
A Sorted-Graph Unification Approach
to the

Semantic Web

Hassan Aı̈t-Kaci
Senior Technical Staff Member

IBM Canada Ltd.

1

OSF Graph Constraint Formalism—Outline

� Semantic Web formalisms

� Graphs as constraints

� OSF vs. DL

� LIFE—logically and functionally constrained sorted graphs

� Recapitulation

2

OSF Graph Constraint Formalism—Outline

� Semantic Web formalisms

� Graphs as constraints

� OSF vs. DL

� LIFE—logically and functionally constrained sorted graphs

� Recapitulation

3

Semantic Web formalisms—OWL speaks

� OWL technology has become its de facto standard

� Everyone talks about OWL dialects!
The whole World-Wide Web is abuzz with OWL-this and
OWL-that , . . .

� However, a lesser number understands them. . .
SHIF , SHIQ, SHOQ(D), SHOIQ, SRIQ, SROIQ, . . .
are not alien species’ tongues but dialects devised for
OWL (W3C’s Ontology Web Language) by some of the
most prolific and influential SW’s researchers.

4

Semantic Web formalisms—OWL speaks

What language(s) do OWL’s speak?—a confusing growing
crowd of strange-sounding languages and logics:

• OWL, OWL Lite, OWL DL, OWL Full
• DL, DLR, . . .
• AL, ALC, ALCN , ALCNR, . . .
• SHIF , SHIN , CIQ, SHIQ, SHOQ(D), SHOIQ, SRIQ,
SROIQ, . . .

Depending on whether the system allows:

• concepts, roles (inversion, composition, inclusion, . . .)
• individuals, datatypes, cardinality constraints
• various combination thereof

5

Semantic Web formalisms—DL dialects

For better or worse, the W3C has married its efforts to DL-
based reasoning systems:

� All the proposed DL Knowledge Base formalisms in the
OWL family use tableaux-based methods for reasoning

� Tableaux methods work by building models explicitly via
formula expansion rules

� This limits DL reasoning to finite (i.e., decidable) models

� Worse, tableaux methods only work for small ontologies:
they fail to scale up to large ontologies

6

Semantic Web formalisms—DL dialects

Tableaux style DL reasoning (ALCNR)

(DL�) CONJUNCTIVE CONCEPT:[
if x : (C1 � C2) ∈ S

and {x : C1, x : C2} �⊆ S

] S

S ∪ {x : C1, x : C2}

(DL�) DISJUNCTIVE CONCEPT:[
if x : (C1 � C2) ∈ S

and x : Ci �∈ S (i = 1, 2)

] S

S ∪ {x : Ci}

(DL∀) UNIVERSAL ROLE:
⎡
⎣ if x : (∀R.C) ∈ S

and y ∈ RS[x]

and y : C �∈ S

⎤
⎦ S

S ∪ {y : C}

7

Semantic Web formalisms—Tableaux style DL reasoning (ALCNR) - ctd.

(DL∃) EXISTENTIAL ROLE:
⎡
⎣ if x : (∃R.C) ∈ S s.t. R

DEF

== (
�m

i=1 Ri)

and z : C ∈ S ⇒ z �∈ RS[x]

and y is new

⎤
⎦ S

S ∪ {xRiy}m
i=1 ∪ {y : C}

(DL≥) MIN CARDINALITY:
⎡
⎣ if x : (≥ n.R) ∈ S s.t. R

DEF

== (
�m

i=1 Ri)

and |RS[x]| �= n

and yi is new (0 ≤ i ≤ n)

⎤
⎦ S

S ∪ {xRiyj}m,n
i,j=1,1

∪ {yi � .= yj}1≤i<j≤n

(DL≤) MAX CARDINALITY:
⎡
⎣ if x : (≤ n.R) ∈ S

and |RS[x]| > n and y, z ∈ RS[x]

and y � .= z �∈ S

⎤
⎦ S

S ∪ S[y/z]

8

Semantic Web formalisms—RDF triples

RDF is a notation for meta-description about data (metadata)
using (edge- and node-) labeled graphs.

� Basic building block: “triple” labeled by “resources”—i.e., URI’s.

� A triple consists of a resource (the subject), linked through a resource
(the predicate) to another resource (the object).

� A triple states that the subject has a property, denoted by the predi-
cate, whose value is the object:

subject object
predicate

� The information carried by a triple is called a “statement.”

9

Semantic Web formalisms—RDF triples

� RDF statements can be reified and be denoted as resources—hence,
RDF’s metalinguistic nature:

metasubject

subject object
predicate

metapredicate

� RDF uses XML for its serialized syntax.

� RDF enables the definition of vocabularies which can be shared over
the Web thanks to XML namespaces (e.g., Dublin Core).

� RDF Schema (RDFS) is a meta-description of RDF in RDF;
it defines a vocabulary for RDF.

