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1 A b s t r a c t  

An elaboration of the Prolog language is described in 
which the notion of first-order term is replaced by a more 
general one. This extended form of terms allows the inte- 
gration of inherltance--an IS-A taxonomy~directly into 
the unification process rather than indirectly through the 
resolution-based inference mechanism of Prolog, This re- 
sults in more efficient computations and enhanced fan= 
guage expressiveness. The language thus obtained, called 
LOGIN, subsumes Prolog, in the sense that conventional 
Prolog programs are equally well executed by LOGIN. 

Av.&nowledgements: We wish to ~hank Bob Boyer, 
Matthias Fel|elsen, and Fernaado Pereira for their" con- 
structive feedback on the contents of the paper. 

2 Introduction 

Inheri tance can  be well captured in logic by the  se- 
mantics  of logical implication.  Indeed, 

vs. whaz,(x) ~ Mamma(w) 

is semantically satisfactory. However, it is not  pragmat- 
ically satisfactory. In a first-order logic deduction sys- 
t em using this implicat ion,  inheritance from "mammal"  
to "whale" is achieved by an inference step; whereas,  the 
special kind of information expressed in this formula some- 
how does not  seem to be meant  as a deduction s t ep - - thus  

lengthening p r o o f s w b u t  ra ther ,  as a means  to accelerate, 
or focus, a deduct ion process - - thus  shortening proofs. 

Massy proposals have been offered to deal wi th  in- 
her l taace and taxonomic  information in Automated  De- 
duction. Admit tedly ,  expressing everything in first-order 
logic as proposed in [6], and [4], is semantical ly correct.  
Nevertheless,  these approaches dodge the  issue of improv- 
ing the operational deduction process. Other more opera- 
tional attempts, like those reported in [9], and [5], propose 
the use of some forms of semantic network. However, it 
iS not always clear what semantics to attribute to these 
formalisms which, in any case, lose the simple elegance of 
Prolog-like expressiveness. 

As shown ~n [2], the syntax and operational interpre- 
tation of first-order terms can be extended to accommo~ 
date for taxonomic ordering relations between construc- 
tor symbols. As a result, we propose a simple and effi- 
cient paxadigra of unification which allows the separation 
of (multiple) inheritance from the logical inference ma- 
chinery of Prolog. 

We introduce in Section 3 the flavor of what we believe 
to be a more expressive and eft%lent way of using taxo- 
nomic information, as opposed to straight Prolog. Then, 
in Section 4, we discuss the adequacy of the use of first- 
order terms in Prolog. This leads to a proposal in Sec- 
tion 5 to embody taxonomic information as record-like 
type structures. An efficient unification algorithm which 
computes greatest lower bounds of such structures is then 
described in Section 6. Finally, in Sections 7 and 8, a sire- 
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pie in terpre ter  is i l lustrated on examples,  showing how 
this extended notion of terms m~y be integrated into the 

SLD-resolut ion me<hanism of Prolog.  

3 MoUvaUon 

Let us consider  the following exa~mple: 

f~ is known ~ha~ Ml persotks like themselves. 
Also, students are person,  and the individuM 
John is a ~tudent. 

This slmple informat ion can be expressed in first-order 
logic as: 

vz. person(z) ~ likes(z, z) 
& Vz. student(x) ~ person(x) 
& student(john)° 

and thus in Prolog by: 

likes(X,X) : -  person(X). 
per~om(X) :-  mtudent(X). 
student(john). 

To check whether  John likes himseg is hence: 

?- likes(johm, john) . 
Yes 
On the other hand, we can equivalently represent the 

information above in typed first-order logic as follows: 

Vx E person, l ikes(x,  x) 
& student C person 
& john  E student. 

NOW, if type checking (i.e., tha t  one set is the subset  of 
another, or one clement belongs to a set), can be done effi- 
ciently, then the typed translation can achieve better per- 

forraancG with no loss of semantics. Indeed~ in our little 
example~ to infer that John likes himself is immediate-- 
one application of mad~s ponsns rather than two in this 
case. This simple idea can be made practical~ and is the  
baMs of the  extenMon of Prolog we are presenting in this 
document. 

