
Logic and Inheritance
Hassan A~-Xaei

Roger Na~r

MieroeleeSronis~ and Gomput,r Tschnetogy Corporation
9,~30 Research Boulevard

Austin~ TX 78759

1 A b s t r a c t

An elaboration of the Prolog language is described in
which the notion of first-order term is replaced by a more
general one. This extended form of terms allows the inte-
gration of inherltance--an IS-A taxonomy~directly into
the unification process rather than indirectly through the
resolution-based inference mechanism of Prolog, This re-
sults in more efficient computations and enhanced fan=
guage expressiveness. The language thus obtained, called
LOGIN, subsumes Prolog, in the sense that conventional
Prolog programs are equally well executed by LOGIN.

Av.&nowledgements: We wish to ~hank Bob Boyer,
Matthias Fel|elsen, and Fernaado Pereira for their" con-
structive feedback on the contents of the paper.

2 Introduction

Inheri tance can be well captured in logic by the se-
mantics of logical implication. Indeed,

vs. whaz,(x) ~ Mamma(w)

is semantically satisfactory. However, it is not pragmat-
ically satisfactory. In a first-order logic deduction sys-
t em using this implicat ion, inheritance from "mammal"
to "whale" is achieved by an inference step; whereas, the
special kind of information expressed in this formula some-
how does not seem to be meant as a deduction s t ep - - thus

lengthening p r o o f s w b u t ra ther , as a means to accelerate,
or focus, a deduct ion process - - thus shortening proofs.

Massy proposals have been offered to deal wi th in-
her l taace and taxonomic information in Automated De-
duction. Admit tedly , expressing everything in first-order
logic as proposed in [6], and [4], is semantical ly correct.
Nevertheless, these approaches dodge the issue of improv-
ing the operational deduction process. Other more opera-
tional attempts, like those reported in [9], and [5], propose
the use of some forms of semantic network. However, it
iS not always clear what semantics to attribute to these
formalisms which, in any case, lose the simple elegance of
Prolog-like expressiveness.

As shown ~n [2], the syntax and operational interpre-
tation of first-order terms can be extended to accommo~
date for taxonomic ordering relations between construc-
tor symbols. As a result, we propose a simple and effi-
cient paxadigra of unification which allows the separation
of (multiple) inheritance from the logical inference ma-
chinery of Prolog.

We introduce in Section 3 the flavor of what we believe
to be a more expressive and eft%lent way of using taxo-
nomic information, as opposed to straight Prolog. Then,
in Section 4, we discuss the adequacy of the use of first-
order terms in Prolog. This leads to a proposal in Sec-
tion 5 to embody taxonomic information as record-like
type structures. An efficient unification algorithm which
computes greatest lower bounds of such structures is then
described in Section 6. Finally, in Sections 7 and 8, a sire-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To copy
otherw!se, or to republish, requires a fee and/or specific permission.

© 1986 ACMJ)-89791-175-X-t/86-0219 $(D.75

2 1 9

pie in terpre ter is i l lustrated on examples, showing how
this extended notion of terms m~y be integrated into the

SLD-resolut ion me<hanism of Prolog.

3 MoUvaUon

Let us consider the following exa~mple:

f~ is known ~ha~ Ml persotks like themselves.
Also, students are person, and the individuM
John is a ~tudent.

This slmple informat ion can be expressed in first-order
logic as:

vz. person(z) ~ likes(z, z)
& Vz. student(x) ~ person(x)
& student(john)°

and thus in Prolog by:

likes(X,X) : - person(X).
per~om(X) :- mtudent(X).
student(john).

To check whether John likes himseg is hence:

?- likes(johm, john) .
Yes
On the other hand, we can equivalently represent the

information above in typed first-order logic as follows:

Vx E person, l ikes(x, x)
& student C person
& john E student.

NOW, if type checking (i.e., tha t one set is the subset of
another, or one clement belongs to a set), can be done effi-
ciently, then the typed translation can achieve better per-

forraancG with no loss of semantics. Indeed~ in our little
example~ to infer that John likes himself is immediate--
one application of mad~s ponsns rather than two in this
case. This simple idea can be made practical~ and is the
baMs of the extenMon of Prolog we are presenting in this
document.

