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1 Abstract

An elaboration of the Prolog language is described in
which the notion of first-order term is replaced by a more
general one. This extended form of terms allows the inte-
gration of inheritance—an I5-A taxonomy-—directly into
the unification process rather than indirectly through the
resolution-based inference mechanism of Prolog. This re-
sults in more efficient computations and enhanced lan-
guage expressiveness. The language thus obtained, called
LOGIN, subsumes Prolog, in the sense that conventional
Prolog programs are equally well executed by LOGIN.

Acknowledgements: We wish to thank Bob Boyer,
Matthias Felleisen, and Fernando Pereira for their con-
structive feedback on the contents of this paper.

2 Introduction

Inheritance can be well captured in logic by the se-
mantics of logical implication. Indeed,

Yz. Whale(z) = Mammal(z)

is semantically satisfactory. However, it is not pragmat-
fcally satisfactory. In a first-order logic deduction sys-
tem using this implication, inheritance from “mammal”
to “whale” is achieved by an inference step; whereas, the
special kind of information expressed in this formula some-
how does not seem to be meant as a deduction step—thus
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lengthening proofs—but rather, as 2 means to accelerate,
or focus, a deduction process—thus shoriening proofs.

Many proposale have been offered to deal with in-
heritance and taxonomic information in Automated De-
duction. Admittedly, expressing everything in first-order
logic as proposed in [8], and [4], is semantically correct.
Nevertheless, these approaches dodge the issue of improv-
ing the operational deduction process. Other more opera-
tional attempts, like those reported in [9], and [5], propose
the use of some forms of semantic network. However, it
is not always clear what semantics to atiribute to these
formalisms which, in any case, lose the simple elegance of
Prolog-like expressiveness.

As shown in [2], the syntax and operational interpre-
tation of first~-order terms can be extended to accommo-
date for taxonomic ordering relations between construc-
tor symbols, As a result, we propose a simple and effi-
cient paradigm of unification which allows the separation
of {multiple) inheritance from the logical inference ma-
chinery of Prolog.

We introduce in Section 3 the flavor of what we believe
to be a more expressive and efficient way of using taxo-
nomic information, as opposed to straight Prolog. Then,
in Section 4, we discuss the adequacy of the use of first-
order terms in Prolog. This leads to a proposal in Sec~
tion 5 to embody taxonomic information as record-like
type structures. An efficient unification algorithm which
compiites greatest lower bounds of such structures is then
described in Section 8. Finally, in Sections 7 and 8, a sim-



ple interpreter iz illustrated on examples, showing how
this extended notion of terms may be integrated into the
8L D-resolution mechanism of Prolog.

3 Motivation

Let us consider the following example:

It is known that oll persons ltke themselves.
Also, students are persons, and the indsvidual
John is a student,

This simple information can be expressed in first-order
logic as:

V. person{z} = likes{z, z)
& Yz student{z) = person{z)
& student{john).

and thus in Prolog by:

likes{X,X) :- person(X).
person{l) - sbudenb{X}.
atudent {john} .

To check whether John likes himself is hence:

- likes{jobn, john).

Yes

On the other hand, we can sequivalently represent the
information above in fyped first-order logic as follows:

Y € person. likes(z, z)
& student C person
& john € student,

Now, if type checking [i.¢., that one set is the subset of
another, or one slement belongs to a set}, can be done effi-
ciently, then the typed translation can achieve better per-
formance, with no loss of semantics. Indeed, in our little
example, to infer that John likes himself is immediate—
one application of modus ponens rather than two in this
case. This simple idea can be made practical, and is the
basis of the extension of Prolog we are presenting in this
document.

In Prolog, a resolution step involves a state transition
with context saving, variable binding, efe., and is there-
fore costly. The simple kind of logical implication in the
above problem should not contribute to the length of a
deduction. Indeed, in this example it should be immedi-
ate to see that by virtue of being a student John is also 2
person. It would be convenient if one could declare that,
in the unification process, the symbol student can maich
the symbol person. Such declarations could Jook like

student < person.
jehn < student.

where the symbol ‘< stands for “is a”.
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In wview of these declarations, the original problem
could be reformulated using » typing notation such as

1ikes (X : person, X).

