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Abstract

LIFE is a constraint-logic programming language over ordetesiographs subject to functional
dependency constraints. We use it to present a simple amtiypleclarative specification of the
popular number puzzl8u Doku This specification yields a surprisingly efficieBt/ Dokusolver
although the &ll-different’ constraint is not native t€Z €. The trick is that this constraint can
be realized efficiently though purely declaratively usttii7£’s native data structure and adaptive
control strategy. For added bonus and ease of interactithrting puzzle solver, we also us& 7€

to specify a purely declarative GUI display.

Keywords:  Constraint-logic programming,ZF £, Su Doku, “all-different” constraint, puzzile
solving, declarative programming, declarative graphics

1 Introduction

Life is “trying things to see if they work. .."

RAY BRADBURY

The popular gam&u Dokuhas been solved using a variety of techniques, in a pletHgragram-
ming idioms! These range from (declaratively) obscure solutiomsg-in APL>—to (declaratively)
elegant ones such as those using constraint-logic progiragr{@LP)—e.g, in CHIP2 The CLP solu-
tion’s declarativeness relies essentially on descrildiegaroblem in terms of the globalidiff ’
constraint, which stipulates that a given sehofariables must always be assigned mutually distinct
values [13, 15, 16]LZF¢ is a constraint-logic programming language over ordetesiagraphs sub-
ject to functional dependency constraints [3]. Our esakatintribution in this paper is to show how
LIFE enables a surprisingly efficieralldiff ~ ’ purely declaratively thanks to its:

1. built-in constrained data-structure (extensible rds¢8]), and
2. control strategy (constraingsiduatior{7]).

*A short version of this paper was published as [4].
1See:http://en.wikipedia.org/wiki/Sudoku
2See:http://www.vector.org.uk/archive/v214/sudoku2.htm
3See:http://uuu.enseirb.fr/ gloess/sudoku/CHIP/sudoku.pl
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Residuation is the evaluation strategy whereby functierptessions are evaluated as far as possible,
suspending upon unbound variables. A suspended evalustioen awakened and resumed as soon
as any variable it is waiting for gets further instantiated.

This paper’s essential contribution is that of a Prograng®iear! inCZF €. Itis in no way claimed
that realizing thealldiff ~ ’in the manner herein described is more efficient than the lkeswvn
methods described in [13, 15, 16]—nor indeed that it comes elose. The pointis simply to explain
how LZFE’s native features enable a more than decahdiff ’ for freet—i.e., without having
to make the investment of implementing such a specific solBgr‘more than decent; we mean
sufficient to solve a few reputedly ha&l Dokugames! Of course, for other applications involving
more tricky configurations over many more variables th&8uaDokuproblem (such as.g, large
scale jobshop scheduling), this freebadidiff "is quite likely to run out of breath where native
methods will hold sway. Still, for fast prototyping withoatcess to a nativalldiff ' solver, we
found it instructive to realize thafZF£’s idiosyncratic features could easily give it this partaiu
capability.

In essence, under the guise of a ludic musing, we will dematessome subtle capabilities of
LIFE and its adequacy for efficient declarative programming. \Meehto illustrate how some of
the innovating symbolic computation techniques that atertteCZFE (y-term unification, order-
sorted feature constraint solving, Horn resolution, fior@l rewrite rules, residuatioefc) can also
naturally be combined with simple control to provide an ag#q basis for efficient—nay, clever!—
declarative programming. Indeed, our specifit7 & Su Dokusolver is only meant as an exemplar,
albeit entertaining, of such a serendipitous combinatideatures.

The remainder of this paper is organized as follows. In $ack, background o®ZF¢ is suc-
cinctly overviewed. In Section 3, what makes th@ssiveconstraint system of ZFE stand apart
from active solvers is discussed. In Section 4, we summarize the essérme contribution. In
Section 5, we explain how thalidiff ' constraint may be realized purely declarativelydd FE
for free, and—to boot!—efficiently so. As a bonus showingplever of CZFE’s passive constraint
system for declarative programming, Section 6 explains agwrely declarative, though effective,
graphical user interface (GUI) can be specified for inténgowith the Su Dokusolver. We conclude
in Section 7 with a few remarks. The compl&€FE Su Dokuprogram may be downloaded from the
author’s web sité€. The programs therein run as claimed using\itLife 1.02 interpreter [5].

2 A quick look back on LZFE

Life can only be understood looking backwards but it must be
lived forwards.

SPREN KIERKEGAARD

LTFE [3]is a CLP language that may be loosely defined as Prologwiterms, which are order-
sorted graphs, themselves possibly subject to functiomélralational contraints. As Prolog uses
first-order terms as its universal data structure, so dde5€ usey-terms. Ay-term generalizes a
first-order term (FOT) by allowing cycles (arational terms) and partial information (in the form of
partially-ordered sorts). The sorts denote sets and th@parder on sorts denotes set containment.

Following is a summary of relevant features@f 7 €.

1. Like a FOT, ay-term may have arguments; these are specified implicityoas fFOT us-
ing a parenthesized comma-separated sequenget@fms, and/or they may be specified by

4See Appendix Section B.
5See:http://wikix.ilog.friwiki/bin/view/Main/HassanAitKa Ci#3
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keywords (calledeature$, including explicit out-of-order numerical positionsx&mples of
-terms aré®

o f(a,X,g(X)) —or, equivalentlyf(1=>a, 2=>X, 3=>g(1=>X)) ,
e person(name => "bozo", dob => date(year => 1980)) ,
e add(X,Y,result => X+Y) ,

e X:person(spouse => person(spouse => X))

2. Unlike FOTSy-terms do not impose a fixed arity: the number of possibleragnits is not
constrained, and can be zero or any, by implicit or explicisipon, by keywords, or both,
and in any order. For example, unifying thietermsf(a,3=>c)  andf(a,b) succeeds and
results inf(a,b,c) . Similarly, unifying they-term:

person(P, dob => date(month => may))
with they-term:
person(dob => date(year => 1980))
succeeds and results in tileterm:
person(P, dob => date(month => may, year => 1980))

3. LIFE predicates are defined by Horn rules oyeterms. INLZFE, everything is a)-term,
in the same way as everything is a FOT in Prolog. This provadpewerful convenience for
metaprogramming.