In Prolog, a resoint ion step involves a s ta te  t ransi t ion 
with context saving~ variable binding, etc., and is there- 
fore costly. The simple kind of togicM implication in the 
above problem should not contribute to the length of a 
deduction, indeed~ in this example it should be immedi- 
ate to see tha t  by virtue of being a student John is also a 
person. It would be convenient if one could declare that~ 
in the unification process, the symbol student can match 
the symbol person° Such declarat ions could look llke 

student < person. 
jslm < student. 

where the symbol ~<~ s tands  for %s a ' .  

In view of these declaxations~ the original problem 

could be reformulated using a typing notation such as 

likes(X : person, X). 

Then ,  by a unificntion step rather than by a resolution 
step, the previous aauswer follows for the query: 

?- likes(john. John). 

Thus, we can view the process of unification as computing 
a greatest lower bound of two symbols relative to the < 

ordering. 
This simple example may not be convincing as a true 

improvement. T h a t  is, one m~y argue tha t  t rading a uni- 
fication step for a resolut ion step is not  worthwhile.  How- 
ever, unification wi th  inherita~ace is by fax more  econom- 

ical than  reaolution.  Even if this were not  the case--i .e.~ 
the two steps of computa t ions  were equally c o s t l y - - a s  the 
length of inheritance chains increases the motivation, for 

using fast unification rather than resolution appears more 

clearly. 

4 An OperaUonal InterpretaUon 
of Terms 

In the logic interpretation of Prolog~ functional first- 
order terms which axe not variables appear as Skolem con- 

stants or functions. However, in Prolog~ such function3 
are never evaluated. RatheG they are used operationally 
as type ce~truetors. The most known example is the fa- 
mous cons list constructoG but a Prolog user can take 
advantage of this operational interpretation of terms for 
organizing data, as for instance, in database applications 
of Prolog [8]. 

As a result~ Prolog's operational use of first-order 
t e rms  makes them "behave as record structures~ e.g., a t e rm 
as person(x~ y, z) is seen as a three*field record,  whose 
fields may be given some conventional interpretation by 
the programmer (s~y~ first axgument is name, second is 
date of birth, and third is sex). The implicit operational 
semantics of such a constructor term is that it denotes the 

set (type) of ~ilt ~person" records in the database. 
Thus, unification of f irst-order terms becomes a 

simple-minded inheritance operatlon~ as variables in terms 
act as slots which are filled as they become instantiated. 
A subtype  of 

person(x, y, z) 

a generic denotation of the set of all (records of) persons 
in the database, may thus be 

per,son(name(john, z), Y, mode) 

a generic denotation of the set of all (records of) male 
persons with first name  John  in the  database .  In facG 
under  this in terpre ta t ion  of te rms  as types~ unif icat ion 
is interpreted as intersection of types. For exampl% the 

intersection of the set of persons whose l ~ t  name is the 
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same as their first name 

person(name(z, z), y, z) 

with the set of all male persons whose first name is John 

person(name(john, z) , y, ~ale) 

must be indeed tile set of all male persons named John 
John 

per son (name O'ohn, john L x, male). 

Since they are not operationally used as functions, 
Prolog first-order terms suffer from undeserved limitations 
in their syntax, a legacy of their original functional seman- 
tics. 

Looking at first-order terms purely syntactically in 
their use as type constructors, one finds that .fixed arity of 
signature symbols is an irrelevant burden. For example, if 
after extensive use of a three-field record person(z, y, z), 
a user realizes that a fourth field (say, social security 
number) is needed, all previous occurrences of the person 
record must be revised and given a fourth argument [61. 

Another limitation, which is also a corollary of fixed- 
arity, is that the interpretation of argument positions is 
non-transparent to the user. Indeed, in using a person 
record, one must always be aware that the first argument 
is a name, the second is a date, etc. Clearly, the classical 
explicit labeling of record fields by symbolic keywords is 
better than implicitly limiting these labels to be ordered 
ungapped sequences of integers. 

