Classifying and querying very large
taxonomies with bit-vector encoding

Hassan Ait-Kaci & Samir Amir

Journal of Intelligent Information
Systems
Integrating Artificial Intelligence and

Database Technologies Journal of .
ISSN 0925-9902 Intdllgent
Jintell Inf Syst Information
DOI 10.1007/510844-015-0383-2
Systems

Integrating Artificial Intelligence
and Database Technologies

Listed in Current Contents/Engineering, Computing and Technology

@ Springer



Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



J Intell Inf Syst
Mark
DOI 10.1007/510844-015-0383-2 @ CrossMar

Classifying and querying very large taxonomies
with bit-vector encoding

Hassan Ait-Kaci! - Samir Amir!

Received: 24 February 2015 / Revised: 13 July 2015 / Accepted: 31 August 2015
© Springer Science+Business Media New York 2015

Abstract In this article, we address the question of how efficiently Semantic Web (SW) rea-
soners perform in processing (classifying and querying) taxonomies of enormous size and
whether it is possible to improve on existing implementations. We use a bit-vector encod-
ing technique to implement taxonomic concept classification and Boolean-query answering.
We describe the technique we have used, which achieves high performance, and discuss
implementation issues. We compare the performance of our implementation with those of
the best existing SW reasoning systems over several very large taxonomies under the exact
same conditions for so-called TBox reasoning. The results show that our system is among
the best for concept classification and several orders-of-magnitude more efficient in terms
of response time for query answering. We present these results in detail and comment them.
We also discuss pragmatic issues such as cycle detection and decoding.

Keywords Binary encoding - Taxonomic reasoning - Query optimization - Semantic web

1 Introduction

Let us first describe the context, research problem, challenges, and added-value contribution
of the work reported in this article.

P4 Hassan Ait-Kaci
hassan.ait-kaci @univ-lyonl1.fr

Samir Amir

samir.amir @univ-lyon1.fr

LIRIS—Département Informatique, Université Claude Bernard Lyon 1, Villeurbanne, France

Published online: 24 September 2015 &\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10844-015-0383-2-x&domain=pdf
mailto:hassan.ait-kaci@univ-lyon1.fr
mailto:samir.amir@univ-lyon1.fr

J Intell Inf Syst

There exist many and varied formal systems purporting to express and use knowledge
for inference. Despite this variety, they all share a common trait: knowledge is always
organized into an “is-a” conceptual taxonomy where a concept denotes the set of all its
instances. In such a taxonomy, a concept C; is deemed a subconcept of a concept Cy when-
ever the set denoted by Cj is a subset of the set denoted by C;. This is what “C; is-a
C>” means. For example, “employee is-a person” means that all instances of the concept
employee are also instances of the concept person. Hence, reasoning performance in all
such systems will need to rely in a crucial way upon the performance of the underlying
taxonomic reasoning. In particular, it will be necessary to identify all the maximal con-
cepts that are subconcepts of two given concepts, those that are minimal superconcepts
of two given concepts, or those that are incompatible with a given concept. These opera-
tions correspond respectively to concept conjunction (i.e., intersection of the denoted sets),
concept disjunction (i.e., union of the denoted sets), and concept negation (i.e., comple-
ment of the denoted set). Therefore, basic Propositional Algebra is central to all taxonomic
reasoners.

The issue, then, is to enable the efficient evaluation of propositional expressions
involving propositional symbols representing partially-ordered concepts making up these
conceptual taxonomies. However, conceptual taxonomies can be of enormous size, making
such evaluation a challenge to perform efficiently.

In this context, we address two topics: (1) robust and scalable taxonomic reasoning; and,
(2) evaluation of semantic web technologies for such reasoning. Regarding the first topic,
we demonstrate how a method for taxonomic reasoning based on bit-vector encoding we
have implemented is both robust and scalable on very large taxonomies derived from real-
life ontologies. As for the second topic, we measured the performance of our system and
compared it with those of the best existing SW reasoning systems over several very large
taxonomies under the exact same conditions for so-called TBox reasoning.! The results
show that our system is among the best for concept classification and several orders-of-
magnitude more efficient in terms of response time for query answering. We present these
results in detail and comment them.

The rest of this paper is organized as follows. In Section 2, we overview the taxonomic
reasoners used in our experiments: Section 2.1 is a brief survey of existing systems, and
Section 2.2 describes our own method. Section 3 contains the main contribution of this
article: Section 3.1 describes our experiments’ setup; Section 3.2 presents the results of
these experiments; in Section 3.3, we discuss these results. To make this report complete,
Section 4 describes two important pragmatic issues concerning encoding and decoding:
detecting potential cycles in a poset formed by declaring a taxonomy (Section 4.1), and how
to go from binary vectors back to sorts (Section 4.2). In Section 5, further work is discussed.
We conclude in Section 6 with a summary of our contribution and perspectives. We added
an appendix giving a formal specification of a space-efficient representation for extremely
large binary codes.

!In Semantic Web lingo, a Knowledge Base (KB) is defined as a formal ontology consisting of two parts (or
“boxes”): (1) a Terminological Box (abbreviated as TBox); and, (2) an Assertional Box (abbreviated as ABox).
The TBox contains the formal axioms that define the structure and semantic properties of the actual instance
data; which instance data constitute the ABox. In Database lingo, the TBox corresponds to the schema and
the ABox to the actual data.

@ Springer



J Intell Inf Syst

2 Semantic-web reasoning
2.1 The state of the art

In this section, we give a brief description of the SW reasoners that we have used for our
comparative experiments. Note that we have limited our selection to systems that are full-
fledged reasoners, and not just classifiers. This is because our interest goes beyond concept
classification and includes Boolean query answering as well. This rules out systems such as
ELK? (Kazakov et al. 2011), CEL? (Baader et al. 2006), CB* (Kazakov 2009), efc., that do
not support query answering.