10

Semantic Web formalisms—RDF triples

RDF triples may be expressed using several syntaxes:

� a (normative) XML syntax

� Notation 3 syntax (TBL)

� Turtle—TRTL: Terse RDF Triple Language (TBL, David
Beckett)

� . . .

Linked Data has become de facto standard for distributed
information—it does to RDF what HTML has done to text:
it interconnects knowledge through the Internet

11

Semantic Web formalisms—RDF XML syntax

<rdf:RDF

xmlns:rdf

="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:ex="http://w3.hak.org/school-ns#">

<rdf:Description rdf:about="ID-6541">

<ex:name>John Doe</ex:name>

<ex:title>Assistant Professor</ex:title>

<ex:age rdf:datatype="&xsd:integer">35</ex:age>

<ex:teaches rdf:resource="#CS-100"/>

<ex:teaches rdf:resource="#CS-345"/>

</rdf:Description>

12

Semantic Web formalisms—RDF XML syntax

<rdf:Description rdf:about="CS-100">

<ex:courseName>

Introduction to Computer Programming

</ex:courseName>

<ex:courseTime>MTW/9:00-10:30</ex:courseTime>

<ex:coursePlace>Wheston Hall 230</ex:coursePlace>

</rdf:Description>

<rdf:Description rdf:about="CS-200">

<ex:courseName>Operating Systems</ex:courseName>

<ex:courseTime>TTh/11:00-13:00</ex:courseTime>

<ex:coursePlace>Dietrich Hall 34</ex:coursePlace>

</rdf:Description>

13

Semantic Web formalisms—RDF XML syntax

<rdf:Description rdf:about="CS-345">

<ex:courseName>

Introduction to Compiler Design

</ex:courseName>

<ex:courseTime>MTW/9:00-10:30</ex:courseTime>

<ex:coursePlace>Chetham Hall 130</ex:coursePlace>

<ex:prerequisites>

<rdf:bag>

<rdf: 1 rdf:resource="#CS-100">

<rdf: 2 rdf:resource="#CS-220">

</rdf:bag>

</ex:prerequisites>

</rdf:Description>

</rdf:RDF>

14

Semantic Web formalisms—RDF XML syntax

Adding types to RDF nodes:

<rdf:Description rdf:about="CS-100">

<rdf:type rdf:resource="ex:course"/>

<ex:courseName>

Introduction to Computer Programming

</ex:courseName>

<ex:courseInstructor rdf:resource="#ID-6541"/>

<ex:courseTime>MTW/9:00-10:30</ex:courseTime>

<ex:coursePlace>Wheston Hall 230</ex:coursePlace>

</rdf:Description>

15

Semantic Web formalisms—RDF XML syntax

Adding types to RDF nodes:

<rdf:Description rdf:about="ID-6541">

<rdf:type rdf:resource="ex:instructor"/>

<ex:name>John Doe</ex:name>

<ex:title>Assistant Professor</ex:title>

<ex:age rdf:datatype="&xsd:integer">35</ex:age>

<ex:teaches rdf:resource="#CS-100"/>

<ex:teaches rdf:resource="#CS-345"/>

</rdf:Description>

16

Semantic Web formalisms—RDF XML syntax

Simplified XML notation for RDF nodes:

1. Replace rdf:Description tag with the value of its rdf:type

attribute if present
2. Replace a single leaf node by an attribute named as the

node’s tag with string value equal to the node’s contents

<ex:instructor

rdf:about="ID-6541"

ex:name="John Doe"

ex:title="Assistant Professor"/>

<ex:age rdf:datatype="&xsd:integer">35</ex:age>

<ex:teaches rdf:resource="#CS-100"/>

<ex:teaches rdf:resource="#CS-345"/>

</ex:instructor>

17

Semantic Web formalisms—Objects are labelled graphs!

JohnDoe35 : marriedPerson (name => fullName

(first => "John"

, last => "Doe")

, age => 42

, address => DoeResidence

, spouse => JaneDoe78

, isVoter => true

)

18

Semantic Web formalisms—Objects are labelled graphs!

JaneDoe78 : marriedPerson (name => fullName

(first => "Jane"

, last => "Doe")

, age => 40

, address => DoeResidence

, spouse => JohnDoe35

, isVoter => false

)

DoeResidence : streetAddress (number => 123

, street => "Main Street"

, city => "Sometown"

, country => "USA"

)

JohnDoe35 true

c
"John"

jmarriedPerson
a

fullName
d

"Doe"

k
42

e

DoeResidence
123

l
"Main Street"

mstreetAddress
f "Sometown"

n
"USA"

o
40

g
"Jane"

pmarriedPerson
b

fullName
h

"Doe"

q
JaneDoe78 false

i

isV
ote

r

name

age

address

spouse

first

last

number

street

city
country

sp
ou

se

ad
dr

es
s

ag
e

name

isVoter

first

last

20

OSF Graph Constraint Formalism—Outline

� Semantic Web formalisms

� Graphs as constraints

� OSF vs. DL

� LIFE—logically and functionally constrained sorted graphs

� Recapitulation

21

Graphs as constraints—Motivation

� Proposal: a formalism for representing objects that is:
intuitive (objects as labelled graphs), expressive (“real-life” data

models), formal (logical semantics), operational (executable), &
efficient (constraint-solving)

� Why? viz., ubiquitous use of labelled graphs to structure
information naturally as in:

– object-orientation, knowledge representation,
– databases, semi-structured data,
– natural language processing, graphical interfaces,
– concurrency and communication,
– XML, RDF, the “Semantic Web,” etc., ...