In Prolog, a resoint ion step involves a s ta te t ransi t ion
with context saving~ variable binding, etc., and is there-
fore costly. The simple kind of togicM implication in the
above problem should not contribute to the length of a
deduction, indeed~ in this example it should be immedi-
ate to see tha t by virtue of being a student John is also a
person. It would be convenient if one could declare that~
in the unification process, the symbol student can match
the symbol person° Such declarat ions could look llke

student < person.
jslm < student.

where the symbol ~<~ s tands for %s a ' .

In view of these declaxations~ the original problem

could be reformulated using a typing notation such as

likes(X : person, X).

Then , by a unificntion step rather than by a resolution
step, the previous aauswer follows for the query:

?- likes(john. John).

Thus, we can view the process of unification as computing
a greatest lower bound of two symbols relative to the <

ordering.
This simple example may not be convincing as a true

improvement. T h a t is, one m~y argue tha t t rading a uni-
fication step for a resolut ion step is not worthwhile. How-
ever, unification wi th inherita~ace is by fax more econom-

ical than reaolution. Even if this were not the case--i .e.~
the two steps of computa t ions were equally c o s t l y - - a s the
length of inheritance chains increases the motivation, for

using fast unification rather than resolution appears more

clearly.

4 An OperaUonal InterpretaUon
of Terms

In the logic interpretation of Prolog~ functional first-
order terms which axe not variables appear as Skolem con-

stants or functions. However, in Prolog~ such function3
are never evaluated. RatheG they are used operationally
as type ce~truetors. The most known example is the fa-
mous cons list constructoG but a Prolog user can take
advantage of this operational interpretation of terms for
organizing data, as for instance, in database applications
of Prolog [8].

As a result~ Prolog's operational use of first-order
t e rms makes them "behave as record structures~ e.g., a t e rm
as person(x~ y, z) is seen as a three*field record, whose
fields may be given some conventional interpretation by
the programmer (s~y~ first axgument is name, second is
date of birth, and third is sex). The implicit operational
semantics of such a constructor term is that it denotes the

set (type) of ~ilt ~person" records in the database.
Thus, unification of f irst-order terms becomes a

simple-minded inheritance operatlon~ as variables in terms
act as slots which are filled as they become instantiated.
A subtype of

person(x, y, z)

a generic denotation of the set of all (records of) persons
in the database, may thus be

per,son(name(john, z), Y, mode)

a generic denotation of the set of all (records of) male
persons with first name John in the database . In facG
under this in terpre ta t ion of te rms as types~ unif icat ion
is interpreted as intersection of types. For exampl% the

intersection of the set of persons whose l ~ t name is the

220

same as their first name

person(name(z, z), y, z)

with the set of all male persons whose first name is John

person(name(john, z) , y, ~ale)

must be indeed tile set of all male persons named John
John

per son (name O'ohn, john L x, male).

Since they are not operationally used as functions,
Prolog first-order terms suffer from undeserved limitations
in their syntax, a legacy of their original functional seman-
tics.

Looking at first-order terms purely syntactically in
their use as type constructors, one finds that .fixed arity of
signature symbols is an irrelevant burden. For example, if
after extensive use of a three-field record person(z, y, z),
a user realizes that a fourth field (say, social security
number) is needed, all previous occurrences of the person
record must be revised and given a fourth argument [61.

Another limitation, which is also a corollary of fixed-
arity, is that the interpretation of argument positions is
non-transparent to the user. Indeed, in using a person
record, one must always be aware that the first argument
is a name, the second is a date, etc. Clearly, the classical
explicit labeling of record fields by symbolic keywords is
better than implicitly limiting these labels to be ordered
ungapped sequences of integers.

The third most fundamental limitation of terms as
type structures can be best understood when one ponders
upon the respective roles of signature and variable sym-
bols in term unification. A signature symbol is a type con-
structor and thus acts as an instantiatlon filter. Indeed,
unification fails for two non-identical signature symbols.
As a result, any further instance of, say, person(x,y ,z)
must have person as root symbol. There is no reason why
this filtering role of constructor symbols must be limited
to an open/closed behavior. Indeed, person(x, y, z) should
be allowed to be further instantiated as student(z, y, z) if
the interpretation of the data is such that a %tudent" type
is a subtype of a ~person" type. This gradual filtering can
be expressed as a partial ordering (type subsumption) on
the constructor signature. Hence, unification of signature

symbols is now seen as a greatest lOWer bound (GLB) op-
eration. If a signature is augmented w ! t h a special !east
element symbol ± denoting failure of unlfication,:conven-
tional unification of constructor symbols is stil! a GLB

