
J. LOGIC PROGRAMMING 1986:3:185-215 185

LOGIN: A LOGIC PROGRAMMING LANGUAGE WITH
BUILT-IN INHERITANCE

HASSAN A’iT-KACI AND ROGER NASR

D An elaboration of the PROLOG language is described in which the notion
of first-order term is replaced by a more general one. This extended form of
terms allows the integration of inheritance-an IS-A taxonomy-directly
into the unification process rather than indirectly through the resolution-
based inference mechanism of PROLOG. This results in more efficient
computations and enhanced language expressiveness. The language thus
obtained, called LOGIN, subsumes PROLOG, in the sense that conven-
tional PROLOG programs are equally well executed by LOGIN. a

it is clear that the internal functioning of intelligent assimilation. is constantly reinforced by the

causal situations in which the anticipations are followed by effective controls (the success or failure of the

swinging depending on whether the hanging object was really a mobile or not, etc.).

This does not mean that all the immediate inferences of the preoperational levels have a causal

content. They can serve as classifiers.

JEAN PIAGET, Understanding Causality

1. INTRODUCTION

Since the early days of research in automated deduction, inheritance has been
proposed as a means to capture a special kind of information, viz., taxonomic
information. For example, when it is asserted that “whales are mammals”, we
understand that whatever properties mammals possess should also hold for whales.

Address correspondence to Hassan Ai’t-Kaci or Roger Nasr, Artificial Intelligence Program, Microclec-
tronics and Computer Technology Corporation, 9430 Research Boulevard, Austin, TX 78759.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1986

52 Vanderbilt Ave., New York, NY 10017 0743-1066/86/$03.50

186 HASSAN AiT-KACI AND ROGER NASR

Naturally, this meaning of inheritance can be well captured in logic by the
semantics of logical implication. Indeed,

Vx.Whale(x) *Mammal(x)

is semantically satisfactory.
However, it is not pragmaticalfy satisfactory. In a first-order logic deduction

system using this implication, inheritance from “mammal” to “ whale” is achieved
by an inference step. But the special kind of information expressed in this formula
somehow does not seem to be meant as a deduction step-thus lengthening proofs.
Rather, its purpose seems to be to accelerate, or focus, a deduction process-thus
shortening proofs.

Many proposals have been offered to deal with inheritance and taxonomic
information in automated deduction. Admittedly, doing it all in first-order logic, as
proposed in [5] and [3], is semantically correct; nevertheless, these approaches dodge
the issue of improving the operational deduction process. Other, more operational
attempts, like those reported in [8] and [4], propose the use of some forms of
semantic network. However, it is not always clear what semantics to attribute to
these formalisms, which in any case lose the simple elegance of PROLOG-like
expressiveness.

As shown in [2], the syntax and operational interpretation of first-order terms can
be extended to accommodate taxonomic ordering relations between constructor
symbols. As a result, ‘we propose a simple and efficient paradigm of unification
which allows the separation of (multiple) inheritance from the logical inference
machinery of PROLOG.

By means of examples, we introduce in Section 2 the flavor of what we believe to
be a more expressive and efficient way of using taxonomic information, as opposed
to straight PROLOG. Then, in Section 3, we give a quick formal summary of how
first-order terms may be extended to embody taxonomic information as recordlike
type structures, together with an efficient type unification algorithm. This leads to a
technical proposal for integrating this notion of terms into the SLD-resolution
mechanism of PROLOG. We call the resulting language LOGIN. Together with
examples, we describe a LOGIN interpreter in Section 4. An appendix is attached in
which a formal semantics for LOGIN is sketched, as well as a lattice-theoretic
argument showing how LOGIN’s inheritance by unification and its “type as set”
semantics naturally provide a built-in set abstraction which makes “set at a time”
computations possible.

2. MOTIVATIONAL EXAMPLES

Let us consider the following example:

It is known that all persons like themselves. Also, students are persons, and the
individual John is a student.

This simple information can be expressed in first-order logic as

Vx.person(x) - likes(x, x)
& Vx.student(x) *person(x)
& student(john).

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 187

and thus in PROLOG by:

li kes(X,X) :- persono().
person(X) :- student(X).
studentt john).

To check whether John likes himself is hence

v- Likes(john,john). .

Yes

On the ther hand, we can equivalently represent the information above in trped
first-order logic as follows:

Vx E person. likes(x, x)
& student c person
& john E student.

Now, if type checking (i.e., that one set is the subset of another, or one element
belongs to a set), can be done efficiently, then the typed translation can achieve
better perfomace, with no loss of semantics. Indeed, in our little example, to infer
that John likes himself is immediate-one application of modus ponens rather than
two in this case. This simple idea can be made practical and is the basis of the
extension of PROLOG we are presenting in this paper.

Let us consider another example:

A student is a person; pl,. . . , p, are persons; sl,. . . , s, are students; pi and Sj
have the property prop for some i, 1 I i 5 n, and some j, 1 I j I m.

These simple data can be represented in a straightforward way in PROLOG as
follows:

person(X) :- student(X).
person(p1 I.
. . .

person(
student(sl).
. . .

student(sm).
prop(pi 1.
prop(sj 1.

Thus, a query asking for a person having the property prop is formulated by

?- person(X),prop(X).

PROLOG’s SLD-resolution engine finds the solutions to this query (namely, X = pi,
X= sj), by direct match (pi) and by one resolution step (sj) using the rule
translating the information that a student is also a person and then matching on the
student sj who has property prop.

In PROLOG, a resolution step involves a state transition with context saving,
variable binding, etc., and is therefore costly. The simple kind of logical implication

188 HASSAN A’iT-KACI AND ROGER NASR

FIGURE 1. A signature for inheritance.

in the above problem should not contribute to the length of a deduction. Indeed, in
this example it should be immediate to see that by virtue of being a student s, is
also a person.

It would be convenient if one could declare that, in the unification process, the
symbol student can match the symbol person. Such declarations could look like

student < person.
Cpl,... ,pn3 < person.
Csl,..., sm3 C student.

where the symbol ‘<’ stands for “is a”.
In view of these declarations, the original problem could be reformulated as

prop(pi 1.
prop(s j 1.

We can write the query using a typing notation such as

‘- propo(: person). .

Unification becomes the process of computing the greatest lower bound of two
symbols relative to the < ordering. Then, by a unifcation step rather than by a
resolution step, the two previous answers follow.

A declaration of inheritance information such as the above can be graphically
visualized as depicted in Figure 1.

We call such a declaration the specification of a signature. The signature
information is to be used by the unification process in order to realize inheritance.
The partial ordering of type symbols such as person or student in the signature,
denotes class containment.

This simple example may not be convincing as a true improvement. That is, one
may argue that trading a unification step for a resolution step is not worthwhile.
However, as we shall show later, unification with inheritance is by far more
economical than resolution. Even if this were not the case-i.e., the two steps of
computations were equally costly-as the length of inheritance chains increases, the
motivation for using fast unification with built-in inheritance appears more clearly.
Consider, for example, the following generic problem.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 189

A t, is a t,; a t, is a t,; . . . ; a t,_, is a t,; some individual t is a t,, and has the
property prop.

