
J. LOGIC PROGRAMMING 1993:16:195-234 195

TOWARDS A MEANING OF LIFE?

HASSAN AiT-KACI AND ANDREAS PODELSKI

D LIFE is an experimental programming language proposing to integrate
three orthogonal programming paradigms proven useful for symbolic com-
putation. From the programmer’s standpoint, it may be perceived as a
language taking after logic programming, functional programming, and
object-oriented programming. From a formal perspective, it may be seen
as an instance (or rather, a composition of three instances) of a Constraint
Logic Programming scheme due to Hijhfeld and Smolka refining that of
Jaffar and Lassez.

We start with an informal overview demonstrating LIFE as a program-
ming language, illustrating how its primitives offer rather unusual, and
perhaps (pleasantly) startling, conveniences. The second part is a formal
account of LIFE’s object unification seen as constraint-solving over specific
domains. We build on work by Smolka and Rounds to develop type-theo-
retic, logical, and algebraic renditions of a calculus of order-sorted feature
approximations. a

. . . the most succinct and poetic definition: ‘Crber, c’est unir’ (‘To create is to unify’).
This is a principle that must have been at work from the very beginning of life.

KONRAD LORENZ, Die Riickseite des Spiegeki

1. INTRODUCTION

As an acronym, ‘LIFE’ means Logic, Inheritance, Functions, and Equations. LIFE
also designates an experimental programming language designed after these four
precepts for specifying structures and computations. As for what LIFE means as a

‘This article is a revision of [9]. A short form of [9] was also published as [lo].
Address correspondence to Dr. H. A’it-Kaci, Digital Equipment Corporation, Paris Research Labora-

tory, 85 Avenue Victor Hugo, 92563 Rueil-Malmaison Cedex, France. Email: Ihak,
podelski)@prl.dec.com.

Received December 1991; accepted March 1993.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$6.00

196 H. tiT-KACI AND A. PODELSKI

programming language, it is the purpose of this document to initiate the presenta-
tion of a complete formal semantics for LIFE. We shall proceed by characterizing
LIFE as a specific instantiation of a Constraint Logic Programming (CLP) scheme
with a particular constraint language. In its most primitive form, this constraint
language constitutes a logic of record structures that we shall call Order-Sorted
Feature logic-or, more concisely, OSF logic.

In this document, we mean to do two things: first, we overview informally the
functionality of LIFE and the conveniences that it offers for programming; then,
we develop the elementary formal foundations of OSF logic. We shall call this
basic OSF logic. Although, in the basic form that we give here, the OS% formalism
does not account for all overviewed aspects of LIFE (e.g., functional reduction,
constrained sort signature), it constitutes the kernel to be extended when we
address those more elaborate issues later elsewhere. Showing how basic OSF logic
fits as an argument constraint language of a CLP scheme is therefore a useful and
necessary exercise. The CLP scheme that we shall use has been proposed
by Hiihfeld and Smolka [15] and is a generalization of that due to Jaffar and
Lassez [16].

We shall define a class of interpretations of approximation structures adequate
to represent basic LIFE objects. We call these OSF interpretations. As for syntax,
we shall describe three variant (first-order) formalisms: (1) a type-theoretic term
language, (2) an algebraic language, and, (3) a logical (clausal) language. All three
will admit semantics over OSF interpretations structures. We shall make rigorously
explicit the mutual syntactic and semantic equivalence of the three representations.
This allows us to shed some light on, and reconcile, three common interpretations
of multiple inheritance as, respectively, (1) set inclusion; as (2) algebraic endomor-
phism; and, (3) as logical implication.

Our approach centers around the notion of an OSF-algebra. This notion was
already used implicitly in [l, 21 to give a semantics to $-terms. Gert Smolka’s work
on Feature Logic [18, 191 made the formalism emerge more explicitly, especially in
the form of a “canonical OSF-graph algebra,” and was used by DGrre and Rounds
in recent work showing undecidability of semiunification of cyclic structures [14].’

This document is organized as follows. We first give an informal tour of some of
LIFE’s unusual programming conveniences. We hope by this to illustrate for the
reader that some original functionality is available to a LIFE user. We do this by
way of small yet (pleasantly) startling examples. Following that, in Section 3, we
proceed with the formal account of basic OSF logic. There, OSF interpretations
are introduced together with syntactic forms of terms, clauses, and graphs taking
their meaning in those interpretations. It is then made explicit how these various
forms are related through mutual syntactic and semantic correspondences. In
Section 3.4, we show how to tie basic OSF logic into a CLP scheme. (For the sake
of making this work self-contained, we briefly summarize, in Appendix A, the
essence of the general Constraint Logic Programming scheme that we use

* DGrre and Rounds do not consider order-sorted graphs and focus only on features, whereas Smolka
considers both the order-sorted and the unsorted case. However, Smolka does not make explicit the
mutual syntactic and semantic mappings between the algebraic, logical, and type-theoretic views. On the
other hand, the logics considered in [18, 191 are richer than the basic formalism to which we limit
ourselves here, allowing explicit negation and quantification. Naturally, all these extensions can as well
be considered in our framework.

TOWARDS A MEANING OF LIFE 197

explicitly. It is due to Hijhfeld and Smolka [15].) Finally, we conclude anticipating
on the necessary extensions of basic OSF logic to achieve a full meaning of LIFE.

2. LIFE, Informally

LIFE is a trinity. The function-oriented component of LIFE is directly derived
from functional programming languages with higher-order functions as first-class
objects, data constructors, and algebraic pattern-matching for parameter-passing.
The convenience offered by this style of programming is one in which expressions
of any order are first-class objects and computation is determinate. The relation-
oriented component of LIFE is essentially one inspired by the Prolog language [13,
171. Unification of first-order patterns used as the argument-passing operation
turns out to be the key of a quite unique and hitherto unusual generative behavior
of programs, which can construct missing information as needed to accommodate
success. Finally, the most original part of LIFE is the structure-oriented compo-
nent which consists of a calculus of type structures-the $-calculus [l, 21--and
accounts for some of the (multiple) inheritance convenience typically found in
so-called object-oriented languages.

Under these considerations, a natural coming to LIFE has consisted in first
studying pairwise combinations of each of these three operational tools. Metaphor-
ically, this means realizing edges of a triangle (see Figure 1) where each vertex is
some essential operational rendition of the appropriate calculus. LOGIN is simply
Prolog where first-order constructor terms have been replaced by e-terms, with
type definitions [5]. Its operational semantics is the immediate adaptation of that of
Prolog’s SLD resolution. Le Fun [6, 71 is Prolog where unification may reduce
functional expressions into constructor form according to functions defined by
pattern-oriented functional specifications. Finally, FOOL is simply a pattern-
oriented functional language where first-order constructor terms have been re-
placed by @terms, with type definitions. LIFE is the composition of the three with
the additional capability of specifying arbitrary functional and relational con-
straints on objects being defined. The next subsection gives a very brief and
informal account of the calculus of type inheritance used in LIFE (#-calculus). The
reader is assumed familiar with functional programming and logic programming.

FIGURE 1. The LIFE molecule.

Functions Relations

198 H. AiT-KACI AND A. PODELSKI

2.1. qKalculus

In this section, we give an informal but informative introduction of the notation,
operations, and terminology of the data structures of LIFE. It is necessary to
understand the programming examples to follow.

The @-calculus consists of a syntax of structured types called @-terms together
with subtyping and type intersection operations. Intuitively, as expounded in [51,
the @-calculus is a convenience for representing record-like data structures in logic
and functional programming more adequately than first-order terms do, without
loss of the well-appreciated instantiation ordering and unification operation.

Let us take an example to illustrate. Let us say that one has in mind to express
syntactically a type structure for a person with the property, as expressed for the
underlined symbol in Figure 2, that a certain functional diagram commutes.

The syntax of $-terms is one simply tailored to express as a term this kind of
approximate description. Thus, in the $-calculus, the information of Figure 2 is
unambiguously encoded into a formula, perspicuously expressed as the $-term:

X : person(name - id@rst * string,

last - S : string),

spouse * personhame * id(last * 9,

spouse = X)).

It is important to distinguish among the three kinds of symbols participating in a
#-term. We assume given a set 3’ of sorts or type constructor symbols, a set 9 of

spouse

FIGURE 2. A commutative functional diagram.

TOWARDS A MEANING OF LIFE 199

features, or attributes symbols, and a set I/ of variables (or coreference tags). In the
+-term above, for example, the symbols person, id, string are drawn from 9, the
symbols name, first, fast, spouse from 9, and the symbols X, S from L’. (We
capitalize variables, as in Prolog.)

A +-term is either tagged or untagged. A tagged $-term is either a variable in I/
or an expression of the form X : t where X E v is called the term’s root variable
and t is an untagged $-term. An untagged $-term is either atomic or attributed. An
atomic G-term is a sort symbol in Y. An attributed @-term is an expression of the
form s</, =. t,, . . . , Ln * t,) where the root variable’s sort symbol s ~9’ and is
called the @-term’s principal type, the fi’s are mutually distinct attribute symbols
in Y, and the ti’s are $-terms (n 2 0).

Variables capture coreference in a precise sense. They are coreference tags and
may be viewed as typed variables where the type expressions are untagged $-terms.
Hence, as a condition to be well-fotmed, a $-term must have all occurrences of
each coreference tag consistently refer to the same structure. For example, the
variable X in

person(id =z. name(first * string,

last * X : string),

father * personcid 3 name(last = X : string>>)

refers consistently to the atomic Q-term string. To simplify matters and avoid
redundancy, we shall obey a simple convention of specifying the sort of a variable
at most once and understand that other occurrences are equally referring to the
same structure, as in:

person(id * name(first j string,

last * X : string),

father * person(id * name(Zast * X))).

In fact, since there may be circular references as in X: person(spouse =j
person(spouse a X>>, this convention is necessary. Finally, a variable appearing
nowhere typed, as in junk(kind ax) is implicitly typed by a special greatest initial
sort symbol T always present in 9. This symbol will be left invisible and not
written explicitly as in (age * integer, name =S string), or written as the symbol @ as
in @(age =S integer, name a string). In the sequel, by +-term we shall always mean
well-formed @-term and call such a form a ($)-normal form.

Generalizing first-order terms,’ I(r-terms are ordered up to variable renaming.
Given that the set 9 is partially-ordered (with a greatest element T), its partial
ordering is extended to the set of attributed e-terms. Informally, a +-term t, is
subsumed by a $-term t, if (1) the principal type of t, is a subtype in 9 of the
principal type of t,; (2) all attributes of t, are also attributes of t, with e-terms
which subsume their homologues in t,; and, (3) all coreference constraints binding
in t, must also be binding in t,.

‘In fact, if a first-order term is written f(t
$-term f(l*t,,...,n=,t,).

1,. . . , t,), it is nothing other than syntactic sugar for the

200 H. AfT-KACI AND A. PODELSKI

For example, if student <person and paris < cityname in 9 then the e-term:

student(id * name@rst * string,

last * X : string),

lives-at * Y : address(city -Paris),

father * person(id * name(last *XI,

lives-at = Y 1)

is subsumed by the +-term:

person(id + name(last * X : string),

lives-at * address(city * cityname),

father +. person(id * name(last =X)1).

In fact, if the set 9 is such that greatest lower bounds (GLB’s) exist for any pair
of type symbols, then the subsumption ordering on +-term is also such that GLB’s
exist. (See Appendix B for the case when GLB’s are not unique.) Such are defined
as the unification of two @-terms. A detailed unification algorithm for $-terms is
given in [51.

Consider for example the poset displayed in Figure 3 and the two e-terms:

X : student(advisor = faculty(secretaly = Y : staff,

assistant =3X),

roommate 3 employee(representative * Y))

FIGURE 3. A lower semi-lattice of sorts.

TOWARDS A MEANING OF LIFE 201

and:

employee(advisor * f Jsecretaty * employee,

assistant - U : person),

roommate - V: studentcrepresentative * V),

helper - w,(spouse * U)).

Their unification (up to tag renaming) yields the term:

W : work.study(advisor - f I(secretaty * Z : workstudy(representative * Z),

assistant * WI,

roommate = Z,

helper * w,(spouse 3 WI).