22

Graphs as constraints—History

Viewing graphs as constraints stems from the work of:

� Hassan Aı̈t-Kaci (since 1983)

� Gert Smolka (since 1986)

� Andreas Podelski (since 1989)

� Franz Baader, Rolf Backhofen, Jochen Dörre, Martin Emele,
Bernhard Nebel, Joachim Niehren, Ralf Treinen, Manfred
Schmidt-Schauß, Remi Zajac, . . .

23

Graphs as constraints—Inheritance as graph endomorphism

person id

string

string

married person id

string

string

married person id

name
first

last

name
first

last

spouse

spouse

name

last

24

Graphs as constraints—Inheritance as graph endomorphism

person id

string

string

married person id

string

string

married person id

name
first

last

name
first

last

spouse

spouse

name

last

25

Graphs as constraints—OSF term syntax

Let V be a countably infinite set of variables.

An OSF term is an expression of the form:

X : s(�1 ⇒ t1, . . . , �n ⇒ tn)

where:

� X ∈ V is the root variable

� s ∈ S is the root sort

� n ≥ 0 (if n = 0, we write X : s)

� {�1, . . . , �n} ⊆ F are features

� t1, . . . , tn are OSF terms

26

Graphs as constraints—OSF term syntax example

X : person(name ⇒ N : (first ⇒ F : string),
name ⇒ M : id(last ⇒ S : string),
spouse ⇒ P : person(name ⇒ I : id(last ⇒ S :),

spouse ⇒ X :)).

Lighter notation:

X : person(name ⇒ (first ⇒ string),
name ⇒ id(last ⇒ S : string),
spouse ⇒ person(name ⇒ id(last ⇒ S),

spouse ⇒ X)).

27

Graphs as constraints—OSF term semantics

� OSF term t = X : s(�1 ⇒ t1, . . . , �n ⇒ tn)

� OSF interpretation A

� A-valuation α : V �→ DA

Denotation of t in A under valuation α:

[[t]]A,α DEF

== {α(X)} ∩ sA ∩ (
⋂

1≤i≤n

(�Ai)−1([[ti]]
A,α))

Denotation of t in A under all possible valuations:

[[t]]A
DEF

==
⋃

α:V�→DA

[[t]]A,α.

28

Graphs as constraints—OSF clause syntax

An OSF constraint is one of:

� X : s

� X.�
.
= X ′

� X
.
= X ′

where X (X ′) is a variable (i.e., a node), s is a sort (i.e., a
node’s type), and � is a feature (i.e., an arc).

An OSF clause is a conjunction of OSFconstraints—i.e., a
set of OSF constraints

φ1 & . . . & φn

29

Graphs as constraints—Semantics of OSF clauses

Satisfaction of OSF constraints in an OSF algebra A by a
valuation α : V �→ DA is defined by:

A, α |= X : s ⇐⇒ α(X) ∈ sA

A, α |= X
.
= Y ⇐⇒ α(X) = α(Y)

A, α |= X.�
.
= Y ⇐⇒ �A(α(X)) = α(Y)

A, α |= φ1 & . . . & φn ⇐⇒ A, α |= φi ∀i = 1, . . . , n

30

Graphs as constraints—From OSF terms to OSF clauses

An OSF term t = X : s(�1 ⇒ t1, . . . , �n ⇒ tn) is dissolved
into an OSF clause φ(t) as follows:

ϕ(t)
DEF

== X : s & X.�1
.
= X1 & . . . & X.�n

.
= Xn

& ϕ(t1) & . . . & ϕ(tn)

where X1, . . . , Xn are the root variables of t1, . . . , tn.

