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ORDER-SORTED FEATURE THEORY
UNIFICATION

HASSAN AiT—KACI, ANDREAS PODELSKI AND SETH
COPEN GOLDSTEIN

>

Order-sorted feature (OSF) terms provide an adequate representation for
objects as flexible records. They are sorted, attributed, possibly nested,
structures, ordered thanks to a subsort ordering. Sorts definitions offer the
functionality of classes imposing structural constraints on objects. These
constraints involve variable sorting and equations among feature paths, in-
cluding self-reference. Formally, sort definitions may be seen as axioms
forming an OSF theory. OSF theory unification is the process of normaliz-
ing an OSF term taking into account sort definitions, enforcing structural
constraints imposed by an OSF theory. It allows objects to inherit, and
thus abide by, constraints from their classes. We propose a formal system
that logically models record objects with (possibly recursive) class defi-
nitions accommodating multiple inheritance. We show that OSF theory
unification is undecidable in general. However, we give a set of confluent
normalization rules which is complete for detecting inconsistency of an ob-
ject with respect to an OSF theory. Furthermore, a subset consisting of all
rules but one is confluent and terminating. This yields a practical complete
normalization strategy, as well as an effective compilation scheme. <
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1. INTRODUCTION

This article presents a method for using defined symbols that appear inside complex
data structures. The definitions associate to symbols data structures in which such
symbols appear, and thus recursive definitions are possible. A symbol definition
unfolding scheme for the effective use of this facility is proposed and studied in
detail. Before we develop the technical details of our approach and method, it is
important that we give the reader an informal motivation, assuming little back-
ground. In this introduction, we will also relate our work to others, and outline the
organization of the remainder of the paper.

1.1. Motivation of Problem

The notion of ¥-term was introduced in [2] as an extension of the conventional
algebraic terms. In [5], ¥-terms were proposed as flexible record structures for logic
programming. However, ¢-terms are of wider interest. Since they are a general-
ization of first-order terms, and since the latter are the pervasive data structures
used by symbolic programming languages, whether based on predicate or equational
logic, or pattern-directed A-calculus, the more flexible 1-terms offer an interesting
alternative.!

The easiest way to describe a i-term is with an example. Here is a ¥-term that
may be used to denote a generic person object:

P : person(name = id(first = string,
last = S : string),
age = 30,
spouse = person(name = id(last = S),
spouse = P)).

In words: a 30 year-old person who has a name in which the first and last parts
are strings, and whose spouse is a person sharing his or her last name, that latter
person’s spouse being the first person in question.

This expression looks like a record structure. Like a typical record, it has field
names; i.e., the symbols on the left of =. We call these feature symbols. In contrast
with conventional records, however, i{-terms can carry more information. Namely,
the fields are attached to sort symbols (e.g., person, id, string, 30, etc.). These
sorts may indifferently denote individual values (e.g., 30) or sets of values (e.g.,
person, string). In fact, values are assimilated to singleton-denoting sorts. Sorts
are partially ordered so as to reflect set inclusion; e.g., employee < person means
that all employees are persons. Finally, sharing of structure can be expressed with
variables (e.g., P and S). This sharing may be circular (e.g., P).

Clearly, a first-order term can be viewed as a particular i-term. Namely, con-
sidering only singleton sorts, a sort ordering reduced to syntactic equality, and
numbers as features, a term f(¢1,...,t,) is the ¢¥-term f(1 = ¢1,...,n=>1,). In
fact, ¥-terms enjoy the same powerful operations as first-order terms: matching
(as, say, in term-rewriting systems, or ML function definitions) and unification (as,
say, in Prolog, or equational narrowing). This makes them a more flexible data

! Accommodating functional programming with the convenience offered by 1-terms is investi-
gated in [7, 17].
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structure for symbolic programming since both operations take into account the
partial-order on sorts and extensibility with features. Therefore, they can supple-
ment first-order terms in a functional programming language or logic programming
language [5, 6]. In this manner, a form of single inheritance (matching) and mul-
tiple inheritance (unification) is obtained cleanly and efficiently. Pattern-directed
definition of functions or predicates will indeed be inherited along the partial order
of sorts (the sort hierarchy) thanks to matching or unification.

In object-oriented programming, typically, objects do not enjoy the expressivity
offered by i-terms. On the other hand, they are made according to blueprints
specified as class definitions. A class acts as a template, restricting the aspect of
the objects that are its instances. Our intention is to conceive such a convenience for
y-terms and, in so doing, expand the capability of the constraining effect of classes
on objects. We propose to achieve this using sort definitions. A sort definition
assoclates a i-term structure to a sort. Intuitively, one may then see a sort as
an abbreviation of a more complex structure. Hence, a sort definition specifies a
template that an object of this sort must abide by, whenever it uses any part of the
structure appearing in the i-term defining the sort.

For example, consider the t-term:2

person(name = T(last = string),
spouse = T (spouse = T,
name = T (last = “smith”))).

Without sort definitions, there is no reason to expect that this structure should be
incomplete, or inconsistent, as intended. Let us now define the sort person as an
abbreviation of the structure:

P : person(name = id(first = string,
last = S : string),
spouse = person(name = id(last = S),
spouse = P)).

This definition of the sort person expresses the expectation whereby, whenever a
person object has features name and spouse, these should lead to objects of sort
1d and person, respectively. Moreover, if the features first and last are present
in the object indicated by name, then they should be of sort string. Also, if a
person object had sufficient structure as to involve feature paths name.last and
spouse.name.last, then these two paths should lead to the same object. And so
on.

For example, with this sort definition, the person object with last name “smith”
above should be made to comply with the definition template by being normalized
into the term:3

X : person(name = id(last = N : “smith”),
spouse = person(spouse = X,
name = id(last = N))).

Note that in our approach, we do not wish to enforce the explicit presence of
the complete generic structure of a sort’s definition in every object of that sort.

2The sort symbol T is the top of the partial order, the sort of all objects.
3In this example, it is assumed, of course, that “smith”<string.
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Rather, we want to enforce the minimal restrictions that will guarantee that every
object of a given sort denotes the largest possible set consistent with the sort’s
definition. Therefore the presence of a given feature in a sort definition does not
necessarily imply its presence in every instance of the sort, and conversely, the
absence of a feature in a sort definition does not rule out its presence in an in-
stance of the sort. For example, with the above definition for the sort person, a
person instance need not necessarily have a name, and conversely, we could use
person(hobby = movie_going) without worrying about violating the template for
person since the feature hobby is not constrained by the definition of person.

This lazy scheme of inheritance of structural constraints from the class template
into an object’s structure is invaluable for efficiency reasons. Indeed, if all the (pos-
sibly voluminous) template structure of a sort were to be systematically expanded
into an object of this sort that uses only a tiny portion of it, space and time would be
wasted. More importantly, lazy inheritance is a way to ensure termination of con-
sistency checking. For example, consider the definition for a sort s to be s(f = s).
It is recursive, as it involves the sort s in its body. A non-lazy scheme would expand
the OSF term s into s(f = s), s(f = s(f = 5)), s(f = s(f = s(f = s))), ..., and
so on ad nfinitum. Clearly, expanding all occurrences of sorts into their definition
templates whether or not they are needed would go on for ever.