Last in this brief introduction to the t/+-calculus, we explain type definitions. The
concept is analogous to what a global store of constant definitions is in a practical
functional programming language based on h-calculus. The idea is that types in the
signature may be specified to have attributes in addition to being partially-ordered.
Inheritance of attributes from all supertypes to a subtype is done in accordance
with #-term subsumption and unification. For example, given a simple signature
for the specification of linear lists 9= {list, cons, nil} with nil < list and cons < list,
it is yet possible to specify that cons has an attribute tail-list. We shall specify
this as:

list := {nil; cons(tai1 * list)}.

From which the appropriate partial-ordering is inferred.
As in this list example, such type definitions may be recursive. Then, $-unifica-

tion modulo such a type specification proceeds by unfolding type symbols accord-
ing to their definitions. This is done by need as no expansion of symbols need be
done in case of (1) failures due to order-theoretic clashes (e.g., cons(tail- list)
unified with nil fails; i.e., gives J_); (2) symbol subsumption (e.g., cons unified with
list gives just cons), and (3) absence of attribute (e.g., cons(tai1 - cons) unified with
cons gives cons(tail =j cons>). Thus, attribute inheritance may be done “lazily,”
saving much unnecessary expansions [ll].

In LIFE, a basic @term denotes a functional application in FOOL’s sense if its
root symbol is a defined function. Thus, a functional expression is either a $-term
or a conjunction of +-terms denoted by t, : t, : 1.1 : t,.3 An example of such is
append(list, L): list, where append is the FOOL function defined as:

list := {[I; [@Ilist]}.

append([1, L : list> -+ L.

append([HIT : list], L : list) + [HIappendCT, L)l.

‘In fact, we propose to see the notation -:- simply as a dyadic operation resulting in the GLB of its
arguments since, for example, the notation X: t, : tz is shorthand for X: t,, X: I,. Where the variable
X is not necessary, (ie., not otherwise shared in the context), we may thus simply write t, : t2.

202 H. AiT-KACI AND A. PODELSKI

This is how functional dependency constraints are expressed in a $-term in LIFE.
For example, in LIFE the $-term foo(bar *X: list, baz a Y: list, fuz *
uppend(X, Y) : list> is one in which the attribute @ is derived as a list-valued
function of the attributes bar and buz. Unifying such $-terms proceeds as before
modulo suspension of functional expressions whose arguments are not sufficiently
refined to be provably subsumed by patterns of function definitions.

As for relational constraints on objects in LIFE, a +-term t may be followed by
a such-that clause consisting of the logical conjunction of (relational) literals
C 1,. . . , C,,, possibly containing functional terms. It is written as tlC,, . . . , C,. Unifi-
cation of such relationally constrained terms is done modulo proving the conjoined
constraints. We will illustrate this very intriguing feature with two examples:
prime. 1 i f e (Section 2.5) and quick. 1 i f e (Section 2.4). In effect, this allows
specifying duemonic construints to be attached to objects. Such a (renamed)
“daemon-constrained” object’s specified relational and (equational) functional
formula is normalized by LIFE, its proof being triggered by unification at the
object’s creation time.

We give next some LIFE examples.

2.2. Order-sorted logic programming: happy .1 i f e

The first example illustrates a use of partially-ordered sorts in logic programming.
The e-terms involved here are only atomic $-terms; i.e., unattributed sort symbols.
This example shows the advantage of summarizing the extent of a relation with
predicate’s arguments ranging over types rather than individuals.

F

Peter, Paul and Mary are students, and students are persons.

student:= {peter;paul;mary}.

student< Iperson.

Grades are good grades or bad grades. A and B are good grades, while C, D and
are bad grades.

grade:= {goodgrade;badgrade}.

goodgrade:= {a;b}.

badgrade:={c;d;f}.

Goodgrades are good things.

goodgrade< Igoodthing.

Every person likes herself. Every person likes every good thing. Peter likes
Mary.

likes(X:person,X) .

likes(person,goodthing).

likes(peter,mary).

TOWARDS A MEANING OF LIFE 203

Peter got a C, Paul an F and Mary an A.

got(peter,c) .

got(paul,f) .

got(mary,a) .

A person is happy if s/he got something that s/he likes, or, if s/he likes
something that got a good thing.

happy(X:person) :- got(x,Y),likes(X,Y).

happy(x:person) :- likes(X,Y),got(Y,goodthing).

To the query ‘happy(X:student) ?’ LIFE answers x = mary (twice-see
why?), then gives x =peter, then fails. (It helps to draw the sort hierarchy order
diagram.)

2.3. Passive constraints: 1 e fun . 1 i f e

The next three examples illustrate the interplay of unification and interpretable
functions. The first two do not make any specific use of q-terms. Again, the
first-order term notation is used as implicit syntax for G-terms with numerical
features.

Consider first the following:

P(X, Y) :- q(x, Y, Z, Z), r(X, Y).

q(X, Y, X+Y, x*Y).

q(X, Y, X+Y, (X*Y)-14).

r(3, 5).

r(2, 2).

r(4, 6).

Upon a query ‘p (x, Y) ?’ the predicate p selects a pair of expressions in X and
Y whose evaluations must unify, and then selects values for X and Y. The first
solution selected by predicate q sets up the residual equation (or residuation, or
suspension) that X + Y = X * Y (more precisely that both X + Y and X * Y should
unify with Z>, which is not satisfied by the first pair of values, but is by the second.
The second solution sets up X + Y = (X * Y) - 14, which is satisfied by X = 4,
Y= 6.

The next two examples show the use of higher-order functions such as map:

map(@, [I)-,[I.

maP(F, [HITI) --f [F(H) Imap(F,T)l.

inc_list(N:int, L:list, map(+(N),L)).

204 H. AiT-KACI AND A. PODELSKI

Tothequely‘inc_list(3, [1,2,3,4l,L)?‘,LIFEanswersL=[4,5,6,71.
In passing, note the built-in constant @ as the primeval LIFE object (formally

written T) which approximates anything in the universe.
Note that it is possible, since LIFE uses $-terms as a universal object structure,

to pass arguments to functions by keywords and obtain the power of partial
application (currying) in all arguments, as opposed to h-calculus which requires
left-to-right currying [31. For example of an (argument-selective) currying, consider
the (admitted pathological) LIFE program:

curry(V) :- V=G(2*1), G=F(X), valid(F), pick(x), p(sq(V)).

sq(X) +x*x.

twice(F,X)+F(F(X)).

valid(twice) .

P(l).

id(x) -+X.

pick(id).

What does LIFE answer when ‘curry (v) ?' is the query? The relation curry is
the property of a variable I/ when this variable is the result of applying a variable
function G to the number 1 as its second argument. But G must also be the value
of applying a variable function F to an unknown argument X. The predicate
valid binds F to twice, and therefore binds V to twice (x, 1). Then, pick
binds X to the identity function. Thus, the value of G, twice (x) , becomes
twice (id) and V becomes now bound to 1, the value of twice (id, 1). Finally,
it must be verified that the square of I/ unifies with a value satisfying property p.

2.4. Functional programming with logical variables: quick .1 i f e

This is a small LIFE module specifying (and thus, implementing) C.A.R. Hoare’s
“Quick Sort” algorithm functionally. This version works on lists which are not
terminated with [1 (nil) but with uninstantiated variables (or partially instanti-
ated to a non-minimal list sort). Therefore, LIFE makes difference-lists bona fide
data structures in functional programming.

q_sort(L,order*O) +undlist(dqsort(L,ordertiO)).

undlist(x\Y)+XIY=[1.

dqsort([l)+L\L.

dqsort([HITl,order*O)

+ (~l\L2) : where

((Less,More) : split(H,T, (

(Ll\[HIL31) : dqsort(Less

(L3\L2) : dqsort(More

[I,[l),order*O),

,order*O),

,order*O)).

where -+ @ .

TOWARDS A MEANING OF LIFE 205

split(@,[],P) +P.

split(X,[HITl,(Less,More),order-0) +

cond(O(H,X),

split(X,T,([HILessl,More),order*O),

split(X,T,(Less,[HlMorel),orderaO)).

The function dqsort takes a regular list (and parameterized comparison
boolean function 0) into a difference-list form of its sorted version (using Quick
Sort). The function undlist yields a regular form for a difference-list. Finally,
notice the definition and use of the (functional) constant where which returns the
most permissive approximation CC?). It simply evaluates its arguments (a @on’
unconstrained in number and sorts) and throws them away. Here, it is applied to
three arguments at (implicit) positions (attributes) 1 (a pair of lists), 2 (a differ-
ence-list), and 3 (a difference-list). Unification takes care of binding the local
variables Less, More, Ll, ~2, ~3, and exporting those needed for the result
(Ll , ~2). The advantage (besides perspicuity and elegance) is performance: replac-
ing where with @ inside the definition of dqsort is correct but keeps around three
no-longer needed argument structures at each recursive call.

Here are some specific instantiations:

number_sort(L:list)+q-sort(L, order*<).

string_sort(L:list)+q_sort(L, order-$<).

such that to the query:

L=string_sort(["is","This","sorted","lexicographically"])?

LIFE answers:

L= [“This”, “is”, "lexicographically","sorted"] .

2.5. High-school math specifications: prime .1 i f e

This example illustrates sort definitions using other sorts and constraints on their
structure. A prime number is a positive integer whose number of proper factors is
exactly one, This can be expressed in LIFE as:

posint:=I:intlI> O=true.

prime:=P:posintlnumber_of_factors(P)=one.

where:

number_of_factors(N:posint)

+cond(N=l, { >, factors_from(N,2)).

factors-from(N:int,P:int)

206 H. AiT-KACI AND A. PODEISKI

-+cond(P*P>N,

one,

cond(R:(N/P)=:=floor(R),

maw,

factors_from(N,P+l))).

posint_stream+ {l;l+posint_stream}.

list_all_primes:- write(posint_stream:prime), nl, fail.

As for @, the dual built-in constant c 1 is the final LIFE object (formally
written I) and is approximated by anything in the universe. Operationally, it just
causes failure equivalent to that due to an inconsistent formula. Any object that is
not a non-strict functional expression (such as cond) in which {) occurs will lead
to failure (I as an object or the inconsistent clause as a formula). Also, LIFE’s
functions may contain infinitely disjunctive objects such as streams. For instance,
posint-stream is such an object (a 0-ary function constant) whose infinitely
many disjuncts are the positive integers enumerated from 1. Or, if a limited stream
is preferred:

posint_streamup_to(N:int)

+cond(N<l,

{ I,

{l;l+posint_streamup_to(N-l)}).

list_primes_up_to(N:int)

:- write(posint_stream_up_to(N):prime), nl, fail.

This last example concludes our informal overview of some of the most salient
features of LIFE. Next, with a slight change of speed, we shall undertake casting its
most basic components into an adequate formal frame.

3. Formal LIFE

This section makes up the second part of this paper and sets up formal foundations
upon which to build a full semantics of LIFE. The gist of what follows is the
construction of a logical constraint language for LIFE type structures with the
appropriate semantic structures. In the end of this section, we will use this
constraint language to instantiate the Hohfeld-Smolka CLP scheme (see Appendix
Section A for a summary of the scheme). We hereby give a complete account
essentially of that part of LIFE which makes up LOGIN [51 without type defini-
tions. Elsewhere, using the same semantic framework, we account for type defini-
tions [ll] and for functions as passive constraints [8].

Thus, the point of this section is to elucidate how the core constraint system of
LIFE (namely, e-terms with unification) is an instance of CLP. The main difficulty
faced here is the absence of element-denoting terms since t&terms denote sets of
values. It is still possible, however, to compute “answer substitutions,” and we will
make explicit their formal meaning. A concrete representation of +-terms is given

TOWARDS A MEANING OF LIFE 207

in term of order-sorted feature (OSF) graphs. One main insight is that OSF-graphs
make a canonical interpretation. In addition, they enjoy a nice “schizophrenic”
property; OSF-graphs denote both elements of the domain of interpretation and sets
of values. Indeed, an OSF-graph may be seen as the generator of a principal filter
for an approximation ordering (namely, of the set of all graphs it approximates).
What we also exhibit is that a most general solution as a variable valuation is
immediately extracted from an OSF-graph. All other solutions are endomorphic
refinements (i.e., instantiations) of this most general one, generating all and only
the elements of the set denotation of this OSF-graph.

