
Compiling Order-Sorted Feature Uni�cationHassan A��t-Kaci and Martin Vorbeckfhak,vorbeckg@cs.sfu.caIntelligent Software GroupSchool of Computing Science, Simon Fraser UniversityBurnaby, British Columbia - Canada V5A 1S6Phone: +1 (604) 291-5589fax: +1 (604) 291-3045February 1996AbstractOrder-sorted feature (OSF) structures have become a popular tool inconstraint-based programming. Whether used in computational linguis-tics, declarative graphics, or general object-oriented logic programming,OSF structures are appealing because they capture simply and formallythe notion of record objects carrying partial information speci�ed as at-tribute/range constraints. A uni�cation operation allows conjoining OSFstructures to form objects corresponding to their intersection. The expres-sive power of OSF structures is further enhanced when sorts are allowedto be de�ned in terms of other OSF structures, or even further as in LIFE,with relational constraints inherited along the sort hierarchy. These sortde�nitions o�er the functionality of classes imposing structural and rela-tional constraints on objects. Formally, OSF sort de�nitions form a �rst-order logical theory|an OSF theory. Constraint solving in the context ofan OSF theory is called OSF theory uni�cation. Recently, a formal sys-tem was studied that proposed a complete set of reduction rules for OSFtheory uni�cation. The appeal of this system is that it relies on a lazy un-folding of sort de�nitions driven by the actual presence of features in thestructure to normalize. However, although this system is operational asformally described, it has been a challenge to implement e�ciently. Theproblem is to compile an OSF theory into a linear sequence of abstractmachine instructions in the spirit of logic programming compilers. Thispaper presents an informal but accurate overview of a compilation schemethat meets this challenge.Keywords: Object-Oriented Logic Programming, Order-Sorted Feature The-ory, Compilation, Abstract Machine Instructions1

1 IntroductionOrder-sorted feature (OSF) terms have been used in Logic Programming [5, 10]to model objects. They also have been the data structure of choice in computa-tional linguistics [7]. OSF terms are most suitable for those purposes essentiallythanks to their uni�cation operation. Integrating OSF terms in a Prolog-likelanguage (as done in LIFE [2]) can thus easily be done at the formal level. How-ever, if a compiler in the spirit of the Warren Abstract Machine (WAM) [11, 1]is desired, an appropriate instruction set cum memory architecture must becarefully designed to account for the partial order on sorts as well as the ex-tensibility of features. Such a compiling scheme was devised in [4] and furtherre�ned in [9]. This scheme amounts essentially to adapting a standard WAM (forpredicate de�nitions and backtracking), with modi�ed uni�cation instructionsfor the OSF term uni�cation part.The usefulness of OSF structures is greatly magni�ed when sort symbols areallowed to be de�ned in terms of other OSF structures or, as in the case ofLIFE, with relational constraints. In fact, even with only the former kind ofsort de�nitions, one obtains a Turing-complete calculus. In [6], such a calculus isformalized as solving OSF constraints in the context of a �rst-order theory. Thiscalculus is expressed into a complete set of con
uent normalization rules whichdo not anticipate the presence of features in a formula to normalize, but insteadrely on a lazy sort de�nition unfolding scheme driven by the materialization offeatures as induced by the resolution process.Up until now, it has not been shown how such a lazy unfolding scheme couldbe integrated in the WAM framework. This paper does so by extending thebasic compilation scheme introduced in [4]. It goes even further in that italso accounts for sort de�nitions containing relational constraints; i.e., Prolog-resolvable predicates. To our knowledge, no one has yet published an instructionset to implement this kind of sort de�nitions. Several implementation techniquesof sort de�nition variants have been proposed (including our own) [2, 7, 8], butnone have exposed a scheme in the spirit of the WAM: all are interpretative orbased on a translation to Prolog, failing to o�er the tight integration that weseek.We will explain our compilation technique in an incremental manner, using thefollowing order: the compilation of sort de�nitions without coreferences (i.e.,variables occurring more than once) or constraints, then with coreferences, thenwith constraints, and �nally with partially-ordered sorts constrained in arbitraryways.2 Notation and TerminologyWe next introduce a few necessary basic notions and notations. We assume thatthe reader is familiar with the WAM concepts as described in [11, 1]. Although2