An incidental benefit of sort-unfolding in the context of a sort semilattice is
what we call proof memoing. Namely, once the definition of a sort for a variable
X has been unfolded, and the attached constraints proven for X, this proof is
automatically and efficiently recorded by the expanded sort. The accumulation
of proofs corresponds exactly to the greatest lower bound operation. Besides the
evident advantage of not having to repeat computations, this memoing phenomenon
accommodates expressions which otherwise would loop. Let us take a small example
to illustrate this point. Lists can be specified by declaring nil and cons to be
subsorts of the sort list and by defining for the sort cons the template ¥-term
cons(head = T,tail = list). Now, consider the expression X : [1]|X], the circular
list containing the one element 1—i.e., desugared as X : cons(head = 1,tail = X).
Verifying that X is a list, since it is the tail of a cons, terminates immediately on
the grounds that X has already been memoized to be a cons, and cons < list. In
contrast, the semantically equivalent Prolog program with two clauses: list([]) and
list([H|T]) :— list(T) would make the goal list(X : [1]X]) loop.

1.2. Overview of Our Approach

In this paper we present a formal and practical solution for the problem of check-
ing the consistency of a ¥-term object modulo a sort hierarchy of structural class
templates. We call this problem OSF theory unification. We formalize the problem
in first-order logic: objects as OSF constraint formulae, classes as axioms defining
an OSF theory, class inheritance as testing the satisfiability of an OSF constraint
in a model of the OSF theory.

We give conditions for the existence of non-trivial models for OSF theories, and
prove the undecidability of the OSF theory unification problem. We also show that
failure of OSF theory unification (i.e., non-satisfiability of an OSF term modulo
an OSF theory) is semi-decidable. We propose a system of ten normalization rules
that is complete for detecting incompatibility of an object with respect to an OSF
theory; i.e., checking non-satisfiability of a constraint in a model of the axioms.
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This system specifies the third Turing-complete calculus used in LIFE [4], besides
the logical and the functional one.

As a calculus, the ten-rule system enjoys an interesting property of consisting
of two complementary rule subsets: a system of nine confluent and terminating
weak rules, and one additional strong rule, whose addition to the other rules pre-
serves confluence, but loses termination. There are two great consequences of this
property: (1) it yields a complete normalization strategy consisting of repeatedly
normalizing a term first with the terminating rules, and then apply, if at all nec-
essary, the tenth rule; and (2) it provides a compilation scheme for an OSF theory
since all sort definitions of the theory can be normalized with respect to the theory
itself using the weak rules.

1.3. Relation to Other Work

Our system is unique in that it comes with a semantic foundation and constitutes
the first proven correct and complete, practical algorithm for the problem of un-
folding sort definitions in order-sorted feature structures.

The problem was first already addressed in [3]. A significant difference is that
the method was restricted to single inheritance and was non-lazy. Operationally, it
amounted to a breadth-first expansion of all sorts and was not very practical.

Concerning undecidability of OSF theory unification, a related, but different re-
sult was proven by Gert Smolka in [20]. The undecidability of our problem uses
explicitly the existence of a model satisfying the sort definitions while this is over-
looked in [20] (¢f., also, Footnote 6).

As for unfolding sort definitions, we know of two other works, both relevant to
computational linguistics: that of Bob Carpenter and that of Martin Emele and
Rémi Zajac. Bob Carpenter [12] proposed a simple type-checking of a system of sort
definitions for feature terms that are essentially a variation of ¢-terms. However,
besides being purely operational, this system is limited to the simple case where sort
definitions specify sort constraints on features alone, without feature compositions
and, more importantly, without shared variables imposing coreference constraints
on feature paths. On the other hand, his formalism handles partial features, while
what we present works with total features. As it turns out, our system can be made
to handle partial features with the addition of one simple decidable rule whose effect
is to narrow the sort of a variable to intersect a feature’s domain when that feature
is applied to it. Therefore, the system described in [12] is a special case of what
we present here. In the recent book [13], Chapter 15 deals with “recursive type
constraint systems” extending that of [3] to be of the kind we study here. He
gives a complete resolution method similar to Horn clause resolution. That method
differs from ours in that it is not lazy.

The work of Emele and Zajac on typed unification grammars [16] is actually quite
close to what we report here. Their work is an elaboration of [3], with the assump-
tion that features are partial. Their main contribution has been the study of clever
algorithms to carry out type unfolding efficiently. In [15], Martin Emele describes
an implementation that shares many insights with the method that we describe
here. In particular, he uses structure-sharing to avoid much copying overhead, and
whenever copying must be done, it is done such that no redundant copying is per-
formed. However, his technique differs from ours, in that when copying is done, all
the defined features of a sort are brought into the formula where it appears. Most
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importantly, Emele’s algorithm is not explained in formal terms, let alone proven
correct. No semantics is provided, and no clear delineation is made, as our rules
do, between a maximal decidable subset of cases and the complete normalization.

The functional programming community has been using variations on, and gen-
eralizations of, an extensible record formalism pioneered by Luca Cardelli [11] and
used to endow polymorphically typed languages of the ML family with a form of
multiple inheritance [21, 19]. Records are viewed as partial functions from field
label symbols to values. Record types are defined similarly as partial functions
from labels to types. What corresponds to unification in our formalism is rendered
there as so-called record concatenation. In contrast to our (possibly circular) use
of logical variables and unification, coreference constraints are not supported, and
self-reference is handled using a special fix-point functional abstraction. Subtyping
in the Cardelli style of records is checked using static inference rules that are es-
sentially performing the kind of verification done by Carpenter’s system [12], but
made more complicated by the presence of polymorphic function types. It is hence
very hard to compare that trend of work and ours because of these differences in
the nature, restriction, and use of records.

1.4. Organization of Paper

Section 2 recalls the necessary OSF formalism and terminology, already introduced
in [6], that are needed to make this article self-contained. Section 3 presents our
formalization of OSF theories and exposes essential facts about them. Section 4,
the crux of the paper, presents the OSF normalization system and its formal prop-
erties. We have adjoined an appendix giving a detailed example of OSF theory
normalization.

2. OSF FORMALISM

2.1. OSF Algebras
An OST Signature is given by (S, <, A, F) such that:

e S is aset of sorts containing the sorts T and L;

e < is a decidable partial order on & such that L is the least and T is the
greatest element;

o (8,<,A) is a lower semi-lattice (s A s’ is called the greatest common subsort
of s and §');

o Fis aset of feature symbols.

Given an OSF signature (S, <, A, F), an OSF algebra is a structure

A= (D", (sY)ses, (M) jer)
such that:

D* is a non-empty set, called the domain of A;

for each sort symbol s in &, s* is a subset of the domain; in particular,
TA = D4 and L4 =0

(s As')* = sA N s for two sorts s and s’ in S;

for each feature f in F, f* is a total unary function from the domain into
the domain; i.e., fA : DA — DA,
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An OSF homomorphism v : A — B between two OSF algebras A and B is a
function v : DA — D? such that:

Y(fA(d) = fP(7(d)) for all d € D4;
o y(s*) CsB.

2.2. OSF Terms

Let V be a countably infinite set of variables. An OSF term t is an expression of
the form:

X:S(fl :>t1,...,fn:>tn)

where X is a variable in V, sis a sort in § | f1,..., f, are features in F, n > 0,
t1,...,t, are OSF terms.
Here is an example of an OSF term (call it tperson):

X :person(name = N : T(first = F : string),
name = M :id(last = S : string),
spouse = P : person(name = I :id(last = S : T),
spouse = X : T)).

We shall use a lighter notation, omitting variables that are not shared, and the
sort of a variable when it is T:

X :person(name = T(first = string),
name = id(last = S : string),
spouse = person(name = id(last = S),
spouse = X)).