Lest the reader, faring through this dense and formal section, feel a sense of
loss and fail to see the forest from the trees, here is a road map of its contents.
Section 3.1 introduces the semantic structures needed to interpret the data
structures of LIFE. Then, Section 3.2 describes three alternative syntactic presen-
tations of these data structures: Section 3.2.1 defines a term syntax, Section 3.2.2
defines a clausal syntax, and Section 3.2.3 defines a graph syntax. In each case, a
semantics is given in terms of the algebraic structures introduced in Section 3.1.
The three views are important since the term view is the abstract syntax used by
the user; the clausal view is the syntax used in the normalization rules presenting
the operational semantics of constraint-solving; and, the graph view is the canoni-
cal representation used for implementation. Then, all these syntaxes are formally
related thanks to explicit correspondences. Following that, Section 3.3 shows that
each syntax is endowed with a natural ordering. The terms are ordered by
set-inclusion of their denotations; the clauses by implications; and, the graphs by
endomorphic approximation. It is then established in a semantic transparency
theorem that these orderings are semantically preserved by the syntactic corre-
spondences. The last part, Section 3.4, integrates the previous constructions into a
relational language of definite clauses and ties everything together as an explicit
instance of the HShfeld-Smolka CLP scheme. Section 3.4.1 deals with definite
clauses and queries over OSF-terms, Section 3.4.2 deals with definite clauses of
OSF-constraints; and, Section 3.4.3 deals with OSF-graphs computed by a LIFE
program.

3.1. The Interpretations: OSF-algebras

The formulae of basic OSF logic are type formulae which restrict variables to range
over sets of objects of the domain of some interpretation. Roughly, such types will
be used as approximations of elements of the interpretation domains when we may
have only partial information about the element or the domain. In other words,
specifying an object to be of such a type does in no way imply that this object can
be singled out in every interpretation. Furthermore, it will not be necessary to
consider a single fixed interpretation domain, reflecting situations when the domain
of discourse can not be specified completely, as is often the case in knowledge
representation. Instead, it can be sufficient to specify a class of admissible
interpretations. This is done by means of a signature. We shall consider domains
which are coherently described by classifying symbols (i.e., partially-ordered sorts)
and whose elements may be functionally related with one another through features
(i.e., labels or attributes). Thus, our specific signatures will comprise the symbols
for sorts and features and regulate their intended interpretation.

An order-sorted feature signature (or simply OSF-signature) is a tuple (9,~ ,

208 H. AiT-KACI AND A PODELSKI

A ,F> such that:

l 9 is a set of sorts containing the sorts T and I ;

. I is a decidable partial order on 9 such that _L is the least and T is the
greatest element;

l (9, I , A > is a lower semi-lattice (s AS’ is called the greatest common
subsort of sorts s and s’);

l Y is the set of feature symbols.

A signature as above has the following interpretation. An order-sorted feature
algebra (or simply OSF-algebra) over the signature (Y, I , A ,S> is a structure

such that:

l Dd is a non-empty set, called the domain of JZ’ (or, universe);

l for each sort symbol s in 9, s d is a subset of the domain; in particular,
Td=Dd and Iti =fl* 3

l the greatest lower bound (GLB) operation on the sorts is interpreted as the
intersection; i.e., (s A s’)& = sd n sfd for two sorts s and s’ in 9’.

l for each feature E’ in 9, 8’” is a total unary function from the domain into
the domain; i.e., k’M : P’ - D&;

Thanks to our interpretation of features as functions on the domain, a natural
monoid homomorphism extends this between the free monoid (P;,E) and the
endofunctions of D-g’ with composition, ((D”“)(o”), 0 ,Zdod). We shall refer to
elements of either of these monoids as attribute (or feature) compositions.

In the remainder of this paper, we shall implicitly refer to some fixed signature
(9,s ,A,@.

The notion of OSF-algebra calls naturally for a corresponding notion of homo-
morphism preserving structure appropriately. Namely,

Definition 1 (OSF-Homomorphism). An OSF-algebra homomorphism y : a’++9
between two OSF-algebras A? and 9 is a function y : Dti +, D9 such that:

l y(Y’Cd)) =e9(y(d>) for all d ED~;

l y(P) cs”.

It comes as a straightforward consequence that OSF-algebras together with
OSF-homomorphisms form a category. We call this category OSF.

Let D be a non-empty set and (lD E DDIees an 93ndexed family of total
endofunctions of D. To any feature composition w =/,, . . . , Ln’,, n 2 0 in the free
monoid P, there corresponds a function composition oD =/,” 0 *** 0 6’iD in DD
(for IZ = 0 cD = lo). Then, for any non-empty subset S of D, we can construct the
5Wosure bf S, the set P(S) = UwE9* ~~($4. This is the smallest set containing
S which is closed under feature application. Using this, the familiar notion of least
algebra generated by a set can naturally be given for OSF-algebras as follows.

Proposition 1 (Least subalgebra generated by a set). Let D be the domain of an

TOWARDS A MEANING OF LIFE 209

OSF-algebra &, then for any non-empty subset S of D, the 9-closure of S is the domain
of _@IS], the least OSF-algebra subalgebra of M containing S; i.e., Ds’[‘] =p(S).

Proof. 5@(S) is closed under feature application by construction. As for sorts,
simply take s 4[sl = sD n p(S). It is straightforward to verify that this forms a
subalgebra which is the smallest containing S. •I

3.2. The syntax

3.2.1. OSF-terms. We now introduce the syntactic objects that we intend to use
as type formulae to be interpreted as subsets of the domain of an OSF-algebra. Let
7 be a countably infinite set of variables.

Definition 2 (OSF-Term). An order-sorted feature term (or, OSF-term) t) is an
expression of the form

where X is a variable in 7, s is a sort in 9, L’,, . . . , f, are features in 9, n 2 0, and

ICI 1,“‘, Q!J,, are OSF-terms.

Note that the equation above includes n = 0 as a base case. That is, the simplest
OSF-terms are of the form X : s. We call the variable X in the above OSF-term
the root of I,!J (noted Root($)), and say that X is “sorted” by the sort s and “has
attributes” /, , . . . , L,. The set of variables occurring in I,!J is given by Var(I)>= {Xl
U Uj s R Var($j>*

Example 1. The following is an example of the syntax of an OSF-term:

X : person(name = N : T (first =+. F : string),

name =j M : id(last * S : string),

spouse + P : person(name * I : id(last * S : T 1,

spouse * X : T)).

Note that, in general, an OSF-term may have redundant attributes (e.g., name) or
the same variable sorted by different sorts (e.g., X and S>.

Intuitively, such an OSF-term as given by Equation 1 is a syntactic expression
intended to denote sets of elements in some appropriate domain of interpretation
under all possible valuations of its variables in this domain. Now, what is expressed
by an OSF-term is that, for a given fixed valuation of the variables in such a
domain, the element assigned to the root variable must lie within the set denoted
by its sort. In addition, the function that denotes an attribute must take it into the
denotation of the corresponding subterm, under the same valuation. The same
scheme then applies recursively for the subterms. Clearly, an OSF-algebra forms
an adequate structure to capture this precisely as shown next.

Given the interpretation M, the denotation [J;IId+ of an OSF-term I,!I of the

210 H. AiT-KACI AND A. PODELSKI

form given by equation 1, under a valuation (Y : T- IId is given inductively by:

(2)

where an expression such as f ’ (9, when f is a function and S is a set, stands for
{xl+J y =f(x)l; i.e., denotes the set of all elements whose images by f are in S.

Without further context with which variable names may be shared, we shall
usually use a lightened notation for OSF-terms whereby any variable occurring
without a sort is implicitly sorted with T and all variables which do not occur
more than once are not given explicitly. This is justified in some manner by our
OSF-term semantics is the sense that the OSF-term recovered from the lightened
notation, by introducing a new distinct variable anywhere one is missing and
introducing the sort T anywhere a sort is missing, denotes precisely the same set,
irrespective of the name of single occurrence variables.

Example 2. Using this light notation, the OSF-term of Example 1 becomes:

X : person(name * T (first - string),

name - id(last =+ S : string),

spouse * person(name * idUast * S),

spouse * Xl).

Observe that Equation 2 reflects the meaning of an OSF-term for only one
valuation and therefore always specifies a singleton or possibly the empty set. Also,
note that this definition does include the base case (i.e., n = 01, owing to the fact
that intersection over the empty set is the universe (n { . . . I1 I i I n} = nfl = IV’).

Since we are interested in all possible valuations of the variables in the domain
of an OSF-algebra interpretation M, the denotation of an OSF-term I) = X : de1

=a $,,...,f” * t,b,J 1s defined as the set of domain elements:

IT+ll”= u [T$lY@. (3)
n E Val(B?

The syntax of OSF-term allows some to be in a form where there is apparently
ambiguous or even implicitly inconsistent information. For instance, in the OSF-
term of Example 1, it is unclear what the attribute name could be. Similarly, if
string and number are two sorts such that string A number = I , it is not clear what
the ssn attribute is for the OSF-term X: T (ssn -string, ssn * number), and
whether indeed such a term’s denotation is empty or not. The following notion is
useful to this end.

Definition 3 (@term). A normal OSF-term + is of the form J, =X: s</, *

9 1,“‘, /, * t,!~,,) where :

there is at most one occurrence of a variable Y in +G such that Y is the root
variable of a non-trivial OSF-temz (i.e., different than Y: T >;

s is a non-bottom sort in x

e 1,. . . , /, are pairwise distinct features in 9, n 2 0,

9 1,“‘, JI, are normal OSF-terms.

TOWARDS A MEANING OF LIFE 211

We call q the set that they constitute.

Example 3. One could verify easily that the OSF-term:

X : person(name - id(frst * string,

last - S : string),

spouse - personbame * id(last * 9,

spouse - X)I

is a @term and always denotes exactly the same set as the one of Example 1.
Given an arbitrary OSF-term JI, it is natural to ask whether there exists a

$-term $’ such that [I)]” = Lr,Vlj ti in every OSF-interpretation &. We shall see
in the next subsection that there is a straightforward normalization procedure that
allows either to determine whether an OSF-term denotes the empty set or produce
an equivalent $-term form for it.

Before we do that, let us make a few general but important observations about
OSF-terms. First, the OSF-terms generalize first-order terms in many respects. In
particular, if we see a first-order term as an expression denoting the set of all terms
that it subsumes, then we obtain the special case where OSF-terms are interpreted
as subsets of a free term algebra fix, V), which can be seen naturally as a special
OSF-algebra where the sorts form a flat lattice and the features are (natural
number) positions. Recall that the first-order term notation f(tl, . . . , t,> is syntactic
sugar for the $-term notation f(l 3 t,, . . . , n * t,).4

Second, observe that since Equation 3 takes the union over all admissible
valuations, it is natural to construe all variables occurring in an OSF-term to be
implicitly existentially quantified at the term’s outset. However, this latter notion is
not very precise as it is only relative to OSF-terms taken out of external context.
Indeed, it is not quite correct to assume so in the particular use made of them in
definite relational clauses where variables may be shared among several goals.
There, it will be necessary to relativize carefully this quantification to the global
scope of such a clause. 5 Nevertheless, assuming no further context, the foregoing
OSF-term semantics given above is one in which all variables are implicitly
existential. To convince herself, the reader need only consider the equality
IX : sl] d = sd (which follows since U, E Va/Cdj ({ a(X)) n sd) = P’). A corollary of
this equality, is that it is natural to view sorts as particular (basic) OSF-terms.
Indeed, their interpretations as either entities coincide.

Third, another important consequence of this type semantics is that the denota-
tion of an OSF-term + is the empty set in all interpretations if r(l has an
occurrence of a variable sorted by the empty sort I .6 We shall call any OSF-term
of the form X: I an empty OSF-term. As observed above, any empty OSF-term
denotes exactly the empty set. Dually, it is also clear that [+I= P’ in all

4To render exactly first-order terms, feature positions should be such that i(f(tl, . . ,t,)) = ti is
defined only for 1 5 i 5 n. That is, feature positions should be partial functions. In our case, they are
total so that if i > II then i(f(t,, . . . , t,))= T . Therefore, the terms that we consider here are “loose”
first-order terms.