We retrieved and installed the following SW reasoners: FaCT++;° HermiT;® Pellet;’
TrOWL:3 Racerpro;9 and, SnoRocket.10

FaCT++ (Fast Classification of Terminologies) is a reasoner developed at the Univer-
sity of Manchester (Tsarkov and Horrocks 2006). It is based on the Description Logic
fragment SHOZQ (Horrocks and Sattler 2007). It is implemented in C++ as a deduc-
tive tableau Manna and Waldinger (1991) adapted to the specifics of this logic. It is
claimed to use a wide range of heuristic optimizations. FaCT++ provides TBox reason-
ing (subsumption, satisfiability, classification) and partial support for ABox processing
(retrieval).

HermiT is also a reasoner for a (slight extension) of the Description Logic fragment
SHOTIQ (called SHOZ Q™) (Shearer et al. 2008). It is based upon hypertableau reason-
ing, an optimized version of tableau reasoning (Motik et al. 2009). It purports to provide
a faster process for classifying ontologies. The main optimization of hypertableau vs.
tableau that it tries to minimize nondeterminism in the treatment of disjunctions and is
more memory-efficient. HermiT provides TBox reasoning, with the ability of checking the
consistency of an ontology and inferring implicit relationships between concepts.

Pellet is a free open-source Java-based reasoner (Sirin et al. 2007). It, too, is based on
the tableau algorithm and supports the Description Logic fragment SHOZN (D). It pro-
vides TBox reasoning (subsumption, satisfiability, and classification) and ABox reasoning
(retrieval, conjunctive query answering). It uses many optimization techniques and supports
entailment checks and ABox querying through its interface.

TrOWL (Tractable reasoning infrastructure for OWL 2) was developed at the University
of Aberdeen (Thomas et al. 2010). This is a system that starts by transforming an ontology
from OWL-DL to OWL-QL Fikes et al. (2004) in order to classify it in polynomial time.
Under this transformation, conjunctive query answering and consistency checking remain
the same as for OWL-DL. In addition, TrOWL can generate a database schema for storing
normalized representations of OWL-QL ontologies.

2www.cs.ox.ac.uk/isg/tools/ELK/

3code.google.com/p/cel/
4code.google.com/p/cb-reasoner/
Sowl.cs.manchester.ac.uk/fact++/
6 www.hermit-reasoner.com/
7clarkparsia.com/pellet/
8trowl.eu/

9 www.racer-systems.com/products/racerpro/

10pesearch.ict.csiro.au/software/snorocket

@ Springer


http://www.cs.ox.ac.uk/isg/tools/ELK/
http://code.google.com/p/cel/
http://code.google.com/p/cb-reasoner/
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://www.trowl.eu/
http://www.racer-systems.com/products/racerpro/
http://research.ict.csiro.au/software/snorocket
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties
http://www.cs.ox.ac.uk/isg/tools/ELK/
http://code.google.com/p/cel/
http://code.google.com/p/cb-reasoner/
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://trowl.eu/
http://www.racer-systems.com/products/racerpro/
http://research.ict.csiro.au/software/snorocket

J Intell Inf Syst

Fig. 1 Java code for “in-place”

Warshall’s algorithm int n = SORTS.size();
for (int k = 0; k < n; k++)
for (int 1 = 0; i < n; 1i++)

for (int j = 0; J < n; J++)
if (!SORTS[i].code.get(3)))
SORTS[1].code.set (73,
SORTS[1] .code.get (k)
&&
SORTS [k] .code.get (J));

Racerpro is a commercial version of RACER (Renamed ABoxes and Concept Expression
Reasoner) (Haarslev and Moller 2001; Haarslev et al. 2011). It implements a reasoner for the
description logic SHZ Q. RACER provides both TBox and ABox reasoning. It supports all
the optimizations of FaCT++ as well as new techniques for dealing with number restrictions
and ABoxes.

Snorocket Lawley and Bousquet (2010) was proposed as a high-performance imple-
mentation of a polynomial-time classification algorithm for the lightweight Description
Logic £L (Baader et al. 2005).!" It was primarily meant to be optimized for classifying
SNOMED CT. It can process only conjunctive queries.

2.2 Our method

In this section, we give a self-contained summary of the method we have implemented in
order to measure its performance for classification of bare taxonomies and query answering
of Boolean queries.

Our method is an implementation in Java of a technique described in (Ait-Kaci et al.
1989). It consists in representing the elements of a taxonomy (i.e., an arbitrary poset) as
bit vectors. Thus, each element has a code (a bit vector) carrying a “1” in the position
corresponding to the index of any other elements that it subsumes. In this manner, the three
Boolean operations on sorts are readily and efficiently performed as their corresponding
operations on bit-vectors. However, for this to be possible, these bit vectors must be encoded
as the reflexive transitive closure of the “is-a” relation obtained from subsort declarations.

How to compute such a closure has been well-known—e.g., the Warshall-Strassen
method using clever matrix multiplication tricks (Strassen 1969; Fischer and Meyer 1971;
Coppersmith and Winograd 1990). However, for a poset of n elements, this method
has quite a large time complexity—even with the best known algorithm to date, it is
O 23727y (Stothers 2010; Williams 2011).!12 In fact, in practice, the straightforward
O(n?) in-place multiplication method known as Warshall’s Algorithm (Warshall 1962;
Warren 1975) is used in most cases.

