
Rule-based Computing in Industry

Concepts, Issues, and Perspectives

Hassan Aı̈t-Kaci

ILOG

1

Outline

◮ Business Rules

� What are they?
� What are they used for?
� How are they used?

◮ Technical Issues

� Object models
� Static analysis

◮ Perspectives

� Rule interchange
� Webization

◮ Conclusion

2

Business Rules —What are they?

The term “Business rule” designates a means to specify a
decision-making process using condition/action (C/A) rules

Example of a Business rule:

r1: if o: Order(value >= 10000)
then o.discount += 20;

Such rules are packaged in rulesets organized in process
flows

3

Business Rules —What are they used for?

Business rules are used for:

◮ filtering data

◮ processing orders

◮ profiling customers

◮ automating business processes

◮ etc. ...

Business rules are direct descendants of Expert Systems!

4

Business Rules —How are they used?

◮ Business rules are specified by business people—not by
programmers

◮ They use a Business Rule Management System (BRMS)

◮ A BRMS is a high-level interface taking pseudo-natural
language input

◮ They generate C/A rules acting on objects

5

Technical Issues —Formalizing business rules

We need to define formally such informal notions as:

� Object instance
� Object pattern
� Working memory
� Rule and ruleset
� Pattern matching
� Rule instance
� Rule action
� Rule application
� Rule engine

6

Formalizing business rules —Object pattern

◮ Object pattern:

o:O(T1 a1 = x1,
...
Tn an = xn)

◮ E.g.,

p:Person(int age = a,
boolean isVoter = b)

7

Formalizing business rules —Conditional object pattern

◮ Conditional pattern:

o:O(T1 a1 = x1, . . . Tn an = xn,

c1(o,x1,...,xn), ..., cm(o,x1,...,xn))

◮ E.g.,

p:Person(int age = a,
boolean isVoter = b,

a >= 20, b == true, hasVoted(p))

8

Formalizing business rules —Rule and ruleset

◮ A rule is an expression of the form:

Rule 〈name〉:
If 〈patterns〉

Then 〈action〉

◮ E.g.,

Rule VotingAge:
If p:Person(age >= 18)

Then p.isVoter = true

◮ A ruleset is a finite set of rules.

9

Formalizing business rules —Object pattern matching

Let o be an object pattern:

o:T(T1 a1 = x1, ..., Tn an = xn,

c1(o,x1,...,xn), ..., cm(o,x1,...,xn))

Let o′ be an object instance:

o′ = T ′(T ′1 a′1 = v1 , ... , T ′n a′n = vn′)

10

Formalizing business rules —Object pattern matching

The pattern o matches the object instance o′ iff:

◮ T ′ <: T

◮ n ≤ n′

◮ ∀i ∈ {1, . . . , n}, ∃i′ ∈ {1, . . . , n′}, T′
i′

<: Ti; and ai = a′
i′

◮ ∀j ∈ {1, . . . ,m}, cj(o,v1, ...,vn) evaluates to true

Substitution σ = {o′/o, v1/x1, . . . , vn/xn} realizes the match

11

Formalizing business rules —Rule action

◮ Working memory : a (possibly empty) finite set of objects.

◮ Rule Action : a (possibly empty) sequence of one of:

– 〈location〉 = 〈expression〉;

–Assert 〈object〉;

–Retract 〈object〉;

12

Formalizing business rules —Rule application

Given a rule action a, a substitution σ,

M ′ = appσ
a(M)

appσ
a1;...;an

(M)
def

=

{

M if n = 0;

appσ
a2;...;an

(appσ
a1

(M)) otherwise.

appσ
x = e(M)

def

= [eσ/x]M

appσ
Assert o(M)

def

= M ∪ {oσ}

appσ
Retract o(M)

def

= M \ {oσ}

13

Formalizing business rules —Application agenda

Given a rule set S and a working memory M , define:

Agenda(S,M) : set of rule instances {〈ρi, σi〉 | i = 1, . . . , n}
s.t. for all i = 1, . . . , n,

◮ ρi : pi→ ai ∈ S;

◮ pi = 〈oi1, . . . , oini
〉;

◮ there exists p′i = 〈o′i1, . . . , o
′
ini
〉 ∈Mni such that pi matches

p′i with substitution σi.