operation.
On the other hand, a variable o=currence means the

absence of filter; i.e., it is a wild card for term instantla-
tion. As importantly, a variable has a second rote as it acts
as a tag imposing equMity eon~traints among subterms--
d l occurrences of the same variable in a given term must
be inst~tiated by identical: te~ms: : As an instaatlation
wild card, a variable b~haves as a filter--very permissive,
but a filter nonetheless. As a tag, it behaves as an equality
constraint, tt is a key observation that variables should

not carry such a dual information. Firstly, because it is
the role of the signature symbols to carry filtering infor-
mation. And secondly, because even in their equational
role, variables are unduly llmited. Indeed, as variables are
allowed to occur only as leaves in a term, they cannot im-
pose equality constraints within the term; i.e., anywhere
t¥om root to leaves.

Based on these observations, it comes naturally that
the wild card role should be played by a special great-
set element symbol T augmenting the signature. As for
equality constraints, we propose that variables be called
tags and allowed to appear anywhere within a term.

All the foregoing limitations are overcome in the syn-
tax of partially-ordered type structures defined next.

5 A Calculus of T y p e Contain-

men%

We shall call the syntactic representation of a struc-
tured type a ~/~-term. Informally, a C-term consists of:

1. A root symbol which is a type constructor, and de~
notes a class of objects.

2. Attribute labels which are record field symbols, assc~
ciated with C-terms. Each label denotes a function
in intenso from the root type to the type denoted by
its associated sub@-term. Concatenation of labels
denotes function composition.

3. Core/erenee constraints among paths of labels which
indicate that the corresponding attribute composi-
tions denote the same functions. In other words,
coreference specifies that some functional diagram
of attributes must be commutative.

Consider an example of such a g-term where the root
symbol is person:

persan(id => name;

born => date(day => integer;

month => menthuame;

year => integer);
father => person)

It has three sub-C-terms under the attribute labels id,
born, and father, respectively. We follow the conven-
tion of using identifiers starting with a tower-case letter
for type symbols and attribute labels. Identifiers start-
ing with an upper-case letter are tag symbols and denote
coreference among attribute compositions. An example of
a C-term with tags is:

person(id => name(first => string;

last ~> X : string);
father => psrson(id => name(last ~> X : string)))

The tag symbol X occurs under id.tast and father.id.last,
and indicates a coreference constraint; i.e., identical sub~
structures.

To be consistent, ~ tb-term's syntax cannot be such
that different type structures are tagged by the same tag

221

symbol. For example, if something else than string ap-
peared at the address father.{&last b: the above exam-
ple, the ~%term would be ilbformedo Hence, in a well-
formed ~*term--~or @ , %r short--we shall omit writing
more than once the type for any given tag. ?br instance,
the above #- term will rather be written as:

person(id => n~ms(first => string;
last => X : string);

father ~> persen(id => name(last => X))),

In particular, this convention allows the concise represen-
tation of infinite structures such as:

person(id => name(first => string;
last => string);

father => X : person(son => person(father => X)))

where a cyclic core%rence is tagged by Xo
The type signature E is a partially-ordered set of sym-

bols° Such a signature always contains two specia] ele-
ments: a greatest element (T) and a least element (A)°
Type symbols denote sets of objects, and the partial order
on E denotes set inclusion. Hence, T denotes the set of
all possible objects--the universe. We shall omit writing
the synfbol T explicitly in a wR; by convention, whenever
a type symbol is missing, it is understood to be T. For

example, in the wft:

psrson(id => (first => string;
last => X) ;

father => persom(id => name(last => X))),

T is the type symbol occurring at addresses id~ {dJast~
and f a~her°idAast°

On the other hand, 25 denotes the empW set and is
the type of no object. Consequently, _k may appear in
no wft other than i , since that would entail that there
be no possible objeet for the corresponding attribute° As
a result, any ¢-terra with at least one occurrence of i
is identified to ±. Finally, since the information content
of tags is simply to impose coreference constraints, it is
clear that any one-to-one renaming of a wft's tags does
not alter the information content of the wft. In summary,
we shall consider wRs up to the above syntactic remarks
to be structured type expressionso

The information content of type structures such as
those whose syntax ls informally introduced above can
be formally defined. Namely, a wR structure can be seen
as the conjunction of three mathematical abstractions:

1. A C-term domain A - - a regular set of finite strings
of £° closed under the prefix operation.

2. A coreference relation ~c--an equivalence relation on
A of finite index~ which is right-invariant for label
concagenatlom That is, the number of eoreference
classes is finite; and, whenever two addresses corefer,
any pair of mddresses in the domain obtained from
ahem by- further concatenation on the right must
aNo eoreNr.