Figure 1 gives Java code for Warshall’s algorithm performed “in-place” on the binary
codes of sorts stored in an array SORTS. The array SORTS contains the set of sorts as bit-
set objects. A bit-set object has a field named “code” which is a bit vector. The class of
bit vectors is endowed with a method get (int) that returns the value of its bit in the

UDescription Logics in the ££-family are weaker versions that provide existential roles (3r.C) but no
universal roles (Vr.C).

1274 the best of our knowledge, this is the latest best bound as of 2011. However, these algorithms are
not implementable due to prohibitive size of constants. For more recent work on parallelizing Strassen’s
algorithm, see (Ballard et al. 2014). This, however, requires special harware (GPGPUs).

@ Springer


http://www.franz.com/agraph/racer/
http://www.ihtsdo.org/snomed-ct/
http://chuck.ferzle.com/Notes/Notes/DiscreteMath/Warshall.pdf
http://en.wikipedia.org/wiki/Coppersmith-Winograd_algorithm

J Intell Inf Syst

specified position as a boolean, and a method set (int,boolean) that sets its bit in
the specified position to the specified Boolean value.

Now, while Warshall’s algorithm may be viable for relatively small posets, it simply
becomes unusable for posets of the size of the taxonomies we are considering.

Note, however, that transitive-closure methods need pay such a high performance cost
only due to the fact that they are devised for arbitrary graphs. But concept taxonomies are
not arbitrary graphs. Namely, a necessary condition for a set of partially-ordered concepts
to be semantically consistent is that its graph must be acyclic. Thus, a consistent taxonomy
must be a directed-acyclic graph (or dag) with a least element (L) and a highest element
(T). In Ait-Kaci et al. (1989), it is shown that for such a dag, an O(n) transitive-closure
algorithm exists and is proven correct. This method is described as Algorithm 1.

Algorithm 1 Taxonomy Classification Algorithm

1: procedure CLASSIFY
2: L <« Parents(L);
3: whileL # ¢ do

4 for allx € L do

5 x.code < 2¥-index \/yeChildren(x) y.code;
6: x.coded < true;

7 end for

8: L < |J,¢;, Parents(x);

9: for allx € L do

10: if 3y € Children(x) and —y.coded then
11: L <« L —{x};

12: end if

13: end for

14: end while
15: end procedure

The procedure CLASSIFY assumes that each sort s is provided with a set denoted as “Par-
ents(s)” and a set denoted as “Children(s)” (viz., from the “is-a” declarations of members of
the taxonomy). Each sort is an object that has a field (called “code’), which is its bit vector
representation (initialized to be all zeroes). A sort also has an integer field (called “index”)
which is unique per sort (viz., its index in the taxonomy). Finally, a sort also has a Boolean
field (called “coded”), which denotes whether or not this sort has been encoded yet (it is
initially set to false).

Algorithm 1 computes the reflexive-transitive closure of a the “is-a” relation on the set
of sorts comprising a taxonomy (Ait-Kaci et al. 1989).!3 This algorithm can be explained
as follows. It proceeds layer by layer, starting with the parents of L (i.e., the minimal sorts
in the taxonomy) [Line 2], assigning a code to each element in the current layer to be the
bitwise or of its children and also setting the bit in its index position [Line 5]. Each time
an element is encoded, it is marked to be so by setting its coded flag to true [Line 6]. Then,
a new layer is computed from the current one as the union of all it parents [Line 8] from
which any sort that has at least one child not encoded is removed [Line 11]. Indeed, by
construction, such sorts can always be reached later. This proceeds until an empty layer is
obtained [Line 3]—which is when all sorts have been encoded.

Bop. cit., pages 125-126.

@ Springer



J Intell Inf Syst

This algorithm’s main loop [Lines 3—14] clearly visits each sort exactly once, and is thus
linear. The auxiliary computation of the next layer [Lines 8—13] has comparatively marginal
cost as it can be made efficient using constant access-time data structures for the sets of
parents and children, making set operations on them negligible. Also proceeding bottom up
has a clear performance advantage for dags such as most concept taxonomies, where sorts
tend to have many less parents than they have children.

It is this method that we have implemented and tested on very large taxonomies, and
compared it with the best SW reasoners we could retrieve. We extracted such taxonomies
from existing publicly accessible ontologies of enormous size. The real bonus of this method
is, of course, that all three Boolean operations on sorts stay virtually O(1) irrespective of
the size of the taxonomy nor that of the number of concepts in the query. The result of any
such query is the set of sorts with codes in the set of maximal common lower-bounds of
the computed code.'* All the above claims are clearly demonstrated on all the performance
graphs we are reporting in the next section.

As for incrementality, removing a sort amounts simply to erasing its index position in all
codes that have it set. Adding a sort (through a new “is-a” declaration 51 < s7) is done by
restarting the bottom up propagation of the loop [Lines 3—-14] starting from the parents of
lower of the two sorts, after having reset all its ancestors to the uncoded status. In case of
several new “is-a” declarations, the same procedure is applied but starting from the union of
the parents of the minimal new sorts after resetting all their ancestors to the uncoded status.

3 Experimental work
3.1 Experiment setup

We extracted the bare concept taxonomies gathered from four very large ontologies. Here
they are, listed in order of increasing sizes:

1. Wikipedia—derived from the Wikipedia online database (size: 111,599 sorts);15
. BioModels—various biological models (size: 182,651 sorts);'®

3. MeSH—Medical Subjet Headings of the National Library of Medicine (size: 286,381
sorts); 17

4. NCBI—National Center for Biotechnology Information’s for all known living organ-
isms (size: 903,617 sorts).!® This taxonomy (the largest today) is a “bare” taxonomy—
i.e., it contains only partially “is-a” ordered classes symbols (concepts), but no
properties (i.e., no roles, nor other kinds of attributes).