not a prerequisite, it is also preferable that the reader have some familiaritywith the syntax of LIFE [2]. However, although our formulation uses the speci�csyntax of LIFE, other variant notations could be used as well [7, 8].A -term is an expression X : s(f1) t1; : : : ; fn) tn) where X is a variable, sis a sort symbol, fi is a feature symbol (for i = 1; : : : ; n, and n � 0), and ti is a -term.The sort s is called the root sort of the -term. The sort symbols are assumedpartially ordered into a sort hierarchy with a topmost symbol noted @ (i.e., forany sort s, s � @).The notation for a -term may be lightened by omitting the \X :" part if thevariableX does not occur again in any subterm. If n = 0, the \(: : :)" part is alsoomitted. A variable X occurring without an explicit sort stands for the -termX : @. Finally, when features are numerical positions, we omit them altogetheras in regular Prolog terms (e.g., s(a; b; c) stands for s(1) a; 2) b; 3) c)).Here is an example of a -term:X : person(name) id(first) string;last) Y : string);spouse) person(name) id(last) Y);spouse) X)): (1)Without loss of generality, we shall assume that any two sorts s1 and s2 have agreatest lower bound (glb) noted s1^s2. This operation corresponds to unifyingthe two sorts. The special sort ? denotes failure of uni�cation. This uni�cationoperation is extended to -terms as explained in, say, [5].A sort de�nition associates to a sort s a -term with root sort s. The notationwe use is::: X : s(f1) t1; : : : ; fn) tn):A constrained sort de�nition is a sort de�nition together with a Prolog-resolvablegoal sequence. It is written::: X : s(f1) t1; : : : ; fn) tn) j Cwhere C is a goal constraint with the same syntax as the body of a Prologclause in which terms have been replaced by -terms. The above notation ispronounced \feature f1 of s is t1, : : : , feature fn of s is tn, such that C." Theclause C is often called the \such-that" constraint of s.As in LIFE, we use the notation \s1 < s2:" to specify that a sort s1 is less thana sort s2. The partial order generated by these declarations constitutes the sorthierarchy along which structural and \such-that" constraints are inherited.3

Variables occurring in a sort de�nition, whether in the -term structure or the\such-that" constraint if there is one, are all local to this de�nition. A variablethat occurs in the \such-that" constraint but not in the rest of the de�nitionis called a constraint variable. All other variables in a de�nition are calledstructural variables. For example the sort de�nition::: s(X;Y; Z) j p(X;Y); q(X;U); r(U;Z)has one constraint variable (U) and three structural variables (X;Y; Z).Our compilation scheme for sort de�nitions is based on delaying the enforcingof constraints on a structural variable until such variable materializes as thevalue of a feature in a query [6]. This avoids looping unnecessarily on recursivede�nitions. For example, with the sort de�nition :: person(spouse) person) aquery like X = person would loop unless we adopt our scheme, since the sortde�nition of person is recursively applied to the feature spouse. By contrast, inour scheme, the sort de�nition of person will be invoked for the feature spouseonly when this feature is actually present. For example, this may happen if asubsequent query is X:spouse = Y .1In addition, when coreferences are involved, this lazy scheme must be clever toenforce equality constraints. For example, consider the sort de�nition::: P : person(name) id(first) string;last) S : string);spouse) person(name) id(last) S);spouse) P))and the query:X = person(name) @(last) string);spouse) @(spouse) @;name) @(last) \smith")))Then the result of unfolding the de�nition for person yields:2X = person(name) id(last) N : \smith");spouse) person(spouse) X;name) id(last) N))).3 Heap RepresentationWe will adopt an internal representation for -terms which is a straightforwardadaptation of the standard WAM heap representation. It is best illustrated1We often use the notation X:f = Y to indicate that the subterm of X under feature f isY . In other words, the expression X:spouse = Y is equivalent to X = @(spouse) Y).2In this example, it is assumed, of course, that \smith"<string.4