4. Like Prolog,LZ F€ resolves arelational query using a top-down/left-rigltidteacking control
strategy. The cut operatdr)may be used as in Prolog.

5. Invoking a predicate binds variables or refines sortsgugiterm unification(OSF constraint
conjunction)’ In LZFE, there is no conceptual difference between types and valliesse
are calledsortsand are partialy ordered in a sort hierarchy. The topmostradbmpassing sort
is written ‘@ and the bottommost all-excluding sort i§}"—which causes failure IlCZFE.
All LZFE’s logical variables are sorted. A variab¥ebearing no sort is implicitly under-
stood as being sorted b@—i.e, ‘X:@. The subsort ordering is declared using declarations
such asapple <| fruit " and ‘apple <| food ., which make apple ’ objects be
also fruit ’and ‘food ' objects. With such declarations, a query such’as= food, X
= fruit? ’ would succeed with the binding< = apple '—i.e, the intersection of sorts
‘food " and ‘fruit '. If in addition we had declared as wellanana <| fruit " and
‘banana <| food ., thenthe above query would first givi‘ = apple ’, then upon back-
tracking X = banana’. The semicolon disjunction operatiorn/¢ ') can also be used on
sorts enclosed in curly braces (denoting their uniom)g-'X = { breakfast ; lunch
; dinner  }.

6. LZFE interprets functions that are defined by ordered rewritestiansforming &-term into
another. The rules making up a function definition are triethe given order, the next being
tried only if the preceding’s matching failed.

6We use Prolog’s convention of capitalizing logical varebl

7OS F stands fotOrder-Sorted Feature Thus, anOSF term is a rooted graph whose nodes are labelled with (dgtial
ordered) sort symbols, and whose arrows are labelled vighturesymbols. Ay-term is anOSF term in normal (or canoni-
cal) form—see [6]. h
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7. Evaluating a functional expression binds variables agrifigs sort constraints using-term
matching(OS F constraint entailment). Upon a fully successful matchihg bHS, no further
rules for this expression will be trid.

8. Predicatgesolutionand functionevaluationcooperate usingesiduation For example, pro-
cessing the resolvenX' = Y+1, Y = 2? ' from left to right, the functional expression
‘Y+1' is a suspended functional expression because it needsitéowéhe variableY to take
on a value. Thus, the equatioxd ‘= Y+1'is a residual constraint (or residuation). Thanks to
commutativity of conjunctionfZ F €& proceeds to the right to the next atom to resohe, ('Y
= 2"), bindingY to 2. This automatically awakens the residuatign= Y+1 whereupon the
functional expressionY+1’ evaluates td, binding X to this value. Should this instantiation
violate any accumulated constraint, chronological baaiing to the last choice point would
occur?

9. A y-term’s subterm may be extracted usifeature projectionwhich is a dyadic function
(written using the functor./2 ). This function takes two arguments: its first argument may
evaluate to anyy-term. Its second argument must evaluate to a feature symbm| a natural
number or a symbolic identifier. It returns the suiterm of the first argument located under
the given position (or symbolic feature) specified as thesdargument. In other words, the
subterml” of avy-termT at featuref is expressed ab.f = T' ifandonlyif T = s(...,
f=>T,.) , for some sors. Being a function, feature projection residuates whenever
its second argument is not ground-e; whenever it is not bound to a natural number or a
symbolic identifier.

10. New subterms may be added t@derm by unification or feature projection. Indeed, when
invoked on ayy-termT as first argument and with a featufeas second argument, thé2 ’
function has as side-effect: its creates the feajufer 7" if T" does not have the specified
feature. For example, the resolvent ‘= foo(bar => buz), X.boo = fuz? " will
result in the augmenteg-term X = foo(bar => buz, boo => fuz) '

3 Howis LZFE (all that) different?

Life is the sum of all your choices.

ALBERT CAMUS

Atfirst, LZFE feels very much like Prolog to a programmer. Lists are regaresd in the same man-
ner as they are in Prologwz.., square-bracketed and comma-separated. Horn clausdsfared
using the infix binary operator-/2 ’, conjunction is the infix binary operator/2 ’, disjunction
is the infix binary operator,/2 ’. For example, one can define the familiappend/3 ' predicate
verbatimas one would in Prolog. Namely:

append([],L,L).
append([H|T],L,[H|R]) :- append(T,L,R).

Such a predicate can then be used exactly as in Prolog.