We focused only on bare conceptual taxonomic reasoning.'® That is, we considered
no attributes (roles or features), just sorts (i.e., concepts). Thus, reasoning on such sorts
amounts to pure propositional logic. In other words, this boils down to computing Boolean

14See Section 4.2.
Bhttp://www.h-its.org/en/research/nlp/wikitaxonomy/
16bioportal bioontology.org/ontologies/3022

17www.nlm.nih.gov/mesh/meshhome.html

18\ ww.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

19See Section 3.3 for a discussion concernining this point.

@ Springer


http://www.h-its.org/en/research/nlp/wikitaxonomy/
http://bioportal.bioontology.org/ontologies/3022
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
http://www.h-its.org/en/research/nlp/wikitaxonomy/
http://bioportal.bioontology.org/ontologies/3022
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

J Intell Inf Syst

expressions consisting of sorts and the three operations: and, or, not. Seen another (equiv-
alent) way, these operations applied to set-denoting expressions are interpreted respectively
as set intersection, union, and complementation. The topmost sort T denotes the set of all
things, and the bottommost sort L denotes the empty set—i.e., the set of no thing.

Section 3.2 reports the results of our comparative experiments of our Java implementa-
tion of our method with the state-of-the-art reasoners on bare conceptual taxonomies using
only propositional-logic queries.

3.2 “Just the facts, Ma’am!”

This section reports the results of our experiments with the six reasoners that we retrieved
(FaCT++, HermiT, Pellet, Racerpro, TrOWL, SnoRocket) and ours (CEDAR). All runs for
all reasoners were carried out for exactly the same queries under the exact same conditions
(on an Intel Core Duo CPU, 2.20 Ghz, 64-bit processor, running Windows 64, with 250 GB
SATA HDD, and 16 GB main memory).

3.2.1 Classification
Figure 2 shows the comparative classification time performances for each reasoner on each

of the large taxonomies we have selected. This makes six out of the seven reasoners. We did
not consider SnoRocket in these classification-performance graphs because we realized that

time (s) time (s)

25
%0 82.05 8352

21.16

20 W CEDAR M CEDAR

u Pellet W Pellet

15 WTrOWL B TrOWL

W FaCT++ ™ FaCT++

10 " RacerPro

¥ RacerPro
= HermiT

®Ek

B HermiT

NEk

Wikipedia (110 000 sorts) Biomodels (182 651 sorts)

(a) Wikipedia (b) BioModels

time (s) time (s)
80 800 -

69.11
70 700
= CEDAR
m CEDAR

N M peliet °° mpellet
= =TrowL 500 oL
“ W FaCT++ 400 BFaCT++
%0 ™ RacerPro 300 ™ RacerPro
~ B HermiT 35624 # Hermi
mek
10 mEk 100
o o0
MESH (266 381 50rts) NCBI (903 617 sorts)
(c) Mesh (d) NCBI

Fig. 2 Classification time per reasoner

@ Springer



J Intell Inf Syst

that system does not actually perform any preliminary classification, but does so on demand
at query time.

While our system’s classification time (CEDAR—the leftmost performance on all
graphs) is not always the best, it is always among the three best out of six, the worst being
systematically TrOWL. This latter point may be due to the fact that it involves a preliminary
compilation from DL to QL. Be that as it may, one can accept a longer classification time
if it means faster query answering. In this regard, as illustrated next, our system definitely
keeps a huge margin over all the others. It is to be noted also that TrOWL is faster at query
answering relatively to the others (although still quite worse than our system on all tested
taxonomies). This, again, may be justified by the longer classification time. On the other
hand, HermiT, that is among the better classifiers, is always the worst for query answering.
This is shown next.

3.2.2 Querying

For each of the seven reasoners, Fig. 3 shows the comparative query response time perfor-
mances for two kinds of queries. If some reasoners are missing on some of these graphs,
it is because they could not provide an answer before a time-out period that we set to 30
minutes.

The first series of graphs (leftmost column) are for mixed conjunctive and disjunctive
queries, of the form: s; & ... & su2 & (spj241 | .. | sp), forn = 10,20, ...,100.20
We made one exception for SnoRocket, for which the queries were all conjunctive since the
latest system available does not support disjunctive queries.

The second series of graphs (rightmost column) are for purely disjunctive queries of the
form: s; | ... | s,, forn = 10, 20, ..., 100. We did not include SnoRocket in this series of
tests since, again, the system we retrieved does not support disjunctive queries.

In both series of graphs, it is clear that our system (CEDAR) systematically achieves
the best performance. Moreover, it does so by several orders of magnitude (recall that the
scale of time is logarithmic).

3.3 Discussion

Relative performance Although the graphs reported in Fig. 3 speak for themselves, it is
interesting to get an appreciation of the relative performances for query answering of all the
reasoners we have tested. In order to do so, Tables 1 and 2 sum up the facts displayed in the
graphs by taking the average over all query sizes (viz., from 10 to 100 concepts), giving the
maximum of these averages the value 100, and showing all the other averages as percent
values.

Empty cells mean that the reasoner was never able to provide an answer within our
time-out limit (which, again, was set to 30 minutes). On the “BioModels” taxonomy, Pellet
stumbles into a Java runtime error for some unknown reason.

Table 1 shows these figures for the mixed conjunctive and disjunctive queries. Table 2
shows these figures for purely disjunctive queries. Again, SnoRocket does not appear in the
latter because it could not be tested on disjunctive queries (hence the N/A entries).

20We use “&” to denote “and,” and “|” to denote “or.”