Theorem: A, α |= ϕ(t) ⇐⇒ [[t]]A,α �= ∅

31

Graphs as constraints—Example of OSF term dissolution

t = X : person(name ⇒ N : (first ⇒ F : string),
name ⇒ M : id(last ⇒ S : string),
spouse ⇒ P : person(name ⇒ I : id(last ⇒ S :),

spouse ⇒ X :))

ϕ(t) = X : person & X. name
.
= N & N :

& X. name
.
= M & M : id

& X. spouse
.
= P & P : person

& N . first
.
= F & F : string

& M. last
.
= S & S : string

& P . name
.
= I & I : id

& I . last
.
= S & S :

& P . spouse
.
= X & X :

32

Graphs as constraints—Basic OSF term normalization

(1) Sort Intersection

φ & X : s & X : s′

φ & X : s ∧ s′

(2) Inconsistent Sort

φ & X : ⊥

X : ⊥

(3) Variable Elimination

φ & X
.
= X ′

φ[X ′/X] & X
.
= X ′

if X �= X ′

and X ∈ Var(φ)

(4) Feature Functionality

φ & X.�
.
= X ′ & X.�

.
= X ′′

φ & X.�
.
= X ′ & X ′ .

= X ′′

33

Graphs as constraints—OSF unification = OSF constraint normalization

person

student employee

staff faculty

intern

bob piotr pablo simon elena art judy don john sheila

34

Graphs as constraints—OSF unification = OSF constraint normalization

X : student

(roommate => person(rep => E : employee),

advisor => don(secretary => E))

&

Y : employee

(advisor => don(assistant => A),

roommate => S : student(rep => S),

helper => simon(spouse => A))

&

X = Y

35

Graphs as constraints—OSF unification = OSF constraint normalization

X : intern

(roommate => S : intern(rep => S),

advisor => don(assistant => A,

secretary => S),

helper => simon(spouse => A))

&

X = Y

&

E = S

36

Graphs as constraints—First-order terms as OSF graph constraints

Let Σ
DEF

==
⊎

n∈N Σn be a ranked signature.

The first-order (rational) terms in TΣ,V are OSF terms s.t.:

� S DEF

== Σ ∪ {,⊥} is a flat lattice

� F DEF

== N \ {0}
� Arity()

DEF

== ∅
� Arity(⊥)

DEF

== {i ∈ N
∗ | i ≤ max{n > 0 | Σn �= ∅} }

� ∀f ∈ Σn : Arity(f)
DEF

== {1, . . . , n}
� ∀i ∈ F : Dom(i)

DEF

==
⋃

i≤n Σn

� ∀i ∈ F ,∀f ∈ Σ : Ranf(i)
DEF

==

{
 if f ∈ Dom(i)
⊥ otherwise

37

Graphs as constraints—Extended OSF terms

Basic OSF terms may be extended to express:

� Non-lattice sort signatures

� Disjunction

� Negation

� Partial features

� Extensional sorts (i.e., denoting elements)

� Relational features (a.k.a., “roles”)

� Regular-expression feature paths

� Aggregates (à la monoid comprehensions)

� Sort definitions (a.k.a., “OSF theories”)

38

Graphs as constraints—Extended OSF terms

OsfTerm ::= [Variable:] Term

Term ::= ConjunctiveTerm

| DisjunctiveTerm

| NegativeTerm

ConjunctiveTerm ::= Sort [(Attribute+)]

Attribute ::= Feature ⇒ OsfTerm

DisjunctiveTerm ::= { OsfTerm [; OsfTerm]∗ }

NegativeTerm ::= ¬ OsfTerm

39

Extended OSF constraints—Non-lattice signatures, disjunction

vehicle four wheeler

car van

⊥

Non-unique GLBs are disjunctive sorts:

vehicle ∧ four wheeler = {car; van}

40

Extended OSF constraints—Disjunctive OSF terms

Syntax of disjunctive OSF terms:

{ t1 ; . . . ; tn }

Semantics of disjunctive OSF terms:

[[{t1; . . . ; tn}]]A,α DEF

==
⋃

1≤i≤n

[[ti]]
A,α

Disjunctive OSF clauses:

ϕ({t1; . . . ; tn})
DEF

== ϕ(t1) ‖ . . . ‖ ϕ(tn)

A, α |= φ1 ‖ . . . ‖ φn iff A, α |= φi for some i = 1, . . . , n

41

Extended OSF constraints—Disjunctive OSF normalization

(5) Non-unique GLB

φ & X : s & X : s′

φ & (X : s1 ‖ . . . ‖ X : sn)

where {si}n
i=0

DEF

== max≤{t ∈ S | t ≤ s and t ≤ s′}

(6) Distributivity

φ & (φ′ ‖ φ′′)

(φ & φ′) ‖ (φ & φ′′)

(7) Disjunction

φ ‖ φ′

φ

42

Extended OSF constraints—Negation

Syntax of negative OSF terms: ¬t

Semantics of negative OSF terms: [[¬t]]A
DEF

== DA \ [[t]]A

Complemented sorts: [[s]]A
DEF

== DA \ [[s]]A

Sorted variable simplification:

ς(X : s)
DEF

== X : s if s ∈ S

ς(X : s)
DEF

== ς(X : s)

ς(X : {s1; . . . ; sn})
DEF

== ς(X : s1) & . . . & ς(X : sn)