On the other hand;ZF € also differs from Prolog both in obvious and subtle ways. @sgential
difference is that arity is not constrained f6Z F&’s -terms, whereas it is fixed per symbol in
Prolog’s FOTs. So what happens when one unifies dwterms of different arities? Simply: if a

8This, in essence, is akin tosystematic cut upon the first successful LHS matafother words, functional computation
is always deterministic and never backtracks.
90nly predicate resolution may backtrack, whereas funatiemaluation commits to the first successful match.
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feature is present in both, then the corresponding subtarenanified; if a feature is present in one
and missing in the other, itis simply kept with its subterrnthiay-term resulting from the unification.
For example:

A =foo(a=>1 b =>2), B=foob=>X ¢c=>3),A=B?
succeeds, resulting in the solved form:
A =foo(a=> 1, b = X, c=>3),B=A X=2

It can be thus said that-term features arésticky!” It is important to note thaCZF€ restores

all unification side-effects upon bactracking. Therefdeatures and subterms that materialize by

1-term unification or feature projection will dematerializgon backtracking to an earlier state.
Another difference is the use of interpreted functiofgF £ functions are defined as rewrite rules

using the infix binary operator>/2 ’. For example, one can define a function returning the length

of a list as follows:

length([]) -> O.
length([_|T]) -> 1 + length(T).

and use it to define a relation; say:

has_even_length(L:list) :- length(L) mod 2 = O.

Then, proving the resolvenihas_even_length([a,b])? "succeeds as expected. On the other
hand, the resolvenbas_even_length([a,L:list])? "will cause the evaluation of the equa-
tion ‘(1 + length(L:list)) mod 2 = 0? ' to residuate. This is because the sortlofs

list ,asupersortoff and[ , ] ,and thus it cannot be decided which rule may applgz.rF&
deems this a conditional success, pending further instigoni of the residuation variable, whose
sort is then printed followed by as many tildas’{‘as there are residuations waiting for the variable
to become instantiated in order to proceed, together végtbutrent binding—e.g, ‘L = list™ ’in
our example.

Finally, note that metaprogramming can be used to reasaut &xtures, using feature projection.
For instance, ifA = foo(a => 1, b => 2, ¢ => 2) "then the queryX = { a ; b ;
c }, AX = 2? ’will succeed first with the solutionX = b’; then, upon backtracking, with the
second solutionX = c’.

4 Purely declarative Su Doku

The art of life is the art of avoiding pain.

THOMAS JEFFERSON

We now present our purely declarative and surprisingly iefficSu Dokusolver. The solver it-
self is very easy—nay, triviall—to express L F€ as it should be in any CLP idiom: we simply
write down literally the rules of the game and that’s it! Thmmplete code is given in Appendix
Section A.1.

Of course, this declarative magic is made possible by #fidiff ' constraint, which stipu-
lates that a set of objects must be globally and mutuallyraisfrom one another. Of course, for
effective solving of a reaSu Dokugame, this magic is only satisfactory if thalldiff ' con-
straint can be efficiently enforced. This is the case of m@k}Csystems such as ILOG Solver [12],

10Recall that, inCZFE, function application useg-term matching not unification
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CLP(BNR) [10], CLP(R) [8], etc, which have alldiff "implemented as auilt-in constrain{13,
16]. By contrast, although we do abide by the exact samegsti@ward and purely declarative CLP
formulation usingCZ F €&, we do not however rely on a built-imfidiff ' constraint. Indeed, there
is no such a primitive in thgVildLife 1.02 system.

On the other hand;ZF£’s reasoning primitives can elegantly expreasidiff " purely declar-
atively, and yet achieve the high performance of a builtaiidiff " constraint! How? Simply by
combining two of its powerful principles:

1. dynamic objectswhich can freely acquire new features as needed thrgutgtm unification
and feature projection; [3] and,

2. automatic coroutiningf functional expressions+e. suspension/resumption of functional
evaluation pending on further instantiation of argumehésé€, specifically, residuation of ob-
ject feature projection) [7].

As a cherry on the cake, the actu@l 7€ code for alldiff " is amazingly succint—one line of
code! Last, but not least, it is surprisingdfficient This is remarkable since this enables solving
difficult puzzles using th&VildLife 1.02 interpreterrunning on a laptop undarygwin/X .11
This is not so bad taking into account the disconcerting eifee programming effort.

5 |It'sall different using graphs!

If A equals success, then the formulais: A= X+ Y + Z, where X rky
Y is play, and Z is keep your mouth shut.

ALBERT EINSTEIN

We now explain how the well-known global constraiatidiff ~ ’is efficiently enabled for free
in LZFE thanks to its native combination of extensible cyclic graypiification (.e., -term unifi-
cation) and its automatically adaptable control behavéimgiresiduation(i.e., suspended functional
evaluation, pending further instantiation) [7].

Recall that alldiff "imposes that a finite set of variables taking values in somtefdomains
be each assigned to a distinct value. nAive O(n?) method consists in generatingn — 1)/2
disequalities among the variables. This is clearly expensi space and time. Whereas, a much
more efficient technique consists in ensuring that any aesémt mapping the complete set of so-
constrained variables to values is always a one-to-one imggpe., injective)—in effect realizing
a maximal matching in a bipartite graph [13, 16, 14]. The goeds is that enforcing this global
constraint is achievable iconstant time and linear spaée!

This method can easily be made effectivellh.FE by using residuation of the feature projection
function (./2 ") on a shared variable denoting a matching assignment évahiables. Namely, we
can constrain each variable/value pair being assigned tgldeally) in mutual functional correspon-
dence (e, through a one-to-one mapping) by projecting the shareigras&nt-denoting variable
using the unbound constrained variable as one of its feataténg a unique id as value (amt |,
say). As long as it is unbound, the “feature” variable wilusa the projection function to residuate.
In this manneras soon as the variable gets bound to a value, the residuagenthus enforcing
uniqueness of its assigned value thanks to that of the ‘ffe&tar the shared assignment variable

Usee:http://x.cygwin.com/

1270 be more precise, the time complexity is dominated by thaicoess into a/-term’s feature table, which associates
the term’s root to its subterms. If access is hashed (asrit ke WildLife 1.02 interpreter), these table accesses are of
order O(logn). Although for what concerns the subterms specified by nwakpositions, the order of time complexity
access isJ(1); i.e, constant. However, it is possible, by compilation, to @tiate all symbolic features to transform them
into numerical positions [1].
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Let us first illustrate the gist of this technique /X F& by defining a predicatalldiff/3’
that imposes that its three argument variab{és X2, and X3 be each assigned mutually different
values in their domains. We will generalize it later to anymner of variables, not just three.