14

Formalizing business rules —BRMS interpretation scheme

• let S = {Ri : Pi→ Ai | i = 1, . . . , n} be a ruleset,

• let M0 = {oj | j = 1, . . . ,m} be an initial working memory:

[0] M ←M0;

[1] A← Agenda(S,M0);

[2] While A 6= ∅ do:
[3] Pick 〈ρ = r : p→ a, σ〉 ∈ A;
[4] M ← appσ

a(M);

[5] A← Agenda(S,M);

15

Technical Issues —Object models

No accepted formal model of objects:

◮ BRMS object models vary wildy

◮ Pragmatics: CLOS, C++, Java, C#, etc.

◮ Web objects (RDF?)

16

Technical Issues —Static analysis

Rule validation is a critical issue for a BRMS

◮ It is hard enough to verify programs written by techies...

◮ It is even harder to verify rulesets specified by business
folks!

◮ Ad hoc semantics (refraction, recency, priority, naming,
etc..)

17

Technical Issues —Static analysis

What properties may we wish to check for a ruleset?

◮ Liveness Properties

In all executions, a (good) state is always reached:

� The ruleset execution terminates.

� The premium is given a value.

� If Rule R1 is fired, then Rule R2 is always fired at some
point afterwards.

18

Technical Issues —Static analysis

◮ Safety Properties

In all executions, a (bad) state is never reached:

� This rule is never fired twice.

� The discount is never higher than 30%.

� The total budget will never be exceeded.

19

Technical Issues —Static analysis

◮ “Local” Properties

� Self-inconsistent rules; tautological conditions in rules.

� Coverage of enumerations, partitions, coverings.

20

Technical Issues —Static analysis

◮ Non-Confluence

Two (sequences of) rules, if executed in a different order,
lead to incompatible states:

1. when the shopping cart’s value is more than $10 and
the customer is senior then set the discount to $10.

2. when the customer is Gold then set the discount to
10% of the shopping cart value.

What about a senior Gold customer purchasing more than
$10?

21

Technical Issues —Static analysis

For a shopping cart value v, the discounted value is v′ = v−δ,
where δ is the discount.

(v ≤ $10 ∧ δ1 = $0) ∨ (v > $10 ∧ δ1 = $10)
by the first rule

δ2 = v × 10%
by the second rule

(v′1 ≤ $10 ∧ δ12 = $0) ∨ (v′1 > $10 ∧ δ12 = $10)
by the first rule

δ21 = v′2 × 10%
by the second rule

((v − δ1) ≤ $10 ∧ δ12 = $0) ∨ ((v − δ1) > $10 ∧ δ12 = $10)
by substitution

δ21 = (v − (v × 10%))× 10%
by substitution

22

Technical Issues —Static analysis

Once normalized, these constraints show that it is not incon-
sistent to have δ12 6= δ21.

For example, a senior Gold customer with a shopping cart
of $15 may pay either $3.5 or $4.5, depending on the order of
rules.

Catching this non-confluence is provable only by non-trivial
arithmetic constraint reasoning.

23

Perspectives —Rule interchange

BRMS vendors are keen on interchanging rules!

◮ ODMG PRR format
recommendation pending

◮ W3C WG RIF (Horn rules + (E/)C/A rules)
nowhere near completion! ...

◮ Rewrite rule community?
where are you people? ... :-)

24

Perspectives —Webization

Need:

◮ Direct use of Web objects? (XML, RDF, “ontologies,” etc..)

◮ Heterogeneous rulesets and object bases

◮ “Semantic Web?” ...

25

Conclusion

Business Rule Management Systems are a soaring market
offering great research opportunities:

◮ Development of “Agile” applications (SOA/BPM)

◮ Non-conventional model of computation

◮ The rewrite-rule community ought to be more involved!

26

Thank You For Your Attention !