Given a term t = X : s(f1 = t1,..., fa = tn), the variable X is called its root
variable and sometimes referred to as Root(t). The set of all variables occurring in
t is defined as Var(t) = {Root(t)} U, Var(t;).

Given a term t as above, an OSF interpretation 4, and an A-valuation « : V —
DA, the denotation of t is given by:

[14° = {a(X)} s 0 () (7).
1<i<n
Thus, for all possible valuations of the variables, [t]* = [J, .. pa [t]*.

An OSF term ¢ = X : s(f1 = ¥1,..., fa = ¥5) is in normal form (and then
called a y-term) if:

e there is at most one occurrence of a variable Y in ¢ such that Y is the root
variable of a non-trivial OSF term (i.e., different than Y : T);
s is a non-bottom sort in §;
f1,-.., fn are pairwise distinct features in F, n > 0,
1, ..., %, are -terms.

We call ¥ the set of all ¥-terms.
For example, the OSF term,

X :person(name = id(first = string,
last = S : string),
spouse = person(name = id(last = S),
spouse = X))
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is a normal OSF term and denotes the same set as tperson.

Definition 2.1. Let ¢ and ¢’ be two OSF terms. Then, ¢ < ¢’ (“¢ is subsumed
by ¢'”) if and only if, for all OSF algebras A, [/]* C [¥']4.

Given a y-term ¢, the sort of a variable V' € Var(y¢) will sometimes be referred
to as Sorty (V). The subscript ¢ will often be omitted when the context is clear.
Here are a few facts about OSF terms.

OSF terms generalize first-order terms. First-order terms form a special
OSF algebra where the sorts form a flat lattice and the features are (natural
number) positions. Thus, the first-order term f(¢1,...,t,), is just the -
term: f(l =>11,...,n = t,).

All variables occurring in an OSF term are implicitly existentially quanti-
fied at the term’s outset (assuming no further outer context). As a corol-
lary, sorts are particular (basic) OSF terms: indeed, [X : s]* = s* since
Unvepa({a(X)} 0 s4) = 54

An OSF term ¢ is the empty set in all interpretations if ¢ has an occurrence
of a variable sorted by the empty sort L.

Dually, [¢]* = D4 in all interpretations A if all its variables occur only
once in ¢ and are sorted by T.

Features are total functions. If ¢y = X :s(fi = ¥1,...,fn = ¥n), and
Z ¢ Var(y), then [¢]4 = [X : s(fi = Y1, .., fo = Un, f= Z : T)]* for
any feature symbol f € F and any OSF interpretation A.

Variables denote essentially an equality among atiribute compositions. For
example, [X : T(Ai=Y : T, fo=Y T)* = {de D*| fA(d) = fi*(d)}.

This justifies our referring to variables as coreference tags.

2.3. OSF Clauses

A logical reading of an OSF term is immediate as its information content can be
characterized by a simple formula. For this purpose, we need a simple clausal
language as follows.

An OSF constraint is one of (1) X : s, (2) X = X', or (3) X.f = X', where X
and X’ are variables in V, s is a sort in 8, and f is a feature in . An OSF clause is
a (possibly infinite) set of OSF constraints (to be interpreted as their conjunction).

Given A an OSF algebra and « : V — D# an A-valuation, we write A, a = ¢ to
say that an OSF clause ¢ is satisfied in A by «. Formally, A, |= ¢ iff A, E ¢’

for every OSF constraint ¢’ in ¢, where:

e AalEX:s if and only if «(X) €
e Ala =X =Y ifandonlyif o(X)=

3

S'A
a(Y);

e AalEX.f=Yifand only if fA(a(X)) = a(Y).
We say that ¢ is satisfiable in A if there exists an A-valuation « that satisfies it.

2.4. From OSF Terms to OSF Clauses

We can always associate with an OSF term ¢ = X : s(f1 = ¥1,...,fa = ) a
corresponding OSF clause ¢(¢) as follows:
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X :person & X.name =N & N T & N . first = & I string
& X.name =M & M :id & M.last =5 & S :string

& X.spouse =P & P :person & P .name =1 & I :id

& I .last = & ST

& P .spouse = X & X :T.

FIGURE 2.1. OSF clause form of OSF term tperson

p(P) =X :s& XL =X & .. & X fo=X]
& o(¢1) & ... & ¢(vn)

where X1,..., X! are the roots of 91,...,v¢,, respectively. We say that ¢(¢) is
obtained from dissolving the OSF term 1. For example, the non-normal OSF term
tperson Of Section 2.2 is dissolved into the OSF clause shown in Figure 2.1.

We will use a shorthand notation to express that a variable X is constrained by
an OSF term ¢. Namely, we denote by Cy[X] the formula X = Root(t) & ¢(t) and
by C3[X] the formula 3 Var(t) C;[X].*Note that C3[X] is not quite the existential
closure of C¢[X] because it can (and will) be that X ¢ Var(t).

It can be shown that the set-theoretic denotation of an OSF term and the logical
semantics of its dissolved form coincide exactly [6]:

[¥]* = {a(X) | a € Val(A), A a = Ci[X]}.

For this reason, and to lighten notation, we shall confuse an OSF term for its
dissolved form, writing ¢ when we actually mean ¢(v).

2.5. OSF Unification

Definition 2.2. An OSF clause ¢ is called solved if for every variable X, ¢ contains:
e at most one sort constraint of the form X : s, with L < s; and,
e at most one feature constraint of the form X.f = X’ for each f;
e if X = X’ € ¢, then X does not appear anywhere else in ¢.

Given an OSF clause ¢, non-deterministically applying any applicable rule among
the four shown in Figure 2.2 until none apply will always terminate in a solved OSF
clause. A rule transforms the numerator into the denominator. The expression
¢[X/X'] stands for the formula obtained from ¢ after replacing all occurrences of
X' by X. We also refer to any clause of the form X : L as the inconsistent clause.
The following is immediate [6].

Theorem 2.1. The rules of Figure 2.2 are solution-preserving, finite terminating,
and confluent (modulo variable renaming). Furthermore, they always result in
a normal form that is either the inconsistent clause or an OSF clause in solved
form.

ProoF. Solution preservation is immediate as each rule transforms an OSF-clause

4We use a lax notation here for convenience; given a set of variables ¥ = {X1,..., Xy}, the

formula 3X ¢ stands for: X, ...3IX,¢.
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Sort Intersection:
P& X :s&X:s

p& X :sns'

Inconsistent Sort:
o & X : L
X: L

Variable Elimination:

R
pLX =X i X £ X
¢[X’/X] & X iX’ and X € V(LT(d))

Feature Decomposition:
P& X f=X&X.f=X"

P& Xf=X &X' =X"

FIGURE 2.2. OSF Clause Normalization Rules

X :person & X.name =N & N :id & N.first =F & F:string
& N.last =5 & S :string
& X.spouse =P & P :person & P.name =1 & I :id
& I .last =S
& P.spouse = X

FIGURE 2.3. Normal form of OSF clause of Figure 2.1

into a semantically equivalent one.

Termination follows from the fact that each of the three first rules strictly de-
creases the number of non-equality atoms. The last rule eliminates a variable
possibly making new redexes appear. But, the number of variables in a formula
being finite, new redexes cannot be formed indefinitely.

Confluence is clear as consistent normal forms are syntactically identical modulo
the least equivalence on V generated by the set of variable equalities. O

For example, the normalization of the OSF clause in the last example leads to
the solved OSF clause which is the conjunction of the equality constraint M = N
and the OSF clause shown in Figure 2.3. The rules of Figure 2.2 are all we need to
perform the unification of two OSF terms. Namely, two terms ¢; and 5 are OSF
unifiable if and only if the normal form of Root(t1) = Root(t2) & t1 & t5 is not L.