@ Springer



J Intell Inf Syst

——CEDAR
—— 2
2

1 /
= W5 @  numberof concepts

° in the query
10 20 3 4 SO 6 70 8 90 100

log (time) log (time)
. —etermT , —Hermm
~E-TrOWL ~E-TrOWL
3 == Peliet 2 ~tr—Peliet
=—Snorocket w—siemCEDAR
2 / ~=CEDAR 14— ——
1
numberof concepts °1 =0 @& o= Tl 100 Mumberof concepts
0 in the query in the query
10 20 30 40 S0 60 70 80 90 100 %
1
2
2
— e
- ——"“y-————’\/_' 3
-4 -4
Wikipedia : (111 599 sorts) Wikipedia : (111 599 sorts)
(a) Wikipedia/Mixed Queries (b) Wikipedia/Disjunctive Queries
log(time) log(time)
—t—Herm ——HermT
S 3
- TrowL
. ~E—=TrOWL
w=seCEDAR

A ————

1

80 %0 100 pumberof concepts

inthe query

| e e 3 e s e e i
s
- -
Biomodels (182 651 sorts) Biomodels (182 651 sorts)
(c) BioModels/Mixed Queries (d) BioModels/Disjunctive Queries
‘ log(time) PR log(time) e
¢ =T : == TrOWL
e (P I =
—-CEDAR e 4 CEDAR

T

+ in the query
00

numberof concepts

1

" numberof concepts
in the query

T — B 3 TS
-4 -4
MESH (286 381 sorts) MESH (286 381 sorts)
(e) MeSH/Mixed Queries (f) MeSH/Disjunctive Queries

log(time) log(time)
3 =—t—Pellet 3 —4—HermiT

M S == By —|-TrowL
’ e A ——CEDAR : —=—CEDAR

numberof concepts numberof concepts

o in the query o T in the query

S0 60 70 8 90 100

NCBI (903 617 sorts)

(g) NCBI/Mixed Queries

80 90 100

i ) e ey YT,

NCBI (903 617 sorts)

(h) NCBI/Disjunctive Queries

Fig. 3 Comparative performance graphs for query response times per taxonomy

@ Springer




J Intell Inf Syst

Table 1 Relative normalized average performance times for mixed queries

Taxonomy FaCT++  HermiT = TrOWL  Pellet  Racerpro  SnoRocket CEDAR

Wikipedia 100 0.13 0.51 0.21 0.000233
BioModels 100 0.13 Error 0.24 0.000074
MeSH 100 1.17 8.29 2.60 0.000530
NCBI 5.78 100 19.75 0.002627

Bare taxonomies The reason why we limited our study to bare propositional reasoning is
that this is (or ought to be) the most basic capability of any ontological reasoner. Any further
capability in a more complete ontology based on a taxonomy (e.g., reasoning with roles—
existential and/or universal, cardinality constraints, efc..) must be conjugated with the basic
propositional reasoning on taxonomic sorts. In fact, in such systems, a “complex” concept
is typically a sort conjoined with some additional role-related expression. Thus, one can see
bare Boolean taxonomic sort reasoning as sheer abstract interpretation of complex-concept
reasoning (Cousot 1996).

Now, in terms of implementing such reasoners, it is evident that one must start with the
simpler form of reasoning since it is part of all further reasoning. Still more important is
that this most basic form of reasoning must be made as efficient as possible. In addition,
factoring it out of more complex forms of reasoning (e.g., for attributed taxonomies) makes
the latter more efficient as it narrows it only to relevant concepts. This is simply justified
as taking advantage of commutativity and associativity of conjunction (especially prior to
distributing it over potential disjunctions). It is then a formal and efficient technique opti-
mizing the process of any ontological reasoning, as complex as its conceptual expressions
may be. Indeed, formally, taking any Boolean combination of expressions such of the form
s & s-properties, ignoring the s-properties parts as a first pass will narrow the original
expression to its essential remaining maximal consistent sorts.

Another reason that motivated us to experiment with bare taxonomies is that this is
the case of several “real-life” ontologies (e.g., NCBI, as already mentioned; but also,
http://www.h-its.org/en/research/nlp/wikitaxonomy/, to name a couple).

Static processing Finally, it is worth pointing out that once a taxonomy has been classi-
fied, it may be saved on disk to be reloaded without any penalty and reused over and over.?!
This is akin to compiling a program and not needing to recompile it for each use.

4 Pragmatic issues

In this section, we discuss two important pragmatic issues in the process of encoding and
decoding a partial order. The first one concerns the detection of potential cycles when encod-
ing taxonomies. The second one is about how to decode codes, which are elements of a
Boolean lattice of binary words, into sorts which are elements of a partial order.

2lwe implemented such a facility—see Appendix.

@ Springer


http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
http://www.h-its.org/en/research/nlp/wikitaxonomy/

J Intell Inf Syst

Table 2 Relative normalized average performance times for disjunctive queries

Taxonomy FaCT++  HermiT =~ TrOWL  Pellet Racerpro  SnoRocket CEDAR

Wikipedia 74.65 2.86 100 N/A 0.00719
BioModels 100 4.68 Error N/A 0.00258
MeSH 67.50 3.01 100 N/A 0.00141
NCBI 100 5.10 N/A 0.00141

4.1 Detecting cycles

As we found out, there is no guarantee that “real-life” taxonomies be acyclic—if only as
the result of errors or inconsistent data. Detecting such potential cycles is an important
issue since our encoding method’s correction relies on the taxonomy being a dag; i.e., a
directed acyclic graph. This section adds some information concerning the detection and
identification of potential cycles in a set of “is-a” declarations specifying a taxonomy.