43

Extended OSF constraints—Negative OSF terms

Dissolving negative OSF terms into OSF clauses eliminates
negation:

ϕ(¬(¬t))
DEF

== ϕ(t)

ϕ(¬{t1; . . . ; tn})
DEF

== ϕ(¬t1) & . . . & ϕ(¬tn)

ϕ(¬X : s(�i ⇒ ti)
n
i=1)

DEF

== ς(X : s)

‖ X.�1
.
= X1 & ϕ(¬t1)

‖ X.�1
.
= X ′

1 & X ′
1 �

.
= X1 & ϕ(t1)

· · ·
‖ X.�n

.
= Xn & ϕ(¬tn)

‖ X.�n
.
= X ′

n & X ′
n � .= Xn & ϕ(tn)

44

Extended OSF constraints—Negative OSF term normalization

(8) Variable Disequality

φ & X � .= X

⊥

(9) Sort Complement

φ & X : s

φ & X : s′
if s′ ∈ max≤{t ∈ S | s �≤ t and t �≤ s}

45

Extended OSF constraints—Partial features

Partial features have restricted domains:

∃y, y = �(x) only if x ∈ Dom(�)

Declaring partial feature domains:

Dom : F �→ 2S

s.t. Dom(�)
DEF

== set of maximal sorts where � is defined. Can
also declare a feature’s range: Rans : F �→ S for s ∈ Dom(�).

(10) Partial Feature

φ & X.�
.
= X ′

φ & X.�
.
= X ′ & X : s & X ′ : s′

if s ∈ Dom(�)
and Rans(�) = s′

46

Extended OSF constraints—Partial features (example)

Assume {nil, cons, list} ⊆ S such that:

nil < list
cons < list

and {hd, tl} ⊆ F such that:

Dom(hd)
DEF

== {cons}
Dom(tl)

DEF

== {cons}

then:

list(tl ⇒ X) � cons(tl ⇒ X)
int(tl ⇒ X) � ⊥

47

Extended OSF constraints—Extensional sorts

The fact that some sorts denote singletons (e.g., numbers)
is not part of our axioms so far!

i.e.,
f (a ⇒ 1, b ⇒ 1) �≤ f (a ⇒ X, b ⇒ X)

because:

f (a ⇒ X : s, b ⇒ X ′ : s) ≤ f (a ⇒ Y, b ⇒ Y) iff X = X ′

A sort that denotes a singleton, whenever all its images by a
specific set of features do, is called extensional.

48

Extended OSF constraints—Extensional sorts

Extensional sorts are element constructors.

Let E ⊆ Minimals(S) be the set of extensional sorts with
rank function:

Arity : E �→ 2F

e.g.:

Arity(n) = ∅ ∀n ∈ IN

Arity(nil) = ∅
Arity(cons) = {hd, tl}

49

Extended OSF constraints—Extensional sorts

Extensional sorts obey an axiom reminiscent of the axiom of
functionality; viz.,

if Arity(f) = n and Xi = Yi (∀i = 1, . . . , n)

then f (X1, . . . , Xn) = f (Y1, . . . , Yn)

(11) Weak Extensionality

φ & X : s & X ′ : s

φ & X : s & X
.
= X ′

if s ∈ E and ∀� ∈ Arity(s):

{X.f
.
= Y,X ′.f

.
= Y } ⊆ φ

50

Extended OSF constraints—Extensional sorts

The Weak Extensionality rule works, but not for cyclic terms;
viz.:

let s ∈ E and Arity(s) = {�}

then X : s(� ⇒ X) & X ′ : s(� ⇒ X ′)

or X : s(� ⇒ X ′) & X ′ : s(� ⇒ X)

are not reduced! So we need a stronger condition for cycles.

51

Extended OSF constraints—Strong extensionality

Proceed coinductively from roots to leaves carrying a context
Γ, a set of pairs s/{X1, . . . , Xn} s.t. Xi ∈ V (i = 1, . . . , n) and
s ∈ E occurs at most once in Γ:

(12) Extensional Occurrence

Γ � {s/V, . . . , } � φ & X : s

Γ � {s/V ∪ {X}, . . .} � φ & X : s

if s ∈ E and X �∈ V
and ∀f ∈ Arity(s) :
{X.f

.
= X ′, X ′ : s′} ⊆ φ

with s′ ∈ E

(13) Strong Extensionality

Γ � {s/{X,X ′, . . .} � φ

Γ � {s/{X, . . .} � φ & X
.
= X ′

if s ∈ E

52

Extended OSF constraints—Relational features and aggregation

Relational features are set-valued features:

∀〈x, y〉 ∈ A × B : 〈x, y〉 ∈ R iff y ∈ R[x] iff x ∈ R−1[y]

Sets are a particular case of monoidal aggregates:

� the notation “X : s” is generalized to carry an optional
value e ∈ E

� “X = e : s” means “X has value e of sort s”
(X ∈ V , e ∈ E , s ∈ S)

� the shorthand “X = e” means “X = e : ”

� when the sort s ∈ S denotes a commutative monoid 〈�,1�〉,
the shorthand “X : s” means “X = 1� : s.”