Then, by a unification step rather than by a resolution
step, the previous answer follows for the query:

%~ 1ikes{john, john).

Thus, we can view the process of unification as computing
a greatest lower bound of two symbols relative to the <
ordering.

This simple example may not be convincing as a true
improvemnens. That is, one may argue that trading a uni-
fication step for a resolution step is not worthwhile. How-
ever, unification with inheritance is by far more econom-
ical than resolution. Even if this were not the case—i.e.,
the two steps of computations were equally costly—as the
length of inheritance chains increases the motivation for
using fast unification rather than resolution appears more
clearly.

4 An Operational Interpretation
of Terms

In the logic interpretation of Prolog, functional first-
order terms which are not variables appear as Skolem con-
stants or functions., However, in Prolog, such functions
are never evaluated. Rather, they are used operationally
as type constructors., The most known example is the fa-
mous cons list constructor; but a Prolog user can take
advantage of this operational interpretation of terms for
organizing data, as for instance, in database applications
of Prolog [8].

As a result, Prolog’s operational use of first-order
terms makes them behave as record structures; e.g., a term
as person{z,y,z) 1s seen as a three-field record, whose
fields may be given some conventional interpretation by
the programmer (353', first argument is name, second is
date of birth, and third is sex). The implicit operational
sernantics of such a constructor term is that it denotes the
seb {type) of all “person” records in the database,

Thus, unification of first-order terms becomes a
simple-minded inheritance operation, as variables in terms
act as slots which are flled as they become instantiated.
A sublype of

person{z,y, 2)

a generic denotation of the set of all (records of) persons
in the database, may thus be

person{name(john, x),y, mole)

a generic denofation of the set of all (records of) male
persons with first name John in the database. In fact,
under this interpretation of terms as types, unification
is interpreted as intersection of types. For example, the
intersection of the set of persons whose last name is the



same as their first name
person(name(z, z),y, 2)
with the set of all male persons whose first name is John
person{name(john, z),y, male)

must be indeed the set of all male persons named John
John
person(name(john, john), z, male).

Since they are not operationally used as functions,
Prolog first-order terms suffer from undeserved limitations
in their syntax, a legacy of their original functional seman-
tics.

Looking at first-order terms purely syntactically in
their use as type constructors, one finds that fized arity of
signature symbols is an irrelevant burden. For example, if
after extensive use of a three-field record person(z,y,z),
a user realizes that a fourth field (say, social security
number) is needed, all previous occurrences of the person
record must be revised and given a fourth argument [6].

Another limitation, which is also a corollary of fixed-
arity, is that the interpretation of argument positions is
non-transparent to the user. Indeed, in using a person
record, one must always be aware that the first argument
is & name, the second is a date, ete. Clearly, the classical
explicit labeling of record fields by symbolic keywords is
better than implicitly limiting these labels to be ordered
ungapped sequences of integers.,

The third most fundamental limitation of terms as
type structures can be best understood when one ponders
upon the respective roles of signature and variable sym-
bols in term unification. A signature symbol is a type con-
structor and thus acts as an instantiation filter. Indeed,
unification fails for two non-identical signature symbols.
As a result, any further instance of, say, person(z,y,z)
must have person as root symbol. There is no reason why
this filtering role of constructor symbols must be limited
to an open/closed behavior. Indeed, person(z,y, z) should
be allowed to be further instantiated as student(z,y, 2) if
the interpretation of the data is such that a “student” type
is a subtype of a “person” type. This gradual filtering can
be expressed as a partial ordering {type subsumption) on
the constructor signature. Hence, unification of signature
symbols is now seen as a greatest lower bound (GLB) op-
eration. If a signature is augmented with a special least
element symbol L denoting failure of unification, conven-
tional unification of constructor symbols is still a. GLB
operation.