Thus, here is analldiff ' constraint on three variableX1, X2, and X3 using a predicate
‘assign/3’ imposing the all-different assignment scheme using a sHaggcal variable denoting
the global assignmentiz., the variabled):

alldiff(X1,X2,X3) :-
assign(A,X1,1), assign(A,X2,2), assign(A,X3,3).

In fact, we have used a predicasssign/3’ just to make notation more conspicuous since it is
trivially defined by residuation of feature projection afidas:

assign(A,X,I) - AX = 1.

Variable A denotes the global assignment, variall¢he constrained variable, and variablehe

assignment’s unique id.
A simple example of using this limitedl/-diff constraint would be, for instance:

show(X1,X2,X3) :-
alldiff(X1,Xx2,X3),
X1 ={a; b} % domain of X1
X2 ={b; c} % domain of X2
X3 ={a;d} % domain of X3

Thus, invoking the queryshow(X1,X2,X3)? ' will give successively:

X1 = a, X2 = b, X3 = d.
X1l =a X2 =¢c¢, X3 =d.
X1 = Db, X2 = ¢, X3 = a.
X1 = Db, X2 = ¢, X3 = d.

Now, let’s see how this works. Fig. 1 shows the effects of aiag each of the four lines making
the body of the predicatehow/3 ' defined above. Each step results in a modification of thetire
of thevy-term rooted in variablé\. The dashed arrow represents the residuated feature foojgc
waiting for the feature variablesl, X2, andX3, to be instantiated. A solid arrow is obtained when
the corresponding feature is actually materialized: thstaintiated feature is then added abama
fide feature to the structure rootedAn Binding X3 to a results in a clash due to the feature variable
X3 taking on the same value &4.. This is because functionality of features imposes thenttiea
same individual be found under feature Instead, it is found that the existing valuesiz., 3 and
1—are incompatible. This causes backtracking to the lasicehpoint, giving as next choicg3
= d, which violates no constraint, and therefore succeedsavidgal all-different assigment to the
three variables.

To obtain a predicate that would work not just on three vadesbbut on a set of any number of
variables, we now simply generalize the above scheme, mélgeneric among an arbitrary number
of variables instead of just three. We define the predicatdiff/ +', that takes any number of
arguments and imposes that they all be different, as follows

C:alldiff :- assignment(features(C),C,A,1).

This rule uses the metaprogramming convenience made pobgiseeing everything asyaterm
in LZFE. First, the head of thalldiff rule is tagged by variabl€: it designates the)-term
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al 1 di ff (X1, X2, X2) X1 =

A:/@\ A:
- | -

- ~

X1: X2 X3

@/
!
®

Figure 1: Howalldiff works

that gets bound to the call; that is, the one that invallesff . The one-argument (meta)function
‘features/1  ’returns the list of feature symbols currently attachedrgsiments to a give-term.
In other words, the body of the rul&Z 7€ defining thealldiff predicate simply initiates a call to
the predicatedssignment/4 ', which takes as arguments:
1. the list of features of the call @lldiff ,
2. they-term representing the call aldiff itself needed to extract the actual subterms from,
3. the shared assignment variable, and
4. the rank in the specified list of features of the featuradpeurrently extracted from the call.

Namely23

assignment([]).
assignment([H|T],C,A,l) :-
assign(A,C.H,l), assignment(T,C,A,l+1).

And that's it! Literally.
The Su Dokusolver itself is defined as the predicaseidoku_solver/1  ’, which simply con-
strains aSu Dokugrid Gand specifies the numeric labels for the cell&of

sudoku_solver(G) :- sudoku(G), labels(G).

wheresudoku/1 tests the all-different constraints or9dax 9 Su Dokugrid, andlabels/1  gen-
erates labels betweenand9 for each cell inG'# Note that this strategy is simply infeasible in a

13Recall that the expressiassign(A,C.H,1) is equivalent toA.(C.H) = |
14gee the code fosuidoku/l ’and ‘labels/l  ’in Appendix Section A.1.
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logic-programming language like Prolog because its opmarat semantics demands that a state be
generatedeforeit is tested whether or not it violates any constraint. Hogrewusing the reverse
strategy viz., first setting up all the constraints tests as residuatiand then generating the states)
makes all the difference! Indeed, in this way, efficient at@gpruning of the search space takes place
automatically sincenost states need not be generated aladl to immediate backtracking caused to
any constraint violation as soon as one occurs. Theretoeegthove line containge innocuous key

to LZFE’s unique way for efficient constraint-handling. Indeedtks to residuation;ZF€ allows
any factors of a conjunction to commute. By contrast, thie¥dhg predicate definition:

bad_sudoku_sol ver (G) :- labels(G), sudoku(G).

(obtained by simply reversing the order of the body goals)itiantical model-theoretic semantics as
the previous one’s, but results in appallingly inefficieraqf-theoretic performance. It is, however,
perfectly correct from a model-theoretic point of view! Mamodel theorists miss this point.

6 LZFE bonus. adeclarative Su Doku GUI

Life is just a mirror, and what you see out there, you must first
see inside of you.