The third most fundamental limitation of terms as 
type structures can be best understood when one ponders 
upon the respective roles of signature and variable sym- 
bols in term unification. A signature symbol is a type con- 
structor and thus acts as an instantiatlon filter. Indeed, 
unification fails for two non-identical signature symbols. 
As a result, any further instance of, say, person(x,y ,z)  
must have person as root symbol. There is no reason why 
this filtering role of constructor symbols must be limited 
to an open/closed behavior. Indeed, person(x, y, z) should 
be allowed to be further instantiated as student(z,  y, z) if 
the interpretation of the data is such that a %tudent" type 
is a subtype of a ~person" type. This gradual filtering can 
be expressed as a partial ordering (type subsumption) on 
the constructor signature. Hence, unification of signature 

symbols is now seen as a greatest lOWer bound (GLB) op- 
eration. If a signature is augmented w ! t h a  special !east 
element symbol ± denoting failure of unlfication,:conven- 
tional unification of constructor symbols is stil! a GLB 

operation. .... 
On the other hand, a variable o=currence means the 

absence of filter; i.e., it is a wild card for term instantla- 
tion. As importantly, a variable has a second rote as it acts 
as a tag imposing equMity eon~traints among subterms-- 
d l  occurrences of the same variable in  a given term must 
be inst~tiated by identical: te~ms: : As an instaatlation 
wild card, a variable b~haves as a filter--very permissive, 
but a filter nonetheless. As a tag, it behaves as an equality 
constraint, tt is a key observation that variables should 

not carry such a dual information. Firstly, because it is 
the role of the signature symbols to carry filtering infor- 
mation. And secondly, because even in their equational 
role, variables are unduly llmited. Indeed, as variables are 
allowed to occur only as leaves in a term, they cannot im- 
pose equality constraints within the term; i.e., anywhere 
t¥om root to leaves. 

Based on these observations, it comes naturally that 
the wild card role should be played by a special great- 
set element symbol T augmenting the signature. As for 
equality constraints, we propose that variables be called 
tags and allowed to appear anywhere within a term. 

All the foregoing limitations are overcome in the syn- 
tax of partially-ordered type structures defined next. 

5 A Calculus  of T y p e  Contain- 

men% 

We shall call the syntactic representation of a struc- 
tured type a ~/~-term. Informally, a C-term consists of: 

1. A root symbol which is a type constructor, and de~ 
notes a class of objects. 

2. Attribute labels which are record field symbols, assc~ 
ciated with C-terms. Each label denotes a function 
in intenso from the root type to the type denoted by 
its associated sub@-term. Concatenation of labels 
denotes function composition. 

3. Core/erenee constraints among paths of labels which 
indicate that the corresponding attribute composi- 
tions denote the same functions. In other words, 
coreference specifies that some functional diagram 
of attributes must be commutative. 

Consider an example of such a g-term where the root 
symbol is person: 

persan(id => name; 

born => date(day => integer; 

month => menthuame; 

year => integer); 
father => person) 

It has three sub-C-terms under the attribute labels id, 
born, and father,  respectively. We follow the conven- 
tion of using identifiers starting with a tower-case letter 
for type symbols and attribute labels. Identifiers start- 
ing with an upper-case letter are tag symbols and denote 
coreference among attribute compositions. An example of 
a C-term with tags is: 

person(id => name(first => string; 

last ~> X : string); 
father => psrson(id => name(last ~> X : string))) 

The tag symbol X occurs under id.tast and father.id.last, 
and indicates a coreference constraint; i.e., identical sub~ 
structures. 

To be consistent, ~ tb-term's syntax cannot be such 
that different type structures are tagged by the same tag 
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symbol. For example, if something else than string ap- 
peared at the address father.{&last b: the above exam- 
ple, the ~%term would be ilbformedo Hence, in a well- 
formed ~*term--~or @ ,  %r short--we shall omit writing 
more than once the type for any given tag. ?br instance, 
the above #- term will rather be written as: 

person(id => n~ms(first => string; 
last => X : string); 

father ~> persen(id => name(last => X))), 

In particular, this convention allows the concise represen- 
tation of infinite structures such as: 

person(id => name(first => string; 
last => string); 

father => X : person(son => person(father => X))) 

where a cyclic core%rence is tagged by Xo 
The type signature E is a partially-ordered set of sym- 

bols° Such a signature always contains two specia] ele- 
ments: a greatest element (T) and a least element (A)° 
Type symbols denote sets of objects, and the partial order 
on E denotes set inclusion. Hence, T denotes the set of 
all possible objects--the universe. We shall omit writing 
the synfbol T explicitly in a wR; by convention, whenever 
a type symbol is missing, it is understood to be T. For 

example, in the wft: 

psrson(id => (first => string; 
last => X) ; 

father => persom(id => name(last => X))), 

T is the type symbol occurring at addresses id~ {dJast~ 
and f a~her°idAast° 

On the other hand, 25 denotes the empW set and is 
the type of no object. Consequently, _k may appear in 
no wft other than i ,  since that would entail that  there 
be no possible objeet for the corresponding attribute° As 
a result, any ¢-terra with at least one occurrence of i 
is identified to ±. Finally, since the information content 
of tags is simply to impose coreference constraints, it is 
clear that any one-to-one renaming of a wft's tags does 
not alter the information content of the wft. In summary, 
we shall consider wRs up to the above syntactic remarks 
to be structured type expressionso 