This translates into PROLOG as

tntX1 :- tn-l(X).
tn-l(X) :- tn-2(X).
. . .

t2tx1 :- t1tx1.
tl(t).
prop(t).

Now, asking for a t, with property prop will require n resolution steps before
matching on t.

In our new notation, the inheritance information for this generic example can be
expressed by the ordering declarations

t < tl.
t1 < t2.
. . .

tn-1 < tn.

together with the fact

prop(t).

Hence, the query

?- propo(: tn).

succeeds in one step of unification, rather than n resolution steps.

3. EXTENDED FIRST-ORDER TERMS

3.1. An Operational Interpretation of Terms

In first-order logic, a literal is a syntactic being of the form:

Pb l,...,fJ

where p is a predicate symbol, and the t,‘s are (functional) first-order terms.
First-order terms appear ubiquitously in logic and universal algebra. Given a family
{X,1 n E N} of disjoint ranked signatures of function symbols, the (functional)
signature Z = U ncNZn contains symbols to be interpreted as functions in some
semantic model, and the subscript n stands for the arity (or number of arguments)
of the functions these symbols are to denote. Symbols of arity 0 are to denote
c0nstants.l

Let Y be a nonempty, countably infinite set of variables. Then the set Tx,y- of
first-order terms on the signature Z and the variables V is defined inductively as

‘This explains the small technicality of always requiring that Z,, be nonempty-which guarantees
that potential models are nonempty.

190 HASSAN APT-KACI AND ROGER NASR

follows:

elements of V and 2, are first-order terms;

if fE Z, and ti,..., t, are first-order terms, then f(tr, . . . , t,) is also a first-order
term.

In the logic interpretation of PROLOG, functional first-order terms which are
not variables appear as Skolem constants or functions. However, in PROLOG, such
functions are never evaluated. Rather, they are used operationally as type construc-
tors. The best-known example is the famous cons list constructor, but a PROLOG
user can take advantage of this operational interpretation of terms for organizing
data, as for instance, in database applications of PROLOG [7].

As a result, PROLOG’s operational use of first-order terms makes them behave
as record structures; e.g., a term such as person(x, y, z) is seen as a three-field
record, whose fields may be given some conventional interpretation by the pro-
grammer (say, first argument is name, second is date of birth, and third is sex). The
implicit operational semantics of such a constructor term is that it denotes the set
(type) of all person records in the database.

Unification of first-order terms is a simple-minded inheritance operation, as
variables in terms act as slots which are filled as they become instantiated. A
subtype of

person(x, Y, z),

a generic denotation of the set of all (records of) persons in the database, may
thus be

person (name (john , X) , y, male),

a generic denotation of the set of all (records of) male persons with first name John
in the database. In fact, under this interpretation of terms as types, unification is
interpreted as intersection of types. For example, the intersection of the set of
persons whose last name is the same as their first name

person(name(x, x), y, z),

with the set of male persons whose first name is John,

person (name (john , x) , y , male) ,

must be indeed the set of all male persons named John John,

person (name (john , john) , x, male) .

Since they are not operationally used as functions, PROLOG first-order terms
suffer from undeserved limitations in their syntax, a legacy of their original
functional semantics.

Looking at first-order terms purely syntactically in their use as type constructors,
one finds that $xed arity of signature symbols is an irrelevant burden. For example,
if after extensive use of a three-field record person(x, y, z), a user realizes that a
fourth field (say, social security number) is needed, all previous occurrences of the
person record must be revised and given a fourth argument [5].

Another limitation, which is also a consequence of fixed arity, is that the
interpretation of argument positions is nontransparent to the user. Indeed, in using

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 191

a person record, one must always be aware that the first argument is a name, the
second is a date, etc. Clearly, the classical explicit labeling of record fields by
symbolic keywords is better than implicitly limiting these labels to be ordered
ungapped sequences of integers.

The third most fundamental limitation of terms as type structures can be best
understood when one ponders the respective roles of signature and variable symbols
in term unification. A signature symbol is a type constructor and thus acts as an
instantiation jilter. Indeed, unification fails for two nonidentical signature symbols.

As a result, any further instance of, say, person(x, y, z) must have person as root
symbol. There is no reason why this filtering role of constructor symbols must be
limited to an open/closed behavior. Indeed, person(x, y, z) record should be
allowed to be further instantiated as student(x, y, z) if the interpretation of the data
is such that a student type is a subtype of a person type. This gradual filtering can
be expressed as a partial ordering (type subsumption) on the constructor signature.
Hence, unification of signature symbols is now seen as a greatest fewer bound (GLB)
operation. If a signature is augmented with a special least element symbol I
denoting failure of unification, conventional unification of constructor symbols is

still a GLB operation.
On the other hand, a variable occurrence means the absence of any filter; i.e., it is

a wild curd for term instantiation. As importantly, a variable has a second role in
that it acts as a tag imposing equality constraints among subterms-all occurrences
of the same variable in a given term must be instantiated by identical terms. As an
instantiation wild card, a variable behaves as a filter-very permissive, but a filter
nonetheless. As a tag, it behaves as an equality constraint. It is a key observation
that variables should not carry such a dual information. Firstly, because it is the role
of the signature symbols to carry filtering information. Secondly, because even in
their equational role, variables are unduly limited. Indeed, as variables are allowed
to occur only as leaves in a term, they cannot impose equality constraints within the
term; i.e., anywhere from root to leaves.

Based on these observations, it comes natural that the wild card role should be
played by a special greatest element symbol T augmenting the signature. As for
equality constraints, we propose that variables be called tugs and allowed to appear
anywhere within a term.

All the foregoing limitations are overcome in the syntax of partially ordered type
structures defined next.

3.2. A Calculus of Partially Ordered Type Structures

We shall call the syntactic representation of a structured type a q-term. Informally,
a #-term consists of:

(1) A root symbol, which is a type constructor and denotes a class of objects.

(2) Attribute labels, which are record field symbols, associated with #-terms.
Each label denotes a function in intenso from the root type to the type
denoted by its associated sub-$-term. Concatenation of labels denotes func-
tion composition.

192 HASSAN AiT-KACI AND ROGER NASR

(3) Coreference constraints among paths of labels, which indicate that the
corresponding attribute compositions denote the same functions. In other
words, coreference specifies that some functional diagram of attributes must
be commutative.

An example of a #-term is

persontid => name;
born => datetday => integer;

month => monthname;
year => integer);

father => person)

The root symbol is person; it has three sub-#-terms under the attribute labels id,
born, and father, respectively. We follow the convention of using identifiers starting
with a lowercase letter for type symbols and attribute labels. Identifiers starting with
an uppercase letter are tug symbols and denote coreference among attribute
compositions.

An example of a #-term with tags is

personcid => nametfirst => string;
last => x : string);

father => persontid => nametlast => X : string)))

The tag symbol X occurs under id. last and father. id. last, and indicates a coreference
constraint, i.e., identical substructures.