HEAPCREF SORT FTAB1 1 person t12 2 id t23 3 string NIL4 4 string NIL5 5 person t36 6 id t4 FHEAPFEAT TERMt1 name 2spouse 5...t2 first 3last 4...t3 name 6spouse 1...t4 last 4Figure 1: Heap representation of -term (1)on an example. Consider the -term (1); its heap representation is given inFigure 1.This representation is explained as follows. A -term is essentially a labeledsorted graph: the nodes contain sort and structure-sharing information and theedges are labeled with feature names. This justi�es separating the conventionalsingle heap area in memory into two: HEAP and FHEAP. The area HEAP is wherenodes are stored and FHEAP contains tables associating feature names to nodes.Therefore a HEAP cell consists of three �elds:� CREF: the coreference �eld, an index into HEAP. This determines whetherthis term is unbound or bound to another. If it is unbound, the value ofthis �eld is the index of its own HEAP cell.� SORT: the sort �eld, a (representation of) the sort symbol of the root ofthis term.� FTAB: the feature table �eld, an index into FHEAP containing the associa-tion table between feature symbols and the node address in HEAP of thesubterms. If there are no subterms, this �eld is set to NIL.Similarly, the feature heap FHEAP consists of tables whose entries are cells madeout of two �elds:� FEAT: the feature �eld.� TERM: the term �eld. This is information about the subterm under afeature. In general, it will be an index into HEAP (as shown in the example).5

However, it may also contain information relevant to part of code forconstructing the subterm, (e.g., suspensions as will be seen).4 Basic Sort De�nitionsWe will �rst describe our compilation scheme for the simple case of basic sort def-initions; i.e., without coreferences nor constraints. The instructions we presentuse the same set of registers conventionally used in the WAM for so-called tem-porary variables; i.e., the X registers.Consider the following basic sort de�nition::: person(name) id(�rst) string; last) string)): (2)The compiled code for (2) looks as follows:L_person: intersect_sort X0 personwait_on_feature X0 name X1 L1proceedL1: intersect_sort X1 idwait_on_feature X1 first X2 L2wait_on_feature X1 last X3 L3proceedL2: intersect_sort X2 stringproceedL3: intersect_sort X3 stringproceedThe meaning and run-time behavior of these instructions is as follows:intersect sort Xi s Re�ne the root sort r of the -term in register Xi to theglb of r and s. Fail if this is ?.3wait on feature Xi f Xj L Check whether the -term in register Xi has afeature f :� feature is present: Bind Xj to this feature and execute the code at L.� feature not present: Create an entry in the feature table of the termin Xi for feature f, but initialize its contents to a pair indicating:1. the register (Xj) to which the value of this feature will be bound,2. the address L of the code to be executed.proceed This is the standard WAM instruction that simply proceeds to thecaller.3This is the same instruction de�ned in [4] and used in [9].6