The information content of type structures such as 
those whose syntax ls informally introduced above can 
be formally defined. Namely, a wR structure can be seen 
as the conjunction of three mathematical abstractions: 

1. A C-term domain A - - a  regular set of finite strings 
of £° closed under the prefix operation. 

2. A coreference relation ~c--an equivalence relation on 
A of finite index~ which is right-invariant for label 
concagenatlom That  is, the number of eoreference 
classes is finite; and, whenever two addresses corefer, 
any pair of mddresses in the domain obtained from 
ahem by- further concatenation on the right must 
aNo eoreNr. 

3. A type function ¢~-e;xtending a partial function de~ 
fined from the set of coreference clauses A/pc to the 
type signature E by associating the type symbol T 
to all strings of/2* which are not in A. 

Thus, a wR is precisely formalized as such a ~riple 
(A.~,¢>. 

The ped'tial order on the type signature E is extended 
to the set of wRs in such a way as to reflect set inclusion 
interpretation. In%rmally, a wR h is a subtype of a wR t= 
if: 

1.. The root symbol of tl is a subtype in I3 of the root 
symbol of t2; 

2. ali at tr ibute labels of ta are also attr ibute labels of 
h ,  and their wRs in tl are subtypes of their corre- 
sponding wRs in ~;  and, 

3. All coreference constraints binding in ta must also 
be binding in he 

For example, if E is such that student < person and 
austin < cityname, then the wft 

student(id => name(first => string; 
last => X ; string); 

lives_at => Y : address(city => austin) 
father => perssn(id => name(last => X); 

lives st => Y)) 

is a subtype of the wh 

persen(id => name(last => X ; str ing);  
lives_at => address(city => cityname); 

father => person(id => name(last => X))) 

This partial ordering on wfts is formally defined as 
follows. A wR ta is a subtype of a wR t2 if and only if: 

either h = A; 

or h = (A:,~%,¢1}, t~ = (A:,~c~,¢z), 
and: 

1.-o A2 t~ A1 

In fact, a stronger result is proved in [2j .  Namely, if the 
signature E is such that GLBs (respectively, LUBs)exlst 
for atl pairs of type symbols with respect t o  the signature 
ordering, then GLBs (LUBs) atso exlst %r the extended 
wft ordering. In other words, the wft ordering extends a 
(semi-)tattiee structure from the signature t o  the wfts. As 
an example, if we consider the signature of Figure 1, then 
the LUB of the wft 

child(knows => X ; perso=(kao~s ~> queen; 
hates => Y : monarch); 

hates => child(knows => Y; 
likes ~> ~ick~d_qu~sn); 

likes => X) 

and the wR 
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adult(knowe = >  adult(l~aowe => witch); 
hatee => pereen(k~ows => X : mon~Eh; 

likes => X)) 

is the wft 

person(knows => pereen; 
hates => person(knows => monarch; 

likes => monarch)) 

and their GLB is the wft 

t e e n a g e r ( k n o w s  => X : a d u l t  (knows => w i c k e d _ q u e e n ;  
h a t e s  => Y : w i c k e d _ q u e e n ) ;  

hates => child(knows => Y; 
likes => Y);  

likes => X), 

The conventional case of first-order terms is just a par- 
ticular restriction of the above. Namely, first-order terms 

are C-terms such that: 

1. the signature is a f ia t  lattice--i.e., such that all the 
symbols, except for T and i ,  are incomparable; 

2. tags may appear only at leaf level, and when so, only 
with the symbol T; and, 

3. attribute labels are fixed initial sequences of natural 
numbers for each signature symbol. 

T 

p e r s o n  witch monarch 

adult child *~ 

tee~zager wi~kedquee~ 

l 

j 

Figure 1: A Signature Which Is a Lattice 

Furthermore, the GLB is given by first-order unifica~ 
tion [11]~ and the LUB is given by first*order generalizes 
tion [101. 