On the other hand, a variable occurrence means the
absence of filter; s.e., it is a wild card for term instantia-
tion. As importantly, a variable has a second role as it acts
a8 a tag imposing. eguality constrasnis among subtérms--
all occurrences of the same variable in a given term must
be instantiated by identical terms. As an instantiation
wild card, a variable behaves as a filter—very permissive,
but a filter nonetheless. As a tag, it behaves as an equality
constraint. It is a key observation that variables should
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not carry such a dual information. Firstly, because it is
the role of the signature symbols to carry filtering infor-
mation. And secondly, because even in their equational
role, variables are unduly limited. Indeed, as variables are
allowed to occur only as leaves in a term, they cannot im-
pose equality constraints within the term; i.e., anywhere
from root to leaves.

Based on these observations, it comes naturally that
the wild card role should be played by a special great-
est element symbol T augmenting the signature. As for
equality constraints, we propose that variables be called
tags and allowed to appear anywhere within a term.

All the foregoing limitations are overcome in the syn-
tax of partially-ordered type structures defined next.

5 A Calculus of Type Contain-
ment

We shall call the syntactic representation of a struc-
tured type a i-term. Informally, a ¢-term consists of:

1. A root symbol which is a type consiructor, and de-
notes a class of objects.

. Attribute labels which are record field symbols, asso-
ciated with Y-terms. Fach label denotes a function
in intenso from the root type to the type denoted by
its associated sub-¢-term. Concatenation of labels
denotes function composition.

3. Coreference constraints among paths of labels which

indicate that the corresponding attribute composi-

tions denote the same functions. In other words,
coreference specifies that some functional diagram
of attributes must be commutative.

Consider an example of such a y-term where the root
symbol is person:

person{id => name;
born => date{day => integer;
month => monthnams;
year => integer);
father => person)

1t has three sub-y-terms under the attribute labels id,
born, and father, respectively.: We follow the conven-
tion of using identifiers starting with a lower-case letter
for type symbols and aitribute labels.  Identifiers start-
ing with an upper-case letier are tog symbols and denote
coreference among attribute compositions. An example of
a Y-term with tags is: /

person{id => name{first => string;
) lass => X : siring);
father => person{id => nawe(last ~> X : string)))

The tag symbol X occurs under id.last and fathersd.last,
and.indicates a coreference ‘constraint; i:e., identical sub-~
structures. SOy

To-be consistent, a Y-term’s syntax cannot be such
that different type structures are tagged by the same tag



symbol. For example, if something else than string ap-
peared at the address father.id.last in the above exam-
ple, the ¢-term would be ill-formed. Hence, in a welle
formed sf-term—or wft, for short—we shall omit writing
more than once the type for any given tag. For instance,
the above Y-term will rather be writien as:

person{id => pame(first => string;
last =» X : string);
father => person{id => mame{last => X)}).

In particular, this convention allows the concise represen-
tation of infinite structures such as:

person{id => name{first => string;
last => string);
father => % : person{son => person{father => X}})

where a cyclic coreference is tagged by X,

The type signature © is a partially-ordered set of sym-
bola. Such a signature always contains two special ele-
ments: a greatest element {T) and a least element (L).
Type symbols denote sets of objects, and the partial order
on T denotes set inclusion. Hence, T denotes the set of
all possible objects—the universe. We shall omit writing
the symbol T explicitly in a wit; by convention, whenever
a type symbol is missing, it is understood to be T. For
example, in the wit:

person{id => (first => string:
last => X);
father => person(id => name{last => X))},
T is the type symbol occurring at addresses id, ¢d.last,
and fathersd.dast,

On the other hand, 1 denotes the empty set and is
the type of no object. Consequently, L may appear in
no wit other than 1, since that would entail that there
be no possible object for the corresponding attribute. As
a result, any ¥-term with at least one occurrence of L
is identified to 1. Finally, since the information content
of tags is simply to impose coreference constraints, it is
clear that any one-lo-one renaming of a wit’s tags does
not alter the information content of the wit. In summary,
we shall consider wits up to the above syntactic remarks
to be structured type expressions.