4.1.1 Problem

If the general O(n®) Warshall algorithm is used to compute transitive-closure codes for all
sorts in the taxonomy, then an existing maximal cycle will necessarily imply that all its
elements are given equal codes. Indeed, by transitivity, the code of an element denotes the
set of all its descendants. But all the elements of a cycle have the same set of descendants,
and so their codes must be equal. Such a cycle is in fact an equivalence class for the least
equivalence relation containing the declared “is-a” pairs.

One could eliminate all such cycles by collapsing them into a single sort (the class rep-
resentative), obtaining the quotient set, which is then a dag. However, this is not desirable
since such cycles are in all cases errors resulting from inconsistent declarations. In this case,
they should be flagged as errors and their contents identified.

Reporting such cycles efficiently can be done by performing a topological reordering
of the taxonomy according to the codes that would guarantee that sorts of equal codes are
contiguous. Thus, a maximal cycle must be a maximal contiguous sequence of equal-coded
sorts in this topological reordering of the taxonomy.

However, for the reasons discussed earlier in this paper, it is not feasible to use War-
shall’s algorithm to compute the transitive closure on very large taxonomies. In addition,
reordering such a very large taxonomy using QuickSort will be on average O (n log n) with
a prohibitive, although very rare, O (n?) worst case (Hoare 1961).22

Note that using our bottom-up encoding to compute the transitive closure of a taxonomy
is correct only if it is a dag. If there are cycles in it, it will necessarily terminate with some
of its elements left without code. This is because in Algorithm 1 a layer computed from a
previous one [Line 8] removes any sort that has at least one child not encoded [Line 11].
This is correct for a dag since such sorts will always be reached later through a different
longer path from _L. But the existence of a cycle will make this assumption incorrect. For
example, declaring both s; < s2 and s» < 1 will cause both s; and s> (and all their
ancestors) to be removed from any layer to be encoded.

22en.wikipedia.org/wiki/Quicksort

@ Springer


http://en.wikipedia.org/wiki/Quicksort

J Intell Inf Syst

Therefore, the best we can expect with the bottom-up encoding method is that it always
terminate in at most n iterations for a taxonomy of n elements. If the taxonomy is indeed
a dag, all sorts will be correctly encoded. But if there are cycles, it will detect this to be
the case (by checking that there remain non-encoded sorts upon termination). However, it
does not have any possiblity to identify how many maximal cycles there are and which
sorts compose them. It is because all it knows is that bottom-up encoding left some ele-
ments non-encoded—which happens if and only if there are cycles. It does not have specific
information allowing identification of which exact (maximal) cycle(s) they are.

4.1.2 Solution

In order to identify such potential maximal cycles, it is sufficient to collect all non-encoded
sorts after a bottom-up encoding in a new set to be classified using Warshall’s method and
topologically reordered. While using Warshall’s method is too costly on the full poset due
to its large size, it becomes pragmatically feasible on the set of non-encoded sorts (if there
are any) because such a set is always much smaller than the full declared taxonomy. In this
way, all cycles can be identified as maximal contiguous elements and reported as errors.

Let us now define such a topological ordering. Recall that a taxonomy of n sorts is
represented as an array of size n of Sort objects that are characterized by three fields; the
sort’s:

1. index—its offset in the array;
2. code—its bit-vector encoding;
3. name—its name.

Using this precedence test on sorts, we can thus obtain a unique topological (total)
ordering of a taxonomy whereby a sort s is said to precede another sort s’ iff, in this order:23

1. s.code < s'.code; or,
2. s.code = §'.code and s.index < s’.index; or,
3. s and s’ are unrelated, and:

— |s.code| < |s'.code]; or,
— |s.code| = |s’.code| and,
firstDiff(s.code,s’.code) < firstDiff(s’.code, s.code).

The expression |c| for a code ¢ denotes this code’s cardinality (i.e., its number of bits
set to true). The expression firstDiff(c, ¢’) for two codes of equal cardinality ¢ and ¢’
denotes the lowest 1-bit position in ¢ that is 0 in ¢’. So the last condition ranks sorts accord-
ing to the number of descendants, and when such are equal, according to the descendant of
lowest differing index.

This ordering on sorts will keep lesser sorts and sorts of lesser cardinality at lower ranks.
Same-cardinality codes (i.e., sort with same number of subsorts) are ranked according to
lowest index of the subsort contained in one but not the other. For example, code ¢ =
1000111 ({0, 1, 2, 6}) is toplogically less than code ¢’ = 0101011 ({0, 1, 3, 5}) because
firstDiff(c,¢’) =2and firstDiff(c’,c) =3,and2 < 3.

It is not difficult to see that such a topological reordering will always end up with equally
encoded elements being contiguous, while sorts with a greater number of lower bounds will

23The ordering on bit-vector codes is simply defined as ¢; < ¢z iff c] = ¢ & 2.

@ Springer



J Intell Inf Syst

be at higher ranks. In this manner, it is easy to identify all cycles in one single sweep of the
taxonomy array as maximal sequences of contiguous equal codes of length at least 2.

On the Wikipedia taxonomy, the above method could identify 13 cycles: 12 of length 2
(i.e., x is-a y and y is-a x) and 1 of length 3 (i.e., x is-a y and y is-a z and z is-a x).
There were also 49 warnings of cycles of length 1, which are harmless redundancies (i.e.,
x is-a x). All these cycles were removed in the final Wikipedia taxonomy we used in our
tests and measurements.

4.2 Decoding

We now turn to decoding—i.e., relating bit-vector codes to the sorts they denote.