For the purpose of integrating logic prograurming and 

inheritance, all we shall need is C~term unification. We 
shall assume that the signature is a lower semMattice-- 
i .e. ,  GLBs exist for all pairs of type symbols. We need 
an algorithm which, given any pair of wfts, will compute 
the greatest wft which is a subtype of both wfts. This is 
explained next. 

6 The Unification Algor i thm 

We shall now describe an efficient ¢-term unification 
algorithm. This algorithm computes the ¢-term which is 
the greatest lower bound of two given C-terms. It assumes 
that the constructor symbol signature is a lower semi- 

lattice. The case where the signature is not a lower semi- 
lattice presents no real problem; for details, the reader is 
referred to [3]. 

The ¢-term unification algorithm was originally given 
and proven correct in [2], It uses the same idea as the 
method used by Huet [7] for unification of regular first- 
order terms based on a fast procedure for congruence clo- 
sure. However, HueCs algorithm is devised for conven- 
tional (i) fixed-arity terms with (ii) arguments identified 
by position, and ( i i i )  over fiat signatures. The algorithm 
presented next does not impose these stringent restric- 
tions. 

tn order to facilitate the presentation of the algorithm, 
we first introduce some notation. Although the syntax 
of C-terms allows ellipsis of unshared tags--i.e.,  at those 
addresses which are alone in their coreference class--it is 
clear that all addresses in a wft could be explicitly tagged. 
Let s and t be two C-terms to unify such that 

and such that s and t have their tags renamed apart; i .e. ,  

where 

tags(s) = {Xo} u U~L({Xd u ~ag~(~)) 

are the sets of all the tags occurring in ~ and t, respec- 
tively. 

Each tag uniquely identifies a ~b-term node containing 
the following information: 

• a tag identifier; 

a type constructor; 

. a set of next nodes uniquely indexed by attribute 
labels. 
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The tag identifier is superfluous in a real implementation 
where pointers or store addresses can be use& It is used 
here only for prese.ntation convenience. We shall use a 
pseud~re¢ord da ta  structure tagnode indexed on tag sym- 
bols with the appropria te  corresponding fields; e.g°, 

~ageode == record 

~d 
~yps 
~ub~ode~ 

e:ad 

*at .~ymbog; 
conatructor aymbd; 
set of pai~.s (label, *ag~ode); 
tagt~ode 

The field coreference carrms information about corefero 
ence class membership. Indeed, since the unification al- 
gori thm is a node<nerging process which coal~sces tag 
nodes, it is also necessary to represent coreference classes 
as disjoint sets of tag nodes. Such disjoint sets ~re repre~ 
seated using an inverted tree representation so tha t  each 
coreference class may be uniquely identified by one of its 
node e lements-- the  class representative. (The reader not 
faaniliar with the UNION/FIND problem is referred to [1], 
pp. 12~145.) Hence, a tagnode is its class representative 
if and only if its sere f e t ches  is ni l .  

Two operations on tag nodes are defined: 

e F I N D ( x )  returns the class representative of tag 
node z; 

* U N I O N ( x ,  y, z) per%rms the set union of the two- -  
disjoint---classes represented by x and y, and whose 
result has representative z. 

Also, we define 

to denote the set of attribute labels attached to the tag 
node x~ 

Given a tag node x and an at t r ibute  label l in ~abds(x), 
sub~erm(x,~) denotes the tag node under a t t r ibute  l of x; 
i.e., 

<l, v> e =sub,~od~s ~ s~+~rm(x, l) : v 

In the algorithm of Figure 2, a tag node id stands 
for the tag node itself. Initlatly, since no merging has 
yet  occurred, all tag nodes in tags(s) ~ tags(t) have 

coreference set to nil ( i .e ,  each tag node is alone in its 
class). 

Lnformally, this unification Mgorithm follows through 
aiI possible a t t r ibute  paths in both ~,b-termm Pairs of tag 
nodes that are reached fbllowlng the same path of at- 
tr ibutes tabeN are merged into coreferenee classes. Each 
class has a unique representative (given by FL~gD) where 
all information relative to the class is gathered, tn part ic-  
ular,  type symbols are coerced, by the GLB operation (A) 
on the signature E; and attribute labels of a node being 
merged must be carried to the representative of the class° 
This tatter procedure is described in Figure 3. 