WALLY ‘FAMOUS’ AMOS

LIFE, as a generic language, has a working instance cilisdLife  [5].1° This system im-
plements a constraint system based on:

e extensible records known &sature structuremaking up (possibly cyclic) labeled graphs; the
arcs are the record field bearing labels calfedtures the nodes are the record constructor
symbols calledsorts

e equality constraints among functional expressions irmglyparts of these graph feature struc-
tures;

e general predicative constraints among functional exprassnvolving parts of these graph
feature structures; the predicates being either builbirstraints, or are defined in terms of one
another and built-in constraints using Horn clauses, @ la Prolog).

Thus,LZF€E finds solutions fitting functionally constrained orderigadrfeatured graph structures.
Infact, LCZFE doesnot strictly speakingactively solvethese constraints—at least not in the classical
sense of constraint-solving seen as the active search funplete set of solutions. Rath&lZ FE&’'s
residuation enables constraints to be used as passive dexotimy as coroutinefiters [7]. Indeed,
this is deliberate and a key to its efficiency, since for detiae graphics, actual constraint-solving
is rarely needed. This is because if one specitigg, a graphical interface panel containing several
widgets such as buttons, text fields, drop-down meeates,one has a specific unique feasible solution
in mind (e.g, by drawing it with pencil and paper). Active constraintviog would try to guess
values fit to accommodate positioning constraints spedifiedidgets making up a display panel. By
contrastLZ FE uses a powerful constraint-postponement mechanism ugitgyer implementation
technique whereby constraints act as incremental filtety [Hence, provided the GUI design is
sound,LZFE simply uses basic information such as font size and relapaeing and alignment.
Then, as soon as the needed information becomes availathler(by default or explicit choice),

15gee:http://wikix.ilog.friwiki/bin/view/Main/HassanAitKa ci#3
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every piece of the specified graphical set of objects evéptizdis into place. As it turns out, this
is all one needs for specifying constrained graphics fullgldratively—and this is indeed what the
LI FE graphical toolkit does [2].

Fig. 2 shows the GUI display generated from #i&FE specification. In Appendix Section A.2,
we give the complete actual code for the main predicate géingrthis GUI panel so that the reader
may have an idea of the ease with which such sophisticatetartive controls can be specified in
LIFE.

life Sudoku challenge!...

Current game:

Empty game

!

Defined games

Define game as:

LOAD
RANDOM
SAVE
SOLVE Status:
MORE
STOP
REFRESH
FLUSH Total time:

QuIT

i

)

)

=1 Toggle randon labelling

o

B .

found:

Figure 2:Su Dokugame panel generated B, 7€

Fig. 3 displays an eas$u Dokugame to be solved. For the reader who wants to try solving this
puzzle, we have postponed showing the solution found byC@E Su Dokusolver in the display
of Fig. 10 on Page 27 (also shown is the solving time).
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L Sudoku challenge!...

Current game:

game_10

g

Defined games 3 8

1 9 6 Define game as:

LOAD
RANDOM 7 1123
SAVE
SOLVE Status:
MORE 9 |6 7 1
sToP 8 4 5
REFRESH
FLUSH 4|7 1|5 6 Total time:

QuIT 9 6 8

|

)

=1 Toggle randon labelling

B

Figure 3: A definedsu Dokugame display

7 Conclusion

In life, the earlier one fails, the earlier one eventually
succeeds!

ALTAIR EL-GHOUL

We have presented a purely declarative (yet duly execytséeification of the popular game puz-
zle Su Dokuin the form of a disconcertingly simple (yet surprisinglyestive—indeed, efficient!)
LI FE program. The well-known key for solving this puzzle being {m)famousalldiff ' global
constraint and this constraint not being built ilf@ 7€, the contribution of interest is thus how
LTFE is yet capable of realizing it efficiently thanks to its origl data structure (the-term) and
control strategy (residuation). The former are extensibt®rd structures and the latter is an auto-
matic suspension/resumption scheme allowing suspendedramts to act as powerful search-tree
pruners. We have also illustrated ha@# F£’s constraint system is amenable to specifying effective
GUIs purely declaratively by specifying one for of £ 7€ Su Dokusolver. The exercise is presented
as an interesting, indeed entertaining, Programming Meatlating the originality ofCZF & as well
as its adequacy for efficient declarative programming. Oag matrieve thisSu Dokusolver and its
GUI,'% as well as thwildLife 1.02  system itself’

16see:http://wikix.ilog.friwiki/pub/Main/HassanAitKaci/li fe_sudoku.tar.gz
17see:http://wikix.ilog.friwiki/bin/view/Main/HassanAitKa Ci#3
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Appendix
A The LZFE code
A.1 The Su Doku solver

The file “sudoku.If " contains only the puré&u Dokusolver inLZFE. One can use this solver
at the top level ovildLife 1.02 . One can also interact with the solver using a constrainedr
LIFEIX Window graphical interface: one must then import moduwesudoku " defined in file
“x_sudoku.lf  "and then submit the querptay sudoku? .

module("sudoku"), public(sudoku,sudoku_solver)?
import(“alldiff)?