3. A type function ¢~-e;xtending a partial function de~
fined from the set of coreference clauses A/pc to the
type signature E by associating the type symbol T
to all strings of/2* which are not in A.

Thus, a wR is precisely formalized as such a ~riple
(A.~,¢>.

The ped'tial order on the type signature E is extended
to the set of wRs in such a way as to reflect set inclusion
interpretation. In%rmally, a wR h is a subtype of a wR t=
if:

1.. The root symbol of tl is a subtype in I3 of the root
symbol of t2;

2. ali at tr ibute labels of ta are also attr ibute labels of
h , and their wRs in tl are subtypes of their corre-
sponding wRs in ~; and,

3. All coreference constraints binding in ta must also
be binding in he

For example, if E is such that student < person and
austin < cityname, then the wft

student(id => name(first => string;
last => X ; string);

lives_at => Y : address(city => austin)
father => perssn(id => name(last => X);

lives st => Y))

is a subtype of the wh

persen(id => name(last => X ; str ing);
lives_at => address(city => cityname);

father => person(id => name(last => X)))

This partial ordering on wfts is formally defined as
follows. A wR ta is a subtype of a wR t2 if and only if:

either h = A;

or h = (A:,~%,¢1}, t~ = (A:,~c~,¢z),
and:

1.-o A2 t~ A1

In fact, a stronger result is proved in [2j . Namely, if the
signature E is such that GLBs (respectively, LUBs)exlst
for atl pairs of type symbols with respect t o the signature
ordering, then GLBs (LUBs) atso exlst %r the extended
wft ordering. In other words, the wft ordering extends a
(semi-)tattiee structure from the signature t o the wfts. As
an example, if we consider the signature of Figure 1, then
the LUB of the wft

child(knows => X ; perso=(kao~s ~> queen;
hates => Y : monarch);

hates => child(knows => Y;
likes ~> ~ick~d_qu~sn);

likes => X)

and the wR

2 2 2

adult(knowe = > adult(l~aowe => witch);
hatee => pereen(k~ows => X : mon~Eh;

likes => X))

is the wft

person(knows => pereen;
hates => person(knows => monarch;

likes => monarch))

and their GLB is the wft

t e e n a g e r (k n o w s => X : a d u l t (knows => w i c k e d _ q u e e n ;
h a t e s => Y : w i c k e d _ q u e e n) ;

hates => child(knows => Y;
likes => Y);

likes => X),

The conventional case of first-order terms is just a par-
ticular restriction of the above. Namely, first-order terms

are C-terms such that:

1. the signature is a f ia t lattice--i.e., such that all the
symbols, except for T and i , are incomparable;

2. tags may appear only at leaf level, and when so, only
with the symbol T; and,

3. attribute labels are fixed initial sequences of natural
numbers for each signature symbol.

T

p e r s o n witch monarch

adult child *~

tee~zager wi~kedquee~

l

j

Figure 1: A Signature Which Is a Lattice

Furthermore, the GLB is given by first-order unifica~
tion [11]~ and the LUB is given by first*order generalizes
tion [101.

For the purpose of integrating logic prograurming and

inheritance, all we shall need is C~term unification. We
shall assume that the signature is a lower semMattice--
i .e. , GLBs exist for all pairs of type symbols. We need
an algorithm which, given any pair of wfts, will compute
the greatest wft which is a subtype of both wfts. This is
explained next.

6 The Unification Algor i thm

We shall now describe an efficient ¢-term unification
algorithm. This algorithm computes the ¢-term which is
the greatest lower bound of two given C-terms. It assumes
that the constructor symbol signature is a lower semi-

lattice. The case where the signature is not a lower semi-
lattice presents no real problem; for details, the reader is
referred to [3].

The ¢-term unification algorithm was originally given
and proven correct in [2], It uses the same idea as the
method used by Huet [7] for unification of regular first-
order terms based on a fast procedure for congruence clo-
sure. However, HueCs algorithm is devised for conven-
tional (i) fixed-arity terms with (ii) arguments identified
by position, and (i i i) over fiat signatures. The algorithm
presented next does not impose these stringent restric-
tions.

tn order to facilitate the presentation of the algorithm,
we first introduce some notation. Although the syntax
of C-terms allows ellipsis of unshared tags--i.e., at those
addresses which are alone in their coreference class--it is
clear that all addresses in a wft could be explicitly tagged.
Let s and t be two C-terms to unify such that

and such that s and t have their tags renamed apart; i .e. ,

where

tags(s) = {Xo} u U~L({Xd u ~ag~(~))

are the sets of all the tags occurring in ~ and t, respec-
tively.