We shall denote by Z the set of type constructors (the type signature), by Y the
set of attribute labels, and by .Y the set of tag symbols. Strings of attribute labels
are called (#-term) addresses. Thus, S* is the set of all possible addresses. A
#-term domain is the subset of LZ* of the addresses of the #-term; e.g., the domain
of the +-term of the first of the two #-terms above is

{ E; id, born, born .day, born .month , born. year, father }

where E denotes the empty string-the root address.
To be consistent, a #-term’s syntax cannot be such that different type structures

are tagged by the same tag symbol. For example, if something other than string
appeared at the address father.id.lust in the +-term above, it would be ill formed.
Hence, in a well-formed #-term-or wft, for short-we shall omit writing more
than once the type for any given tag. For instance, the second of the two $-terms
above will rather be written:

persontid => nametfirst => string;
last => x : string);

father => persontid => nametlast => X1)).

In particular, this convention allows the concise representation of infinite structures,
as shown in

persontid => nametfirst => string;
last => string);

father => X : person(son => persontfather => XI))

where a cyclic coreference is tagged by X.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 193

The type signature Z is a partially ordered set of symbols. Such a signature
always contains two special elements: a greatest element (T) and a least element
(I). Type symbols denote sets of objects, and the partial order on Z denotes set
inclusion. Hence, T denotes the set of.all possible objects--the uniuerse. We shall
*omit writing the symbol T explicitly in a wft; by convention, whenever a type
symbol is missing, it is understood to be T . For example, in the wft

person(id q > (first q > string;
last => XI;

father => personcid => nameclast q > XI))

T is the type symbol occurring at addresses id, id.last, and father.id.last.
On the other hand, I denotes the empty set and is the type of no object.

Consequently, _L may appear in no wft other than I , since that would entail that
there was no possible object for the corresponding attribute. As a result, any q-term
with at least one occurrence of _L is identified with I .

Finally, since the information content of tags is simply to impose coreference

constraints, it is clear that any one-to-one renaming of a wft’s tags does not alter the
information content of the wft.

The information content of type structures such as those whose syntax is
informally introduced above can be formally defined. Namely, a wft structure can
be seen as the conjunction of three mathematical abstractions:

(1) A J/-term domain A-a regular set of finite strings of 8* closed under the

prefix operation.

(2) A coreference relation K-an equivalence relation on A of finite index, which
is right-inuariant for label concatenation. That is, the number of coreference
classes is finite, and whenever two addresses corefer, any pair of addresses in
the domain obtained from them by further concatenation on the right must

also corefer.

(3) A type function +--extending a partial function defined from the set of
coreference classes A/K to the type signature Z by associating the type
symbol T to all strings of 9* which are not in A.

Thus, a wft is precisely formalized as such a triple (A, K, 4).

The partial order on the type signature Z is extended to the set of wfts in such a
way as to reflect the set-inclusion interpretation. Informally, a wft t, is a subtype of
a wft t, if:

(1) the root symbol of t, is a subtype in I: of the root symbol of t,;

(2) all attribute labels of t, are also attribute labels of t,, and their wfts in t, are
subtypes of their corresponding wfts in t,; and

(3) all coreference constraints binding in t, must also be binding in t,.

For example, if Z is such that the following ordering holds:

student <person, austin < cityname

194 HASSAN A’iT-KACI AND ROGER NASR

then the wft

studenttid => nametfirst => string;
last => x : string);

Lives-at => Y : addressccity => austin);
father => persontid => name(Last => Xl;

Lives-at q > Y))

is a subtype of the wft

personcid => name(Last => X : string);
Lives-at => addresstcity => cityname);
father => person(id => name(Last => X1)).

This partial ordering on wfts is formally defined as follows. A wft t, is a subtype
of a wft t, if and only if:

either t1 = I ;

or t, = (4, K~, G,), t2 = (A2, K~, q2), and
(1) A2 c A,,
(2) K2 c K1,
(3) vu Ep*, $1(u) 5 It/2(u).

In fact, a stronger result is proved in [2]. Namely, if the signature Z is such that
GLBs (respectively, LUBS)~ exist for all pairs of type symbols with respect to the
signature ordering, then GLBs (LUBs) also exist for the extended wft ordering. In
other words, the wft ordering extends a (semi-)lattice sfructure from the signature to
the wfts. As an example, if we consider the signature of Figure 2, then the LUB of
the wft

chiLd(knows => X : person(knows => queen;
hates => Y : monarch);

hates => chiLd(knows q > Y;
Likes => wicked-queen);

Likes => Xl

and the wft

aduLt(knows => aduLt(knows => witch);

hates => person(knows
Likes

q > x : monarch;
=> Xl)

is the wft

person(knows => person;
hates => person(knows => monarch;

Likes => monarch))

*The acronyms “GLB” and “LUB” stand for “greatest lower bound” and “least upper bound”,
respectively.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 195

FIGURE 2. A signature which is a lattice.

and their GLB is the wft

teenagertknows => X : adult(knows => wicked-queen;
hates => Y : wicked-queen);

hates => child(knows => Y;
likes => Y);

likes => XI.

It is not difficult to see that the conventional case of first-order terms is just a
particular restriction of the above. Namely, first-order terms are G-terms such that:

(1)

(2)

(3)

the signature is a JIal lattice-i.e.,
and I , are incomparable;

such that all the symbols, except for T

tags may appear only at leaf level, and when so, only with the symbol T ;
and

attribute labels are fixed initial sequences of natural numbers for each
signature symbol.

Furthermore, the GLB is given by first-order unification [lo], and the LUB is given
by first-order generalization [9].

Thus, in the language that we are about to describe, a first-order term such as

j(t 0 i,“‘,

is nothing but syntactic sugar for the q-term

f(l=+;...;n+J.

For the purpose of integrating logic programming and inheritance, all we shall
need is $-term unification. We shall assume that the signature is a lower semilattice
-i.e., GLBs exist for all pairs of type symbols. We need an algorithm which, given

196 HASSAN A’iT-KACI AND ROGER NASR

any pair of wfts, will compute the greatest wft which is a subtype of both wfts. This
is explained next.

3.3. The Type Unijkation Algorithm

We shall now describe an efficient #-term unification algorithm. This algorithm
computes the q-term which is the greatest lower bound of two given q-terms. It
assumes that the constructor symbol signature is a lower semilattice. The case where
the signature is not a lower semilattice presents no real problem. Appendix B
describes a simple lattice-theoretic construction solving this small technicality.

The #-term unification algorithm was originally given and proven correct in [2].
It uses the same idea as the method used by Huet [6] for unification of regular
first-order terms based on a fast procedure for congruence closure. However, Huet’s
algorithm is devised for conventional (1) fixed-arity terms with (2) arguments
identified by position, and (3) over flat signatures. The algorithm presented next
does not impose these stringent restrictions.