We assume that when the above code is executed, X0 is initialized with the HEAPaddress of the -term for which the sort unfolding is being executed.Note that the wait_on_feature instruction \overloads" the type of value in-dexed by a feature in the feature table. It is safe to do so since the informationneeded for the actual code corresponding to the subterm under a missing featureis precisely what we save there. This information is then removed and used toresume correctly with the execution of this code when the feature appears|atwhich point, the value for the feature in the table will indeed point to the sub-term in the heap. This scheme actually binds a missing feature to a suspensionthat is triggered back into action upon the feature materialization. We skiphere the details of appropriately tagging this overloading.5 Accommodating CoreferencesWe now consider the case of de�nitions in which variables can be used to corefer-ence di�erent subterms. We must make sure that these subterms are all uni�edas they become available. The technique we use is similar to the handling ofso-called permanent variables in the WAM. In our context, because its de�nitiondi�ers for that of the WAM's permanent variable, we call a (sort) environmentvariable any variable occurring in a sort de�nition more than once|i.e., anycoreference variable.To preserve the information that di�erent subterms are referred to by the samevariable, we use an environment containing coreference variables for a sort def-inition. This environment is allocated at the outset of the code for a sortde�nition, and is the exact same as in the WAM, and contains a slot for eachenvironment variable (i.e., each coreference). We follow the WAM's namingconvention, calling these slots Y0; : : : ; Yn. When the environment is created,these slots are initialized to NIL. Each time a coreferenced subterm appears, itis uni�ed with the contents of its corresponding slot.Let us illustrate this on the following sort de�nition::: P : married person(name) @(last) X);spouse) married person(name) @(last) X);spouse) P)):This de�nition has two coreference variables: P and X. The code now looks asfollows:L_married_person: allocate 2intersect_sort X0 married_personset Y0 X0wait_on_feature Y0 name X1 L1wait_on_feature Y0 spouse X2 L2proceed 7

L1: intersect_sort X1 @wait_on_feature X1 last Y1 LproceedL2: intersect_sort X2 married_personwait_on_feature X2 name X3 L3wait_on_feature X2 spouse Y0 LproceedL3: intersect_sort X3 @wait_on_feature X3 last Y1 LproceedL: proceedNotice how P andX are mapped to the environment slots Y0 and Y1 respectively.Also note that the wait_on_feature instruction's arguments may be either Xregisters or Y environment slots. As done in the WAM, we shall denote by Vsuch an ambivalent argument. The meaning of this instruction is:wait on feature Vi f Yj L The meaning is essentially the same as before,with two important di�erences:� If feature f is not present, store in Yj the suspension address L, createan entry for feature f in the feature table of the term in Vi and setits value to the current sort environment and a pointer to Yj.� If feature f is present:{ if Yj is NIL, set it to the value of feature f;{ if Yj is an address in the (sort) code area, set Yj to the value offeature f, and proceed at the address that was contained in Yj.{ if Yj is a heap address, unify Yj which the value of feature f.4Note that an instruction wait_on_feature Vi f Xj L still behaves as indi-cated in the previous section. The case above concerns its behavior only whenits third argument is an environment variable. For this, we still use a suspen-sion/resumption scheme as indicated by a feature presence or absence. This,again, is done thanks to an overloading of a missing feature value in its table. Itis di�erent than the previous case, however, since what is stored in the featuretable is the environment and the corresponding variable. However, this environ-ment variable is itself overloaded to contain the resumption address. Whereas inthe basic (non-coreference) case, the resumption address is stored in the featuretable, it is now stored in the appropriate environment variable.The meaning of the set instruction is:set Yi Xj Set Yi to the value of Xj.The set instruction is needed, because when a sort de�nition is called, only theregister X0 is set to point to the -term which is to be unfolded. Thus we needto initialize Y0 if it is to hold the same value as X0.4The uni�cation algorithmis straightforward -term uni�cationand is given in detail in [4].8