A Su Dokugame consists in enforcing the constraints making up theegamles:

sudoku(@(@(X11,X12,X13,X14,X15,X16,X17,X18,X19),
@(X21,X22,X23,X24,X25,X26,X27,X28,X29),
@(X31,X32,X33,X34,X35,X36,X37,X38,X39),
@(X41,X42,X43,X44,X45,X46,X47,X48,X49),
@(X51,X52,X53,X54,X55,X56,X57,X58,X59),
@(X61,X62,X63,X64,X65,X66,X67,X68,X69),
@(X71,X72,X73,X74,X75,X76,X77,X78,X79),
@(X81,X82,X83,X84,X85,X86,X87,X88,X89),
@(X91,X92,X93,X94,X95,X96,X97,X98,X99))) :-
% The rows constraints:
alldiff(X11,X12,X13,X14,X15,X16,X17,X18,X19),
alldiff(X21,X22,X23,X24,X25,X26,X27,X28,X29),
alldiff(X31,X32,X33,X34,X35,X36,X37,X38,X39),
alldiff(X41,X42,X43,X44,X45,X46,X47,X48,X49),
alldiff(X51,X52,X53,X54,X55,X56,X57,X58,X59),
alldiff(X61,X62,X63,X64,X65,X66,X67,X68,X69),
alldiff(X71,X72,X73,X74,X75,X76,X77,X78,X79),
alldiff(X81,X82,X83,X84,X85,X86,X87,X88,X89),
alldiff(X91,X92,X93,X94,X95,X96,X97,X98,X99),
% The columns constraints:

alldiff(X11,X21,X31,X41,X51,X61,X71,X81,X91),
alldiff(X12,X22,X32,X42,X52,X62,X72,X82,X92),
alldiff(X13,X23,X33,X43,X53,X63,X73,X83,X93),
alldiff(X14,X24,X34,X44,X54,X64,X74,X84,X94),
alldiff(X15,X25,X35,X45,X55,X65,X75,X85,X95),
alldiff(X16,X26,X36,X46,X56,X66,X76,X86,X96),
alldiff(X17,X27,X37,X47,X57,X67,X77,X87,X97),
alldiff(X18,X28,X38,X48,X58,X68,X78,X88,X98),
alldiff(X19,X29,X39,X49,X59,X69,X79,X89,X99),
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% The square constraints:
alldiff(X11,X12,X13,X21,X22,X23,X31,X32,X33),

alldiff(X14,X15,X16,X24,X25,X26,X34,X35,X36),
alldiff(X17,X18,X19,X27,X28,X29,X37,X38,X39),
alldiff(X41,X42,X43,X51,X52,X53,X61,X62,X63),
alldiff(X44,X45,X46,X54,X55,X56,X64,X65,X66),
alldiff(X47,X48,X49,X57,X58,X59,X67,X68,X69),
alldiff(X71,X72,X73,X81,X82,X83,X91,X92,X93),
alldiff(X74,X75,X76,X84,X85,X86,X94,X95,X96),
alldiff(X77,X78,X79,X87,X88,X89,X97,X98,X99).

The predicatelabels ' specifies that theSu Dokucells may only bd...9 digits:

labels(@(@(X11,X12,X13,X14,X15,X16,X17,X18,X19),
@(X21,X22,X23,X24,X25,X26,X27,X28,X29),
@(X31,X32,X33,X34,X35,X36,X37,X38,X39),
@(X41,X42,X43,X44,X45,X46,X47,X48,X49),
@(X51,X52,X53,X54,X55,X56,X57,X58,X59),
@(X61,X62,X63,X64,X65,X66,X67,X68,X69),
@(X71,X72,X73,X74,X75,X76,X77,X78,X79),
@(X81,X82,X83,X84,X85,X86,X87,X88,X89),
@(X91,X92,X93,X94,X95,X96,X97,X98,X99))) :-
% Specify the cell labels:
X1l1=label, X12=label, X13=label, X14=label, X15=label,
X16=label, X17=label, X18=label, X19=label, X21=label,
X22=label, X23=label, X24=label, X25=label, X26=label,
X27=label, X28=label, X29=label, X31=label, X32=label,
X33=label, X34=label, X35=label, X36=label, X37=label,
X38=label, X39=label, X41=label, X42=label, X43=label,
X44=label, X45=label, X46=label, X47=label, X48=label,
X49=label, X51=label, X52=label, X53=label, X54=label,
X55=label, X56=label, X57=label, X58=label, X59=label,
X61=label, X62=label, X63=label, X64=label, X65=label,
X66=label, X67=label, X68=label, X69=label, X71=label,
X72=label, X73=label, X74=label, X75=label, X76=label,
X77=label, X78=label, X79=label, X81l=label, X82=label,
X83=label, X84=label, X85=label, X86=label, X87=label,
X88=label, X89=label, X91=label, X92=label, X93=label,
X94=label, X95=label, X96=label, X97=label, X98=label,
X99=label.

The nullary functionfabel ’returns a different digit in...9 following the natural ordering (from
1 up to9) each time it is backtracked over.

label -> {1 ;2 ;3;4;5;6;7;8;91}%

The Su Dokusolver itself is defined as the predicaseidoku_solver . It simply constrains the
Su Dokugrid and specifies the cell labels:

sudoku_solver(G) :- sudoku(G), labels(G).
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A.2 The Su Doku GUI

Row, row, row, your boat
Gently down the stream
Merrily, merrily, merrily
Life is but a dream. ..

ANNE O'NYMOUS

Here is is a purely declarative—although duly executabl8ZFE specification for a simple
graphical interface to plagu Dokugames. The main predicate to invoke figay_sudoku ' it
specifies and creates the control panel display foSt@®okugraphical interface. Since it is a pred-
icate controlling an interactive GUI panel that must be etbsn exit, it consists of a disjunction
whose first term builds and activates the GUI panel, and wbesend term closes the panel and exits
the interaction.

We only show the code foplay _sudoku '. This code uses help functions using and returning
constructs ofZZFE’s X Window toolkit, a modular library written il ZF € itself based on a raw
Window interface tdC functions. Calls to theX Window Cllibrary functions are simply passed on to
the X Window system or residuate according to whether or not tloeyain sufficiently instantiated
terms as input parameters.

