feature formalisms. In Chris Mellish, editor, Proceedings
of the 14th International Joint Conference on Artificial Intelligence, pages
1428-1434, San Mateo, CA, August 1995. Morgan Kaufmann Publishers,
Inc.

Richard Meyer. Compiling LIFE. PRL Technical Note 8, Digital Equip-
ment Corporation, Paris Research Laboratory, Rueill-Malmaison, December

1993.

Gert Smolka and Ralf Treinen. Records for logic programming. Journal of
Logic Programming, 18(3):229-258, April 1994.

David H. D. Warren. An abstract Prolog instruction set. Technical Note
309, SRI International, Menlo Park, CA, October 1983.

15