An OSF clause ¢ in solved form is always satisfiable in the term algebra ¥, so
the rules on Figure 2.2 are a decision procedure for the satisfiability of OSF clauses.
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3. OSF THEORIES
3.1. Sort Definitions

As explained in Section 1.1, we may view a class template as a ¥-term. Hence, to
define a sort s as a class is to associate to this sort a -term whose root sort is s.
Informally, an OSF theory is a set of sort definitions, each of which is a ¥-term
whose root sort is the name of the class defined by that sort.

Formally, an OSF theoryis a function © : § — W such that Sort(Root(O(s))) = s
for all s € S and ©(T) = T, ©(L) = L. The OSF theory © = Is which is the
identity on § is called the empty OSF theory.

An OSF theory O is order-consistent if it is monotonic; z.e., if:

Vs, s’ €8, 5s<s" = 0O(s) <O(s").

Recall that < is defined on ¥-terms (see Definition 1 on Page 106) extending the
ordering on sorts.

We shall always assume the OSF theory © to be order-consistent. By setting
O(s) = A,<, O(s") if different from L, it is easily possible to normalize a non
order-consistent theory into an equivalent order-consistent one, if it exists.

Clearly, an OSF algebra is a logical first-order structure A interpreting sort
symbols as unary predicates, i.e., sets, and feature symbols as unary functions, and
satisfying the axioms specified by the sort hierarchy. Namely, for all sorts s, s’, s"’
such that s A s’ = s”, the following axiom is valid in A:

Aziompgpg=gn): VX (X :s& X 5" — X :s").

The name OSF theory is justified by the fact that the function © specifies a
system of axioms; i.e., for each s € §, the axiom:

Axiam[@(s)]: vX (X 1S Cé'(s)(X))

expressing that an element in the sort s necessarily satisfies the constraints attached
to s (the constraints coming from the dissolved y-term assigned to s by ©). Note
that ©(s) contains the constraint Root(©(s)) : s. Thus, the equivalence (<) in
Aziomg(s) is, in fact, an implication (—).

The class of all ©-OSF algebras is the class of all OSF algebras such that s* =
[©(s)]*. Thus, © specifies a first-order theory, namely through the system of all
the axioms Aziomsas=s#] and Aziomie(s). The notion of ©-satisfiability refers
to satisfiability in a ©-OSF algebra; i.e., in a logical first-order structure where the
axioms above hold.

We will see next that such a structure actually exists (under the overall assump-
tion that © is order-consistent). We first define the OSF algebra ¥y of possibly
infinite OSF graphs.

An OSF graph g = (V| E) consists of nodes denoted by mutually distinct vari-
ables in V, t.e., V C V, and arcs between them, i.e., £ C V x V. It has a dis-
tinguished node, its root, from which all its other nodes are reachable. All nodes
and arcs of an OSF graph are labeled. Nodes are labeled with non-bottom sorts
and arcs are labeled with feature symbols such that the same feature may not be
attributed to two distinct arcs coming from the same node.

The set of all OSF graphs forms an OSF algebra:

e the OSF graph denotation of a sort s is the set of all graphs whose root sort
is equal to or less than s;
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e applying the feature f to a graph g rooted in X is the maximal subgraph of
g rooted in X' if g has an arc labeled f between nodes X and X'; otherwise,
it is a one-node arcless graph whose node is a new distinct variable X; ,
labeled with T.

We next define the (possibly infinite) OSF clauses ¢* obtained from an OSF
clause ¢ by unfolding all sort definitions. Formally, ¢* = [J,,5, 4", where ¢° = ¢
and: -

g™ = 6" U {Corn[X]| X s € g™}

We assume that the variables in the OSF constraints added to ¢", Var(©(s)) are
new for each unfolded sort constraint X : s.

We define two formulae to be ©@-equivalent if they are equivalent modulo the
axioms specified by © and the sort hierarchy and modulo existential quantification
of variables in either of the formulae. Thus, ¢ and ¢",(n > 0), and even ¢*, are
all ©-equivalent. The next lemma compares satisfiability of ¢ and ¢* in different
structures.

Lemma 3.1. An OSF clause ¢ is O-satisfiable if and only if ¢* is satisfiable.

Proor. Every ©-OSF algebra where ¢ is satisfiable is in particular an OSF algebra
where ¢* is satisfiable. Vice versa, the domain of an OSF algebra where ¢* is
satisfiable can be “trimmed down” to the domain of a ©-OST algebra (by including
only elements which are values of the valuations which make ¢* hold true) such that
Aziomg(s)] holds for every sort s which occurs in ¢, and ¢ is satisfiable. Since ©
is order-consistent, the interpretation of the sorts can be chosen as the restriction
of the old interpretation to the new domain. O

Definition 3.1. A (possibly infinite) OSF clause ¢ is called solved if, for every
variable X, ¢ contains:

e at most one sort constraint of the form X : s, with L < s; and,
e at most one feature constraint of the form X.f = X’ for each f;
o if X = X' € ¢, then X does not appear in any other OSF constraint in ¢.

Lemma 3.2. A (possibly infinite) OSF clause ¢ in solved form is satisfiable in ¥y,
the OSF algebra of possibly infinite OSF graphs.

Proor. Let X be a variable in ¢ where X is not on the left side of the symbol
= anywhere in ¢. We define the valuation o on X as the graph (V, E) with the
root node X, where V.= (J,5oVa, £ = U,>0En, Vo = {X}, Eo =0, Vo1 =
VaU{Z | Y.f = Z € ¢forsomeY € Vp}, Eny1 = E;U{(Y,Z) | Y.f = Z €
¢ for some Y € V,,}. A node Y is labeled by s if Y : s € ¢ for some s € §, and by
T otherwise. An arc (Y, Z) is labeled by fif Y.f = Z € ¢.

If X = X' € ¢, then we set a(X) = a(X’). Clearly, every OSF constraint of ¢
holds in ¥y under the valuation . O

Definition 3.2. An OSF clause ¢ is called ©-solved if the OSF clause ¢!, obtained
by unfolding all sort definitions once, can be normalized into a solved form which
contains ¢, and no other constraints whose variables are those from ¢.



111

That is, if the solved form contains X : s, then either X : s € ¢ or X ¢ Var(¢).
Similarly, if it contains Y = X, then either Y = X € ¢ or Y & Var(¢); and if it
contains X.f =Y, then either X.f =Y €¢ or Y ¢ Var(s).

Thus, the OSF clause ¢ is ©-solved if the OSF clause:

¢'=0U |J {CorX]}
X:s€d
can be transformed, by repeated applications of the rules in Figure 2.2, into an
OSF constraint ¢’ of the form ¢’ = ¢ U ¢1 U ¢ where ¢; contains only equalities of
the form Y = X where X € Var(¢) and Y ¢ Var(¢) and ¢ is an OSF constraint
in solved form whose variables are new for ¢; i.e., Var(¢) N Var(gs) = 0.

The OSF theory O is well-formed if, for every s € &, the dissolved ¥-term
O(s) is in O-solved form. From now on we are interested only in well-formed (and
order-consistent) OSF theories.

We introduce next the OSF algebra ¥g. The domain of ¥g, and the interpre-
tation of the features, are the ones of ¥y. If s € § is a sort, then:

ste = {ge DY | ¥y, a = (X :5)*, a(X) =g}

In the special case of the empty theory, ¥g is the OSF graph algebra Ug.