LTFE's X Window toolkit contains abstract predicates and functitwasg allow for easy relative
positioning of graphical objects. The toolkit usgsXE “box-and-glue” model [9, 2]. It consists of
high-level functions and predicates, all written 7€ on top of the rawX Window primitives,
meant to ease graphical object construction. Their namesdainemonic structure corresponding
to the nature of the constructed objects and/or the congdramnposed thereon. For example, some
such functions and constructs used in the code below are:

‘p_but t on’ constructs and returns@ush-button widget

e ‘on_of f _but t on’ constructs and returns am/off-button widget
e ‘nenu_but t on’ constructs and returnsraenu-button widget

e ‘nenu_panel ’ constructs and returnsraenu panel

e ‘menu_l i st’ (prefix operator) uses its argument (a list of graphicahfes or widgets) to
construct and return@enu-list widget

e ‘h_box’ constructs and returnsftarizontal boxof given width (in pixels);

e ‘v_box’ constructs and returns\eertical boxof given height (in pixels);

e ‘ht | ist’ (prefix operator) uses its argument (a list of graphicaffes or widgets) to con-
struct and return a box containing therizontal top-aligned sequence of bokexsn the list;

e ‘hc|ist’ (prefix operator) uses its argument (a list of graphicaffes or widgets) to con-
struct and return a box containing therizontal centered sequence of bofresn the list;

e ‘vc.| i st’ (prefix operator) uses its argument (a list of graphicaffes or widgets) to con-
struct and return a box containing thertical centered sequence of bofemsn the list;

e ‘vr | ist’ (prefix operator) uses its argument (a list of graphicaffes or widgets) to con-
struct and return a box containing thertical right-aligned sequence of boXesm the list;

e ‘vl _| i st’ (prefix operator) uses its argument (a list of graphicaffes or widgets) to con-
struct and return a box containing thertical left-alignedsequence of boxes from the list;

e ‘sane_si ze’ imposes that all the elements of the given list\iglgets of equal sizéi.e.,
height and width);

e ‘cont ai ni ng’ (infix operator) function returning its first argument (aaghical frame or
widget) after including the second argument (a graphieahf or widget) in the first one;
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e ‘creat e_boxes’takes a lists of graphical objects and creates them.

play_sudoku :

% Save choice point for exit on QUIT:

ExitPoint = get_choice,

% A glitzy title box:

Title =

fancy_text_box(text

font

=> "SUDOKU MASTER",

=> title_font,

colors => [red,ivory,green,blue,yellow]),

% The display is a list of boxes making up the Su Doku grid cells

Display = [ Cll:cell(1,1) ,

Cl4:cell(1,4) ,
, Cl7:cell(1,7) ,
C21:cell(2,1)
, C24:cell(2,4) ,
C27:cell(2,7)
, C31:cell(3,1) ,
, C34:cell(3,4) ,
C37:cell(3,7)
, C4l:cell(4,1) ,
C44:cell(4,4)
, C47:cell(4,7) ,
Cb51:cell(5,1)
, Cb4:cell(5,4) ,
C57:cell(5,7)
C61:cell(6,1)
, C64:cell(6,4) ,
C67:cell(6,7)
, C71:cell(7,1) ,
C74:cell(7,4)
, C77:cell(7,7) ,
C81:cell(8,1)
, C84:cell(8,4) ,
, C87:cell(8,7) ,
C91:cell(9,1)
, C94:cell(9,4)

C97:cell(9,7)
I

% The Su Doku grid's rows:

Rowl
Row?2
Row3
Row4
Row5
Row6
Row7
Row8
Row9

ht_listf C11,C12,C13
ht_listf C21,C22,C23

ht_listf C31,C32,C33 ,

ht_list[ C41,C42,C43

ht_listf C51,C52,C53 ,

ht_list[ C61,C62,C63

ht_listf C71,C72,C73 ,

ht_list[ C81,C82,C83
ht_list[ C91,C92,C93

C15:cell(1,5)

C18:cell(1,8) ,

c22:cell(2,2)

C25:cell(2,5) |

c28:cell(2,8)

C32:cell(3,2) ,
C35:cell(3,5) ,

C38:cell(3,8)

C42:cell(4,2) ,

C45:cell(4,5)

C48:cell(4,8) ,

C52:cell(5,2)

C55:cell(5,5) ,

C58:cell(5,8)
C62:cell(6,2)

C65:cell(6,5) |

C68:cell(6,8)

C72:cell(7,2) ,

C75:cell(7,5)

C78:cell(7,8) |

C82:cell(8,2)

C85:cell(8,5) ,
Cc88:cell(8,8) ,

C92:cell(9,2)

C98:cell(9,8)

, h_box(5) ,

, h_box(5)
, h_box(5)
, h_box(5)

, h_box(5)
, h_box(5)

h_box(5) ,
h_box(5) ,

h_box(5) ,

, C95:cell(9,5) ,

Ci12:cell(1,2) , C13:cell(1,3)

C16:cell(1,6)
C19:cell(1,9)
C23:cell(2,3)
C26:cell(2,6)
C29:cell(2,9)
C33:cell(3,3)
C36:cell(3,6)
C39:cell(3,9)
C43:cell(4,3)
C46:cell(4,6)
C49:cell(4,9)
C53:cell(5,3)
C56:cell(5,6)
C59:cell(5,9)
C63:cell(6,3)
C66:cell(6,6)
C69:cell(6,9)
C73:cell(7,3)
C76:cell(7,6)
C79:cell(7,9)
C83:cell(8,3)
C86:cell(8,6)
C89:cell(8,9)
C93:cell(9,3)
C96:cell(9,6)
C99:cell(9,9)

C14,C15,C16 , h_box

C24,C25,C26

C34,C35,C36 ,

C44,C45,C46

C54,C55,C56

C64,C65,C66

C74,C75,C76 ,

C84,C85,C86
C94,C95,C96

®) .