Each tag uniquely identifies a ~b-term node containing
the following information:

• a tag identifier;

a type constructor;

. a set of next nodes uniquely indexed by attribute
labels.

223

The tag identifier is superfluous in a real implementation
where pointers or store addresses can be use& It is used
here only for prese.ntation convenience. We shall use a
pseud~re¢ord da ta structure tagnode indexed on tag sym-
bols with the appropria te corresponding fields; e.g°,

~ageode == record

~d
~yps
~ub~ode~

e:ad

*at .~ymbog;
conatructor aymbd;
set of pai~.s (label, *ag~ode);
tagt~ode

The field coreference carrms information about corefero
ence class membership. Indeed, since the unification al-
gori thm is a node<nerging process which coal~sces tag
nodes, it is also necessary to represent coreference classes
as disjoint sets of tag nodes. Such disjoint sets ~re repre~
seated using an inverted tree representation so tha t each
coreference class may be uniquely identified by one of its
node e lements-- the class representative. (The reader not
faaniliar with the UNION/FIND problem is referred to [1],
pp. 12~145.) Hence, a tagnode is its class representative
if and only if its sere f e t ches is ni l .

Two operations on tag nodes are defined:

e F I N D (x) returns the class representative of tag
node z;

* U N I O N (x , y, z) per%rms the set union of the two- -
disjoint---classes represented by x and y, and whose
result has representative z.

Also, we define

to denote the set of attribute labels attached to the tag
node x~

Given a tag node x and an at t r ibute label l in ~abds(x),
sub~erm(x,~) denotes the tag node under a t t r ibute l of x;
i.e.,

<l, v> e =sub,~od~s ~ s~+~rm(x, l) : v

In the algorithm of Figure 2, a tag node id stands
for the tag node itself. Initlatly, since no merging has
yet occurred, all tag nodes in tags(s) ~ tags(t) have

coreference set to nil (i .e , each tag node is alone in its
class).

Lnformally, this unification Mgorithm follows through
aiI possible a t t r ibute paths in both ~,b-termm Pairs of tag
nodes that are reached fbllowlng the same path of at-
tr ibutes tabeN are merged into coreferenee classes. Each
class has a unique representative (given by FL~gD) where
all information relative to the class is gathered, tn part ic-
ular, type symbols are coerced, by the GLB operation (A)
on the signature E; and attribute labels of a node being
merged must be carried to the representative of the class°
This tatter procedure is described in Figure 3.

The unification procedure returns either 2_ if a clash
of type constructor occurs; or, tile C-term built out of the
raerged graph of tag n o d ~ Thls is what the R E B U I L D
procedure does, as explicated in Figure 4~ Each merged

procedure UNIFY{s, t);
begin
P A I R S ~. {(Xo, Y0}};
while PAIRS # ~ do

begin
remove {x, y) from PAIRS;
u ~ FIND(x);
v +- FIND(y);
Wu# v then

begin
cr ~-- u.~ype A v.type;
~f cr = £ then return{i)
else

begha
UNION(u, v, w);
w.typ~ ~-- 0-~
~r each l hx tabds(u) U labegs(v) do

begh:L

then CARRY LAB EL(i, u, v)
else C ARRY LAB E L(I, % u);

if 1 6 ~b~z~(~) n ~bds@) then
PAIRS PAIRS U {@ubterm(u, 1), subterm(v, l)) }
end

end
end

end

end

Figure 2: The C-term Unification Procedure

procedure CARRY LABEL(i, u, v);
begka
if l ¢ label~(v)

end

Figure 3: The C A B R Y L A B E L Instruction

class is a t t r ibuted a new tag node carrying the informa-
tion assembled by the unification procedure at the class
representative nodes.

The algorithm of Figure 2 is a variation on the algo-
rithm deciding equivalence of two finite-state automata

(see [t]). It computes the least coreference relation on at-
t r ibute label strings which is right-invariant for concate-
nat ion of labels~ and contains both eoreferenee relatlons
of the giw.n ¢ - t e r ~ (see I2]).