As in the case of OSF unification, i.e., of satisfiability of OSF clauses in OSF
algebras, it is sufficient to consider ©-satisfiability in one particular ©-OSF algebra,
here ¥g. This characterizes ¥g as a canonical ©-OSF algebra (meaning: any ©-
satisfiable OSF clause is satisfiable in ¥g). It follows from the fact that one can
easily construct a homomorphism from any ©-algebra into ¥e (and, thus, ¥e is

weakly final (cf., [6]) in the category of all ©-OSF algebras).

Proposition 3.1. Given a well-formed order-consistent OSF theory ©, a O-solved
OSF clause is satisfiable in Wg. In particular, Yo is a ©-OSF algebra, ie., a
model of the azioms specified by the sort hierarchy (S, <,A) and the OSF theory
0.

PRrROOF. Since, for each sort s € 8§, O(s) is ©-solved, ¢" is O-solved, for all n.
In particular, for all n ¢", and hence also ¢*, is ©-equivalent to an OSF clause in
solved form. Thus, according to Lemma 3.2, ¢* is satisfiable in ¥y, the OSF algebra
of possibly infinite OSF graphs. Say, ¢* holds under the valuation «. Since all sort
definitions in ¢* are unfolded, each graph g rooted in a node labeled by a sort s
lies in the Wg-denotation of s; i.e., ¢ € s¥® (... C s¥°). Thus, « is in particular a
Weo-valuation. That is, ¢*, and hence ¢ C ¢’, are satisfiable in ¥g. O

4. OSF THEORY UNIFICATION

We next investigate the operational and denotational semantics of a scheme for
using a class template structure in an object instance. We call this scheme OSF
Theory Unification since it amounts to solving OSF clauses in the presence of an
OSF theory. This is a generalization of OSF unification, the solving of OSF clauses
in the empty theory (¢f., Figure 2.2).

Formally, OSF Theory Unification is the procedure which ©@-solves an OSF clause
@; i.e., it transforms ¢ into a ©-equivalent OSF clause ¢’ which is either L or in
©-solved form (and, in this case, exhibits it).
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Frame Allocation:

(0) r FX:sky¢ if X\Y, ¢ F, for any s’ € S,
FU{{X\}@}}"X&&(ﬁ forall F e’
Sort Intersection:
r U{{X\YS/}UF} FX:is&X:s'&¢
(1)
r U{{X\YS,\S/}UF}FX:s/\s’&qﬁ
Inconsistent Sort:
) ry {{X\n}uF} Fé
2
0 L
Variable Elimination:
@) T FX=X'&¢ if X # X
F[X//X] X iX’ & (b[XI/X] and X € V(LT(F)U Var(¢)
Feature Decomposition:
FrEXf=X'"&XfF=X"&¢
(4)

TFXf=X' &X' =X"&¢

FIGURE 4.1. Weak OSF Theory Normalization Rules—Empty Theory

We will show that such a procedure exists that transforms ¢ successively until
either L or a ©-solved form is obtained. If ¢ is ©-equivalent to L, then L is
reachable in a finite number of steps. Generally, however, there exists no such
procedure that is always terminating. Indeed, if such a procedure existed, then
according to Proposition 3.1, there would be an algorithm deciding whether an OSF
constraint ¢ is satisfiable in the ©-OSF algebra Wg. This, however, is impossible
as Theorem 4.1 will show.

The normalization rules that perform OSF theory unification are given in Fig-
ures 4.1, 4.2, and 4.3 and are called OSF theory normalization rules.’The rules in
Figures 4.1 and 4.2 alone are called the weak (OSF theory) normalization rules.

Next, we will informally describe and motivate the effect of each rule. Before
doing so, we need to introduce additional notation. We will follow a strict variable-
naming convention in order to differentiate variables. We shall use X’s for variables
appearing in a formula being normalized, and call these global or formula variables.
We shall use Y’s for variables in the theory, and call these local or theory variables.
Local and global variables are always assumed disjoint.

The theory variables appearing in a sort definition O(s) are all local to this

5A full example of sort-unfolding using these rules is detailed in appendix Section A.
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Feature Constraint:
r U{{X\Y}UF} FXf=X"&¢ if fo (V) = ¥/
r {{X\Y, X\Y'}u F} FXF=X' &X' Sort(Y) & g MAXNEF

Frame Merging:
rU{{xwvjuR{xwurges
rUlxwagororl e

Frame Reduction:
ry {{X\Y, X\y'} UF} )
r U{{X\Y}UF} )

fYy <V’

Theory Coreference:
ry {{X\Y, X"y} UF} F o
FU{{X\Y}UF} FX=X'&6¢

FIGURE 4.2. Weak OSF Theory Normalization Rules—Non-Empty Theory

Theory Feature Closure:

o if X\Y € F and X\Y’ € F' for some F,F' €T,
- and both fe (Y), fo(Y') exist
FrEXf=2&9¢ (Z is a new variable)

FIGURE 4.3. Strong OSF Theory Normalization Rule

definition alone. Thus, without loss of generality, we shall assume distinct names
for all variables across sort definitions. More precisely, s # s = Var(0(s)) N
Var(©(s')) = 0. Let Var(©) = {J,cs Var(O(s)) denote the set of all theory vari-
ables.

We shall use Z’s for new global variables introduced into a formula being nor-
malized. Finally, the theory variable at the root of ©(s), the definition of a sort
s, will be identified as Y;. We will denote by Roots(©) the set of all root theory
variables.

We will denote by fe(Y') the theory variable Y| if it exists, such that f(Y) =Y’
in some sort definition O(s).

Note that Roots(©) is in bijection with &. In particular, the operation A on 8
can be defined on Roots(©) as Y; A Yy = Yiasr. As a result, the partial ordering
on sorts may be carried over to theory root variables; namely, Y, < Y if and only
if s < s’. This ordering may then be extended homomorphically from Roots(©) to
all theory variables in Var(©) as follows:
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Y1 = Y31 and Yg = Ys
Y1 S Y2 iff or,
f, Y1 = fe(Y{) and Y3 = fo(Yy), and Y{ < Y.

This relation is well-defined because © is order-consistent.

As in the case of plain OSF normalization, each rule specifies a transformation
of the pattern in the numerator into that of the denominator. While the rules of
Figure 2.2 transform OSF clauses, the new rules transform contezted OSF clauses.
A contexted clause is a formula of the form I' - ¢ where ¢ is an OSF clause and
T, called the context, is a set of frames. A frame is a set of pairs of variables X\Y
(read “X stands for Y”) where X € Var(¢) and Y € Var(©). We write simply ¢
for O ¢.

The rules proceed to normalize a formula from an originally empty context,

o and s1 < s9;

creating at most one frame per formula variable. These rules maintain frames so
that there is exactly one root theory variable per frame at any moment. The global
variable in a frame that stands for the root local variable is called the frame’s
principal variable. Intuitively, one may think of a context as a set of activation
frames, each being a local environment for a sort occurring in the formula ¢, the
pairs indicating which global variables stand for which local variables. Alternatively,
one can think of a frame as the materialization of an object instance. Thus, the
rules must ensure that a global variable is eventually principal in at most one frame.
In addition, note that the rules will materialize only what is necessary to ensure
that the instance is consistent with the class definition.