In order to facilitate the presentation of the algorithm, we first introduce some
notation. Although the syntax of G-terms allows ellipsis of unshared tags-i.e., at
those addresses which are alone in their coreference class-it is clear that all
addresses in a wft could be explicitly tagged. Let s and t be two #-terms to unify
such that

S=XO:f(kl~X~:sl,...,k,~X,:s,),

t=Yo:g(ll-Y+l,...,I,*Yn:t,)

and such that s and t have their tags renamed apart; i.e.,

tugs(s) f-l tags(t) = 0

where

tags(s) = { xCJ} u ij ({ xj} ’ t”gs(Si)),
i=l

are the sets of all the tags occurring in s and t, respectively.
Each tag uniquely identifies a G-term node containing the following information:

a tag identifier; 3

a type constructor;

a set of next nodes uniquely indexed by attribute labels.

For this reason, we shall use a pseudo-record data structure tagnode indexed on tag

3 This is superfluous in a real implementation where pointers or store addresses can be used. It is used
here for presentation convenience and will disappear later.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 197

symbols with the appropriate corresponding lields; e.g.,

tagnode = record
id
type :
subnodes :
coreference :

end

tag symbol;
constructor symbol;
set of pairs (label, tagnode);
tagnode

The field corefere~ce carries information about eoreference class members~p.
Indeed, since the unification algo~t~ is a node-merging process which coalesces
tag nodes, it is also necessary to represent coreference classes as disjoint sets of tag
nodes. Such disjoint sets are represented using an inverted tree representation4 so
that each coreference class may be uniquely identified by one of its node
elements-the class representative. Hence, a tagnode is its class representative if
and only if its coreference is nil.

Two operations on tag nodes are denned:

FINI) returns the class representative of tag node x;

UNIONfx, y, t) performs the set union of the two-disjoint-classes repre-
sented by x and y, and whose result has representative z.

Also, we define

labels(x) = (I 13y(I, y) E x.subnodes1

to denote the set of attribute labels attached to the tag node X.
Giv2.i a tag node x and an attribute iabel I in labels(x), subterm(x, l> denotes

the tag node under attribute I of X; i.e.,

(I, y) E x.s&todes * subterm(x, 1) =y.

In the algo~t~ of Figure 3, a tag node id stands for the tag node itself. Initially,
since no merging has yet occurred, all tag nodes in tags(s) U tags(t) have corefere~ce
set to nil (i.e., each tag node is alone in its class).

Inform~ly, this u~fication algo~thm follows through all possible attribute paths
in both #-terms. Pairs of tag nodes that are reached follo~ng the same path of
attribute labels are merged into coreference classes. Each class has a unique
representative (given by FIAV3) where all info~ation relative to the class is
gathered. In particular, type symbols are coerced by the GLB operation (A) on the
signature Z; and attribute labels of a node being merged must be carried to the
representative of the class. This latter procedure is described in Figure 4.

The unification procedure returns either _I_, if a clash of type constructor occurs;
or the $-term built out of the merged graph of tag nodes. This is what the
REBUILD procedure does, as explicated in Figure 5. Each merged class is attri-
buted a new tag node carrying the information assembled by the unification
procedure at the class representative nodes.

The algorithm of Figure 3 is a variation on the algorithm deciding equivalence of
two finite-state automata (see [I]). It computes the least coreference relation on

4The reader not familiar with the UNION/FIND problem is referred to [l, pp. 129-1451.

198 HASSAN APT-KACI AND ROGER NASR

procedure lJNZFY(s, t);
begin
Z’AZRS + {(%, %)I;
while PAIRS f 0 do

begin
remove (x, y) from PAIRS;
u +- FZND(x);
v + FZND(y);
if u + v then

begin
0 + u. type A v.type;
if a=_L thenretum(_L)
else

begin
UNZON(u, v, w);
w.type+a;
for each I in lubels(u) U labels(v) do

begin
if w=u

then CARRYLABEL(1, u, v)
else CARRYLABEL(l, v, u);

if I E lubels(u) n lubels(u)
then PAIRS + PAIRS U {(subterm(u, I),subterm(o, I))}

end
end

end
end

retum(REBUZLD(tags(s) U tugs(t)))
end

FIGURE 3. The +-term unification procedure.

attribute label strings which is right-inuariant for concatenation of labels, and
contains both coreference relations of the given #-terms (see [2]).

Provided that two simple rules of computation for the UNION and FIND

operations are observed which keep inverted trees as balanced and as shallow as
possible (see [l]), the algorithm of Figure 3 has a time complexity of order almost
linear in n, the total number of nodes [i.e., n = [tags(s) U tags(t) In fact, it has a
worst-case upper bound of O(nG(n)), where G grows very slowly-of the order of
an inverse of the Ackerman function. In particular, G(n) I 5 for all practical
purposes.

procedure CARRYLABEL(I, u, v);
begin
if 14 lubels(v)

then v.subnodes + V.&nodes U ((I, FZND(subterm(u, I))))
end

FIGURE 4. The CARRYLABEL instruction.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 199

procedure REBUILD(tagset);
begin
CLASSES -U {FIND(x));
for each x in C%f?%S do ID[x] +- NewTagSymboI;
for each x in CLASSES do

begin
NODE + NewTagNode;
with NODE do

begin
id*ZD[x];
type + x. type;
subnodes+- {(l,ZD[FZND(y)])](I, y) ~x.subnodes};
coreference + nil
end

end
retum(ZD[FZND(X0)])
end

FIGURE 5. The REBUILD procedure.

Let us illustrate the q-term unification algorithm of Figure 3 on a concrete
example. Let us take the G-term S:

X0 : student(advisor * X, : faculty

roommate * X2 : employee

and the #-term t:

(secretary 3 X3 : stafi
assistant * X,);

(representatioe - X3))

Y, : employee (advisor * Y, : fi (secretary = Y, : employee;
assistant - Y, : person);

roommate * Y, : student (representative * Y,);
helper * Y,: WI (spouse a r,))

to be the input arguments of UNIFY, in the context of the signature shown in
Figure 6.5 Then, the resulting q-term yielded by UNIFY is

Z, : workstudy(advisor * Z, : fi (secretary 3 Z,;
assistant - Z,);

roommate * Z, : workstudy (representative 3 Z,);
helper * Z, : w1 (spouse ==S Z,))

In order to help the reader follow the effect of this unification procedure on these
particular s and t, a description of a trace is detailed in Figure 7, Figure 8, and
Figure 9. For simplicity, in this trace we did not observe the two optimization rules
for UNION and FIND alluded to above. We took as a convention always to
perform UNZON(x, y, z) in such a way that z = y, i.e., by dereferencing x toward
y. Also, it is assumed that the FIND operation in this trace has no side effect on the
inverted-tree data structures.

‘By convention, T and _L will be implicitly present and omitted in all signatures.

200 HASSAN AiT-KACI AND ROGER NASR

FIGURE 6. A signature with multiple inheritance.

Figure 7 shows the steps of iteration-6 in this case. The second column shows
the evolution of the set PAIRS.

Figure 8 shows the ultimate dereferencing (via the coreference link) at the end of
the interactions of UNIFY, right before constructing the resulting q-term with
REBUILD.