‘See Section 3.4 for precise details.
6As a direct consequence of the universal set-theoretic identity: ft(A nB) =f’(A) nf’(B), for

any function f and sets A, B.

212 H. AiT-KACI AND A. PODELSKI

interpretations _B? if and only if all variables in @ are sorted by T . If + is of the
form Z : T , we call IJI a trivial OSF-term.

Fourth, it is important to bear in mind that we treat features as total functions.
There are fine differences addressing the more general case of partial features and
such deserves a different treatment. We limit ourselves to total features for the
sake of simplicity.’ This is equivalent to saying that, given an OSF-term,

~==X:S(e,~Slr,,...,e,~~~),

and a variable Z 65 Vur($I), we have:

LrIG;II ~,~==X:~(I~jICI~,...,l~j~~,l=jz:T)n~,~

for any feature symbol E’EF, any OSF-interpretation M and valuation (Y E
V-a/&0.

Finally, note that variables occurring in an OSF-term denote essentially an
equality among attribute compositions as made clear by, say:

~X:T(e,~Y:T,~~zY:T)a~=(d~D~l~~~(d)=~~(d)j.

This justifies semantically why we sometimes refer to variables as coreference tugs.

3.2.2. OSF-clauses. An alternative syntactic presentation of the information
conveyed by OSF-terms can be given using logical means as an OSF-term can be
translated into a constraint formula bearing the same meaning. This is particularly
useful for proof-theoretic purposes. A constraint normalization procedure can be
devised in the form of semantics preserving simplification rules. A special syntactic
form called solved form may be therefore systematically exhibited. This is the key
allowing the effective use of types as constraints formulae in a Constraint Logic
Programming context.

Definition 4 (OSF-Constraint). An order-sorted feature constraint (OSF-constraint) is
an atomic expression of either of the following forms:

l x:s

. x-y

l X./&Y,

where X and Y are variables in T, s is a sort in 9, and / is a feature in 5C An
order-sorted feature clause (OSF-clause) +1 &. . . & & is a finite, possibly empty
conjunction of OSF-constraints +,, . . . , $,,,(n 2 0).

One may read the three atomic forms of OSF-constraints as, respectively, “X
lies in sort s,” “ X is equal to Y,” and “Y is the feature / of X.” The set Vur(4> of
(free) variables occurring in an OSF-clause 4 is defined in the standard way.
OSF-clauses will always be considered equal if they are equal modulo the commu-
tativity, associativity and idempotence of conjunction “8~” Therefore, a clause can
also be formalized as the set consisting of its conjuncts.

7Furthermore, this is what is realized in our implementation prototype [4].

TOWARDS A MEANING OF LIFE 213

The definition of the interpretation of OSF-clauses is straightforward. If M is an
OSF-algebra and (Y E VUL’(_&, then M, (Y k 4, the satzkfuction of the clause 4 in
the interpretation ~2 under the valuation (Y, is given by:

l &,(YkX:s iff ar(X) Es-“‘;

l _%?,cKkX~Y iff a(X) = a(Y);

0 M, (Y bX../G Y iff PCa(X>) = (Y(Y);

l L%?,al=+C%C$ iff M,at=+andM,a!=+‘.

Note that the empty clause is trivially valid everywhere.
We can associate an OSF-term I,!J = X : SC/‘, - I,$, . . . , f, * rbr,> with a corre-

sponding OSF-clause $4 $) as follows:

f#J($) =X:s&XJ, ‘Y1 &... &Lx./, A r, & +(I&) &...& +($n)

wherey,,..., Y, are the rootsof I/Q,..., I,&, respectively. We say that the OSF-clause
c#J(+) is obtained from “dissolving” the OSF-term I/J.

Example 4. Let I(, be the OSF-term of Example 1. Its dissolved form 4(G) is the
following OSF-clause:

X:person&X.name~NNN: T & N.first A F & F : string

&X.name A A4 & A4 : id & M.last A S & S : string

&X.spouse A P & P : person & P.name A I & Z : id

& I.iast A S & S : T

&P.spouse AX&X: T.

Proposition 2. If the OSF-clause +(I)) is obtained from dissolving the OSF-term +,
then, for every OSF-algebra interpretation ti and every &-valuation a,

and therefore,

Proof. This is immediate, from the definitions of the interpretations of OSF-terms
and OSF-clauses. 0

We will now define rooted OSF-clauses which, when solved, are in one-one
correspondence with OSF-terms.

Given an OSF-clause I#+ we define a binary relation on Var(+), noted X A Y
(read, “Y is reachable from X in ~$9, and defined inductively as follows. For all
X, Y E Var(4):

l x3xX;

l X A Y if Z 3 Y where X./A Z is a constraint in 4.

A rooted OSF-clause C& is an OSF-clause 4 together with a distinguished
variable X (called its root) such that every variable Y occurring in C#J is explicitly

214 H. A’iT-KACI AND A. PODELSKI

sorted (possibly as Y : T 1, and reachable from X. We use +R for the injective (!)
assignment of rooted OSF-clauses to OSF-terms $I, i.e., 4R(t/t) = +(@)R,,~C$j.

Conversely, it is not always possible to assign a (unique) OSF-term to a (rooted)
OSF-clause (e.g., X: s &X: s’). However, we see next that such a thing is possible
in an important subclass of rooted OSF-clauses.

Given an OSF-clause 4 and a variable X occurring in 4, we say that a conjunct
in 4 constrains the variable X if it has an occurrence of a variable which is
reachable from X. One can thus construct the OSF-clause 4(X) which is rooted in
X and consists of all the conjuncts of
maximal subclause of 4 rooted in X.

Definition 5 (Solved OSF-Constraints).
every variable X, $J contains:

4 constraining X. That is, 4(X> is the

An OSF-clause C$ is called solved if for

l at most one sort constraint of the form X : s, with -L < s;

l at most one feature constraint of the form X./A Y for each /; and,

l no equality constraint of the form X A Y.

We call @ the set of all OSF-clauses in solved form, and QR the subset of @ of rooted
solved OSF-clauses.

Given an OSF-clause $, it can be normalized by choosing non-deterministically
and applying any applicable rule among the four transformations rules shown in
Figure 4 until none applies. (A rule transforms the numerator into the denomina-
tor. The expression $[X/Y] stands for the formula obtained from 4 after
replacing all occurrences of Y by X. We also refer to any clause of the form X : _L
as the fail clause.)

Theorem 1 (OSF-Clause Normalization). The rules of Figure 4 are solution-
preserving, finite terminating, and confluent (module variable renaming). Further-

(Inconsistent Sort)
q58zX:l

X:l

(Sort Intersection)
cp&x:s&x:s’

qh!kX:sAs’

fp&x.L~YYx.L~Y’
(Feature Decomposition)

Cp&X.L~YYY~Y’

(Variable Elimination)
lp&X~Y

&X/Y] &X e Y
ifX E Var($)

FIGURE 4. OSF-Clause Normalization Rules.

TOWARDS A MEANING OF LIFE 215

more, they always result in a normal form that is either the inconsistent clause or an
OSF-clause in solved form together with a conjunction of equality constraints.

Proof. Solution preservation is immediate as each rule transforms an OSF-clause
into a semantically equivalent one.

Termination follows from the fact that each of the three first rules strictly
decreases the number of non-equality atoms. The last rule eliminates a variable
possibly making new redexes appear. But, the number of variables in a formula
being finite, new redexes cannot be formed indefinitely.

Confluence is clear as consistent normal forms are syntactically identical modulo
the least equivalence on 7 generated by the set of variable equalities. 0

Given 4 in normal form, we will refer to its part in solved form as Solved(+),
i.e., 4 without its variable equalities.

Example 5. The normalization of the OSF-clause given in Example 4 leads to the
solved OSF-clause which is the conjunction of the equality constraint NAM and
the following solved OSF-clause:

X : person & X.name 1 N & N : id & N.first A F & F : string

& N.last A S & S : string

&X.spouse A P & P : person & P.name G I&I: id

& I.last L S

& P.spouse A X.

Given a rooted solved OSF-clause &, we define the OSF-term I/J(&) by:

I/#(&,) =x:s(e, =-a l@(Y,))~...~e,=, moms
where 4 contains the constraint X: s (if these are none of this form given
explicitly, we can assume the implicit existence of X: T in 4, according to our
convention of identifying OSF-clauses), and X./‘, A Y,, . . . , X./,, G Y, are all other
constraints in 4 with an occurrence of the variable X on the left-hand side.

3.2.3. OSF-graphs. We will now introduce the notion of order-sorted feature
graph (OSF-graph) which is closely related to those of normal OSF-term and of
rooted solved OSF-clause. The exact syntactic and semantic mutual correspon-
dence between these three notions is to be established precisely.

Definition 6 (OSF-graph). The elements g of the domain Dr of the order-sorted
feature graph algebra Z? are directed labeled graphs g = (N, E, A,, A,, X1, where
A, : N 49 and A, : E -+F are (node and edge, resp.) labelings and X E N is a
distinguished node called the root, such that:

l each node of g is denoted by a variable X, i.e., N c 7;

. each node X of g is labeled by a non-bottom sort s, i.e., A,(N) ~9- (I};

. each (directed) edge (X, Y) of g is labeled by a feature, i.e., h,(E) C%

. no two edges outgoing from the same node are labeled by the same feature, i.e.,
if hE((X, Y)) = hE((X, Y’)), then Y = Y’ (g is deterministic);

l every node’lies on a directed path starting at the root (g is connected).

216 H. AiiT-KACI AND A. PODELStU

In the interpretation 9, the sort s EY denotes the set sb of OSF-graphs g
whose root is labeled by a sort s’ such that s’ 5 S; that is,

The feature E’E~ has the following denotation in 27. Let g = (N, E, A,, A,, X). If
there exists an edge (X, Y > labeled k’ for some node Y of g, then Y is the root of
eg(g), and the (labeled directed) graph underlying ez(g) is the maximally con-
nected subgraph of g rooted at the node Y, g’ = (N,,, Ehy, A,, A,, Y). If there is
no edge outgoing from the root of g labeled J’, then ! (g) is the ttivial graph of
D5 whose only node is the variable Zy,g labeled T , where Ze,g E V- N is a new
variable uniquely determined by the feature k’ and the graph g; that is, if /#e’ or
g Zg’ then Ze,g # Z!,:,,. In summary, if g = (N, E, A,, A,, XI, then:

f”(g)

i

(+E,r,AN,AE,Y), if AE((X,Y)) =/forsome(X,Y) EE
7

We will present two concise ways of describing OSF-graphs. The first one
assigns to a normal OSF-term rC, a (unique) OSF-graph G(~,!J). If $=X : s, then
G(rCr)=({Xl,fJ, I<X, s)),@, Xl. If $==X:SV~-I& ,..., Ln*#,J, and G($J=
(&, Ei, A,,, A,,, XJ, then G(t,k) = (N, E, A,, A,, X) where:

l N=(X) UNi u . . . UN,;

. E={(X,X,) ,..., (X,X,>}uE,u...uE,;

i

s
l AN(U)= AN,(U)

if U=X,

if UENi- ({X} U i_li:: N,);

l A,(e)=
i

4 if e= (X,Xi>,

AE,(e) if e E Ei.

Conversely, we construct a (unique, normal) OSF-term t,Mg) for any OSF-graph
g. If X is the root of g E D9, labeled with the sort s ~9, and e,, . . . , L,, are the
(pairwise distinct) features in y, IZ 2 0, labeling all the edges outgoing from X,
then there exists an OSF-term:

@(s) =x:+1 =+ @(g&4 * $%J)

where /‘ig(g) = g,, . . . , LnF(g> =g,. If, in this recursive construction, the root vari-
able Y of +(g’) has already occurred earlier in some predetermined ordering of
P then one has to put Y : T instead of @(g’). The uniqueness of G($) follows
from the fixed choice of an ordering over P for normal OSF-terms.*

Corollary 1 (Graphical Representation of j-Terms). Th$+con-espondences $: D9 +
q and G : ilf + D” between normal OSF-terns ($-terms~ and OSF-graphs are

swithout any loss of generality, we may assume an ordering on 9 which induces a lexicographical
ordering on s*. We require that, in a normal OSF-term JI of the form above, the features e,, . , f,
be ordered, and that the occurrence of a variable Y as root of a non-trivial OSF-term is the least of all
occurrences of Y in I) according to the ordering on s*.