Rule (0) simply spawns a new frame for a global variable if none exists for it yet
in the current context. This is akin to creating an instance in object-oriented pro-
gramming. Rules (1)-(4) do exactly the same work as Rules (1)—(4) in Figure 2.2.
The only difference is that they keep track of the sort information in the context I'
using root theory variables. Rule (5) ensures that whenever a feature is used in the
formula it fits the sort constraint, if any, imposed on it by the theory. Rule (6) rec-
ognizes that a global variable is principal in two frames and merges them. This case
arises from variable elimination; i.e., from two originally distinct global variables
that are later made to corefer. Rule (7) determines that the same global variable
stands for two ordered local variables within the same frame. Therefore, the global
variable must stand for the lesser of these two local variables. Rule (8) enforces an
equation of paths as prescribed by the theory when it finds that two distinct global
variables stand for the same local variable in the same frame.

Rule (9) looks more complex than Rules (0)—(8). In fact, it simply completes
the enforcing of functionality of features. Functionality of a feature f means that if
X = X' then f(X) = f(X'). Rule (4) enforces feature functionality in the formula
alone as f is applied at two occurrences of the same variable in the formula. Rule (5)
does the same for the case when one occurrence is in the formula and the other is
in the theory on the corresponding local variable.

The only remaining case is the following. At some point, a formula variable X
may stand for two distinct theory variables that both constrain the feature f in
the theory. If X does not have the feature f in the formula, it may yet be that the
two theory variables that X stands for do not agree on this implicit feature. This
is best illustrated by an example. Let us assume that

O(s) =Y, :s(a =Y : s,
b=Y :s(a=Y5:57))
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such that s; A sy = L, and consider the formula X : s(b = X). Because of its
coreference in the formula, X will eventually stand for both Y; and Y. Both these
theory variables constrain the feature a. But, since X does not possess the feature
a in the formula, Rule (5) cannot be applied. However, the formula is clearly
inconsistent because © constrains X to be both in a=!([s1]) and a=!([s2]) whose
intersection is empty.

This consistency check is what Rule (9) is designed to perform. It “fakes” the
presence in the formula of the missing theory feature f. It does this by introducing
a new global variable into the formula to be the result of applying f to the global
variable in question. After that, Rule (5) will do the right thing, bridging the gap
between the two local variables using this new global variable. In fact, it guarantees
the transitivity of congruence of feature path equations as per the theory. It is this
rule that may make the normalization algorithm diverge on consistent formulae as
there is, in general, no way to predict how deep along a feature path an inconsistency
might arise. This is indeed confirmed by the following fact.®

Theorem 4.1. Given a well-formed order-consistent OSF theory ©, the problem of
the satisfiability of an OSF constraint in the ©-OSF algebra Vg is generally
undecidable.

Proor. We show that a complete OSF Theory Unification algorithm is also a
decision procedure for the word problem for Thue systems of equations on strings
(see, e.g., [18]). Consider a finite alphabet ¥ and a finite set £ C ¥* x ¥* of
equations of words on Y. The word problem that consists in deciding whether two
words wy and ws in X* are equal modulo the equations in £ can be encoded as the
following OSF theory unification problem. Let us take for sorts § = {T,s,0,1, L}
with 0 < s, 1 < s, and 0A1 = L, and for the features F = X.. Let us define © such
that ©(s) is the y-term whose variables are all sorted with s and such that to each
equation u = v in E corresponds a pair of feature paths from the root that meet in
a common variable at their end.

Let us take an example to explicate this encoding. Consider the system of
equations F = {bc = ed,ae = b,bd = de}. Tt is encoded as an OSF theory over the
sorts of § above and the set of features F = {a, b, ¢, d, e}. The sort definitions are:

O(s)=s(b=>Y1:s(c=>Y2:5,d=>Y3:s),
e = s(d > Y2),
a=sle=>Y1),
d = s(e > Y3)).

As for ©(0) and ©O(1), they both inherit the exact same structure as O(s) except
for the root sort since Sort(Root(©(0))) = 0, and Sort(Root(0(1))) = 1. Clearly,
O is a well-formed and order-consistent OSF theory.

Now, to decide whether an equality w; = ws holds modulo the equations, it
suffices to normalize the OSF term consisting of just two non-coreferring feature

6 A related, but different result can be found in [20] where well-formedness, order-consistency
and the ezistence of one generic model of an OSF theory (there called a system a recursive sort
equations) are not considered. In fact, without Proposition 3.1, we do not know whether there is
any OSF constraint which is satisfiable modulo a system of sort definitions. Thus, the result in [20]
is on a test of satisfiability in «ll ®-OSF algebras, and its proof has to provide the construction
of a particular one.
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paths w; and ws, and whose root sort is s and all other sorts are T except for the
tips of the two paths which are 0 and 1. For a decision procedure to be complete,
it must make the two paths corefer (and thus end with a sort clash, i.e., normalize
the dissolved -term to the equivalent OSF clause 1) if and only if the equality
w1 = ws holds. Otherwise, i.e., if and only if the equality does not hold, it will
normalize the dissolved ¥-term to an equivalent ©-solved OSF clause and, thus,
exhibit its O-satisfiability.

For example, to decide whether abc = de modulo the above equations, we need
to check whether the ¥-term:

s(a=T(b=T(c=0)),
d=T(e=1))

(i.e., the OSF clause obtained by dissolving it) is not satisfiable modulo the OSF
theory © given above. O

Lemma 4.1. If ¢ is transformed into T' & &' by the (strong) OSF theory normaliza-
tion rules, then ¢ is O-equivalent to ¢'.

Proor. For a contexted formula I' - ¢, let us define the OSF clause:
Mgl =60 J{Com[X] &V = X1 & ... &Yy = X}

where the big union is taken over the frames {X\Y;, X;\Y1,..., X, \Y,} € T.

The variables in Co()[X] & Y1 = X3 & ... & Y, = X,, are taken new for each
of these frames.

Clearly, ¢ is ©-equivalent to [[' F ¢].

If T F ¢ is transformed to I + ¢’ then [[' F ¢] is ©@-equivalent to [[V F ¢’].
This can be verified by inspection of each of the OSF theory normalization rules.
For each application by one of these, we will give corresponding ©-equivalence
transformations on [I' & ¢]. These will either consist of adding Ce()[X] (again,
obtained by naming its variables apart), or of applications of one of the rules of
Figure 2.2. Since these are all equivalence transformations, [[' F @] is equivalent,
and thus also ©-equivalent, to [T ¢'].

Each application of Rule (0) of Figure 4.1 adds a frame {X\Y;} to the context
of I' F ¢. The corresponding transformation on the OSF clause [T F ¢] consists of
adding the OSF clause Cg(s)[X]. One hereby obtains a ©-equivalent OSF clause.

Clearly, each step by application of Rule (¢) of Figure 4.1 to I' F ¢ corresponds
to one step of application of Rule (i) of Figure 2.2 to [[' F ¢], for i = 1,...,4. In
the case of Rule (1), if s A s is a strict subsort of s’, then, in addition, Ce(sas)[X]
has to be added.

An application of Rule (5) of Figure 4.2 to I' F ¢ corresponds to one variable
elimination step, followed by one step of application of Rule (4) of Figure 2.2
(the feature constraint Y.f = Y’ is part of [[' F ¢]), followed by another variable
elimination step to [ ¢].

An application of Rule (6) of Figure 4.2 to I' F ¢ yielding I I ¢’ corresponds
to two variable elimination steps, followed by one step of application of Rule (1) of
Figure 2.2 to [I' - ¢]. We add the OSF clause Cg(sas)[X], hereby obtaining the
©-equivalent OSF clause [TV |- ¢'].