Provided that two simple rules of computation for the
UN ION and FIND operations are observed which keep in-
verted trees as balane~ and as * , m o w as possible (see [1]),
the Mgorlthm of Figure 2 has a time complexity of or-
der almost linear in n, the total number of nodes (£ e .

= t t~g~(~) u t ~ g ~ (t) I) , h fact , it has a worst case
upper bound of O(nG(n)) , where G grows very slowly---
of the order of an inverse of the Aekerman function. In

part icular , G(n) < 5 for all practical purposes!
The reader is encouraged to trace tile algori thm on an

example. A detailed trace is described in [3]o Next, we
il lustrate LOGtN on two examples.

224

procedure REBUILD(tag~e$);
begin
CLASSES ~- U~e~ag,e~{FfND(x)};
for each • in CLASSES do ID[x] ~- NvwTagSyrabol;
for each x in CLASSES do

begin
NODE ~- NewTagNode;
with NODE do

begin
~d ~ - XD[z];
~ype ~- ~.~ype;
subnodea ~- {(l, ID[FIND(y)])] <I,y> ~ x.aubnode~};
csre/erence ~ nil
end

end
return(I D[F I N D(Xo)])
end

Figure 4: The R E B U I L D Procedure

person yoodghiny grade

s~aden~ 9oodgrade badgrade

peter paul mary e b e d f

Figure 5: A Signature for the Simple Example

7 A Simple Example
LOGIN is simply Prolog where first-order terms are

replaced by e-terms. Thus, we shall simply show that
the skeleton of a Prolog interpreter implementing a top-
down/left-right backtracking search procedure can be
adapted in a straightforfard manner: The unification pro~
cedure is simply replaced by e- te rm unification, altered to
allow for undoing coreference merging and type coercion

upon backtracking.
Let us consider the following simple example. The

signature of Figure 5 is declared in LOGIN by:

student < person.
{peter, paul, mary} < student.

{goodgrade ~badgrads} < grads.
goodgrade < goodthing.
{a, h} < goodgr~de.
is, d, f} < badgr~de.

This essentially expresses the facts that a student is a

person. Peter, Pau], and Mary are students. Good grades
and bad grades are grades. A good grade is also a good
thing. ~A' and ~B' are good grades; but, ~C', 'D' , and *F'
are bad grades.

In this context, we can define the following facts and
rules.

It is known that all persons like themselves. Also,
Peter likes Mary; and, all persons like all good things.
Thus, in LOGIN,

likes(X : person, X).
like s (peter, mary).
likes (person, goodthing) .

Peter got a ~C~; Paul got an 'F% and Mary an ~A'. Thus~

got (peter, c).
got (paul, f) .
got (mary, a) ,

Lastly, it is known that a person is happy if she got some-

thing which she liken Alternatively, a person is happy if

he likes something which got a good thing. Hence,

happy(X : person) :- likee(X,Y),got(X,Y).
happy(X : person) :- likes(X,Y) ,gst(Y,goodthing).

Mary is happy because she likes good things, sad she
got an ~A ~ which is a good thing. She is also happy
because she likes herself, and she got a good thing. Peter is
happy because he likes Mary, who got a good thing. Thus,
a query asking for some "happy" object in the database
will yield:

?- happy (X),
X = mary

The why LOGIN finds the first answer (X = mary) is
as follows. The invoking resolvent happy (X : T) unifies
with the head of the first defining rule of the happy proce~
dure, by coercing X : -~ to X : person° The new resolven~
thus is:

Next, likes(X : person, Y) unifies with the first Mterna-
tire of the definition of l ikes, confirming the previous type
coercion of X : person, and merging coreference Y : 7 to
X : person. The resolvent thus obtained is:

got [X : person~ X) .

This is not matched by anything in the database; and so,
LOGIN must backtrack, reinstating the previous coercions
and coreferences of resolvent (1).

As a next choice, t i k e~ (X : person, Y) unifies with
the second alternative of the definition of Hkes, further
coercing X : person to X : peter, and coercing Y : T to
Y : mary . This produces the new resolvent:

go~(X : pe~er, Y : mary) .

225

This literal finds no match in the database; and s% LO-
GIN must backtrack again~ reinstating the previous coer-
cions of resolvent (1).

The third possible match is the last definition for
the predicate likes, whereby Y : T is coerced to Y
goodthing. This yieids the resolvent:

go t (X: person, Y : goodthing).

For this, the only successful match is the third defini=
glen of the got predicate. This yields the empty resolven%
and the final result X : mary.