The unification procedure returns either 2_ if a clash 
of type constructor occurs; or, tile C-term built  out of the 
raerged graph of tag n o d ~  Thls is what the R E B U I L D  
procedure does, as explicated in Figure 4~ Each merged 

procedure UNIFY{s,  t); 
begin 
P A I R S  ~. {(Xo, Y0}}; 
while PAIRS  # ~ do 

begin 
remove {x, y) from PAIRS; 
u ~ FIND(x); 
v +- FIND(y); 
Wu# v then 

begin 
cr ~-- u.~ype A v.type; 
~f cr = £ then return{i) 
else 

begha 
UNION(u, v, w); 
w.typ~ ~-- 0-~ 
~r each l hx tabds(u) U labegs(v) do 

begh:L 

then CARRY LAB EL(i, u, v) 
else C ARRY LAB E L(I, % u); 

if 1 6 ~b~z~(~) n ~bds@) then 
PAIRS .... PAIRS U {@ubterm(u, 1), subterm( v, l) ) } 
end 

end 
end 

end 

end 

Figure 2: The C-term Unification Procedure 

procedure CARRY LABEL(i, u, v); 
begka 
if l ¢ label~(v) 

end  

Figure 3: The C A B R Y L A B E L  Instruction 

class is a t t r ibuted a new tag node carrying the informa- 
tion assembled by the unification procedure at  the class 
representative nodes. 

The algorithm of Figure 2 is a variation on the algo- 
rithm deciding equivalence of two finite-state automata 

(see [t]). It computes the least coreference relation on at- 
t r ibute  label strings which is right-invariant for concate- 
nat ion of labels~ and contains both eoreferenee relatlons 
of the giw.n ¢ - t e r ~  (see I2]). 

Provided that two simple rules of computation for the 
UN ION  and FIND operations are observed which keep in- 
verted trees as balane~ and as * , m o w  as possible (see [1]), 
the Mgorlthm of Figure 2 has a time complexity of or- 
der almost linear in n, the total  number of nodes ( £ e .  

= t t~g~(~)  u t ~ g ~ ( t ) I ) ,  h fact ,  it has  a worst case 
upper bound of O(nG(n) ) ,  where G grows very slowly--- 
of the order of an inverse of the Aekerman function. In 

part icular ,  G(n) < 5 for all practical purposes! 
The reader is encouraged to trace tile algori thm on an 

example. A detailed trace is described in [3]o Next, we 
il lustrate LOGtN on two examples. 
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procedure REBUILD(tag~e$); 
begin 
CLASSES ~- U~e~ag,e~{FfND(x)}; 
for each • in CLASSES do ID[x] ~- NvwTagSyrabol; 
for each x in CLASSES do 

begin 
NODE ~- NewTagNode; 
with NODE do 

begin 
~d ~ -  XD[z]; 
~ype ~- ~.~ype; 
subnodea ~- {(l, ID[FIND(y)]) ] <I,y> ~ x.aubnode~}; 
csre/erence ~ nil 
end 

end 
return( I D[ F I N D( Xo ) ]) 
end 

Figure 4: The R E B U I L D  Procedure 

person yoodghiny grade 

s~aden~ 9oodgrade badgrade 

peter paul mary e b e d f 

Figure 5: A Signature for the Simple Example 

7 A Simple Example 
LOGIN is simply Prolog where first-order terms are 

replaced by e-terms. Thus, we shall simply show that 
the skeleton of a Prolog interpreter implementing a top- 
down/left-right backtracking search procedure can be 
adapted in a straightforfard manner: The unification pro~ 
cedure is simply replaced by  e- te rm unification, altered to 
allow for undoing coreference merging and type coercion 

upon backtracking. 
Let us consider the following simple example. The 

signature of Figure 5 is declared in LOGIN by: 

student < person. 
{peter, paul, mary} < student. 

{goodgrade ~badgrads} < grads. 
goodgrade < goodthing. 
{a, h} < goodgr~de. 
is, d, f} < badgr~de. 

This essentially expresses the facts that a student is a 

person. Peter, Pau], and Mary are students. Good grades 
and bad grades are grades. A good grade is also a good 
thing. ~A' and ~B' are good grades; but,  ~C', 'D' ,  and *F' 
are bad grades. 

In this context, we can define the following facts and 
rules. 

It is known that all persons like themselves. Also, 
Peter likes Mary; and, all persons like all good things. 
Thus, in LOGIN, 

likes(X : person, X). 
like s (peter, mary). 
likes (person, goodthing) . 