TOWARDS A MEANING OF LIFE 217

bijections. Namely,

Go$=l,~ and +oG=l,.

Using this one-one correspondence, we can formally characterize the OSF-graph
algebra as follows.

l DP = {G(+)lrF, is a normal OSF-term};

. sb = (G(X: s’(. . .))ls’ 5 s),

. L5(G(X: s(. . . , /a I//, . . .)I)

i

G(X:s(. . . . /a +‘,...)) if Root(f) =X,
=

G(*‘) otherwise;

l f?GW> = G(Z,,,o, : T >, otherwise; where Z e Var($1.

Note that, in particular, ey(G(X : s(./= X : T)>I = G(X : s(/* X : T 1).
We have defined the following mappings:

somehow “overloading” the notation of mapping $ (= I,$ + I,&) to work either on
rooted solved OSF-clauses or OSF-graphs.

It follows that Corollary 1 can be extended and reformulated as

Proposition 3 (Syntactic Bijections). There is a one-one correspondence between
OSF-graphs, normal OSF-temts, and rooted solved OSF-clauses as the syntactic
mappings 9 : (QR + Dy) -+ q, G : q + DF, and C#I : !P + QR put the syntactic do-
mains q, D5, and QR in bijection. That is,

1, = (crc 0 G and G 0 $d = lDv,

&=I#Jo&, and I&O+=&,.

Proof. This is clear from the considerations above. The bijection between OSF-
graphs and rooted solved OSF-clauses can be defined via OSF-terms. Therefore,
we shall take the freedom of cutting the intermediate step in allowing notations
such as 4(g) or G(4). It is interesting, however, to see how a solved clause 4 with
the root X corresponds uniquely to an OSF-graph G(+,) which is rooted at the
node X. A constraint X: s “specifies” the labeling of the node X by the sort s,
and a constraint X./A Y specifies an edge (X, Y > labeled by the feature /. If, for
a variable Z, there is no constraint of the form Z: s, then the node Z of G(4) is
labeled T . Conversely, every clause 4(g) together with the root X of the
OSF-graph g is a rooted solved clause, since the reachability of variables corre-
sponds directly to the graph-theoretical reachability of nodes. 0

As for meaning, we shall presently give three independent semantics, one for
each syntactical representation. Each semantics allows an apparently different
formalization of a multiple-inheritance ordering. We show then that they all
coincide _rt to semantic transparency of the syntactic mappings G, 9, and 4.

218 H. AfT-KACI AND A. PODELSKI

3.3. OSF-orderings and semantic transparency

Endomorphisms on a given OSF-algebra LX’ induce a natural partial ordering.

Definition 7 (Endomorphic Approximation). On each OSF-ulgebra &a preorder cd
is defined by saying that, for two elements d and e in d”‘, d approximates e,

d & eiffy(d) =eforsomeendomolphism y :~Y-xz’.

We remark that all OSF-graphs are approximated by the trivial OSF-graph
G(Z : T) consisting of one node Z labeled T , i.e., for all g E Ds, G(Z : T) C, g.
Clearly an endomorphism y : Ds c) Dg can be extended from y(Z : T) = g by
setting y(Zi : T) =gi, if Lis(g) =gi and fi::“<Z: T) = Zi : T for some “new” vari-
able Zi, etc. . . .

The following results aim at characterizing the solutions of a solved (not
necessarily connected) clause in an OSF-algebra. The essential point is to demon-
strate that all solutions in any OSF-algebra of a set of OSF-constraints can be
obtained as homomorphic images from one solution in one particular subalgebra of
OSF-graphs-the canonical graph algebra induced by $A

Definition 8 (Canonical Graph Algebra). Let 4 be an OSF-fonnulu in solved-fomz.
The subalgebra 9[D9,”] of the OSF-graph algebra 3Y generated by Dz2+ =

{G(KX))IXE Var(4)) f 11 o a maximally connected subgraphs of the graph form of C$
is called the canonical graph algebra induced by 4.

It is interesting to observe that, for 4 an OSF-formula in solved-form, the set
Ds,+ is almost an OSF-algebra. More precisely, it is closed under feature applica-
tion up to trivial graphs, in the sense that for all /EF, !‘Y(g) ED”,” */s(g) =

G(Z,,, * . T). In other words, the 5closure of D5+#’ adds only mutually distinct
trivial graphs with root variables outside Vur(+).

Definition 9 (+Admissible Algebra). Given an OSF-clause in solved form 4, any
OSF-algebra ti is said to be +admissible if there exists some & valuation (Y such that
&, al= 4.

It comes as no surprise that the canonical graph algebra induced by any solved
OSF-clause 4 is &admissible, and so is any OSF-algebra containing it-.!?, in
particular. The following is a direct consequence of this fact.

Corollary 2 (Canonical Solutions). Every solved OSF-clause 4(X) is satisfiable in
the OSF-graph algebra g under any ._V-valuation CY such that a(X) = G(+(X)).

In other words, according to the observation made above the set Dg~” contains
all the non-trivial graphs solutions. In fact, the canonical graph algebra induced by
4 is weakly initial in OSF(+), the full subcategory of +-admissible OSF algebras.’
This is expressed by the following proposition.

9An object o is weakly initial (resp., final) in a category if there is at least one arrow a : o + o’ (resp.,
a : o’ + o) for any other object o’ in the category. Weakly initial (resp., final) objects are not necessarily
mutually isomorphic. If the object o admits exactly one such arrow, it is initial (resp., final). Initial (resp.,
final) objects are necessarily mutually isomorphic.

TOWARDS A MEANING OF LIFE 219

Theorem 2 (Extracting Solutions). The solutions of a solved OSF-clause 4 in any
+admissible OSF-algebra & are given by OSF-algebra homomorphisms from the
canonical graph algebra induced by 4 in the sense that for each (Y E Vu&& such that
A?, CY k I$ there exists an OSF-algebra homomorphism y : .F[D”,+l ++A? such that:

a(X) = r(WG)))-

Proof. Let (Y be a solution of C$ in A?; i.e., such that A?, CY K 4. We define a
homomorphism y : S’[D 9~+] -_Q? by setting -y(G(4(X))) = (Y(X), and extending
from there homomorphically. This is possible since the two compatibility conditions
are satisfied for any graph g = G(4(X)). Indeed, if Pg(g) =g’, then there are two
possibilities: (1) g’ = G(Z : T) where Z e Var(4>, or (2) g’ = G(+(Y)> for some
variable Y occurring in c$; namely, in a constraint of the form X.,/A Y. Then,
P’(a(X)) = a(Y). This means that for all g ED”*@’ of the form g = G(+(X)), it is
the case that y(fP(g) =_P’((y(g)). If G(c$(X)> E s9 (i.e., if G(+(X)) is labeled by
a sort s’ such that s’ I s), then C#J contains a constraint of the form X : s’, and
therefore a(X) E s’~. This means that if g E So then y(g) E sM and the second
condition is also satisfied (if g = G(Z : T >, then this is trivially true). 0

Some known results are easy corollaries of the above proposition. The first one
is a result in [19], here slightly generalized from so-called set-descriptions to
clauses.

For a solved clause 4, Theorem 2 can be used to infer that the image of a
solution in one OSF-algebra under an OSF-homomorphism (sufficiently defined) is
a solution in the other: If cy E Val(& with &, a! k r$ and (Y’.E Val(9) is defined by
a’(X)= r(a(X)) for some y:& -A?‘, then simply let y’ : LY -d be the homo-
morphism existing according to Theorem 2 (i.e., such that a(X) = ~(G(c#J(X))))
and then a’(X) = C-y 0 y’)(G(+(X))), and thus $8, (Y’ ti 4. This fact, a standard
property expected from homomorphisms in other formalisms, holds also for a not
necessarily solved clause.

Proposition 4 (Extending Solutions). Let A? and 9 be two OSF-interpretations, and
let y : a? -9 be an OSF-homomorphism between them. Let 4 be any OSF-clause
such that AY’, (Y k 4 for some &‘-valuation CY. Then, for any B-valuation /3 obtained
as p = y 0 CY it is also the case that 9, fl k 4.

Proof. @, (Y ti C$ means that _u’, CY k 4’ for every atomic constraint conjunct +’ of
c$. If 4 is of the form X./k Y, then /‘@(p(X)) =/?y(cu(X))) = y(/“‘(a(X))>
= y(a(Y)) = /3(Y). If 4’ is of the form X: s, this means that (Y(X) ES&; and
then, p(X) = y(a(X)> ES g. Therefore, all atomic constraints in 4 are also true
in L&’ under p and so is 4. q

Theorem 3 (Weak Finality of @. There exists a totally defined homomorphism y
from any OSF-algebra & into the OSF-graph algebra 9.

Proof. For each d E DM we choose some variable X, E Var to denote a node.
There is an edge (X,, X,,) labeled / if P’(d) = d’. Each node X, is labeled with
the greatest common subsort of all sorts such that d ES.@’ (which exists since we
assume ~7 to be finite). We thus obtain a graph g whose nodes are denoted by
variables and labeled by sorts and whose (directed) edges are labeled by features.

220 H. AiT-KACI AND A. PODELSKI

We define y(d) to be the OSF-graph which is the maximally connected subgraph of
g rooted in X, and whose root is X,. Obviously, we obtain a homomorphism. 0

In other words, the OSF-graph algebra ZY is a weakly final object in the category
OSF of OSF-algebras with OSF-homomorphisms. Therefore, we have the interest-
ing situation where, if in the OSF-algebra & a solution (Y E I/al(&) of an OSF-
clause 4 exists, it is given by a homomorphism from the OSF-graph algebra L9 into
&, and a solution of 4 in YZ can always be obtained as the image of (Y under a
homomorphism from JV into ??.

Therefore, we may obtain purely semantically as a corollary the following result
due to Smolka which establishes that the OSF-algebra 57 is a “canonical model”
for OSF-clause logic [Ml:

Corollary 3 (Canonicity of .??I. An OSF-clause is satisfiable iff it is satisfiable in the
OSF-graph algebra.

Proof. This is a direct consequence of Theorem 2 and Theorem 3. 0
This canonicity result was originally proven proof-theoretically by Smolka [HI,

and then by Diirre and Rounds [141, directly, for the case of feature graph algebras
without sorts.

Corollary 4 (Principal Canonical Solutions). The OSF-graph G(c#I(X)) upproxi-
mates every other graph g assigned to the variable X by a solution of an OSF-clause 4;
i.e., the solution (Y E Vul(_Y), a(X) = G(c$(X)) is a principal solution of C/J in the
OSF-algebra K9.

Proof. This is a specialization of Theorem 2 for the case of & = YZ. 0
That is, graph solutions are most general. A related fact-the existence of

principal solutions in the feature graph algebra (without sorts)-has already been
proven by Smolka (directly; the generalization in Theorem 2 seems to be new).

The following fact comes from Proposition 3 for the special case of a rooted
solved OSF-clause, since from 4(G(I))) = 4($1 and from Proposition 2 we know
that [I)]““” = ((Y(X)IJZ’, CY b ~(G(I)))}. It states that the elements of the set
denoted by an OSF-term in any OSF-algebra can be obtained by “instantiating”
one element in the set denoted by this OSF-term in one particular OSF-algebra
(namely, its principal element).

Theorem 4 (Interpretability of Canonical Solutions). Zf the normal OSF-term I,!J
corresponds to the OSF-graph G(+!I) E Dg, then its denotation can be characterized by:

[T$J”‘= {y(G(JI))(y:~~~isanOSFalgebruhomomolphism}. (4)

The following corollary expresses the intuitive idea that some of the solutions of
a clause are solutions to stronger clauses (which are obtained via OSF-graph
algebra endomorphisms; CJ also, Corollary 8).