6 Scheduling Sort UnfoldingWe need to clarify one important issue: when and how are sort unfolding callsrequested and executed? During execution, a request to unfold a sort de�nitions for a given -term may be generated. To handle such requests, we maintaina job queue which contains entries such as: \call sort de�nition L s for ." Fur-thermore, there are also requests generated by the resumption of a suspensionoriginating from a wait_on_feature instruction. That is, when a missing fea-ture materializes, the constraint indicated by the wait_on_feature Vi f Vj Lmust be enforced. Therefore, the job queue may also contain entries such as:\call L with Xj := Vi.f in the environment E.", or such as \unify Yj with Vi.fin environment E."The requests scheduled in this way in the job queue must be executed at ap-propriate times; namely, when all the registers Xi can be safely reused. This istypically the case immediately before a predicate call, or before exiting a pred-icate de�nition|i.e., after proceed. Thus, these instructions must be alteredto examine �rst the job queue and execute any scheduled requests as appropri-ate before proceeding as conventionally expected. We thus systematically use anew instruction return in the place where a proceed is warranted in predicatecode. Notice the �ne di�erence between this return instruction and the usualproceed. Indeed, returnworks essentially the same way as proceed, but it alsochecks and possibly runs jobs o� the queue. Using the usual WAM proceed insort code instead of return is necessary as no job scheduling may be done there,since this may overwrite the X registers.It is important to realize that we do not need to save registers from a suspendedsort unfolding computation. The allocated environment variables are su�cientto retain all necessary information. Indeed, if a feature is missing, a suspensionis set up. When this feature becomes available, the code for the suspension(which is a subset of the code for the original sort de�nition) is executed with theregister corresponding to the root of this subterm properly initialized. Any otherregisters in this piece of subcode will be initialized through wait_on_featureinstructions deriving from the subterm root register. Any references to othersubterms necessarily correspond to coreferences in the sort de�nition and thushave been allocated into environment variables. Thus we can safely call piecesof subcode of a sort de�nition without saving registers.7 Constrained Sort De�nitionsConstrained sorts in the form :: s j C are handled in the same way as thestructural constraints on features. One problem regarding a \such-that" con-straint is that it may contain constraint variables; i.e., which do not appearin the structure of the term. Hence, the lazy scheme that waits for structuralvariables to materialize as the value of features cannot work for such constraint9

variables. The operational semantics we present here will execute any literal ciin C = fc1; : : : ; cng as soon as all its structural variables are active. A structuralvariable is active as soon as one of the feature paths leading to it is present inthe -term for which the sort de�nition is being executed.This granularization of the set of constraints C = fc1; : : : ; cng forces the code ofeach constraint ci to be encapsulated as a subset of code to be executed wheneverthe above condition is met. That is, each constraint ci is called individuallyand this call will suspend until all the structural variables are active. As withstructural coreferences, all constraint variables occurring at least twice in Cmust be saved in the sort environment.To clarify this compilation scheme, let us compile::: s(X;Y; Z) j p(X;Y); q(X;U); r(U;Z):L_s: allocate 4intersect_sort X0 swait_on_feature X0 1 Y0 L1wait_on_feature X0 1 Y1 L2wait_on_feature X0 1 Y2 L3call Lpcall Lqcall LrproceedL1: intersect_sort Y0 @proceedL2: intersect_sort Y1 @proceedL3: intersect_sort Y2 @proceedLp: delay Y0delay Y1[set-up call for p]call pproceedLq: delay Y0[set-up call for q]call qproceedLp: delay Y2[set-up call for r]call rproceedWe have one new instruction: 10