Figure 9 shows the effect of the REBUILD procedure, together with the type
coercion information which happened during the unification process. A function
NewTagSymbol is assumed which generates a fresh tag symbol each time it is

invoked.

4. INTEGRATING INHERITANCE INTO PROLOG

4.1. A Simple Example

LOGIN is simply PROLOG where first-order terms are replaced by G-terms. Thus,
we shall show that the skeleton of a PROLOG interpreter implementing a top-down,
left-right backtracking search procedure can be adapted in a straightforward

Step (u* 0) Label From step

1
2 advisor 1
3 roommate 1
4 secretary 2
5 assistant 2
6 C&r Y2) representative 3

FIGUZZ 7. Trace of the G-term unification of s and t.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 201

Tag node

x,

x,

X2

X3

r,

r,

r,

r,

Y4

ys

Successor

r,

r,

yz

r,

r,

i

-I

-I

Y*

-I

Subnodes

advisor * A’,
roommate => X2

secretary = X3
assistant * X0

representative * X3

advisor * Yl
roommate * Y,

helper * q

secretaty * Y,
assistant * Y5

representative * Y,

spouse * Y,

Carried subnodes

advisor =+ Y,
roommate * Y,

helper 3 Y3

FIGURE 8. EKect of UNIFY(s, t) before REBUILD.

New tag node Class Types

zo {&,Y,,Y,1 student
employee

person

Z, {Xl,YlI faculty
fi

Z2 {x,,r,,x,*r,I employee
student

stafl
employee

5 l&l Wl

FIGURE 9. Effect of REBUILD at the end of UNZFY(s, t).

Conjoined type

workstudy

fl

workstudy

WI

manner.6 The unification procedure is simply replaced by q-term unification, altered
to allow for undoing coreference merging and type coercion upon backtracking.

Let us consider a simple example. We want to express the facts that a student is a
person; Peter, Paul, and Mary are students; good grades and bad grades are grades;
a good grade is also a good thing; ‘A’ and ‘B’ are good grades; and ‘C’, ‘D’, ‘F’ are
bad grades.

This information is depicted as the signature of Figure 10.

6For a formal “type-as-set” semantics of a typed logic of predicate with G-terms, see Appendix A

202 HASSAN A’iT-KACI AND ROGER NASR

FIGURE 10. A signature for the simple example.

The above taxonomic information is expressed in LOGIN as

student < person.
{peter, Paul, mary3 < student.
(goodgrade, badgrade < grade.
goodgrade < goodthing.
<a, b3 < goodgrade.
Cc, d, f3 < badgrade.

In this context, we define the following facts and rules.
It is known that all persons like themselves. Also, Peter likes Mary, and all

persons like all good things. Thus, in LOGIN,

li kes(X : person, XI.
likes (peter, mary).
likes(person, goodthing).

Peter got a ‘C’, Paul an ‘F’, and Mary an ‘A’. Thus,

gottpeter, c).
gottpaul, f).
gottmary, a).

Lastly, it is known that a person is happy if she got something which she likes.
Alternatively, a person is happy if he likes something which got a good thing.
Hence,

happyo(: person) :- likeso(, Y), got(X, Y).
happyo(: person) :- likeso(, Y), got(Y, goodthing).

Mary is happy because she likes good things, and she got an ‘A’-which is a
good thing. She is also happy because she likes herself, and she got a good thing.
Peter is happy because he likes Mary, who got a good thing. Thus, a query asking

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 203

for some “happy” object in the database will yield

‘- happy(X). .

x = mary ; /* forces backtracking */

x= mary ; /* forces backtracking */

x= peter ;

No

The way LOGIN finds the first answer (X = mq) is as follows. The invoking
resolvent huppy(X: T) unifies with the head of the first defining rule of the happy
procedure, by coercing X: T to X: person. The new resolvent thus is

likes(X: person, Y), got(X, Y). (1)

Next, fikes(X: person, Y) unifies with the first alternative of the definition of likes,
confirming the previous type coercion of X: person, and merging coreference Y: T
to X: person. The resolvent thus obtained is

got(X: person, X).

This is not matched by anything in the database, and so LOGIN must backtrack,
reinstating the previous coercions and coreferences of the resolvent (1).

As a next choice, likes(X: person, Y) unifies with the second alternative of the
definition of likes, further coercing X: person to X: peter, and coercing Y: T to
Y : maty. This produces the new resolvent

got(X: peter, Y: mary).

This literal finds no match in the database, and so LOGIN must backtrack again,
reinstating the previous coercions of the resolvent (1).

The third possible match is the last definition for the predicate likes, whereby
Y : T is coerced to Y: goodthing. This yields the resolvent

got (X : person, Y : goodthing).

For this, the only successful match is the third definition of the got predicate.
This yields the empty resolvent, and the final result X= maty.

At this point, if forced to backtrack, LOGIN attempts the next alternative match
for the initial invoking resolvent happy(X: T), namely, the second rule of the happy
procedure. The next resolvent is thus

likes (X : person, Y) , got (Y, goodthing). (2)

A match with the first alternative of the likes definition merges X and Y. This
gives the resolvent

got (X : person, goodthing).

And this matches got(mary, a), producing the second result X = maty.
If backtracking is forced once again, resolvent (2) is restored. As seen before,

establishing the first literal of this resolvent eventually leads to coercing X: person

204 HASSANAfT-KACIANDROGERNASR

to X: peter, and Y: T to Y: mary, resulting in the resolvent

got (Y : maly, goodthing).

And this succeeds by matching got(mary, a).
Hence, this third alternative branch of computation succeeds with the final result

X = peter.
The reader is left to convince herself that there is no other solution for that

particular query.

4.2. The LOGIN Interpreter

One important remark must be made in the light of the previous example. Namely,
the conceptual PROLOG interpreter must be altered to accommodate undoing
effects of q-term unification upon backtracking.

Now, #-term unification does not carry coercion information by composing
variable substitutions as is done for conventional first-order terms. The bound
unbound effect of the logic variable is here refined into gradual type coercion and
coreference class merging. Hence, actual merging of classes as done in the +-term
unification procedure by the REBUILD operation is out of the question, since it
would make it very hard to “unmerge” classes after unification.

Although we could present an interpreter using the efficient way of doing
UNION and FIND alluded to before, we wish to simplify our presentation by
taking a simpler convention. Namely, the #-term unification algorithm used in this
prototype of a LOGIN interpreter performs merging of two coreference classes by
dereferencing a chronologically younger one toward an older one. This convention
is common in existing PROLOG compiler implementations. Indeed, dereferencing
from the younger to the older minimizes dereference chains, and suppresses the
need (and overhead) of resetting older registers upon backtracking.

Although we do not have the experimental evidence to support a comparison of
performance between these two ways of performing unification, we feel that our
choice makes at least this initial description of a workable LOGIN interpreter easier
to comprehend.

Be that as it may, it is not our intent to stress performance at this stage.
Designing a LOGIN compiler will address all necessary issues regarding economy of
work.