Corollary 5 (Homomorphism Refinability of Solutions). Zf the normal OSF-term $r
corresponds to the OSF-graph g = G($) = G(+($I)), then its denotation can be
characterized by:

~q!r-JM=(a(X)l~,a~~(~(g));-y:.Y*Hisanendomorphism}. (5)

TOWARDS A MEANING OF LIFE 221

Proof. The mapping y 1 : .F ++d given by a’(x) c, a(X) is clearly an OSF-algebra
homomorphism; so is the mapping y2 : .I%‘- .F given by G(4(X)) ++ a’(X). The
homomorphisms y of equation (5) are of the form y2 0 yl. q

Corollary 6 (+-Types as Graph Filters). The denotation ofa normal OSF-tern? in the
OSF-graph algebra is the set of all OSF-graphs which the corresponding OSF-graph
approximates; i.e.,

Proof. This is a simple reformulation of (4) for the case of LZ? = g. q

In lattice-theoretic terms, this result characterizes the canonical type denotation
of a +-term as the principal approximation filter generated by its graph form.

We readily obtain the following result established in [14] as an immediate
consequence of Theorem 4.

Corollary 7 (Diirre-Rounds). The approximation relation between two elements d and
d’ in an OSF-algebra & can be characterized on OSF-terms as:

d C& d’ iff for all OSF-terms Q, d’ E [I/I]“” whenever d E [t/r]“.

Proof. If y(G(+)) = d for some y : i? -sf according to (4) assuming d E E$r-jJ”,
and r’(d) = d’ according to the assumption d r& d’, for some endomorphism
-y’:~~?e&, then d’=(-yo~‘XG(rC,)), and one can apply (4) again-In the other
direction, the condition on all OSF-terms says exactly that from y(d) = d’ a
homomorphic extension y : af ++_cd can be defined. q

Besides the approximation ordering on OSF-graphs, there are two other natural
partial orders that can be defined over OSF-terms and OSF-clauses. Namely,
subsumption and implication, respectively.

Definition 10 (OSF-Term Subsumption). Let I,$ and I,!/ be two OSF-terms, then,
$ I $’ (L‘$ is subsumed by 9”‘) iff, for all OSF-algebras &, &jr]& c EI,VJ”.

Definition 11 (OSF-Clause Implication). Let C#I and # be two OSF-cluuses; then,
4,4’ (“4~ implies c#J”‘) iff, for all M and (Y such that J;s, cx k 4, there exists CY’ such
that t/X E C&-(4> n Vat-(#>, o’(X) = o(X), and J;s, CY’ k c#I’.

Definition 12 (Rooted OSF-Clause Implication). Let C#J~ and c#&,, be two rooted
OSF-clauses with no common variables; then, 4x5 4;Y,, iff 414’[X/X’].

Theorem 5 (Semantic Transparency of Orderings). Zf the normal OSF-terms $,
$‘, the OSF-graphs g, g’ and the rooted solved OSF-clauses 4x, 4;Y respectively
correspond to one another through the syntactic mappings, then the following are
equivalent statements:

l g Es? g’; “g is a graph approximation of g’;”

l t/Y<+; “t/r’ is a subtype of +;”

l 4;yL.4x; “4 is true of X whenever c$’ is true of X;”

l mnww.
I I,

“the set of graphs filtered by + is contained in that filtered by

**

222 H. A’iT-KACI AND A. PODELSKI

Proof. This follows from Proposition 2, Theorem 4 and Corollary 6.” q

We want to exhibit the following direct consequence of the above considera-
tions.

Corollary 8 (Endomorphic Entailment). Zf one rooted solved OSF-clause 4 is
implied by another, 4’ (# 2 41, then it is a homomorphic image of (“more instanti-
ated than”) # in the following way:

4= dWGW’)))

for some OSF-graph algebra endomorphism y.

The following two theorems are immediate and tie back our setting to unifica-
tion as constraint-solving and principal solution computation.

Theorem 6 (*Term Unification). Let I& and I& be two $-terms. Let 9 be the
normal form of the OSF-clause ~(I)~)&‘z ~(I+!J~)& Root(+l) A Root(&). Then, $J is
the inconsistent clause iff their GLB with respect to I is J_ (i.e., iff their denotations
in all interpretations have an empty intersection). Zf 4 is not the inconsistent clause,
then their GLB (module variable renaming) +I A I,!I~ is given by the normal OSF-term

$(Solued(b)).

Theorem 7 (Computing the LUB of two OSF-graphs). Let g, and g, be two
OSF-graphs. Let g be the OSF-graph, if it exists, given by g = G(Solued(&(g,)&
4(gz))). Then, g is approximated by both g, and g, and is the principal OSF-graph for
C, (i.e., approximating all other ones> with this property.

3.4. Definite Clauses over OSF-algebras

In this section, we assume familiarity with the HGhfeld-Smolka CLP scheme. The
reader in need of background will find all essential material necessary for under-
standing what follows in Appendix A.

3.4.1. Definite clauses and queries over OSF-terns. A LIFE program of the form
considered here consists of a conjunction of definite clauses @ over $-terms of the
form:

g=r(eo) +rl(+l>&-.-&r,(@m). (6)

We denote by 9’ the set of all relation (predicate) symbols occurring in a given
program. For simplicity of notation, we consider all relation symbols r E&%’ to’ be
monadic.

Given an OSF-algebra M, an interpretation of the program is a structure
M= (K (r”Ore9) consisting of ti and relations r* over D” interpreting every
symbol r occurring in the program. Such a structure _& extending & models a

“Strictly speaking, our OSF-orderings are preorders rather than orderings. It really does not matter,
in fact. Recall that a preorder (reflexive, transitive) o is a “looser” structure than either an order
(anti-symmetric preorder) or an equivalence (symmetric preorder). It may be tightened into an order by
factoring over its underlying equivalence (=0 = o n 0-l), its “symmetric core.” Then, the quotient set
over s0 is partially ordered by o. Hence, if we define, in all three frameworks, equivalence as the
symmetric core (c0) of the corresponding preorder (o = E , I , t), then Theorem 5 extends readily to
these equivalence relations, and therefore the quotients are in order-bijection.

TOWARDS A MEANING OF LIFE 223

definite clause %?’ in the program of the form of Expression (6) if rJ(d) holds
whenever r;*‘(d,) and . . . and rf(d,) holds, for all elements d, d,, . . . , d, of D-“’
such that (d, d,, . . . , d,) E K(I/J,,, JI1, . . . , rb;, >I]” (where the notation
!U~,,..., &>Il d is shorthand for U, E v,,cMjEJ111]M7a X . . . X EI+~A”,*>.

The structure _.R is a model of the program if _N models every definite clause %?
in the program. The meaning of a program is the class of minimal models
extending the OSF-algebras over a given OSF-signature.”

A query, or resolvent, is a conjunction of atomic formulae of the form r(e) and
of vping constraints of the form X A I), where r is a relational symbol and I) is an
OSF-term. Such an expression has for interpretation: M, cr k X A I) if and only if
a(X) E ~I@?

Definition 13 (LIFE Resolution Rule). A resolvent over OSF-temzs R = R & r(G)
reduces in one resolution step, choosing the quev conjunct r(G) and the (renamed)
program clause % = r(I&) +- rl(I/J~ I& . . . & r-J I+& > non-detemtinistically, to the resol-
ventR’~RRrr,(*,)&...&r,(h)&X-(~A #,,I, whereX=Root(+).

If the GLB of I) and I,/Q is I (“bottom”), then R’ is equivalent to the fail

constraint. Iterated application of this rule yields a derivation sequence of the
query R. The answer to the query

computed in a (terminating) derivation sequence is either the f ai 1 constraint or a
conjunction of typing constraints

Here, Xi is the root variable of the query OSF-term CG;:, as well as of the answer
OSF-term I)’ (which is subsumed by I,$). The OSF-terms I$’ are rooted in new
variables Zi; i.e., Zj ~5 Vur(RI. All the new variables are implicitly existentially
quantified. We say that “the answer OSF-terms interpreted in &’ contain the
elements d;, . . . , d:, ,” in order to abbreviate the fact that there exist elements
d;,..., dk such that (d; ,..., dn,d; ,..., d’h) E K(I); ,..., I& I,$’ ,..., I);)]“.

Theorem 8 (Correctness of LIFE Resolution). The resolution rulefor definite clauses
over OSF-terms is sound and complete.

That is, given the query rl(Q1), . . . , r-,(&J, the relations rf(d,), . . . , r/Cd,) hold
in the minimal model _4 of the program extending the OSF-algebra z.~’ for
elements d,, . . . , d, in the sets denoted by the query OSF-terms I),, . . . , t,b,, if and
only if there exists a derivation of the query yielding an answer such that the
answer OSF-terms interpreted in z-z’ contains these elements d,, . . . , d,.

Proof. This is an immediate consequence of Proposition 5, Theorem 9, and
Proposition 6 in the next section. 0

“Minimality is with respect to set-inclusion on the relations r-6

224 H. P;iT-KACI AND A. PODELSKI

3.4.2. Definite clauses over OSF constraints.

Proposition 5. The definite clause @ = r(I&> +- rl(I&) & . . . & rm(&J over $-terms
has the same meaning as the following definite clause over OSF-clause constraints:

r(X) +-rl(XI)&... &r,(X,)&~(~l)&...~((b;n)&~(~o).

The resolvent over +-terms rl(+,) & . . . & r,,,(&,,) is equivalent to the OSF-constraint
resolvent r,W,)&...&r,(X,)& +(I+$>&... c$(&).

Proof. We do not change the meaning of %9 if we replace it by a definite clause
over typing constraints; i.e., of the form:

XI e&X, A I& &...X, A I+& + (r,(X,)&...&r,(X,) *r(X)).

Of course, this clause can be written as the definite clause:

f-(X) +rl(X1)&...&r,(X,)&XI A I++ &...X, A $m &XG +.

Here, X, , . . . , X,, X can be chosen as the root variables of, respectively, I,!+, . . . , I+$,, ,
II, or, equivalently, as new variables. In the first case, Xi A Gj is, after dissolving the
OSF-term, exactly the solved OSF-clause 4(I&) which corresponds (uniquely) to I,$,
and the definite clause becomes the one in the first statement. The second
statement follows similarly. 0

The resolution rule for OSF-constraint resolvents is stated as follows. The
resolvent R = R & (b reduces to R’ = R &R’ & Q, & c#+ by choosing the conjunct
r(X) in R and the (renamed) program clause r(X) + R’ & Cp’ non-deterministi-
tally (R and R’ are conjunctions of relational atoms of the form r(X), and 9 and
4’ are OSF-clauses).

Theorem 9 (Soundness and completeness of OS&constraint resolution). For
every interpretation M and valuation such that an OSF-constrained resolvent R holds,
then so does a resolvent derived from it. Zf A? is a minimal model of the program, and
formula (Y is a solution of R in A?, then there exists a sequence of reductions of R to a
solved OSF-clause constraint 4 exhibiting (Y as its solution.

Proof. This follows from instantiating the CLP scheme of [15] <cJ, Appendix
Section A>. The role of the constraint language in this scheme is taken by
OSF-clauses as constraints together with OSF-algebras as interpretations.

The soundness of the resolution rule is clear: Under every interpretation & and
every valuation such that R holds, then so does R’; i.e., [IpqI c ERI”. It is also
not difficult to prove its completeness: If _&Y is a minimal model of the program,
and LY E ER]” is a solution of the formula R in A, then there exists a sequence of
reductions of R to a solved OSF-clause 4 such that (Y E [r&i”. q

Now we can look at the connection with the previous section: Let 6’ be the
solved-form OSF-clause constituting an answer of the query:

If +” is the conjunction of all OSF-constraints in + constraining the (new)
variables 2,). . . , Z, which are not reachable from X,, . . . , X,, +’ can be written

TOWARDS A MEANING OF LIFE 225

as:

Let us call I/J;, . . . , +!J;, and #, . . . , I); the normal OSF-terms which correspond
uniquely to the rooted solved OSF-clauses in this conjunction. Then we say that 4’
corresponds to the typing constraint X, A 9; & . . . & X,, A +A & Z, A r,!~; & . . . & Z,
A I,$. Clearly, the two constraints are equivalent.