The information content of type structures such as
those whose syntax is informally introduced above can
be formally defined. Namely, a wit structure can be seen
as the conjunction of three mathematical abstractions:

1. A ¢-term domain A—a regulur set of finite sirings
of [” closed under the prefiz operation.

2. A corsference relation x—an equivalence relation on
4 of finite index, which is right-invariant for label
concatenation. That is, the number of coreference
classes is finlte; and, whenever iwo addresses corefer,
any pair of addresses in the domain obtained from
therm by further concatenation on the right must
aleo corefer.
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3. A type function y—extending a partial function de-
fined from the set of coreference classes A/« to the
type signature I by associating the type symbol T
to all strings of [* which are not in A,

Thus, a wit is precisely formalized as such a triple

(A, 8,90,

The partial order on the type signature L is extended
to the set of wits in such a way as to reflect set inclusion
interpretation. Informally, a wit ¢ is a subfype of a wit 1,
if:

1. The root symbol of £; is a subtype in T of the root
symbol of ty;

2. all attribute labels of 5 are also attribute labels of
t;, and their wits in ¢y are subtypes of their corre-
sponding wits in £,; and,

3. All coreference constraints binding in £, must also
be binding in #;.

For example, if £ is such that student < person and
qustin < estyname, then the wit
student (id »> name{first => siring;
last => X : string);
lives_ 2t => ¥ : address{city => austin);
father => person{id => name{last => X};
lives_at => ¥))

is a subtype of the wit

person{id => pame{last => X : string);
lives_at => address{city => cityname);
father => person(id => name{last => X))).

This partial ordering on wits is formally defined as
follows. A wit #; is a subtype of a wit # if and only if:
etther $; = 1;
or t; =
and:
1. A, C Ay
2. #y g Ky

3. Vu €L y{u) < yufu).

<A1,"&19¢1>1 t? = <A27K‘2)¢2\)1

In fact, a stronger result is proved in [2]. Namely, if the
signature I is such that GLBs [respectively, LUBs)exist
for all pairs of type symbols with respect o the signature
ordering, then GLBs {LUBs) also exist for the extended
wit ordering. In other words, the wit ordering extends a
{semi-}lattice structure from the signature to the wits. As
an example, if we consider the signature of Figure 1, then
the LUB of the wit

child{kpows => X : persco{knows => gueen;
hates => ¥ monarch):
hates => child{knows »> ¥,
liken => wircked gqueen);
likes => X)

and the wit



aduly {(kuows »> adult (knowe => witeh);
hatee => person(kncws => X : monarch;
likes => X))

is the wit

person{kaows => pevson;
bates => person{knovws => monarch;
1likes => momarch))

and their GLB is the wit

teenager (knows => X : adult(knows => vicked queen;

hates => ¥ : wicked gueen);
hates => child(knows => ¥,
likes => ¥},
likes => %),

The conventional case of first-order terms is just a par-
ticular restriction of the above. Namely, first-order terms
are P-terms such that:

1. the signature is a flal lattice—i.e., such that all the
symbols, except for T and 1, are incomparable;

2. tags may appear only at leaf level, and when so, only
with the symbol T; and,

3. attribute labels are fixed initial sequences of natural
numbers for each signature symbol.

T
person witch monarch
adult child queen
teenager wickedgueen
kS

Figure 1: A Signature Which Is a Lattice

Furthermore, the GLB is given by first-order unifica-
tion [11], and the LUB is given by first-order generaliza~
tion {10].

For the purpose of integrating logic programming and
inheritance, all we shall need is ¢-term unification. We
shall assume that the signature is a lower semi-lattice—
i.e., GLBs exist for all pairs of type symbols. We need
an algorithm which, given any pair of wiis, will compute
the greatest wit which is a subtype of both wfts. This is

- explained next.
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8 The Unification Algorithm

We shall now describe an efficient Y-term unification
algorithm. This algorithm computes the ¢-term which is
the greatest lower bound of two given 1-terms. It assumes
that the constructor symbol signature is a lower semi-
lattice. The case where the signature is not a lower semi-
lattice presents no real problem; for details, the reader is
referred to [3].