53

Extended OSF constraints—Relational features and aggregation

The semantic conditions are thus extended:

A, α |= X = e : s iff eA ∈ sA and α(X) = eA

(14) Value Aggregation

φ & X = e : s & X = e′ : s′

φ & X = e � e′ : s ∧ s′
if s and s′ are both subsorts of
commutative monoid 〈�, 1�〉

N.B.: This works for any commutative monoid—not just sets!

54

Extended OSF constraints—OSF theory unification

IDEA: Augment the sort ordering with constraints imposing:

• sorts of features

• coreference equations

e.g., define the sort person to abide by the structure:

Θ(person) = person

id

string

string

person
id

name
first

last

spouse

spouse

name
last

55

Extended OSF constraints—OSF theory

An OSF theory is a function: Θ : S �→ Ψ

An OSF theory is order-consistent iff it is monotonic:

s ≤ s′ ⇒ Θ(s) ≤ Θ(s′)

OSF theory unification problem:

Given an order-consistent OSF theory Θ, normalize
any term of sort s taking into account the OSF con-
straints Θ(s).

Theorem OSF theory unification is undecidable.

56

Extended OSF constraints—OSF theory

However... there is an algorithm such that:

� inconsistent terms are always normalized to ⊥ in finitely
many steps;

� normalization can perform OSF constraint inheritance from
the theory lazily;

� there is an efficient algorithm which is complete for a large
class of OSF theories;

� only one rule completes it (and may cause divergence).

57

Extended OSF constraints—OSF theory unification (example)

person id

string

string

married person id

string

string

married person id

name
first

last

name
first

last

spouse

spouse

name

last

58

Extended OSF constraints—OSF theory unification

The fact that an OSF theory is order-consistent yields an
endomorphic mapping of theory variables.

In particular, the sort ordering ≤ and the GLB operation ∧
extend homomorphically to all theory variables.

Y1
Y2

Y3

Y4

Y5
Y6

Y7

Y10

Y8 Y9

59

Extended OSF constraints—OSF theory unification

person id

string

string

married person id

string

string

married person id

name
first

last

name
first

last

spouse

spouse

name

last

Y1
Y2

Y3

Y4

Y5
Y6

Y7

Y10

Y8 Y9

60

Extended OSF constraints—OSF theory unification

Normalizing:

P : person(name ⇒ (last ⇒ “Smith”))
& P : married person(spouse ⇒ Q)
& Q : person(name ⇒ id(last ⇒ S))

yields, among other things:

P : married person
& Q : married person
& S : “Smith” . . .

61

Extended OSF constraints—OSF theory unification

(0) Frame Allocation

Γ � X : s & φ

Γ
⋃

{{X\Ys}} � X : s & φ
if ∀s′ ∈ S, ∀F ∈ Γ : X\Ys′ /∈ F

62

Extended OSF constraints—OSF theory unification (empty theory)

(1) Sort Intersection

Γ
⋃

{{X\Ys′} ∪ F} � X : s & X : s′ & φ

Γ
⋃

{{X\Ys∧s′} ∪ F} � X : s ∧ s′ & φ

(2) Inconsistent Sort

Γ
⋃

{{X\Y⊥} ∪ F} � φ

∅ � ⊥

63

Extended OSF constraints—OSF theory unification (empty theory)

(3) Variable Elimination

Γ � X
.
= X ′ & φ

Γ[X ′/X] � X
.
= X ′ & φ[X ′/X]

if X �= X ′

and X ∈ Var(Γ) ∪ Var(φ)

(4) Feature Functionality

Γ � X.�
.
= X ′ & X.�

.
= X ′′ & φ

Γ � X.�
.
= X ′ & X ′ .

= X ′′ & φ

64

Extended OSF constraints—OSF theory unification (non-empty theory)

(5) Feature Inheritance (if �(Y) = Y ′ and X ′\Y ′ /∈ F)

Γ
⋃

{{X\Y } ∪ F} � φ & X.�
.
= X ′

Γ
⋃

{{X\Y,X ′\Y ′} ∪ F} � φ & X.�
.
= X ′ & X ′ : Sort(Y ′)

(6) Frame Merging

Γ
⋃

{{X\Ys} ∪ F, {X\Ys′} ∪ F ′} � φ

Γ
⋃

{{X\Ys∧s′} ∪ F ∪ F ′} � φ

65

Extended OSF constraints—OSF theory unification (non-empty theory)