At this point, if forced to backtrack, LOGIN attempts
t.he next alternative match for the initial invoking reset-
vent happy(X : 7-); namely, the second rule of the happy
procedure. The next resolvent is thus:

H~s(x : person, r), got(Y, goodth{ng). (2)

A match with the first alternative of the Hkes defini-
tion rnerges X and Y. This gives the resolvent:

got (X : person, goodthing).

And this matches got(mary, a), producing the second re~
sult X = mary.

tf backtracking is forced once again, resolvent (2) is
restored° This time, as seen before, establishing the first
literal of this resolveng eventualIy leads to coercing X :

person to X : peter, and Y : T to Y : mary, resu]ting in
the resoIvent:

go~(Y : mary, goedthing).

And this succeeds by matching got(mary, a).
Hence, this third alternative branch of computation

succeeds with the final result X = peter. The reader is
left to convince herself that there is no other solutlon for
that particular query~

The next section illustrates a more complex example
involving the presence af attributes.

8 A More Complex Example

The example of Section 7 was simple in the sense that
it did not illustrate the use of inheritance among comptex
~-term objects---e.g, records with attributes. One such
example is next described..

In a type signature, such a type symbol as person has
vlrtually any pesMble attribute typed as To ktowever, it
may be desirable to constrain all possible database in-
stances of person to be such that pazticular attribute
types be more specific than To

For example, }et us suppose that we want to impose
that every legal record instances of person in the database
must have:

+ a field id which must be a name;

a fietd dob which must be a date; and,

a field as# which must have:

- a field f i r s t which must be string of characters
between ~000' and *999';

- a field middle which must be string of charac=

tars between '00' and "99'; and,

- a field last which must be string of characters
between ~0000' and ~9999k

We can write this in LOGIN as:

person = (id => name;

dob => date;

as# => (first => ['000'..,'~9'];

middle => ['00", . . '99 '] ;
last => [~0000'..,'9999'])).

where, name is specified as, say:

name = (first => string;
middle => string;
last => string).

and date as:

date = (day => [i . . , 3 i] ;
month => [l . . .12] ;
year => [&900.,.2000]).

The " [a . . . i l l " notation is used to denote interval
ranges over linearty ordered built-in types. For example,
any string of character ~xy..°z' is an instance of the built=
in type string, ordered lexicographically using, say, ASCII
character codes. Thus, any interval of strings is a subtype
of string; and unification corresponds to intersection. The
same applies to types iike integer, real, eta.

Now, let us suppose that we also want to specify that a
student be a s a b ~ p e ofper~on--ioe., that it inherits what-
ever at tr ibute restrictions imposed on person--and that
student further imposes restrictions on some attributes;
e.g., a student has a major which must be a course, and
further constrains the dob field to be have a year between
1950 and 1970. This is achieved by:

student = person(major => cou,r~e;
dab => (year => [1950 . . , 1970]) .

Clearly, it must be checked that these type specifiea~
tionos are not inconsistent. And this can be done statically,
before running a LOGIN program.

$lvailarly, we could elaborate the rest of the signature.

For example,

employee = peraon(positiQn => jebtitle;
salary => Jut+get).

werks~udy < employae~
workstudy < utnd+nt.

226

si = atudemt(I4 ~> (firmt => 'Soh~ ' ;
last => 'Do~');

major => ¢omput~rSciemc~;
ss# => (first => '$97';

middle a> '23';
last => '5876')).

Wl = workstudy(id => (first => °Abebe' ;
middl@ => 'Nmeugoudau ~ ;
last => 'Bekila');

major => physicalEducatien;
ss# => (first => '~99');
salary => I0000).

Note that inheritance allows for ellipsis of information

in the particular records of individuals in the database llke

s l and wl .
Now, we can define facts and rules in the context of

this signature. For instance, part of a course enrollment

relation could be:

takes(sl, [csl01,csl21,ma217]).
takes (wl, [pe999]) .

To express that all students taking less then 3 courses
are considered part-time students, we write:

parttime(X : student) :-
takes(X,CL) ,length(eL,L), L<=3,

where length is trivlally defined and computes the length

of a list.
Finally, to formulate that all persons whose social se-

curity number starts with 999 is foreign, we write:

fereign(person(ss# => (first => '990'))).

Thus, a query asking for the last name of some foreign
employee who is also a part-time student, and earns a
salary less than 20000, is:

query(X : string) :-
foreign(Y : employee(salary => Z)),
parttime(Y : student(id => (last => X))),
Z < 20000.