Proposition 6. Every answer of a query over OSF-terms (obtained by +-term resolu-
tion) corresponds to an answer of an OSF-constrained query (obtained by OSF-con-
strained resolution) and vice versa.

Proof. This follows from the above and Theorem 5. 0

3.4.3. OSF-graphs computed by a LIFE program. Let us call query-OSF-graphs
those OSF-graphs G(#, 1, . . . , G(t&,) which correspond uniquely to the OSF-terms

* ,,“‘, I/J,, in a query R. Note that a solution of R in the OSF-graph algebra g
consists of OSF-graphs gi which (1) approximate the query-OSF-graphs, i.e.,
gi & G(I,!J~) and (2) satisfy the relation ri, that is, riA(gi) holds in the minimal
model _.H of the program extending the OSF-algebra 3Y. Every OSF-graph approxi-
mated by a solution (i.e., lying in its graph filter; cf: Corollary 6) is also a solution.

Theorem 10 (OSF-graph Resolution and Endomorphic Refinement). Every termi-
nating non-failing derivation sequence of a query R yields a unique OSF-graph algebra
endomorphism y,,. The images of the query-OSF-graphs (under these endomorphisms
yO) are principal solutions in the OSF-graph algebra of R. Every solution of the query
is approximated by one of the principal solutions thus obtained.

More precisely, the images are the principal elements for which the query
relations hold in the OSF-graph algebra, and the principal solutions are given by
assigning these elements to the root variables of the query OSF-terms.

Proof. Let f#I = @(X,1 & . . . & @(X,,)& +” be the solved form of the OSF-clause
4 which is a resolution-normal form of the query R = rl(& > Br . . . & rJ I)~), All
variables in +’ are different from the ones in @(X,1,. . . , #(X,1 (and existentially
quantified).

Since 4 is the solved form of a conjunction of +(I,!+), . . . , c#41,!1~> and other
OSF-clauses (added successively as conjunctions by the resolution procedure), it is
clear that the answer constraint 4 implies the query constraint #+ =
4(rci,),..., $(I,!J~>. By applying Theorem 5 one infers that there exists an OSF-graph
algebra homomorphism y a : A? - Y mapping the graph representing (uniquely) the
query constraint on the graph representing (uniquely) the answer constraint, i.e.,
r(G(+,$ = G(+‘). S ince G($(&)I = G(I&), this and the homomorphism property
imply that yO(G(&)) = G,, . . . , y,(G(QI,)) = G, where we set

G,=G(+‘(X,)) ,..., G,,=G(+‘(X,)).

That is, definite clause resolution computes an endomorphic refinement y,, of the
query arguments, which is the first statement of the proposition.

226 H. AiT-KACI AND A. PODELSKI

From Corollary 4 follows that a valuation (Y with cy<Xi> = G(+‘(XJ) is a
principal solution of 4’, Note that, since .V is a canonical OSF-algebra, +” is
always satisfiable in 27 (!I. •I

Corollary 9. The solutions of a quey in the OSF-algebra LX? are exactly the images of
the OSF-graphs which represent the quey OSF-terms, under the homomorphisms
y 0 y0 obtained by composing a homomorphism y : 9 -.,ef with a homomorphism y,,

from a derivation sequence as in Theorem 10.

Proof. This follows directly from Theorem 5. If &, cr k @-and thus, by the
soundness of the resolution procedure, J$ (Y k= rl(I,/+) & . . . & r,((GI,),--then there
exists a homomorphism y : ZY -sd such that:

a(Xi> = Y(G,),...+(X,J = y(G,),

and the converse holds as well; namely, every OSF-homomorphism Z? ++JZZ which is
defined on all of:

defines a solution (Y in this way, and therefore,

{(r(G),...> ~(G,))ly:~~~}~((d~ ,..., d,)Ir;“(d,) ,..., rz(d,)}.

In other words,

UY 0Y0>(G(W*.*7 (y~~~)(G(~~)))ly:~~~}~r~X *** Xr,“. 0

That is, definite clause resolution computes an endomorphic refinement y,, of
the query arguments. Any further refinement of this graph “instantiation” through
a homomorphism y into an OSF-algebra A?, model of the program, yields elements
d 1,. . . , d, in the relations (of _eZ) denoted by the query predicates as directed by the
definite clauses defining the predicates of the program.

In particular, $ the homomorphism y 0 y,, from the subalgebra generated by
the query OSF-graphs into the OSF-algebra A? can be defined, then the query has
a solution in M.

This leads to an essential difference between query languages over first-order
terms (such as PROLOG) and LIFE, a query language over OSF-terms: In the first
case, an answer of a query states the existence of solutions in the initial algebra
and, thus, in all models of the program. In the second case, however, an answer of
a query over OSF-terms states the existence of solutions in the (weakly) final
algebra 3’ of OSF-graphs only.

4. CONCLUSION

There are many benefits to seeing LIFE’s constraints algebraically, especially if the
view is in complete and natural coincidence with logical and implementational
views. One nice outcome of this approach is our understanding that sorted and
labeled graph-structures used in our implementation of LIFE’s approximation
structures form a particularly useful OSF-algebra which happens to be a canonical
interpretation (in the sense of Herbrand) for the satisfiability of OSF-clauses. This
is important as there is no obvious initiality result, our setting having no values but

TOWARDS A MEANING OF LIFE 227

only approximations. Indeed, approximation chains in OSF-algebras can very well
be infinitely strictly ascending (getting better and better.. .), and this is the case of
our version presented here--all approximation chains are non Noetherian! We do
not care, as only “interesting” approximations, in a sense to be made rigorously
precise, are of any use in LIFE.

With this generalizing insight, we can give a crisp interpretation of Life’s
approximation structures as principal filters in OSF-interpretations for the
information-theoretic approximation ordering CC) derived from the existence of
(OSF-)endomorphisms. Thereby, they may inherit a wealth of lattice-theoretic
results such as that of being closed under joins (u), or equivalently, set-intersec-
tion (n) in the type interpretation (w) with the inclusion ordering (c), conjunc-
tion (&> in the logical interpretation (Q) with the implication ordering (,I, and
graph-unification (A) in the canonical (graph) interpretation with the (graph)
approximation ordering.

The work we have reported is a step towards a complete semantics of LIFE as
suggested by this article’s title. A full constraint language for LIFE has not been
given here. We have merely laid the formal foundations for computing with partial
knowledge in the form of approximations expressed as relational, functional, or
type constraints, and explored their syntactic and semantic properties as type-
theoretic, logical, and algebraic formulations. We have made explicit that these are
in mutual correspondence in the clearest possible way and thence reconciled many
common and apparently different formal views of multiple inheritance. A full
meaning of LIFE is being dutifully completed by us authors in terms of the
foundations cast here and to be reported soon. That includes functional beings,
daemons, and many other unusual LIFE forms [8, 12,111. Finally, we must mention
that quite a decent c implementation of a LIFE interpreter for experimentation
has been realized by Richard Meyer, and further completed and extended by Peter
Van Roy. It is called IKM_LZFE [4], and is in the process of being released as
public domain software by Digital’s Paris Research Laboratory. We hope to share
it soon with the programming community at large so that LIFE may benefit from
the popular wisdom of real life users, and hopefully contribute a few effective
conveniences to computer programming, then perhaps evolve into ReaLLIFE.

APPENDIX
A. THE HijHFELD-SMOLKA SCHEME

Recently, Hijhfeld and Smolka [15] proposed a refinement of the Jaffar-Lassez’s
scheme [16]. It is more general than the original Jaffar-Lassez scheme in that it
abstracts from the syntax of constraint formulae and relaxes some technical
demands on the constraint language-in particular, the somewhat baffling “solu-
tion-compactness” requirement.

The Hohfeld-Smolka constraint logic programming scheme requires a set 9 of
relational symbols (or, predicate symbols) and a constraint language L?. It needs very
few assumptions about the language 3, which must only be characterized by:

l y/, a countably infinite set of variables (denoted as capitalized X, Y, . . . >;

l Q’, a set of fotmulue (denoted c$, #, . . .I called constraints.

l a function Vur: @ - 7, which assigns to every constraint C#B the set Vur(4)
of variables constrained by 4;

228 H. A’iT-KACI AND A. PODELSKI

l a class of “admissible” interpretations S’ over some domain W;

l the set VulW) of (M-)ualuations, i.e., total functions, (Y : ‘7~ II+@.

Thus, 3 is not restricted to any specific syntax, a p&n’. Furthermore, nothing is
presumed about any specific method for proving whether a constraint holds in a
given interpretation L-&’ under a given valuation (Y. Instead, we simply assume given,
for each admissible interpretation &, a function E-4”: @ c, 2@‘a’(ti)) which assigns
to a constraint I#J E @ the set E4]” of valuations which we call the solutions of C$
under S?

Generally, and in our specific case, the constrained variables of a constraint C#J
will correspond to its free variables, and (Y is a solution of C#J under the interpreta-
tion & if and only if 4 holds true in zz? once its free variables are given values (Y.
As usual, we shall denote this as “s’, (Y k 4.”

Then, given 9, the set of relational symbols (denoted r, r-i,. . . 1, and 9 as above,
the language 9(_Y) of relational clauses extends the constraint language ._Y as
follows.-The syntax of L&C?) is defined by:

- -

l the same countably infinite set 7 of uuriubles;

l the set ~‘(a) of formulae p from B?(P) which includes:

9 all Lkonstraints, i.e., all formulae 4 in @‘;

l all relational atoms r-(X,, . . . , X,), where X,,. . . , X,, E 7, mutually
tinct;

and is closed under the logical connectives & (conjunction) and
(implication); i.e.,

l p1 &pz cS%X*) if pl, pz G4%@k

l p1 -+ p2 cN@) if pl, p2 l %T*k

dis-

l the function I/ar : A%?(@) - 77 extending the one on Cp in order to assign to
every formula p the set Vur(p) of the variables constrained by p:

l Vur(r(X,,.. .,X,)1 = IX,,.. .,XJ;

l Vur(p, &p2) = Via-(pl> U Vur(p2);

l Vat-(p1 + p2) = Vur(p1) U Vur(p2);

l the class of “admissible” interpretations A? over some domain W’ such that ti
extends an admissible interpretation gala of 3, over the domain Dti = Ddo by
adding relations rti c D” x . . . x II-"" for each r 6%;

l the same set Vul(&) of valuations a : T- Dd.

Again, for each interpretation S’ admissible for L&Y’), the function
E-J”: S(@) r, 2o44J4) assigns to a formula p EL%‘(@) the set IpI” of valuations
which we call the solutions of p under LZ?. It is defined to extend the interpretation
of constraint formulae in @ CL%‘(@) inductively as follows:

l lIr(X,,..., X,>ll”={al(a(Xl),...,a(X,))Er~);

l ITP, &PJY = l!L-&II” fl iklY”;

l ITP, --j &lY = (VulW) - [rpJl~) U LrpJY.

Note that an Sinterpretation _slb corresponds to an &.5?)-interpretation B?,
namely where r&o = B for every r ~9.

TOWARDS A MEANING OF LIFE 229

As in Prolog, we shall limit ourselves to definite relational clauses in 9’(_9) that
we shall write in the form:

(0 I m), making its constituents more conspicuous and also to be closer to
‘standard’ Logic Programming notation, where:

l r(X), r,(XJ,..., r,JXm) are relational atoms in 9L.Y); and,

l C#J is a conjunction of constraint formulae in 22.

Given a set ~37 of definite ~~_2$clauses, a model of g is an 9(-E”)-interpreta-
tion such that every valuation (Y : Zr- D” . is a solution of every formula p in %‘,
i.e., [p]” = V&k?). It is a fact established in [151 that any L&interpretation M can
be extended to a minimal model +H of 27. Here, minimality means that the added
relational structure extending &’ is minimal in the sense that if A’ is another
model of %Y’, then rJ c rJC’(c W’ x . . . x WI for all r EL%?.