As before, we shall need some pseudo data structures to describe our algorithms.
They are needed to represent a LOGIN program. Conceptually, we assume a
function PROGRAM which takes as arguments a predicate symbol and its arity,
and returns the associated definition, i.e., a list of clauses, or nil if none is defined
for this pair. We shall assume a predefined linear list data type, with head and tail
fields, and a list concatenation operation APPEND.

A clause consists of an array of #-terms which are the formal parameters for this
alternative definition:

clause = record
args :
body :

end

array of psiterm;
list of literal

LOGIC PROGRAMMING WITH BUILT. IN INHERITANCE 205

A dejinition is the representation of a LOGIN procedure. It is essentially a linear
list of alternative clauses. Hence, nil represents an empty definition:

dejinition = record
jirstdef : clause;

otherdef : dejinition

end

A literal is the atomic predicate/arity cum #-term arguments construct:

literal = record
predicate : symbol;

arity : integer;

args : array of psiterm

end

As for #-terms, they are represented as tagnode before (this time without the
superfluous id), augmented to allow for resetting upon backtracking. Namely, a
field newtype will carry the coercion information, and a field newsubnodes the
carried subterms. The reason for these fields is to preserve the original values of the
type and subterms to be reset upon backtracking:

psiterm = record

we : constructor symbol;

subnodes : set of pairs (label, psiterm > ;
coreference : psiterm

newtype : constructor symbol;
newsubnodes : set of pairs (label, psiterm);

end

Initial values for these extra fields are, respectively, nil (corejerence), nil (newtype),

and 0 (newsubnodes). In order to reflect this modification in the representation of

+-terms, we define the functions

subnodes (x) = x. subnodes U x. newsubnodes

and

type (x) =
(.

z’ rp2type
if x. newtype # nil

otherwise

and thus we must adapt

labels(x) = {I: 3y(l, y) E subnodes(

and

subterm(x, 1) =y such that (I, y) E subnodes(

The backbone of LOGIN is described in Figure 11 as the procedure PROVE. It
works exactly as a PROLOG SLD-resolution interpreter does. The only difference is
the INHERIT procedure which replaces first-order term unification, shown in
Figure 12.

The reader will notice that the INHERIT procedure is a straightforward adtpta-
tion of the +-term unification procedure described in Figure 3.

206 HASSAN APT-KACI AND ROGER NASR

function PROVE(resolvent : list of literal; background : trail)
returns : (boolean; trail);

begin
if resolvent = nil then retum((true, background))
else

begin
goal + resolvent. head;
nextgoals * resolvent. tail;
defiit + PROGZUM(goal.predicate,goal.arity);
success + false;
eflect + 0 ;
while (defist # nil) and (not success) do

begin
effect + RESET(effect);
currentdef + COPY(deJist.jrstdef);
defrist + defist. otherdef;
unifiable * true; i + 1;
while unifiable and (i < goal.arity) do

begin
(unifiable, eflect) + ZNHEZUT(goal. args[i], currentdef. args] i], eflect);
i&i+1
end;

if unifiable
then (success,eflect) + PROVE(APPEND(currentdef. body,nextgoals),effect)
end;

retum((success, e$ect U background))
end

FIGURE 11. The LOGIN Interpreter.

The function COPY takes a #-term and returns a new copy of it and its
subterms. Because of our dereferencing convention, there is no more need for a
separate CARRYLABEL function which tests how the dereference was performed
by UNION. Also, the function DEREF is the same as FIND defined before, but
without side effect.

The only information necessary for backtracking purposes is the set of q-term
nodes affected during unification. We call such a set of #-terms a trail. The function
RESET is applied to the current trail upon failure. It processes each of its #-terms
by resetting the fields coreference and newtype to nil, and the field newsubnodes to
0. The value returned by RESET is the empty set.

The next section illustrates a more complex example involving the presence of
attributes.

4.3. A More Complex Example

The example of Section 4.1 was simple, in the sense that it did not illustrate the use
of inheritance among complex J/-term objects-e.g., records with attributes. One
such example is next described.

Consider the signature of Figure 6. As it stands, such a type symbol as person
has virtually any possible attribute typed as T . However, it may be desirable to

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 207

function INHERIT(s, t : psiterm; background : trail);
returns : (boolean; trail);

begin
PAIRS + {(s, t)};
unifiable + true;
effect + 0 ;
while unifiable and (PAIRS + 0) do

begin
remove (x, y) from PAIRS;
u + DEREF(x);
u i- DEREF(y);
if u+vthen

begin
0 + type(u) A type(u);
if u = I then unz$able + false
else

begin
v. coreference + u;
u. newtype + a;
effect+effectU{u,o};
for each I in labels(u) do

if I in labels(u)
then PAIRS+ PAIRSU {(subterm(u, I),subterm(u, I))}
else u. newsubnodes + u. newsubnodes U {(I, DEREF(subterm(v, I)))}

end
end

end;
retum((unzjiable, effect U background))
end

FJGURE 12. The Inheritance Algorithm for LOGIN.

constrain all possible database instances of person to be such that particular
attribute types be more specific than T .

For example, let us suppose that we want to impose that every legal record
instances of person in the database must have:

a field id which must be a name;

a field dob which must be a date; and

a field S.S# which must have:

a field first which must be a string of characters between ‘000’ and ‘999,
a field middle which must be a string of characters between ‘00’ and ‘99’, and
a field last which must be a string of characters between ‘0000’ and ‘9999’.

We can express this in LoGIN as

person = (id => name;
dob => date;
SS# => (first => C’OOO’ . . . ‘999’1;

middle => t’O0’ . . . ‘99’1;
last => C’OOOO’ . . . ‘9999’3)).

208 HASSAN ATT-KACI AND ROGER NASR

where name is specified as

name = (first => string;
middle => string;
last => string).

and date as

date = (day q > C1...313;
month => c1...121;
year => C1900...20003).

The “[a.. . p]” notation is used to denote interval ranges over linearly ordered
built-in types. For example, any string of character ‘xy . . . z’ is an instance of the
built-in type string, ordered lexicographically using, say, ASCII character codes.
Thus, any interval of strings is a subtype of string; and unification corresponds to
intersection. The same applies to types like integer, real, etc.

Now, let us suppose that we also want to specify that student is a subtype of
person-i.e., that it inherits whatever attribute restrictions imposed on person-and
that student further imposes restrictions on some attributes; e.g., a student has a
major which must be a course, and further constrains the dob field to have a year
between 1950 and 1970. This is achieved by

student = person(major q > course;
dob => (year => C1950...19703)).

Clearly, it must be checked that these type specifications are not inconsistent.
And this can be done statically, before running a LOGIN program.

Similarly, we could elaborate the rest of the signature of Figure 6. For example,

employee = person(position => jobtitle;
salary => integer).

workstudy < employee.
workstudy < student.

sl = student (id => (first => 'John';
last => 'Doe');

major => computerscience;
ss# => (first => '897';

middle => '23';
last => '5876')).

WI = workstudytid q > (first => 'Abebe';
middle => 'Nmougoudou';
last => 'Bekila');

major => physicalEducation;
ss# => (first => '999');
salary q > 10000).