A remark worth making here is that extensive in-
formation can be processed statically for LOGIN before
run-time Thus, besides the inheritance type-checking
already mentioned, some compile-time coercion mas~ be
performed to maintain consistent typing in clauses, ln-
deed, typing in the above query as we did would result
in the automatic coercion of the ~-term under the tag Y,
transforming it internally into:

query(X : string) :-
foreign(Y : workstudy(salary => Z',

id => (last => X)) ,
parttime (Y) .
Z < 20000.

Thus, should ± occur in a clause by static type coercion,
the clause would be eliminated.

We leave it as an exercise to the reader to verify that
an answer to this query for the foregoing data is:

?- query(X).
X = 'Bekila"

9 C o n c l u & i n g l g e m a r k s

We have given a summarized description of a seman-
tically sound and operationally practical typed extension
of Prolog, where type inheritance d la semantic network
is cleanly and efficiently realized through a generalized
unification process. We h~ve illustrated how this can be
achieved on some detailed examples. The language thus
obtained is called LOGIN, aa acronymic combination of
=logic ~ and "inheritance ~.

The gain that we feel LOGIN provides over the con-
ventional Prolog language is twofold:

1. the efficient use of taxonomic information~ as well as
complex objects;

2. a natural way of dealing efficiently with "set at a
time" mode of computation essential to database
applications.

In addition, we feel that the inheritance model be-
hind LOGIN offers great potential for compile-time con-
sistency checking, and object-orlented computation in a
logic programming paradigm. For example, it is possible,
at compile-time, to narrow drastically the range of index-
ing over a large database of individual records to only an
appropriate view, based on the types of arguments of the
predicates involved in the rules of a querying program.

B ibliography

[1] Aho, V.A., Hopcroft, a.E., and Utlman, J,D The
Design and Analysis of Computer Algorithms, Ad-
dison-Wesley, 1974.

[21 A~t-Kaci, H. A Lattice-Theoretic Approach to Com-
putation Based on a Calculus of Partiatly~Ordered
Type Structures. Ph.D. Thesis, Computer and
Information Science, University of Pennsylvania.
Philadelphia, 1984.

[a] A~t-Kaci, H., and Nasr, R. LOG[N: A Logic
Programming Language With Built-fn Inheritance.
Technical Report MCC-At-068-85, Microelectronics
and Computer Technology Corporation, Austin,
i985. To appear in The Journal of Logic Program-
ming.

[4] Allen, J.F., and Frish, A.M. "What's in ~ Semantic
Network'~ In Proceedings of the 20th Annual ACL
Meeting. Association for Computational Linguis-
tics, 1982.

[51 Brachman, R.J., Fikes, R.E., and Levesqu% H.J.
~KRYPTON: A Functional Approach to Knowledge
Representation' , FLAIR Technical Report N ° i6,
Fairchild Lab. for Artificial Intelligence Research,
Fairchild Research Center. Polo Alto, May 1983o

227

{g] Detiyaaani, Ao, mad KoT~valski, }LA. ~Dogic and Se-
mamtie Networks", Comm. 4 *he ACM, 22(3):184~
92. 1979.

{71 Huet, G. R&olution d~Eq~atione~ dana dee Langags~
d'Ordre £ 2, . . . w. Th~se de Do¢~orat d~Etat~ Umio.
versitd de Paris VH, France° 197~k

[g] Kowalskl, R.A° '~Logica {~r D~'ta Description", iLL
Logie a~'~d Data Ba~e;~ Oallaire, }L, as~d Minker,
2. (gds.), pp.7%.103. Plenum Press. 1978.

I9] McSkimin, JoR. and Minker, J. "A Predicate
Calculus Based Sema.ntie Network for Question-
Answering System~', In Associative N:e~wor~---fq8e
Representation and L,~se o/Xnowledge bg Comput-
ers, Findler, No (Ed@ Academic Press, New ~fbrk,
1979~

[10~ Reynolds, &C. =TransformationaI Systems and the
Algebraic Structure of Atomic Fbrmulas', tn AJa..
chine In~dligenee 5, Michie, D. (E&). Edinburgh
Universiv Press, 1970~

{I1] Robh~son, Jo.A~ ~A Macb~eoOriented Logic Based
on the Resolution Prineiple'~ Journag o[~he ACM
12(t):~ao41. lo65.

228