Also established in [15], is a fixed-point construction. The minimal model _J of
g extending the _%interpretation ~2 can be constructed as the limit _N= tJj ~ ,, _$
of a sequence of &!Y)-interpretations L$ as follows. For all r EL@ we set:

F= Ui,Ory.

A resolvent is a formula of the form p 0 4, where p is a possibly empty
conjunction of relational atoms t-(X,, . . . , XJ (its relational part) and C#J is a
possibly empty conjunction of _%onstraints (its constraint part). The symbol 0 is in
fact just the symbol & in disguise. It is simply used to emphasize which part is
which. (As usual, an empty conjunction is assimilated to true, the formula which
takes all arbitrary valuations as solution.)

Finally, the Hohfeld-Smolka scheme defines constrained resolution as a reduc-
tion rule on resolvents which gives a sound and complete interpreter for programs
consisting of a set ‘Z of definite 9?LY’)-clauses. The reduction of a resolvent R of
the form:

l B,&...&r(X, ,..., XJ&...B,il+

by the (renamed) program clause:

l r(X,,..., X,>+A, &...&A, & C$

is the new resolvent R’ of the form:

l B, &...&A, &...&A, &... BkO+&~‘.

The soundness of this rule is clear: under every interpretation ZZ’ and every
evaluation such that R holds, then so does R’, i.e., ERT” c ER]&. It is also not
difficult to prove its completeness: if .M is a minimal model of ‘2?, and (Y E ER]” is
a solution of the formula R in M, then there exists a sequence of reductions of
(the 9CY)-formula) R to an _!%constraint 4 such that (Y E EC@?

230 H. AiT-KACI AND A. PODELSKI

B. DISJUNCTIVE OSF TERMS

A technicality arises if 9 is not a lower semi-lattice. For example, given the
(non-lattice) set of sorts of Figure 5, the GLB of student and employee is not
uniquely defined, in that it could be john or mary. That is, the set of their common
lower bounds does not admit ooze greatest element. However, the set of their
maximal common lower bounds offers the most general choice of candidates.
Clearly, the disjunctive type (john; mq} is an adequate interpretation. In this way,
the OSF-term syntax may be enriched with disjunction denoting type union.

Informally a disjunctive OSF-term is a set of OSF-terms, written {t,; . . .; tJ
where the ti’s are OSF-terms. The subsumption ordering is extended to disjunctive
(sets of) OSF-terms such that D, ID, iff Vt, ED~, 3, ED, such that t, st,.
This informally justifies the convention that a singleton {t} is the same as t, and
that the empty set is identified with I . Unification of two disjunctive OSF-terms
consists in the enumeration of the set of all maximal OSF-terms obtained from
unification of all elements of one with all elements of the other. For example,
limiting ourselves to disjunctions of atomic OSF-terms in the context of signature
in Figure 3, the unification of {employee; student} with (faculty; stafs} is (faculty;
stuff}. It is the set of maximal elements of the set {faculty; staff; I ; work-study} of
pairwise GLB’s. In practice, it is convenient and more effective to allow nesting
disjunctions in the structure of OSF-terms.

Formally, the syntax of a disjunctive OSF-term is:

X:(t,;...;t,}

where X E ‘7, the ti’s are (possibly disjunctive) OSF-terms, and IZ 2 0. Again,
where X is not shared in the context, it may be omitted and not written explicitly.

Example 6. In order to describe a person whose friend may be an astronaut with
same first name, or a businessman with same last name, or a charlatan with first
and last names inverted, we may write such expressions as:

pet-so&d * nameyirst - X : string,

last - Y : string),

friend * {astronaut(id - name(jirst * X))

; businessman(id 2 name(fust =+ Y))

; charlatan(id - name@rst - Y,

last *XI)}).

employee student

john mary

FIGURE 5. Disjunctive-Clause Normalization Rules.

TOWARDS A MEANING OF LIFE 231

Note that variables may even be chained or circular within disjunctions as in:

person(partner 3 P : (crook; F),

fiend - F : (artist; P))

which may be used to describe a person whose partner is a crook or whoever
his/her friend is, and whose friend is an artist or whoever his/her partner is.
These are no longer graphs but hypergraphs.

The denotation of a disjunctive OSF-term in an OSF-interpretation LZ’ with
variable valuation (Y E Val(&) is simply given by:

n
!H:{t,;...;t,}lFa= (a(X)} n u ,J”+

i=l

and again, as before;

Observe that with this definition, our syntactic convention dealing with the
degenerate cases that, for 12 = 0, identifies { 1 with I, and for n = 1, identifies It)
with t, is now formally justified on semantic grounds.

Also, note that in Equation (71, the same valuation is used in all parts of the
union. As a result, for a given (Y, Etjjd+ still denotes either the empty set or a
singleton, even if t is a non-degenerate disjunctive term. This may appear strange
as one would expect that variables in disjuncts that are not shared with the global
context be independently valuated. They are, in fact, but thanks to Equation (81,
not Equation (7). Taking, for example, t = IX : int; X : string), where int& = Z is the
set of all integers and string” = S is the set of all finite strings of ASCII characters,
with (Y and p such that cu(X) = 1 and p(X) =“hello", then Etldsa = (1) Ufl=
(1) and [tjM3’
[tl]” = z u s.

= !d U{“hello") = {“hello"). However, as expected, we do have

Example 7. The disjunctive term

P:{charlatan

; per-so&d * name(frst * X : “John”,

last * Y: (“Doe”; X)),

friend - {P; person(id 2 name(jirst - Y,

last * XI>)>)

describes either a charlatan, or a person named either “John Doe” or “John John”
whose friend is himself, or a person with his first and last names inverted. It does
not specify that that person’s friend is either a charlatan or himself or a person.. .
since it is semantically equivalent to the term:

{charlatan

; P : personcid - name@rst - X : “John”,

last - Y: {“Doe”; X)1,

232 H. AiT-KACI AND A. PODELSKI

(Bottom Elimination)
qsvx:J_

9

(Distributivity)

FIGURE 6. Disjunctive clause normalization rules.

friend = {P; person(id * name(first - Y,

last *X))}).).

Similarly, OSF-clauses are extended to be possibly disjunctive as well. Hence, an
OSF-clause is now, either of the following forms:

l x:s

. x&y

l X./A Y

l +I& 42

. 41 v 42

where &, & are OSF-clauses.
The interpretation of atomic and conjunctive OSF-constraints is as before; and

as for disjunctions, we have simply:

Converting from OSF-terms to OSF-clauses is done by extending the dissolution
mapping 4 to be:

4(X:{&;...; t,}) = (X%oot(t,) & 4(t,)) v . . . v (X-oot(t,) & 4(t,>).

Example 8. Let us reconsider the second term of Example 6 again. Namely,
writing explicitly all omitted (since unshared) variables:

t = X : person(partner * P : (C : crook; F},

fiend - F : {A : artist; P})

its dissolved form is:

+(t> = X : person & X.partner A P & ((P A C & C : crook) V P A F)

& X.friend A F & ((F A A&A : artist) V F A P).

Finally, the OSF-clause normalization rules are also extended with two addi-
tional ones shown in (making the similar associativity and commutativity conven-
tions for v that we did for &I, and we leave it as an exercise to the reader to show
that these two rules together with the four rules shown in Figure 4 enjoy a
straightforward extension of Theorem 1. Namely,

TOWARDS A MEANING OF LIFE 233

Theorem 11 (Disjunctive OSF-Clause Normalization). The six OSF-clause normal-
ization rules of Figures 4 and 5 are solution-preserving, finite terminating, and
confluent (module variable renaming). Furthermore, they always result in a normal
form that is either the inconsistent clause or a disjunction of conjunctive OSF-clauses
in solved form with associated conjunctions of equality constraints.

Note that the normalization rules of Figure 5 contribute essentially to putting
the dissolved form in disjunctive normal form. In particular, they do not eliminate
disjuncts that are subsumed by other disjuncts in the same disjunction. In the
following example, the second and third disjuncts are subsumed by the fourth and
are therefore non-principal solutions. Only the first and fourth disjuncts are
principal solutions.

Example 9. Normalizing the dissolved form of Example 8, we obtain a disjunction
of four conjunctions:

((X : person & X.partner G P&P : crook & P G C

&X.friend A F & F : artist & F A A)

V(X:person&X.partner~P&P:artist&P~A

&X.friend A P & P A F)

&X.friend A P &P A F)

V (X : person & X.partner A P

&X.friend A P & P A F)).

ACKNOWLEDGEMENTS

We acknowledge first and foremost Gert Smolka for his enlightening work on
feature logic and for mind-opening discussions. He pointed out that t,&terms were
solved formulae and he also came up, in conjunction with work by Jochen Dorre
and Bill Rounds, with the notion of feature algebras. Bill Rounds has also been a
source of great inspiration. In essence, our quest for the meaning of LIFE has put
their ideas and ours together. To these friends, we owe a large part of our
understanding.

We also wish to express our thanks to Kathleen Milsted and Jean-Christophe
Patat for precious help kindly proofreading the penultimate version of the
manuscript.

Each of us authors has enjoyed tremendously the excitement of seeking together
a meaning for LIFE and, of course, each shamelessly blames the other for all
remaining mistakes.. .

REFERENCES

1. Hassan A%-Kaci. A Lattice-theoretic Approach to Computation Based on a Calculus of
Partially-Ordered Types. PhD thesis, University of Pennsylvania, Philadelphia, PA (1984).

234 H. AiT-KACI AND A. PODELSKI

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Hassan Ait-Kaci. An algebraic semantics approach to the effective resolution of type
equations. Theoretical Computer Science, 45~293-351 (1986).

Hassan AIt-Kaci and Jacques Garrigue. Label-selective A-calculus. PRL Research
Report (forthcoming), Digital Equipment Corporation, Paris Research Laboratory,
Rueil-Malmaison (1993).
Hassan fit-Kaci, Richard Meyer, and Peter Van Roy. Wild-LIFE, a user manual. PRL
Technical Report (forthcoming), Digital Equipment Corporation, Paris Research Labo-
ratory, Rueil-Malmaison, France (1993).
Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185-215 (1986).

Hassan Ait-Kaci and Roger Nasr. Integrating logic and functional programming. Lisp
and Symbolic Computation, 251-89 (1989).

Hassan Ait-Kaci, Roger Nasr, and Patrick Lincoln. Le Fun: Logic, equations, and
Functions. In Proceedings of the Symposium on Logic Programming (San Francisco, CA),
pages 17-23, Washington, DC (1987). IEEE, Computer Society Press.
Hassan Ait-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory,
Rueil-Malmaison, France (June 1991). (Revised, November 1992).
Hassan AIt-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmai-
son, France (1991).
Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of life. In Jan Maluszyfiski
and Martin Wirsing, editors, Proceedings of the 3rd International Symposium on Program-
ming Language Implementation and Logic Programming (Passau, Germany), pages
255-274. Springer-Verlag, LNCS 528 (August 1991).

Hassan Ait-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature
theory unification. PRL Research Report (forthcoming), Digital Equipment Corpora-
tion, Paris Research Laboratory, Rueil-Malmaison, France (1993).
Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint
system for logic programming with entailment. In Proceedings of the 5th International
Conference on Fifth Generation Computer Systems, pages 1012-1022, Tokyo, Japan (June
1992). ICOT.
William F. Clocksin and Christopher S. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, Germany, 2nd edition (1984).
Jochen Dorre and William C. Rounds. On subsumption and semiunification in feature
algebras. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science, (Philadelphia, PA), pages 301-310, Washington, DC (1990). IEEE, Computer
Society Press.
Markus Hijhfeld and Gert Smolka. Definite relations over constraint languages. LILOG
Report 53, IWBS, IBM Deutschland, Stuttgart, Germany (October 19881.
Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the
14th ACM Symposium on Principles of Programming Languages, Munich, W. Germany
(January 1987).
Richard O’Keefe. The Craft of Prolog. MIT Press, Cambridge, MA (1990).
Gert Smolka. A feature logic with subsorts. LILOG Report 33, IWBS, IBM Deutsch-
land, Stuttgart, Germany (May 1988).
Gert Smolka. Feature constraint logic for unification grammar. Journal of Logic Pro-
gramming, 12:51-87 (19921.