The ¢-term unification algorithm was originally given
and proven correct in [2]. It uses the same idea as the
method used by Huet {7] for unification of regular first-
order terms based on a fast procedure for congruence clo-
sure. However, Huet’s algorithm is devised for conven-
tional (1) fixed-arity terms with ({¢) arguments identified
by position, and (144 over flat signatures. The algorithm
presented next does not impose these stringent restric-
tions.

In order to facilitate the presentation of the algorithm,
we first introduce some notation. Although the syntax
of 1b-terms allows ellipsis of unshared tags—i.e., at those
addresses which are alone in their coreference class—it is
clear that all addresses in a wit could be explicitly tagged.
Let s and ¢ be two Y~terms to unify such that

s=Xo: fll1=X1 1 80,0 skm=>Xon 1 8m)
t=Yp: g(ll =Y :tl,...,iﬂ=>Yn :in)

and such that s and £ have their tags renamed apart; i.e.,
tags{s) Ntags{t) =0

where
tags(s) = {Xo} UUZL({X:} U tags(s))
tags(t) = {¥o} U UL ({¥i} U tags(s))

are the sets of all the tags occurring in s and ¢, respec-
tively.

Each tag uniquely identifies a ¥~term node containing
the following information:

e a tag identifier;
» a type constructor;

o @ set of next nodes uniquely indexed by attribute
labels.



The tag identifier is superfluous in a real implementation
where pointers or store addresses can be used, 1% is used
here only for presentation convenience. We shall use a
pseudo-record data structure lagnode indexed on tag sym-
bols with the appropriate corresponding fields; ¢.g.,

tagnode = record
id tag symbol;
fype consiructor symbol;
subnodes set of pasrs {lnbel, tagnode);
coraference tagnode
end

The field coreference carries information about corefer-
ence class membership. Indeed, since the unification al-
gorithm is a node-merging process which coalesces tag
nodes, it is also necessary to represent coreference classes
as disjoint sets of tag nodes. Such disjoint sets are repre-
senfed using an inverted free representation so that each
coreference class may be nniquely identified by one of its
node elements—the class representative. (The reader not
familiar with the UNION/FIND problem is referred to [1],
pp. 129-145.) Hence, a tagnode is its class representative
if and only if its coreference is nil.

Two operations on tag nodes are defined:

» FIND{z) returns the class representative of tag
node z;

o UNION(z,y,z) performs the set union of the two—
disjoint—classes represented by z and y, and whose
result has representative 2.

Also, we define

labels{z) = {I | By (I,y) € z.subnodes}

to denote the set of attribute labels attached to the tag
node z,

Given a tag node z and an attribute label / in labels{z),
subterm(z,1) denotes the tag node under attribute / of z;
ie.,

(I, ¥) € z.subnodes = subterm{z,l) =y

In the algorithm of Figure 2, a tag node id stands
for the tag node itself. Initially, since no merging has
yet occurred, all tag nodes in tags(s) U tags(t} have
coreference set to nil {i.e., each tag node is alone in its
class),

Informally, this unification algorithm follows through
all possible attribute paths in both y-terms. Pairs of tag
nodes that are reached following the same path of at-
tributes labels are merged into coreference classes. Fach
class has a unique representative {given by F IND) where
all information relative to the class is gathered. In partic-
ular, type symbols are cosrced by the GLB operation {A)
on the signature ©; and attribute labels of & node being
merged must be carried to the representasive of the class.
This latter procedure is described in Figure 3.