(7) Frame Reduction

Γ
⋃

{{X\Y,X\Y ′} ∪ F} � φ

Γ
⋃

{{X\Y } ∪ F} � φ
if Y ≤ Y ′

(8) Theory Coreference

Γ
⋃

{{X\Y,X ′\Y } ∪ F} � φ

Γ
⋃

{{X\Y } ∪ F} � φ & X
.
= X ′

66

Extended OSF constraints—OSF theory unification (strong normalization)

(9) Theory Feature Completion

Γ � φ

Γ � X.�
.
= Z & φ

if X\Y ∈ F for some F ∈ Γ
and X\Y ′ ∈ F ′ for some F ′ ∈ Γ
and both �(Y), �(Y ′) exist
and Z is new

Y : s a

Y ′ : s b

X : s

�2

�1

�2

�1

X\Y

X\Y ′

67

Order-sorted featured graph constraints—(Summary)

We have overviewed a formalism of objects where:

� “real-life” objects are viewed as logical constraints

� objects may be approximated as set-denoting constructs

� object normalization rules provide an efficient operational
semantics

� consistency extends unification (and thus matching)

� this enables rule-based computation (whether rewrite or
logical rules) over general graph-based objects

� this yield a powerful means for effectively using ontologies

68

OSF Graph Constraint Formalism—Outline

� Semantic Web formalisms

� Graphs as constraints

� OSF vs. DL

� LIFE—logically and functionally constrained sorted graphs

� Recapitulation

69

Understanding OWL speak—OSF vs. DL

Understanding OWL amounts to reasoning with knowledge
expressed as OWL sentences. Its DL semantics relies on
explicitly building models using induction.

ergo:

Inductive techniques are eager and (thus) wasteful

Reasoning with knowledge expressed as constrained (OSF)
graphs relies on implicitly pruning inconsistent elements us-
ing coinduction.

ergo:

Coinductive techniques are lazy and (thus) thrifty

70

OSF Graph Constraint Formalism—Outline

� Semantic Web formalisms

� Graphs as constraints

� OSF vs. DL

� LIFE—logically and functionally constrained sorted graphs

� Recapitulation

71

LIFE—logically and functionally constrained sorted graphs

LIFE—Logic, Inheritance, Functions, and Equations

CLP(χ)—Constraint, Logic, Pprogramming, parameterized
over is a constraint system χ

LIFE is a CLP system over OSF constraints and functions
over them (rewrite rules); namely:

LIFE = CLP(OSF + FP)

72

LIFE—logically and functionally constrained sorted graphs

adultPerson

employee marriedPerson

richemployee marriedEmployee

A multiple-inheritance hierarchy

73

The same hierarchy in Java

interface adultPerson {
name id;

date dob;

int age;

String ssn;

}
interface employee extends adultPerson {

title position;

String institution;

employee supervisor;

int salary;

}
interface marriedPerson extends adultPerson {

marriedPerson spouse;

}
interface marriedEmployee extends employee, marriedPerson {
}
interface richEmployee extends employee {
}

74

The same hierarchy in LIFE

employee <: adultPerson.
marriedPerson <: adultPerson.
richEmployee <: employee.
marriedEmployee <: employee.
marriedEmployee <: marriedPerson.

:: adultPerson (id ⇒ name

, dob ⇒ date

, age ⇒ int

, ssn ⇒ string).

:: employee (position ⇒ title

, institution ⇒ string

, supervisor ⇒ employee

, salary ⇒ int).

:: marriedPerson (spouse ⇒ marriedPerson).

75

A relationally and functionally constrained LIFE sort hierarchy

:: P : adultPerson (id ⇒ name

, dob ⇒ date

, age ⇒ A : int
, ssn ⇒ string)

| A = ageInYears(P), A ≥ 18.

:: employee (position ⇒ T : title
, institution ⇒ string

, supervisor ⇒ E : employee
, salary ⇒ S : int)

| higherRank(E.position, T) , E.salary ≥ S.

76

A relationally and functionally constrained LIFE sort hierarchy

:: M : marriedPerson (spouse ⇒ P : marriedPerson)

| P.spouse = M.

:: R : richEmployee (institution ⇒ I
, salary ⇒ S)

| stockValue(I) = V , hasShares(R, I,N) , S + N ∗ V ≥ 200000.

77

Proof “memoizing”

OSF constraints as syntactic variants of logical formulae:

Sorts are unary predicates: X : s ⇐⇒ [[s]]([[X]])

Features are unary functions: X.f
.
= Y ⇐⇒ [[f]]([[X]]) = [[Y]]

Coreferences are equations: X
.
= Y ⇐⇒ [[X]] = [[Y]]

So . . .

Why not use (good old) logic proofs instead?

78

Proof “memoizing”

But: model equivalence �= proof equivalence!

� OSF-unification proves sort constraints by reducing them
monotonically w.r.t. the sort ordering

� ergo, once X : s has been proven, the proof of s(X) is
recorded as the sort “s” itself!