®)

®) .

®)

®) .

®)

®) .

®)
®)

C17,C18,C19 ],
C27,C28,C29 ],
C37,C38,C39 ],
C47,C48,C49 ],
C57,C58,C59 ],
C67,C68,C69 ],
C77,C78,C79 ],
C87,C88,C89 ],
€97,C98,C99 ],
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% The Su Doku grid:

Grid = frame_box(vl_list [ Rowl, Row2, Row3

, V_box(5)

, Row4, Row5, Row6
, V_box(5)

, Row7, Row8, Row9
1

padding => 10),

% The control buttons:

Load = p_button(text => "LOAD",

action => load_games(Display)),
Save = p_button(text  => "SAVE",

action => save_all_games),
Solve = p_button(text => "SOLVE",

action => solve(Display)),
More = p_button(text => "MORE",

action => more(Display)),
Random = p_button(text => "RANDOM",

action => random_seeds(Display)),
Stop = p_button(text => "STOP",

action => stop),
Refresh = p_button(text  => "REFRESH",

action => (refresh(Display),

reset_state(Refresh,false))),

Flush = p_button(text  => "FLUSH",

action => clear_all(Display)),
Quit = p_button(text  => "QUIT",

action => (set_choice(ExitPoint),fail)),

% Imposing a same_size constraint on the control buttons:

same_size([Games,Load,Random,Save,Solve,More,Stop,R

efresh,Flush,Quit]),

% A toggle button to switch to random labelling mode

% (negative offset means it's

Toggle =

on_off_button(text

% The defined game menu:

Menu =

Games = menu_button(text

font_id

menu_panel containing menu_list defined_games(Dis

right-aligned):

=> "Toggle random labelling",

font_id => button_font,
offset
action

=> -10,
=> toggle_random_labelling),

play),
=> "Defined games",
=> z font,

text_color_id => blue,

menu

=> Menu),
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% We now define info boxes to display containing the
% game’s name, status, time, etc., ...

% Binding CurrentFrame to a framed edit box (the current
% game name’s edit box, which gets then bound to Current)
% captioned "Current game:", where the name of the current
% game is to be entered and displayed:

CurrentFrame = current_frame("Current game:",Current,D isplay),
reset_text(Current,"Empty game"),

% Binding DefineFrame to a framed edit box (which gets then
% bound to Define) captioned "Define game as:", where a name
% redefining the current game is to be entered and displayed:

DefineFrame = define_frame("Define game as:",Define,Dis play),

% Binding StatusFrame to a framed info box (which gets then
% bound to Status) captioned "Status:" where solving status
% will be displayed:

StatusFrame = info("Status:",Status),

% Binding TimeFrame to a framed info box (which gets then
% bound to Time) captioned "Total Time:", where the total
% solving time will be displayed:

TimeFrame = info("Total time:",Time),

% Binding CountFrame to a framed info box (which gets
% bound to Count) captioned "Number of Solutions:",

% where the total number of solutions found so far will be
% displayed:

CountFrame = info("Solutions found:",Count),
reset_text(Count, "0"),

% Attaching some of the widgets to Display as extra features:

Display = @(current => Current, games => Games,
define => Define, status => Status,

time => Time, count => Count,
more => More, random => Random,
solve => Solve, stop => Stop),
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% Putting together the main display panel:

Panel = panel(titte => "Sudoku challenge!...")

containing
padded_box(vc_list [ Title
, V_box(30)
, hc_list [ vr_list [ Games , V_box(50)
, Load , v_box(5)
, Random , v_box(5)
, Save , v_box(5)
, Solve , V_box(5)
, More , v_box(5)
, Stop , v_box(5)

, Refresh , v_box(5)
, Flush , v_box(5)

, Quit , V_box(50)
, Toggle
]

, h_box(50)

, Grid

, h_box(30)

, vl_list [ CurrentFrame , v_box(10)
, DefineFrame , v_box(10)
, StatusFrame , v_box(10)
, TimeFrame , V_box(10)
, CountFrame

]
1
padding => 20),
% Finally, we create the Panel and Menu boxes and that's it:

create_boxes([Panel,Menu])

% This is the main backtrack point for graceful exit upon QUIT

write("Exiting Su Doku challenge ...\n"),
succeed
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B Some Su Doku challenges

Figures 4 to 9 contain some puzzles for tBe Dokuchallenged reader’s entertainment. They are
given in order, ranging from easy (Fig. 4), to difficult (Figs 6), to nasty (Figs. 7, 8), to out-of-
worldly diabolical (Fig. 9). These were collected from s Internet sites.

Figure 4: See solution displayed in Fig. 11.
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Figure 5: See solution displayed in Fig. 12.
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Figure 6: See solution displayed in Fig. 13.
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Figure 7: See solution displayed in Fig. 14.
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Figure 8: See solution displayed in Fig. 15.
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Figure 9: See solution displayed in Fig. 16.
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C Solutionsto the Su Doku challenges

Figures 10 to 16 contain the solutions to the seven puzzgsoged in this article in Figures 3 to 9.
They are given here for thBu Dokulazy reader’s curiosity, as well as to illustrafg FE’s actual
reaction to each puzzle. Note the solving times shown at dttetn right of the displays along each
grid’s solution, confirming the puzzles’s estimated diffigu

Figure 10: Solution display for the game in Fig. 3.
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Figure 11: Solution display for the game in Fig. 4.
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Figure 12: Solution display for the game in Fig. 5.
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Figure 13: Solution display for the game in Fig. 6.
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Figure 14: Solution display for the game in Fig. 7.
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Figure 15: Solution display for the game in Fig. 8.
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Figure 16: Solution display for the game in Fig. 9.
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