The unification procedure returns either 1 if a clash
of type constructor occurs; or, the -term built out of the
merged graph of tag nodes. This is what the REBUILD
procedure does, as explicated in Figure 4. Each merged
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procedure UNIFY s, t);
begin
PAIRS — {(Xo, Yo)};
while PAIRS # 8 do
begin
remove {(z,y) from PAIRS,
u— FIND{z);
v FIND{y};
if 4 % v then
begin
o+ u.type A v.lype;
if o = L then refurn{l)
else
begin
UNION(u,v,w);
w.lype +— o;
for each [ in labels{u) U labels{v) do
begin
Hw=0yp
then CARRY LABEL(l, u, v)
else CARRY LABEL(L, v, u);
if { € labels{u) N labels{v) then
PAIRS « PAIRS U {{subterm(u, 1}, subterm{v, 1))}
end
end
end
end
return{ REBUILD(tags{s) Utags(t)))
end

Figure 2: The 1{-term Unification Procedure

procedure CARRY LABEL{L, u,v);
begio
if 1 ¢ labels{v)
then v.subnodes + v.subnodas U {{I, FIN D{subtermi{u, 1)})}
end

Figure 3: The CARRYLAREL Instruction

class is attributed a new tag node carrying the informa-
tion assembled by the unification procedure at the class
representative nodes.

The algorithm of Figure 2 is a variation on the algo-
rithm deciding equivalence of two finite-state automata
{see [1]). It computes the least coreference relation on at-
tribute label strings which is right-invariant for concate-
nation of labels, and contains both coreference relations
of the given ¢-terms (see [2]).

Provided that two simple rules of computation for the
UNION and FIND operations are observed which keep in-
verted trees as balanced and as shallow as possible (see [1]),
the algorithm of Figure 2 has a time complexity of or-
der almost linear in n, the total number of nodes {i.e.,
n = |tags{s) U tags(t)|). In fact, it has a worst case
upper bound of O{nG(n)}), where G grows very slowly—
of the order of an inverse of the Ackerman function. In
particular, G{n} < 5 for all practical purposes!

The reader is encouraged to trace the algorithm on an
example. A detailed trace is described in [38]. Next, we
llustrate LOGIN on two examples.



procedure REBUILD{tagset);
begin
CLASSES « Uzetagoar {FIN D(2}};
for each ¢ in CLASSES do ID[z| — NewTagSymbol;
for each z in CLASSES do
begin
NODE « NewTaglNode;
with NODEZ do
begin
1d « I D{z};
type +— z.lype;
subnodes « {{I, ID[FIND{y}]) | {4} € z.subnodes};
coreference «— nil
end
end
return{ID{FIND{X,)])
end

Figure 4: The REBUILD Procedure

person goodthing  grade
student goﬁade badgrade
peter paul mary a b ¢ d f

Figure 5: A Signature for the Simple Example

7 A Simple Example

LOGIN is simply Prolog where first-order ferms are
replaced by ¢-terms. Thus, we shall simply show that
the skeleton of a Prolog interpreter implementing a top-
down/left-right backtracking search procedure can be
adapted in a straightforfard manner. The unification pro-
cedure is simply replaced by ¥-term unification, altered to
allow for undoing coreference merging and type coercion
upon backtracking.

Let us consider the following simple example. The
signature of Figure 5 is declared in LOGIN by:

student < person.
{peter, panl, mary} < student.
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{goodgrade ,badgrade} < grade.
govdgrade < goodthing.

{a, b} < goodgrade.

{c, 4, £} < badgrade.

This essentially expresses the facts that a student is a
person. Peter, Paul, and Mary are students. Good grades
and bad grades are grades. A good grade is also a good
thing. ‘A’ and ‘B’ are good grades; but, ‘C°, ‘D', and ‘¥’
are bad grades,

In this contexs$, we can define the following facts and
rules.

It is known that all persons like themselves, Also,
Peter likes Mary; and, all persons like all good things.
Thus, in LOGIN,

likes{X : person, X).
likes{pster,maxry).
1likes{person,goodthing) .

Peter got a “C’; Paul got an ‘F’, and Mary an ‘A’. Thus,

got {peter,c).
got(paul,f).
got{mary,a).