An application of Rule (7) of Figure 4.2 corresponds to one variable elimination
step, followed by one step of application of Rule (4) of Figure 2.2 (the feature
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constraints X’.f = X and X'.f =Y are part of the derived OSF clause).

An application of Rule (8) of Figure 4.2 corresponds to several variable elimina-
tion steps.

Finally, an application of Rule (9) in Figure 4.3 adds a feature constraint X.f =
Z with a new variable Z. Clearly, [I' - ¢]is ©-equivalentto ['F ¢ & X.f = Z]. O

Theorem 4.2. If ¢ is transformed into the non-bottom normal form Uy = ¢n by the
(strong) OSF theory normalization rules, then ¢y is an OSF clause in O-solved
form which s ©-equivalent to ¢.

In particular, because we assume © to be well-formed and order-consistent, ¢ is,
then, ©-satisfiable (e.g., in ¥g). Of course, if ¢ is transformed into ¢ = L, then
¢ is not O-satisfiable.

ProoF. It is easy to see that, if 'y F éxn is in non-bottom normal form, then
[Cn F ¢n] is in solved form. Namely, otherwise one could apply an OSF clause
normalization rule from Figure 2.2 to [['y F ¢n]; this application could, in turn, be
simulated by an application of an OSF theory normalization rule from Figure 4.1-
4.3. But this means exactly that ¢ is in ©-solved form. O

Theorem 4.3. The weak OSF theory normalization rules are terminating and con-
fluent (modulo a renaming of formula variables).

ProoF. The number of times a sort definition is unfolded (via Rule (0)) is limited
by the number of sort and of feature constraints in the OSF clause to be normalized.
Let ¢’ is the OSF clause obtained from ¢ by doing all these unfoldings, i.e., by
adding the OSF clauses Cg(s)[X], obtained by dissolving the corresponding -
terms O(s) and naming its variables apart. Then, using the correspondence from
the proof of Theorem 4.2, each OSF theory weak normalization step on ¢ can be
simulated by an OSF clause normalization step on ¢’. Then, Theorem 2.1 yields
the statement. O

Theorem 4.4. The weak OSF theory normalization rules normalize a formula in
almost linear time (in the size of the formula).

Proor. We use the simulation of OSF theory normalization by plain OSF clause
normalization from the preceding proof and the fact that OSF clause normalization
is almost linear (the size of each unfolded sort definition is assumed constant).” O

Theorem 4.5. If terminating, the (strong) OSF theory normalization rules are con-
fluent (modulo a renaming of formula variables).

Proor. If the (strong) OSF theory normalization is terminating, Rule (9) is applied
only a finite number of times. Each time, it adds a feature constraint X.f = Z with
a new variable Z. Let o be the OSF clause of all these feature constraints. Then,
¢ & o is transformed into the non-bottom normal form 'y F ¢n by the weak OSF
theory normalization rules only, and we can apply Theorem 4.3. O

Theorem 4.6. If ¢ is not O-satisfiable then ¢ is reduced to L by the OSF theory
normalization rules.

"By “almost linear” we refer to the well-known complexity bound of the Union/Find problem [1]
that underlies the implementation of OSF term normalization.
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Proor. Using Lemma 3.1, if ¢ is not O-satisfiable, then ¢* is not satisfiable.

We use the fact (which is a consequence of the compactness theorem [14]) that,
given a first-order theory 7' and a set W of open first-order formulae, 7' U ()W
has a model if and only if, for every finite subset F' of W, T'U (3)F has a model.
Here, T"is given by the axioms Aziom[sps =5 and Aziom(e sy specifying the sort
hierarchy and the OSF theory.

Thus, if a possibly infinite OSF clause is not satisfiable, then there exists a finite
subset of it that is not satisfiable. Now, if ¢ is not O-satisfiable, then there exists
an index n such that ¢” is not satisfiable. Let ¢’ be the minimal non-satisfiable
extension of ¢ with sort-unfoldings, ¢.e., with additions of OSF clauses of the form
C@(s/\s’) [X] .

According to Theorem 2.1, the finite OSF clause ¢’ is reduced to L using the
OSF clause normalization rules (1)—(4) of Figure 2.2. Now, every OSF clause
normalization step can be simulated by an OSF theory normalization step, under
the correspondence described in the proof of Theorem 4.2. The only difficulty is
the application of the feature decomposition rule on two feature constraints which
both come from sort unfoldings, i.e., from added OSF clauses of the form ¢(O(s)).
In this case, the applicability of Rule (9) has to be shown. But if follows from the
fact (Theorem 4.3) that the weak OSF theory normalization are terminating. That
is, after finitely many applications of Rules (0) to (8), none of them is applicable,
and, thus, Rule (9) is. O

We have divided the normalization processes into two phases. The first phase,
consisting of the weak normalization rules, is guaranteed to terminate in almost
linear time. If the first phase ends with the clause still not in normal form then
the second phase, one application of the strong normalization rule, is performed.
From these two phases we derive a complete normalization strategy. Namely, the
repeated application of phase one followed by phase two. Note that if the process
terminates, it terminates in phase one.

The fact that it is only Rule (9) that leads to undecidability gives us the ability
to explore what makes certain theories and queries non-terminating. For instance,
a loose criterion for a theory that guarantees that the normalization of all queries
will terminate is that no two variables have the same feature symbols. This is clear
by looking at Rule (9)’s side conditions. It is also clear that more complex, yet
decidable, analysis can provide programmers using this system with this guarantee.

Another benefit of the separation is that the terminating rules can be used to
“compile” a theory by using a partial evaluation technique. Namely, each sort
definition can be normalized with respect to the theory using the terminating rules
only. In fact, we have now completed and implemented a compiling scheme for the
decidable subset of the ten rules [10]. This scheme also accommodates arbitrary
user-defined constraints associated to sort as actually allowed in LIFE [4].

5. CONCLUSION

We have presented a formal system of record objects with recursive class defini-
tions accommodating multiple inheritance and equational constraints among fea-
ture paths, including self-reference. Although the problem of normalizing an object
to fit class templates is undecidable in general, we have proposed a complete and
efficient set of rules to perform this normalization whenever it may be done.
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An interesting property of this OSF theory unification process is that it consists
of a terminating set of rules and an additional one which makes it complete. This
property can be used to explore the exact situations when the full set of rules will
be guaranteed to terminate.

A. A DETAILED EXAMPLE

Let us take & = {T, s, 51, $2, 83, L} ordered minimally such that s; A s, = s3 and
define © as:

O(s1)=Ys, :s1(fi => Y1 :9)

O(s2) =Ys, 1 s2(fa = Ya 1 9)

O(s3)=Ys, :s3(fi = Ya:s(f = Ya:s), fo = Y3)

O(s) =Y, :s(f = Y5:9).

The set of all theory variables is

Var(©) = {Y7,Y.,Y,,Y,,, Vs, , Y5, Y1, Y0, V5, Yy, V5 1.
The ordering relation on Var(©) is such that Y, < Yy < Y7, for all z € §, and
Y, < Y5y, Vs, <Yy, Y3 <Yy, Y3 < Yo, as well as all reflexive pairs.

Unifying the two ¢-terms t1 = s1(f1 = s) and t5 = s2(f2 = s) modulo the empty
theory yields the y-term (up to variable renaming):

t1 Ngta = 53(f1 = 5;f2 = S).