Peter got a ~C~; Paul got an 'F% and Mary an ~A'. Thus~ 

got (peter, c). 
got (paul, f) . 
got (mary, a) , 

Lastly, it is known that a person is happy if she got some- 

thing which she liken Alternatively, a person is happy if 

he likes something which got a good thing. Hence, 

happy(X : person) :- likee(X,Y),got(X,Y). 
happy(X : person) :- likes(X,Y) ,gst(Y,goodthing). 

Mary is happy because she likes good things, sad she 
got an ~A ~ which is a good thing. She is also happy 
because she likes herself, and she got a good thing. Peter is 
happy because he likes Mary, who got a good thing. Thus, 
a query asking for some "happy" object in the database 
will yield: 

?- happy (X), 
X = mary 

The why LOGIN finds the first answer (X = mary)  is 
as follows. The invoking resolvent happy (X  : T) unifies 
with the head of the first defining rule of the happy proce~ 
dure, by coercing X : -~ to X : person° The new resolven~ 
thus is: 

Next, likes(X : person, Y )  unifies with the first Mterna- 
tire of the definition of l ikes, confirming the previous type 
coercion of X : person, and merging coreference Y : 7 to 
X : person. The resolvent thus obtained is: 

got [X  : person~ X ) .  

This is not matched by anything in the database; and so, 
LOGIN must backtrack, reinstating the previous coercions 
and coreferences of resolvent (1). 

As a next choice, t i k e~ (X  : person, Y )  unifies with 
the second alternative of the definition of Hkes, further 
coercing X : person to X : peter, and coercing Y : T to 
Y : mary .  This produces the new resolvent: 

go~(X : pe~er, Y : mary) .  
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This literal finds no match in the database; and s% LO- 
GIN must backtrack again~ reinstating the previous coer- 
cions of resolvent (1). 

The third possible match is the last definition for 
the predicate likes, whereby Y : T is coerced to Y 
goodthing. This yieids the resolvent: 

go t (X:  person, Y : goodthing). 

For this, the only successful match is the third defini= 
glen of the got predicate. This yields the empty resolven% 
and the final result X : mary. 

At this point, if forced to backtrack, LOGIN attempts 
t.he next alternative match for the initial invoking reset- 
vent happy(X : 7-); namely, the second rule of the happy 
procedure. The next resolvent is thus: 

H~s(x : person, r), got(Y, goodth{ng). (2) 

A match with the first alternative of the Hkes defini- 
tion rnerges X and Y. This gives the resolvent: 

got ( X : person, goodthing). 

And this matches got(mary, a), producing the second re~ 
sult X = mary. 

tf backtracking is forced once again, resolvent (2) is 
restored° This time, as seen before, establishing the first 
literal of this resolveng eventualIy leads to coercing X : 

person to X : peter, and Y : T to Y : mary, resu]ting in 
the resoIvent: 

go~(Y : mary, goedthing). 

And this succeeds by matching got(mary, a). 
Hence, this third alternative branch of computation 

succeeds with the final result X = peter. The reader is 
left to convince herself that there is no other solutlon for 
that particular query~ 

The next section illustrates a more complex example 
involving the presence af attributes. 

8 A More Complex  Example  

The example of Section 7 was simple in the sense that  
it did not illustrate the use of inheritance among comptex 
~-term objects---e.g, records with attributes. One such 
example is next described.. 

In a type signature, such a type symbol as person has 
vlrtually any pesMble attribute typed as To ktowever, it 
may be desirable to constrain all possible database in- 
stances of person to be such that pazticular attribute 
types be more specific than To 

For example, }et us suppose that we want to impose 
that every legal record instances of person in the database 
must have: 

+ a field id which must be a name; 

a fietd dob which must be a date; and, 

a field as# which must have: 

- a field f i r s t  which must be string of characters 
between ~000' and *999'; 

- a field middle which must be string of charac= 

tars between '00' and "99'; and, 

- a field last which must be string of characters 
between ~0000' and ~9999k 

We can write this in LOGIN as: 

person = (id => name; 

dob => date; 

as# => (first => ['000'..,'~9']; 

middle => [ '00", . . '99 ' ] ;  
last => [~0000'..,'9999'])). 

where, name is specified as, say: 

name = (first => string; 
middle => string; 
last => string). 

and date as: 

date = (day => [ i . . , 3 i ] ;  
month => [ l . . .12] ;  
year => [&900.,.2000]). 