Lastly, it is known that a person is happy if she got some-
thing which she likes, Alternatively, a person is happy if
he likes something which got a good thing. Hence,

person) - likes(X,¥),got(X,Y).
person) :- likes{X,¥),got{¥,goodthing).

happy{X :

happy (X :

Mary is happy because she likes good things, and she
got an ‘A’—which is a good thing. She is also happy
because she likes herself, and she got a good thing. Peter is
happy because he likes Mary, who got a good thing. Thus,
a query asking for some “happy” object in the database
will yield:

7~ happy{X).

% = mary

The way LOGIN finds the first answer (X = mary) is
as follows. The invoking resolvent happy{X : T) unifies
with the head of the first defining rule of the happy proce-
dure, by coercing X : T to X : person. The new resolvent

thus is:

Likes{X : person,Y), got{X, V). m
Next, likes(X : person,Y) unifies with the first alterna-
tive of the definition of l1kes, confirming the previous type
coercion of X : person, and merging coreference ¥ : T o
X : person. The resolvent thus obtained is:

-~ got{X : person, X).

This is not matched by anything in the database; and so,
LOGIN must backirack, reinstating the previous coercions
and corsferences of resolvent {1).

As a next choice, [thes{X : person,Y) unifies with
the second alternative of the definition of likes, further
coercing X : person to X : pefer, and coercing ¥ : T to
Y : mary. This produces the new resolvent:

got(X : peter,Y v mary).



This literal Bnds no match in the database; and so, LO-
GIN must backtrack again, reinstating the previous coer-
cions of resolvent {17.

The third possible match is the last definition for
the predicate ltkes, whereby ¥ : T is coerced to ¥
goodthing. This vields the resolvent:

got{X : person,Y : goodihing).

For this, the only successful match is the third defini-
tion of the got predicate. This yvields the empty resolvent,
and the final resuly X = mary.

At this point, if forced to backtrack, LOGIN attempts
the next alternative match for the initial invoking resol-
vent happy{X : T); namely, the second rule of the happy
procedure. The next resolvent is thus:

Iikes(X : person,¥ ), got(¥, goodthing). {2}

A match with the first alternative of the {tkzs defini-
tion merges X and Y. This gives the resolvent:

got{X : person, goodthing).

And this matches got{mary, 4}, producing the second re-
sult X = mary.

If backtracking is forced once again, resolvent (2) is
restored. This time, as seen before, establishing the first
literal of this resolvent eventually leads to coercing X :
person to X :peter, and ¥ ¢ T 10 Y : mary, resulting in
the resolvent:

got{Y : mary, goodihing).

And this succeeds by matching got{mary, a).

Hence, this third alternative branch of computation
succeeds with the final result X = peter. The reader is
left to convince herself that there is no other solution for
that particular query.

The next section illustrates a more complex example
involving the presence of attributes.

8 A More Complex Example

The example of Section 7 was simple in the sense that
it did not illustrate the use of inheritance among complex
P-term objecis—e.g., records with attributes. One such
exarnple is next described.

In a type signature, such a type symbol as person has
virtually any possible attribute typed as T, However, It
may be desirable to constrain all possible database in-
stances of persom to be such thal particular attribute
types be more specific than T.

For example, let us suppose that we want to impose
that every legal record instances of person in the database
must have:

® 2 fleld id which must be a name;
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» a field dob which must be a date; and,
s a field ss# which must have:

— a field first which must be string of characters
between ‘000" and 999"

~ & field middle which must be string of charac-
ters between ‘00" and ‘99°; and,

— a feld last which must be string of characters
between ‘00007 and ‘0999,

We can write this in LOGIN as:

peraon = {id =» name;

dob => date;

sa# => (firat => [°000°...°689°];
middle => [’00°...°89°'};
last => ["0000°...°9999°13).

where, name is specified as, say:

name = {first =» string;
middle => siring;
last => stxing) .

and dale as:

date = {day => [1...381];

month =» [1...12];
year => [1800.,.2000]).