delay Yi do nothing if Yi has a de�ned value; otherwise, create a suspensionin Yi which points to the next instruction and calls proceed.This way, all the constraints p; q; r are invoked simultaneously and as soonas one of them �nds all its required variables to be active, it executes. It isimportant to realize the following: the suspension on Yi which is created bya delay instruction will only be reactivated when this Yi becomes bound toa value. This will necessarily happen as soon as one feature path leading tothe -term corresponding to Yi materializes, because of the wait_on_featureinstructions which initialize the slot Yi. Thus the wait_on_feature sets upthe suspension from the missing feature to the environment slot variable anddelay adds the suspension from the slots to the actual constraints in ci. Thistechnique avoids distributing the suspension to all the feature paths leading tothe delayed upon variable.We omitted the precise instructions for setting up the actual calls to the pred-icates, as they are similar to any WAM-based Prolog compilation scheme (seefor example [4]). The two main instructions that are used in the context of -terms are:push sort s Vi : create a new -term on the heap with root sort s and set Vito point to its location.set feature Xi f Vj : set Vj to the feature f of the -term at address Xi.8 Sort HierarchyThe basic mechanism is to encode the hierarchy into the sort de�nitions. Givena sort de�nition for s, and a set of parents s1; : : : ; sn, the code for s will containcalls to each parents si. These calls will be conditional ones, because they shouldonly be executed if the parent sort has not yet been unfolded. Indeed, since wedo allow multiple inheritance, it is important to avoid multiple executions of thesame sort unfolding. This is achieved by maintaining a set of sorts legacy(s) toinherit from for a given sort s being unfolded. When we encounter a conditionalcall to a sort de�nition, we check whether this sort is a member of the legacy(s)set and, if so, execute the call. The set legacy(s) is always easy to compute aswe shall see below.The Filter Set Si is the set of all ancestors of the sort si. A new instance of asort may appear in only three possible ways:� a new instance of a sort s is created: the whole set of ancestors S mustbe unfolded. Thus legacy(s) := S.� a sort s0 is re�ned to a lower sort s (typically by an intersect_sortinstruction). In this case, all the ancestors \in between" s and s0 must beunfolded, i.e., legacy(s) := S \ S0.11

� a sort s is created through uni�cation of two sorts s1 and s2. Here wewould unfold the following: legacy(s) := S \ (S1 [S2).The complement operation on sets of sorts is with respect to the set of all sortsin the hierarchy.With an appropriate encoding (e.g., bit-vectors), these operations are cheap(constant time) [3].Let us look at an example, using the hierarchy in �gure 2.Figure 2: A simple sort hierarchy����� @@@@@@@@@@�����personemployee married personmarried employeeAssume the following de�nition of employee::: employee(job) job name ;corp) C : string;boss) employee(job) manager ;corp) C))j top 500 (C):The sorts person and married person are de�ned as in the examples in theprevious sections, and the sort married employee has no sort de�nition.The (abbreviated) code for these four sorts is now as follows:L_person: intersect_sort X0 personwait_on_feature X0 name X1 L1proceedL_employee: allocate 1intersect_sort X0 employeewait_on_feature X0 job X1 L2wait_on_feature X0 corp Y0 L3wait_on_feature X0 boss X2 L412

call L_top_500ccall L_personproceedL_top_500: delay Y0[set-up call for top_500]call top_500proceedL_married_person: allocate 2intersect_sort X0 married_personset Y0 X0wait_on_feature Y0 name X1 L5wait_on_feature Y0 spouse X2 L6ccall L_personproceedL_married_employee: intersect_sort X0 married_employeeccall L_employeeccall L_married_personproceedThe instruction ccall L s0 in the code of sort s checks whether the sort de�nitionto be called (i.e., s0) is a member of the set legacy(s). If so it removes it fromthat set and executes the call. Otherwise, it does nothing.Note how the empty sort de�nition for married employee did yield some code,since it needs to request the unfolding of its parent sorts.Let us suppose that we create a fresh instance of the sort married employee. Theset legacy(married employee) is set to fperson; employee;married persong andthe code for married employee is called. When it reaches the conditional callto L_employee, the sort employee is in the set legacy(married employee) andthus must be removed before the call. When reaching the call to L_top_500, wemust preserve legacy(married employee). One way to do that is to save a pointerto legacy(married employee) in the environment of the sort being unfolded (inthis example, employee). This is because the constraint predicate call may inturn awaken other sort unfoldings before proceeding. When the execution oftop 500 returns, the value of legacy(married employee) is restored. The nextinstruction is the conditional call to L_person. It also executes, since personis a member of legacy(married employee). Thus, legacy(married employee) isnow equal to fmarried persong. Both calls proceed and the conditional call toL_married_person is also performed, leaving legacy(married employee) empty.When the instruction ccall L_person in the code for married person is en-countered, nothing is done, as the sort person is not a member of currentlegacy(married employee). This shows also, that if there had been a \suchthat" constraint in the sort de�nition of person, it would only have been exe-cuted once, as expected.Given a sort s, the set legacy(s) is clearly a local information that must be pre-served while in tangential calls, and thus must be saved in the sort environment,13