However, with respect to the theory © above, it yields the ¥-term (up to variable
renaming):

t3:t1/\@t2:53(f1:>X15(f:>5);f2:>X)

as illustrated by the following reduction trace.®

Step 0. Given empty context and formula:

0

F X & X h=X & Xo o & Xofo = XJ & X] s & X)1s & Xy = Xy
Step 1. Use Rule (0)—TFrame Allocation:

X\Y,)

F Xy s & Xifis X & Xo 90 & Xofo= X5 & X) i s & X0:s & X1 = Xo
Step 2. Use Rule (5)—TFeature Constraint:

{Xa\Ye,, X1\Y1}

- Xi:51 &X1.i=X{&X|:5&Xo:50&Xofo=X3& X, :5& XS5
& X, =X

8In the derivation sequence that follows, the parts of a contexted formula that make up the
redex of the rule to apply nezt are highlighted by underlining.
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Step 3. Use Rule (0)—Frame Allocation:
{Xl\ “1aX1,\§/1}a {X{\sz}

" X1ZS1 &X1f1:X{&X1 S&XQ:SQ&XQfQ Xé&X{S&Xé
& X, =Xo

Step 4. Use Rule (0)—Frame Allocation:
{Xl\ “1’X1,\§/1}’ {X{\}/S}a {X2\5152}

= Xi:51 &X1.i=X{&X|:s& Xo:s0 & Xofo=X5& X, :5& X5
& X = Xo

Step 5. Use Rule (5)—Feature Constraint:
{X\Ye,, X\ ), {XT\YL), {Xe\Ye,, X5\ Y2}

l_ X1:S1&X1.f1:X1&Xlls&XQZSQ&XQ.fQﬁ &XQZS&Xl.
&Xé:s &X1ﬁX2

Step 6. Use Rule (0)—Frame Allocation:
{Xl\ “1aX1\§/1} {Xl\Y} {X2\§°2’X£\§/2}a {Xé\}/s}

= X150 & X1 ./i=X{ & X :s& Xo:s0& Xofo=X3& X5 :5& X] s
&Xé:s &X1ﬁX2

Step 7. Use Rule (1)—Sort Intersection:
{Xl\ “1aX1,\§/} {Xl\Y} {X2\§“2’Xé\§/2}a {Xé\i/s}

" X1ZS1&X1f1:X1&Xlis&XQZSQ&XQ.fQiXé& &Xé:s
&XQZS &X1:X2

Step 8. Use Rule (1)—Sort Intersection:
{X\Ye,, Xi\n ), (XYL, {X0\Y5,, Xo\Ya ), { X5\ Y5}
l_X1131&Xl.f]:Xl&Xl:S&XQZSQ&XTFXé&Xé:S&Xl X
Step 9. Use Rule (3)—Variable Elimination:
{Xa\Ye,, Xi\W ), (XYL, {X0\Y5,, X\ Y2 ), {X5\Ye)
F X1 &Xifi=X1&X1:s&X1 :0&X1.o=X&X,:5& X1 =X,
Step 10. Use Rule (1)—Sort Intersection:
(XY, X\ } {XT\Ye ), {X0\Ye,, X5\ Yo ), {X2\Y5}
FoXiisa& Xifis X1 & X1 o5& Xafo= X2 & Xb:s & X1 = X
Step 11. Use Rule (6)—Frame Merging:
(X0 \Ve,, XT\V1, X0\ Y2}, {X7\Ye), {X0\Ye}
F X1 &Xii=X1&X{:s&X1.fo=X3& X}, :5& X1 =X,
Step 12. Use Rule (5)—Feature Constraint:
{X1\Ye,, X1\ Y3, X1\V1, X5\ Y2}, {XI\YQ} {X3\Y:}
F X1:53&X1.f1:X1&X1 S&X1 s& X1.fa=X & X} :5& X1 =X,
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Step 13. Use Rule (1)—Sort Intersection:

{X0\Ye,, Xi\Ye, Xi\ V3, X5\ Yo}, {X7\Ye}, {X2\Y:}

FoXa 53&—)(1;({ X1 :5&X1.fo=X& X} :5& X1 =Xo
Step 14. Use Rule (7)—Frame Reduction:

{Xa\Ye,, Xa\Ye, X5\Ya ), {X7\Ye}, {X2\Ye}

FTSg&XLfliX{ X :s&X1fo=X, & X} :5& X1 =Xo
Step 15. Use Rule (5)—Feature Constraint:

{X0\ Yoy, X7\ Y, X3\ Ya, Xo\Ya ), {X1\Ye}, {X3\Ve}

- X1:53&X1.f1iX{&X{:s&Xl.fgiXé&h&M&Xl = X,
Step 16. Use Rule (1)—Sort Intersection:

X0\ Yoy, XI\Ya, XA\Ys, XAV}, {XI\VS), {X2\VS)

FoXiisa& Xifis X1 & X1 o5& Xafo= X2 & Xb:s & X1 = X
Step 17. Use Rule (7)—Frame Reduction:

X0\ Yoy, XI\Ya, XS}, {XI\Y2, {XA\Y2)

F X1 &Xii=X1&X:s&X1.fo=X, & X, :5& X1 =Xs
Step 18. Use Rule (8)—Theory Coreference:

(XY, Xi\Ya}, {X0\Ye}, {X5\Yi)

F X3 &8 X i=X1&X] :s&X1.o=X3&X5:5&X=Xs & X1 =X}
Step 19. Use Rule (3)—Variable Elimination:

{X0\Yay, XO\Ya}, (XI\Y2), {XI\Y2)

FoXyis & Xafi =X, &M&Xl.fgi)({ &M&Xlng&X{iXé
Step 20. Use Rule (1)—Sort Intersection:

{Xa\Yey, Xi\Ya}, {X7\Ye} {X7\Ye}

F X123 & X0 fi=X &X|:s5&X1.=X] &X1=X2& X, =X
Step 21. Use Rule (6)—Frame Merging:

{Xa\Ye,, X7\ Y}, {X1\Y5}

b Xy s & Xofi = XL & XL is & Xifo = X1 & X1 2 X & X[ = X}
Step 22. Use Rule (9)—Theory Feature Closure:

{X0\Vey, X1\ Y}, {X7\Y:}

F X s & Xi A X & X is& Xafom X & XIFf=2 & X1 = Xo & X| = X}
Step 23. Use Rule (5)—Feature Constraint:

{Xa\Ye,, Xi\Ye, Z\Ya }, {X7\Y5)

F o Xiiss &X1.fi=X 1 &X:s& X o= X[ & X[ f=Z8&7:5& X=X,
& X = X3
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Step 24. Use Rule (5)—Feature Constraint:
{X0\Ys,, Xi\Y, Z\Va}, {X1\Y5, Z\Y5}

l_

Xi1:83 &X1./i=X1&X{:5&X1.p=X{&X{.f=2&7:5&7:s

& X1 =X & X| = X}

Step 25. Use Rule (0)—Frame Allocation:
{X0\Yey, X1\Ya, Z\Ya}, {X{\Ye, Z\Y5}, {Z\Y:})

'_

X183 & X1 fis X &X i s& X oo X &X|f=Z&Z:s&Z:s

& X1 =X, & X] =X}

Step 26. Use Rule (1)—Sort Intersection:
{Xa\Yey, Xi\Ya, Z\Va}, {X{\Y,, Z\Y5}, {Z\Yo}

l_

Xiiss &Xiiz X &X:s5&X1.p=X & X f=2&7:5& X=X,

& X! = X}

This is in (strong) ©-normal form, yielding the ¢-term (up to variable renaming):

t3 =11 Ne tg:Sg(fl :>X15(f:>5);f2 :>X)
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