The " [ a . . . i l l "  notation is used to denote interval 
ranges over linearty ordered built-in types. For example, 
any string of character ~xy..°z' is an instance of the built= 
in type string, ordered lexicographically using, say, ASCII 
character codes. Thus, any interval of strings is a subtype 
of string; and unification corresponds to intersection. The 
same applies to types iike integer, real, eta. 

Now, let us suppose that we also want to specify that a 
student be a s a b ~ p e  ofper~on--ioe., that  it inherits what- 
ever at tr ibute restrictions imposed on person--and that  
student further imposes restrictions on some attributes; 
e.g., a student has a major  which must be a course, and 
further constrains the dob field to be have a year between 
1950 and 1970. This is achieved by: 

student = person(major => cou,r~e; 
dab => (year => [1950 . . , 1970] ) .  

Clearly, it must be checked that  these type specifiea~ 
tionos are not inconsistent. And this can be done statically, 
before running a LOGIN program. 

$lvailarly, we could elaborate the rest of the signature. 

For example, 

employee = peraon(positiQn => jebtitle; 
salary => Jut+get). 

werks~udy < employae~ 
workstudy < utnd+nt. 
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si = atudemt(I4 ~> (firmt => 'Soh~ ' ; 
last => 'Do~'); 

major => ¢omput~rSciemc~; 
ss# => (first => '$97'; 

middle a> '23'; 
last => '5876')). 

Wl = workstudy(id => (first => °Abebe' ; 
middl@ => 'Nmeugoudau ~ ; 
last => 'Bekila'); 

major => physicalEducatien; 
ss# => (first => '~99'); 
salary => I0000). 

Note that inheritance allows for ellipsis of information 

in the particular records of individuals in the database llke 

s l  and wl .  
Now, we can define facts and rules in the context of 

this signature. For instance, part of a course enrollment 

relation could be: 

takes(sl,  [csl01,csl21,ma217]). 
takes (wl, [pe999] ) . 

To express that all students taking less then 3 courses 
are considered part-time students, we write: 

parttime(X : student) :- 
takes(X,CL) ,length(eL,L), L<=3, 

where length is trivlally defined and computes the length 

of a list. 
Finally, to formulate that all persons whose social se- 

curity number starts with 999 is foreign, we write: 

fereign(person(ss# => (first => '990'))).  

Thus, a query asking for the last name of some foreign 
employee who is also a part-time student, and earns a 
salary less than 20000, is: 

query(X : string) :- 
foreign(Y : employee(salary => Z)), 
parttime(Y : student(id => (last => X))), 
Z < 20000. 

A remark worth making here is that extensive in- 
formation can be processed statically for LOGIN before 
run-time Thus, besides the inheritance type-checking 
already mentioned, some compile-time coercion mas~ be 
performed to maintain consistent typing in clauses, ln- 
deed, typing in the above query as we did would result 
in the automatic coercion of the ~-term under the tag Y, 
transforming it internally into: 

query(X : string) :- 
foreign(Y : workstudy(salary => Z', 

id => (last => X)) ,  
parttime (Y) . 
Z < 20000. 

Thus, should ± occur in a clause by static type coercion, 
the clause would be eliminated. 

We leave it as an exercise to the reader to verify that  
an answer to this query for the foregoing data is: 

?- query(X). 
X = 'Bekila" 

9 C o n c l u & i n g  l g e m a r k s  

We have given a summarized description of a seman- 
tically sound and operationally practical typed extension 
of Prolog, where type inheritance d la semantic network 
is cleanly and efficiently realized through a generalized 
unification process. We h~ve illustrated how this can be 
achieved on some detailed examples. The language thus 
obtained is called LOGIN, aa acronymic combination of 
=logic ~ and "inheritance ~. 

The gain that we feel LOGIN provides over the con- 
ventional Prolog language is twofold: 

1. the efficient use of taxonomic information~ as well as 
complex objects; 

2. a natural way of dealing efficiently with "set at a 
time" mode of computation essential to database 
applications. 

In addition, we feel that the inheritance model be- 
hind LOGIN offers great potential for compile-time con- 
sistency checking, and object-orlented computation in a 
logic programming paradigm. For example, it is possible, 
at compile-time, to narrow drastically the range of index- 
ing over a large database of individual records to only an 
appropriate view, based on the types of arguments of the 
predicates involved in the rules of a querying program. 
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