The “la...8]1” notation is used to denote interval
ranges over linearly ordered built-in types. For example,
any string of character ‘zy...2° is an instance of the built-
in type string, ordered lexicographically using, say, ASCII
character codes. Thus, any interval of strings is a subtype
of string; and unification corresponds to intersection. The
same applies to types like integer, real, efc.

Now, let us suppose that we also want to specify that a
student be a subtype of person—i.e., that it inherits what-
ever attribute restrictions imposed on person—and that
student further imposes restrictions on some attributes;
e.9., a student has a major which must be a course, and
further constrains the dob field to be have a year between
1950 and 1870. This is achieved by:

gtudent = pezson(majox w3 COuTHe;
dob => {yeax => [1850..,1870]).

Clearly, it must be checked that these type specifica-
tions are not inconsistent. And this can be done statically,
before running a LOGIN program.

Similarly, we could elaborate the rest of the signature.
For example,

employee = person{position => jobtitls;
salary => integer).

wyorkstudy < smployse.
workatudy < student.



s = pindent{id »> (fizxst => *Johan’;
last => 'Dos’):
major => computerBcience;
st =>» {first => '887°;
niddle => *233°;
last => °BRTE°)).

wi = workstudy{id => {firsi => °Abebe’;
middle => ’Nmougoudon’;
last => 'Bekila’);
major => physicalBducation;
s => {first => '$99°');
salary => 10000) .

MNote that inheritance allows for ellipsis of information
in the particular records of individuals in the database like

s1 and wl.
Now, we can define facts and rules in the context of

this signature. For instance, part of a course enrollment
relation could be:

takes{sl, [c8i0l,c8121,ma2171).
takes{wl, [ped08]).

To express that all students taking less then 3 courses
are considered part-time students, we write:

parttime(X : studens) :-
pakes (X,CL),length(CL,L), L<=3.

where length is trivially defined and computes the length

of a list.
Finally, to formulate that all persons whose social se-
curity number starts with 999 is foreign, we write:

foreign(person(ss# => (firet => "999°))).
Thus, a query asking for the last name of some foreign

employee who is also a part-time student, and earns a
salary less than 20000, is:

query(X : string) :-
foreign(Y : employee(salary => 2}),
parttime(Y : student(id => {last => X))),
Z < 20000.

A rtemark worth making here is that extensive in-
formation can be processed statically for LOGIN before
run-time. Thus, besides the inheritance type-checking
already mentioned, some compile-time coercion must be
performed to maintain consistent typing in clauses. In-
deed, typing in the above query as we did would result
in the automatic coercion of the +-term under the tag Y,
transforming it internally into:

query(X : string) :- :

foreign{¥ : workstudy(salary => &;
id => (last => 1)},

parttime(Y),
Z < 20000.

Thus, should L occur in a clause by static type coercion,

the clause would be eliminated.
We leave it as an exercise to the reader to verify that

an answer to this query for the foregoing data is:

7- guery(X).
X = 'Bekila’®

2217

9 Concluding Remarks

We have given a summarized description of a seman-
tically sound and operationally practical typed extension
of Prolog, where type inheritance 4 lo semantic network
is cleanly and efficiently realized through a generalized
unification process. We have illustrated how this can be
achieved on some detailed examples. The language thus
obtained is called LOGIN, an acronymic combination of
“logic” and “inheritance”.

The gain that we feel LOGIN provides over the con-
ventional Prolog language is twofold:

1. the efficient use of taxonomic information, as well as
complex objects;

2. a natural way of dealing efficiently with “set at a
time” mode of computation essential fo database
applications.

In addition, we feel that the inheritance model be-
hind LOGIN offers great potential for compile-time con-
sistency checking, and object-oriented computation in a
logic programming paradigm. For example, it is possible,
at compile-time, to narrow drastically the range of index-
ing over a large database of individual records to only an
appropriate view, based on the types of arguments of the
predicates involved in the rules of a querying program.
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