Note that inheritance allows for ellipsis of information in the particular records
of individuals in the database like sl and wl.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 209

Now, we can define facts and rules in the context of this signature. For instance,
part of a course enrollment relation could be

takes(s1,Ccs101,cs121,ma2171).
takes(ul,Cpe9991).

To express that all students taking less than 3 courses are considered part-time
students, we write

parttimeo(: student) :- takes(X,CL),length(CL,L), L <= 3.

where length is trivially defined and computes the length of a list.
Finally, to formulate that all persons whose social security number starts with

999 are foreign, we write

foreign(person(.ss# q > (first => '999'))).

Thus, a query asking for the last name of some foreign employee who is also a
part-time student, and earns a salary less than 20,000, is

queryo(: string) :-
foreign(Y : employee(salary q > Z)),
parttime(Y : studenttid => (last q > XI)),
z < 20000.

A remark worth making here is that extensive information can be processed
statically for LOGIN before run time. Thus, besides the inheritance type checking
already mentioned, some compile-time coercion must be performed to maintain
consistent typing in clauses. Indeed, typing in the above query as we did would
result in the automatic coercion of the #-term under the tag Y, transforming it
internally into

queryo(: string) :-
foreign(Y : workstudy(salary => Z;

id => (last => XI,
parttime(
z < 20000.

Thus, should J_ occur in a clause by static type coercion, the clause would be
eliminated.

We leave it as an exercise to the reader to verify that an answer to this query for
the foregoing data is

?- query(X).

X = 'Bekila'

5. CONCLUDING REMARKS

In the foregoing sections, we have presented a semantically sound and operationally
practical typed extension of PROLOG, where type inheritance ti la semantic
network is cleanly and efficiently realized through a generalized unification process.
The language thus obtained is called LOGIN, an acronymic combination of “logic”
and “inheritance”.

210 HASSAN A’iT-KACI AND ROGER NASR

The gain that we feel LOGIN provides over the conventional PROLOG language
is twofold:

(1) the efficient use of taxonomic information, as well as complex objects;

(2) a natural way of dealing efficiently with the “set at a time” mode of
computation essential to database applications.7

In addition, we feel that the inheritance model behind LOGIN offers great potential
for compile-time consistency checking, and object-oriented computation in a logic-
programming paradigm. For example, it is possible, at compile time, to narrow
drastically the range of indexing over a large database of individual records to only
an appropriate view, based on the types involved in the rules of a querying program.

APPENDIX A. A SEMANTICS OF INHERITANCE LOGIC

We give here (1) a “type-as-set” denotational semantics of the #-term calculus of
partially ordered types, and (2) an interpretation of a first-order typed Horn-clause
logic using #-terms as types.

A. 1. Semantics of J/-terms

We assume the existence of an abstract interpretation universe @ of objects, where
our types take meaning. A type is an intensional denotation of a set of elements in
this universe. For example, the type person denotes the class of all objects in 9
which are categorized as persons. Some consensual agent is postulated-e.g., a
programmer or an interpreter-for which such a categorization is meaningful. For
example, it is reasonable to suppose that the reader’s understanding of the English
word “ person” concurs with ours as far as our common-sense interpretation,
namely, a particular subclass of the class % of all objects. Hence, in particular, the
least informative type (T) denotes the whole universe @‘, and the overdejined type
(I) is the inconsistent type, and denotes the empty set-the set of no object.

The subtype relation is interpreted as set inclusion in the semantic universe @.
For example, if the set of students is contained in the set of persons, then the type
student is a subtype of the type person.

Let T be such a set of types, endowed with a subtype ordering relation I . A
type semantics in an order homomorphism:

where 2* is the set of all subsets of a. Namely:

t[[T]=%/,

1[I]I=0,

and for all s, t in T,

(3)

(4)

‘See Appendix B.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 211

Furthermore, if GLBs exist, it is desired that

& A t] = &~]l n 6111. (5)

In addition to signature type denotation, the information content of attributes
and inheritance of attributes must be given a denotation which is congruent with the
constructor types. For example, given that the type person is interpreted as a set of
objects of &‘, specifying the types of certain attributes of person is a means to
denote a further restriction of the type person-e.g., talking about the class of
persons whose last name is a character sting, rather than anything (T). Thus, an
attribute denotes the intension of a function between subsets of the universe ‘3.
Attribute concatenation denotes function composition, and attribute coreference
denotes the fact that certain functional diagrams commute.

More precisely, let 2, s be a partially ordered type signature, and let 1 be a type
semantics for it. Now, we need to indicate how to extend this type interpretation
consistently to one for #-terms. Let us define a monoid homomorphism n from Z*
with string concatenation to the set &* of functions from S! to ??J, with function
composition. That is,

for each label I in 2, q[ljJ is a function in a/“;

nI(&]I is the identity on %;

vu, v EYEp* : q[u.v] = q[vD 0 q[u].

The type semantics L is extended to q-terms by the denotational semantic
equations (6)-(9). These equations can be construed as “evaluation” rules for all
possible syntactic cases. That is, the set which is the meaning of a given #-term is
obtained by repeatedly applying Equations (6)-(9). These rules are clearly well
founded (i.e., there cannot be an infinite interpretation sequence using them)
because of the finiteness of a #-term’s domain and coreference relation index. Also,
the order in which these equations are applied does not matter, because of
commutativity of set intersection.

Equation (6) treats the simple attribute case.

rCf(r =zl t>n = { XE wnp_+ an, an(x) =Y}. (6)
It is now clear that the identification with I of all $-terms where I occurs is
justified by this semantics. Indeed, by (6), it comes immediately that

Inf(r~~)n=Ir~n= 0.

Equation (6) is generalized to many attributes as follows:

lUf(l, * t,;...;I, + t,)n = ii df(r,= t,)n (7)
i=I

Attribute coreference means that compositions of attribute functions commute,
as expressed by Equation (8):

li+ln = {X~ lu~2~IOu~0.l,ncx) =dk,.uw)~ (8)
where

~l=f(l,*g,(l,* **-g,(l,*X:t)...);

kph&k,- **- h,(k,-X)...))

212 HASSAN AiT-KACI AND ROGER NASR

and

lC’q=f(lO*g&l* ... g,(l,*t)...);

k,4,(kl=l, *-. h,(k,*t)...)).

Finally, cyclic coreference corresponds to fixed points of attribute functions, as
expressed in

(9)

It is not difficult to verify that axioms (3)-(5) hold for this type semantics.

A.2. Typed Horn Clauses

It is clear how a typed logic may be mapped into an untyped logic. Namely, any
well-formed quantified logical formula of the form:

Vx: 1.Iy
is semantically equivalent to

VX.l,(X) *cy,

where 1, is the characteristic predicate of the set denoted by the type t (i.e., l,(x) is
true if and only if x is an element of the set denoted by t). Similarly for existential
quantifiers:

3X: 2.U
is semantically equivalent to

3x.l,(x)*ar.