� if further down a proof, it is again needed to prove X : s, it
is remembered as X ’s binding

� Indeed, OSF constraint proof rules ensure that:

no type constraint is ever proved twice

79

Proof “memoizing”

OSF type constraints are incrementally “memoized” as they
are verified:

sorts act as (instantaneous!) proof caches!

whereas in logic having proven s(X) is not “remembered” in
any way (e.g., Prolog)

Example: consider the OSF constraint conjunction:

• X : adultPerson(age ⇒ 25),
• X : employee,
• X : marriedPerson(spouse ⇒ Y).

Notation: type#(condition) means “constraint condition
attached to sort type”

80

Proof “memoizing”—Example hierarchy reminded

adultPerson

employee marriedPerson

richEmployee marriedEmployee

81

Proof “memoizing”

1. proving: X : adultPerson(age ⇒ 25) . . .

2. proving: adultPerson#(X.age ≥ 18) . . .

3. proving: X : employee . . .

4. proving: employee#(higherRank(E.position, P)) . . .

5. proving: employee#(E.salary ≥ S) . . .

6. proving: X : marriedPerson(spouse ⇒ Y) . . .

7. proving: X : marriedEmployee(spouse ⇒ Y) . . .

8. proving: marriedEmployee#(Y.spouse = X) . . .

Therefore, all other inherited conditions coming from a
sort greater than marriedEmployee (such as employee or
adultPerson) can be safely ignored!

82

Proof “memoizing”

This “memoizing” property of OSF constraint-solving enables:

using rules over ontologies

as well as, conversely ,

enhancing ontologies with rules

Indeed, with OSF :

� concept ontologies may be used as constraints by
rules for inference and computation

� rule-based conditions in concept definitions may be
used to magnify expressivity of ontologies thanks to the
proof-memoizing property of ordered sorts

83

OSF Graph Constraint Formalism—Outline

� Semantic Web formalisms

� Graphs as constraints

� OSF vs. DL

� LIFE : logically and functionally constrained sorted graphs

� Recapitulation

84

Recapitulation—what you must remember from this talk. . .

� Objects are graphs

� Graphs are constraints

� Constraints are good : they provide both formal theory
and efficient processing

� Formal Logic is not all there is

� even so: model theory �= proof theory

� indeed, due to its youth, much of W3C technology is often
naı̈ve in conception and design
Ergo. . . it is condemned to reinventing [square!] wheels
as long as it does not realize that such issues have been
studied in depth for the past 50 years in theoretical CS!

85

Recapitulation—what you must remember from this talk. . . (ctd)

Example of W3C’s “reinvention of square wheels:”

� structure-sharing in trees and graphs

� WAM-style compilation of trees and graphs as triple-
based machine instructions

� local/global name scoping management

� types as used in programming and logic

86

Recapitulation—what you must remember from this talk. . . (ctd)

Example of W3C’s “reinvention of square wheels”—ctd:

� syntax : What’s essential?
What’s superfluous?

confusing notation : XML-based cluttered verbosity
ok, not for human consumption—but still!

� semantics: What’s a model good for?
What’s (efficiently) provable?
decidable �= efficient
undecidable �= inefficient

� . . .

87

Recapitulation—what you must remember from this talk. . . (ctd)

� Linked data represents all information as interconnected
sorted labelled RDF graphs—it has become a universal
de facto knowledge model standard

� Differences between DL and OSF can come handy:

� DL is expansive—therefore, expensive—and can only
describe finitely computable sets; whereas,

� OSF is contractive—therefore, efficient—and can also
describe recursively-enumerable sets

� OSF-Constraint Solving enables practical KR:

� structural: objects, classes, inheritance
� non-structural: path equations, relational constraints,

type definitions

88

Recapitulation—what you must remember from this talk. . .

It is exciting to see the prospects of the W3C. . . so. . .
. . . it is time that the SW effort rely on mature science!

Whatever the situation may be, we shall live the consequences
of this Darwinian survival of the fittest:

May the most appropriate win!. . .

The paradox of culture is that language [...] is too linear, not com-
prehensive enough, too slow, too limited, too constrained, too un-
natural, too much a product of its own evolution, and too artificial.
This means that [man] must constantly keep in mind the limitations
language places upon him.

Edward T. Hall—Beyond Culture

89

Innovation takes courage. . . (from Martin Wildberger’s “Smarter Planet” Keynote, CASCON 2009)

If I’d asked my customers what they wanted,
they’d have said a faster horse!—Henry Ford

90

Thank You For Your Attention !

For more information:

• http://portal.acm.org/citation.cfm?id=1467247.1467250

• http://www.facebook.com/video/video.php?v=375500157155

• http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf

• hak@ca.ibm.com

• http://www.linkedin.com/in/hak2007

http://portal.acm.org/citation.cfm?id=1467247.1467250
http://www.facebook.com/video/video.php?v=375500157155
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://www.linkedin.com/in/hak2007