By construction of transitive closure, Algorithm 1, the bit vector of a sort at index i
(0<i<n—1)hasalinposition j (0 < j <n —1)if and only if the sort at index j is its
subsort. Therefore, a sort’s bit vector has 1s in all and only the positions of its descendant
sorts. For example, the taxonomy shown as Fig. 4 containing 12 sorts (other than T and L)
will result in the encoding shown as Table 3. Since there are 12 sorts in this taxonomy, all
codes in this taxonomy have 12 bits. The top and bottom elements (T and _L) are implicit
both in Fig. 4 and in Table 3. So the code for bottom is all 0s, and the code for T is all 1s.

Let us first consider codes obtained without using negation. In other words, let us first
restrict ourselves to decoding the result of only positive queries—i.e., ones involving sorts
of an encoded taxonomy using a Boolean expression of its sorts’ bit-vector codes using
bitwise and, or—but not not. This always results in a bit vector. In order to determine
what sorts this resulting bit vector corresponds to, there are two cases: either the resulting
bit vector is that of an existing sort, or it is not.

In the first case, in order to speed up determining the sort of the bit vector, all codes are
stored in a hash table mapping a code to its sort. In this way, evaluating for example “F & G”
in the taxonomy of Fig. 4, which results in the bit-vector code 000000001011, the sort
can be retrieved in this hash table to be associated with the code—sort D in our example.

In the second case, the code resulting from a query evaluation does not correspond to
an existing sort. For example evaluating “I & J” in the taxonomy of Fig. 4 yields the

Fig. 4 Example of a small “is-a”
taxonomy

@ Springer



J Intell Inf Syst

Table 3 Transitive-closure codes for sorts in Fig. 4

Index Code Sort
11 101110111111 L
10 011111111111 K
9 001010111111 I
8 000110111111 J
7 000010011011 G
6 000001101111 H
5 000000101111 F
4 000000011000 E
3 000000001000 B
2 000000000101 C
1 000000001011 D
0 000000000001 A

code 000010111111, which does not correspond to any specific sort in Table 3. How-
ever, semantically, this code is necessarily a minimal upper bound of the set denoted by the
resulting sort if it existed. Hence, if we wish to express the resulting sort in terms of existing
sorts, it is semantically the union of all the sorts whose codes are maximal lower bounds of
the resulting code. In order to compute what sorts are in this set of maximal upper bounds,
it suffices to retrieve all the sorts at index i such that there is a 1 at position 7 in the result-
ing code and keep only the maximal ones. In our example, the code 000010111111 has
a 1 in positions 0, 1, 2, 3,4, 5 and 7. This means that its subsorts are A, D, C, B, E, F, and
G. However, among these, only F and G are maximal. Therefore, the result of the query
“I & J7 is the disjunctive sort {F ; G}.

While the above decoding scheme is correct for positive queries, it is not so however if
the query made use of negation. To see this, let us consider the taxonomy shown as Fig. 5
and its encoding: shown as Table 4.

Let us now consider the (negative) query: “! canid.” The code resulting from evaluating
this query is the complement of the sort “canid”—namely, 011001111. The decoding

Fig. 5 Example of a small animal “is-a” taxonomy

@ Springer



J Intell Inf Syst

Table 4 Transitive-closure codes for sorts in Fig. 5

Index Code Sort

8 100000000 poodle

7 010000000 canary

6 001000000 ostrich

5 100100000 dog

4 100110000 canid

3 110101000 pet

2 100110100 carnivore
1 111111111 animal

0 011000001 bird

method that we used above will yield the maximal elements in index set {0, 1,2, 3, 6, 7}—
viz., {bird, animal, pet, ostrich, canary, poodle}; namely, {animal}, which
is obviously wrong. This decoding is incorrect because a negated code can no longer be
interpreted as having a ‘1’ in a position corresponding to a subsort. Indeed, for such a code,
a ‘1’ in position i means that sort of index i is either a supersort or unrelated. (This is
because it comes from negating ‘0’ at position i in the complement where that meant “sort
of index i is not a subsort of this sort.”)

This means that if a code to be decoded results from operations involving at least one
negation, it must be ensured that all the 1s in it are “genuine” indicators of lower bounds
(which may not be the case if such a 1’ came from complementing a 0’ by negation).

In order to do that, let us consider the case of negating a sort expression s. If we compute
the code of !'s by switching all 1s to 0s and vice versa in the code of s, this will not work
(as explained above). However, if we change a 1 in position i to a 0 in the code of !s
whenever the sort of index i is a supersort of a sort corresponding to a 0 in the code of ! s,
then we will be left with a code having a 1 only in positions of actual subsorts of ! s. With
such a code, the decoding method for positive-query coded can then compute the correct set
of maximal lower bounds of !s.

Given a code to be decoded, we call its set of “undesirables” the set of (indices of) ances-
tors of sorts corresponding to Os in this code. Clearly, by the very semantics of encoding,
these indices cannot be 1s in the code to be decoded. For if they were, so should be their
descendants—but such is not the case since they are precisely defined as ancestors of sorts
corresponding to a 0 in the code. So, if we switch off any 1 in the code to be decoded that
corresponds to an “undesirable,” we are left only with a code that can now be decoded with
the method described above for codes involving no negation—since we are now guaranteed
that all the 1s denote actual subsorts. Finally, note that for a code resulting from operations
involving no negation, the set of “undesirables” is necessarily empty. Indeed, in this case,
there can be no 0 in a position of a descendant of an actual ancestor.

In our example above, for the code 011001111 resulting from the evaluation of
“lcanid,” the “undesirables” are the set of ancestors of sorts of indices {4, 5, 8} (that is,
the set of sorts {canid, dog, poodle}). This set is the set of indices {1, 2, 3, 4} (or sorts
{animal, carnivore, pet, canid}). Switching off undesirable bits gives the code:
011000001. This set of indices ({0, 6, 7}) denotes the set of sorts {bird, ostrich,
canary}. Keeping only maximal elements, this yield the (correct) answer: “bird.”