A PROLOG program is a conjunction of Horn clauses of the form
(Y()*(Yr,...,(Y,

where the syntactic scope of a variable is limited to a single clause, such that the
following implicit quantification rules apply: *

all variables which appear on the left side of the symbol ‘ + ’ are universally
quantified, and

all other variables (i.e., all those which appear in the right-hand side but not in
the left-hand side) are existentially quantified.

For example the Horn clause

P(XW-q(XZMzY)

reads

VX,VY,3Zq(X, Z)&r(Z,Y) dP(X,Y).

8Naturally, in prolog clauses seen in prenex disjunctive normal form, all variables are universally
quantified. However, this remark deals with a PROLOG clause seen as an implication where each
implicit quantifier would be as close to its variable as possible.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 213

FIGURE 13. A signature which is not a semilattice.

Thus, LOGIN may be similarly interpreted as a typed extension of Horn logic
using the semantics of types described in Section A.l.

APPENDIX B. A SIMPLE SEMJLA’ITICE CONSTRUCTION

The G-term unification algorithm given in Section 3.3 relies on the assumption that
the signature): must be a lower semi-lattice; i.e., that a unique GLB exists in Z for
any two type symbols in I: (given by the A operation). However, in practice this is
not quite a reasonable assumption to make. Indeed, in order to maintain this
assumption, as the size of type signature grows, there must be specified an
exponential number of pairwise GLBs-clearly, an inappropriate demand on a
programmer.

Instead, it would be simpler to embed a partially ordered type signature Z which
is not a lower semilattice into the least such structure which would contains it-up
to some isomorphism. This embedding must preserve the order structure of 2, and
in particular, existing GLBs. Such an embedding must also be semantically sound.

The idea is rather simple, and makes intuitive sense. Let us consider for example
the signature of Figure 13. Types wt, . . . , wk are both students and employees.
However, there is not a common type symbol to designate the set of students and
employees. Thus, the GLB of student and employee in this signature cannot be
defined as a unique element of the signature. Nevertheless, it makes sense to say that
the GLB of student and employee ought to be the set { wl,. . . , wk}. This is precisely
the effect that the following construction achieves.

In what follows, we make the assumption that the signature is finite.9 First, we
need some definitions.

The restricted powerset of a partially ordered set S, I (poset) is the set 2cs) of
nonempty finite subsets of pairwise incomparable elements of S. Such subsets are

91n fact, as shown in [2], such a construction can be performed for an infinite signature which is
Noetherian-i.e., one which does not contain infinite ascending chains.

214 HASSAN A’iT-KACI AND ROGER NASR

called crowns, and are partially ordered.by a relation r defined by

XL Y iff VxEX,!lyE Y, xry.

Given a poset S, I , the canonical injection from S into 2(s) is the function
which takes every element x of S to the singleton {x }. This simple function has the
nice property that

VxES, VyES, {x}E {y} iff xly.

That is, it is an order homomorphism.
Given any subset X of S, we define its maximal restriction [Xl as the set of

maximal elements of X. Clearly, [Xl is in 2(s), and defined for all subsets of a finite
poset S.

Given some element x of S, we denote by x the subset of S of all lower bounds
of x. That is,

x= {yESlysx}.

Then, for any two elements a, b in S, a n _b is the set of common lower bounds of a
and b in S.

Finally, the following operation 17 can be defined for any pair of subsets X, Y in
2’S’:

and this operation is a GLB operation in 2 (‘) Informally, we may describe what is .
performed by the operation of Equation (10) as “skimming the cream off the
crown” of the set of all common lower bounds of all pairs of elements.

As a result, 2(s), c , n is a lower semilattice. Furthermore, we observe that if two
elements x and y in S already have a unique GLB z in S, it follows that

{x> n {Y I= {4’
Hence, this construction is a structure embedding, since it preserves the ordering
and the GLBs when they exist in S.

Now, we are justified in taking the liberty of writing simply x rather than {x } for
any single element of a type signature Z, and extending the signature to 2@), the
GLB-preserving lower-semilattice extension of Z. And this is the “least” such
possible structure, because if Z is already a lower semilattice, then it is isomorphic
to its canonical injection into 2(“).

That such an embedding is semantically sound becomes clear when one under-
stands the semantics of a type such as {t,, . . . , t, }. In a “ type as set” semantics, the
LUB of the types ti (i=l,..., n) should also be the LUB of everything that is
subsumed by every tj. Hence, it results naturally that

i=l

In the implementation of an operation such as defined by Equation (lo), maximal
common lower bounds of two elements can be computed by an asynchronous
parallel marking method. This achieves efficient “set at a time” computation, as
opposed to the conventional “element at a time” way of PROLOG.

LOGIC PROGRAMMING WITH BUILT-IN INHERITANCE 215

We wish to thank Scott Danforth, Matthias Felleisen, and Joe Scullion for their sharp proofreading and

corrections of an earlier draft. We are especially indebted to Matthias for pointing out technical

inconsistencies, for challenging discussions, and for his enthusiastic encouragements. We are also grateful

to Bob Boyer, Fernando Pereira, and David Russinoff for helping us eliminate several misconceptions.

Finally, the form and content of this paper have benefited from several conversations with Franqois

Ban&&on, Shalom Tsur, and Carlo Zaniolo.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Aho, V. A., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.
A?t-Kaci, H., A Lattice-Theoretic Approach to Computation Based on a Calculus of
Partially-Ordered Type Structures, Ph.D. Thesis, Computer and Information Science,
Univ. of Pennsylvania, Philadelphia, 1984.
Allen, J. F., and Frish, A. M., What’s in a Semantic Network, in: Proceedings of the 20th
Annual ACL Meeting, Assoc. for Computational Linguistics, 1982.
Brachman, R. J., Fikes, R. E., and Levesque, H. J., KRYPTON: A Functional Approach to
Knowledge Representation, FLAIR Technical Report No. 16, Fairchild Lab. for Artifi-
cial Intelligence Research, Fairchild Research Center, Palo Alto, Calif., May 1983.
Deliyanni, A. and Kowalski, R. A., Logic and Semantic Networks, Comm. ACM
22(3):184-192 (1979).
Huet, G., Resolution d’Equations dam des Langages d’Ordre 1,2,. . . , o, These de
Doctorat d’Etat, Univ. de Paris VII, France, 1976.
Kowalski, R. A., Logic for Data Description, in: H. Gallaire and J. Minker (eds.), Logic
and Data Bases, Plenum 1978, pp. 77-103.
McSkimin, J. R. and Minker, J., A Predicate Calculus Based Semantic Network for
Question-Answering Systems, in: N. Findler (ed.), A’ssociative Networks-The Represen-
tation and Use of Knowledge by Computers, Academic, New York, 1979.
Reynolds, J. C., Transformational Systems and the Algebraic Structure of Atomic
Formulas, In: D. Michie (ed.), Machine Intelligence 5, Edinburgh. U.P., 1970.
Robinson, J. A., A Machine-Oriented Logic Based on the Resolution Principle, J. Assoc.
Comput. Much. 12(1):23-41 (1965).