as argued in the above example. Note that the value of a legacy set may beshared by several sorts (as in the example above). This is why a pointer to theset, rather than the set itself is what is stored in the environment.When a new sort symbol is created, and it has to be unfolded, a job will beadded to a job queue, indicating the address of the corresponding -term thatneeds to be unfolded, the code address for the sort de�nition, and its legacyset of ancestors that will have to be unfolded for this new sort symbol. Whensuch a scheduled request becomes active, its legacy set is loaded into a sortenvironment slot and execution proceeds as described above. Thus, as one mayappreciate, the bookkeeping overhead is minimal.9 ConclusionWe have presented a compilation scheme for order-sorted feature structure uni-�cation which takes into account sort de�nitions, including coreferences, accom-modating a sort hierarchy, as well as \such that" constraints. The compilationscheme is simple and requires minimal bookkeeping overhead. Yet, it yieldsan attractive semantics for the delayed, yet eager, unfolding of sort de�nitions.This scheme is the basis of the implementation of a compiler for LIFE being de-veloped at Simon Fraser University. Many optimizations and extensions can beforeseen of, especially with the prospect of integrating diverse constraint solvers,allowing for even more
exibility of the language.References[1] Hassan A��t-Kaci. Warren's Abstract Machine. Series in Logic Program-ming. MIT Press, Cambridge, MA, 1991.[2] Hassan A��t-Kaci. An introduction to LIFE|programming with logic, in-heritance, functions, and equations. In Dale Miller, editor, Proceedingsof the International Symposium on Logic Programming, pages 52{68. MITPress, October 1993.[3] Hassan A��t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. E�cientimplementation of lattice operations. ACM Transactions on ProgrammingLanguagues and Systems, 11(1):115{146, January 1989.[4] Hassan A��t-Kaci and Roberto Di Cosmo. Compiling order-sorted featureterm uni�cation. PRL Technical Note 7, Digital Equipment Corporation,Paris Research Laboratory, Rueil-Malmaison, France, December 1993.[5] Hassan A��t-Kaci and Andreas Podelski. Towards a meaning of LIFE. Jour-nal of Logic Programming, 16(3-4):195{234, July-August 1993.14

[6] Hassan A��t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature theory uni�cation. In Dale Miller, editor, Proceedings ofthe International Symposium on Logic Programming, pages 506{524. MITPress, October 1993. (To appear in the Journal of Logic Programming,1996.).[7] Bob Carpenter. The Logic of Typed Feature Structures, volume 32 ofCambridge Tracts in Theoretical Computer Science. Cambridge Univer-sity Press, Cambridge, UK, 1992.[8] Hans-Ulrich Krieger and Ulrich Sch�afer. E�cient parameterizable type ex-pansion for typed feature formalisms. In Chris Mellish, editor, Proceedingsof the 14th International Joint Conference on Arti�cial Intelligence, pages1428{1434, San Mateo, CA, August 1995. Morgan Kaufmann Publishers,Inc.[9] Richard Meyer. Compiling LIFE. PRL Technical Note 8, Digital Equip-ment Corporation, Paris Research Laboratory, Rueil-Malmaison,December1993.[10] Gert Smolka and Ralf Treinen. Records for logic programming. Journal ofLogic Programming, 18(3):229{258, April 1994.[11] David H. D. Warren. An abstract Prolog instruction set. Technical Note309, SRI International, Menlo Park, CA, October 1983.

15