@ Springer



J Intell Inf Syst

For efficiency reasons, once a bit-vector code has been decoded, it is stored in a cache
(a hash table) associating the code to the set of sorts whose codes are its maximal lower
bounds. In this way, should the same code appear again as a result, it is first looked up in
this cache to avoid the need to compute again its set of maximal lower bound sorts.

Finally, note that decoding a bit vector is only necessary for extracting the end result of
a query in terms of defined sorts. All intermediate computation need not refer at all to the
sorts and deal only with bit vectors, whether or not they correspond to defined sorts. There
is no loss of information doing so as the encoding plunges the taxonomy in the minimal
Boolean lattice containing it (Ait-Kaci et al. 1989).

5 Further work

In Amir and Ait-Kaci (2014a, b), we have extended this work to unification-based Knowl-
edge Representation known as Order-Sorted Feature (OSF) constraint logic (Ait-Kaci
2007). While OSF logic uses functional features, we can use them to represent roles using
aggregates. The advantage is that role-based reasoning is thus made simpler since it relies
on Logic-Programming unification technology made possible by functional attributes (Ait-
Kaci and Di Cosmo 1993; Ait-Kaci 1991). This is akin to compiling DL-based relational
roles into aggregate-valued functional features. OSF sorts have also a “memoizing” effect
whereby no property needs to be proven again once it has been established for any
supersort (Ait-Kaci 2007).

As for the nature of codes (binary vectors), there are optimizations that may still be
performed to our basic method. The technique known as code modulation (explained in
detail in Ait-Kaci et al. (1989)) can take advantage of a taxonomy’s specific shape to mini-
mize drastically code space. This makes so-modulated bit-vector encoding very scalable as
explained in (Ait-Kaci et al. 1989). Indeed, modulated encoding reduced code size to a log-
arithmic function of non-modulated encoding. Code modulation being independent of the
encoding technique, it can be applied to any method. Each module can in fact use different
encoding methods each adapted to its specific topology. It can thus be used recursively (i.e.,
one can modulate a module) with the encoding technique most appropriate to the topology
of the module being encoded.

Another optimization to minimize classification time could be to perform lazy encod-
ing.2* In other words, one could only encode the sorts relevant to a query and cache
intermediate results. The price to pay would be at query time, although only the first time a
subset of the concepts it involves are used.

6 Conclusion

In this paper, we have presented an implementation of a Boolean Logic taxonomic reasoner
based on bit-vector encoding. We have implemented such a reasoner in Java, and have com-
pared its performance for pure taxonomic reasoning to that of six among the most renown
Semantic Web reasoners. Focusing only on pure Boolean taxonomic reasoning—which is
at the core of every SW reasoner—the results of our measurements show that our system
achieves the best performance, by a large margin. This establishes beyond doubt that the

241 the same manner as we have noticed that SnoRocket does.

@ Springer



J Intell Inf Syst

best exisiting Semantic Web reasoners fail to live up to performance that can be easily
achieved using bit-vector encoding. This is true even, and especially, when applied to very
large taxonomies.

In order to carry out these experiments, we also developed a tool with an easy-to-use GUI
that lets a user run these tests for any listed reasoner and taxonomy. This tool is available for
download from the CEDAR Project’s website for anyone to verify our results.”> Also, a
video clip of these demos showing these experiments in vivo, and a web service for running
these demos on line are available online.?® In this way, our results may hopefully not have
to be taken on faith, but could be verified de visu by anyone who might wish to check them
on their own.

Acknowledgments The authors wish to thank Prof. Mohand-Said Hacid and the anonymous referees for
constructive feedback.

Conflict of interests The authors declare that they have no conflict of interest.

Funding This work was carried out as part of the CED.AR Project (Constraint Event-Driven Automated
Reasoning) under the Agence Nationale de la Recherche (ANR) Chair of Excellence grant N° ANR-12-
CHEX-0003-01.

Appendix

In Section A, we give an overview of an implementation specification for representing very
large bit vectors, reducing memory-space consumption while retaining efficient operations.
In our experiments, this alternative code representation was used only for saving an encoded
taxonomy on disk and reloading it as a pre-encoded order. But for taxonomies of even larger
size than those used in our experiments, it could be used for lattice operations as well.

A Compact codes

While the foregoing sections present a method for encoding elements of a partially ordered
set based on transitive closure, the data structure it relies on is that of a binary word—
i.e., a bit vector. With such a structure, all boolean operations—and, or, not—are thus very
efficient. This representation also eases computation of the transitive closure since setting a
bit on or off is trivially accommodated.

However, while this representation is convenient and time-efficient for relatively small
posets of the order of a few hundred elements, it quickly becomes space-inefficient for large
posets of hundreds of thousands, or millions of elements.

In what follows, we define an alternative representation of indexed bit sets that offers
the advantage of being more compact than bit vectors while retaining time-efficient boolean
and bit-setting operations. It is also the format we use to save/load encoded taxonomies
on/from disk. In Section A.l, the basic data structure is defined. In Section A.2, bit

25 cedarliris.cnrs.fr/data/ CEDAR-V 1.0.zip
26 ¢cedar.liris.cnrs.fr/demos.html

@ Springer


http://cedar.liris.cnrs.fr/
http://cedar.liris.cnrs.fr/data/CEDAR-V1.0.zip
http://cedar.liris.cnrs.fr/demos.html

J Intell Inf Syst

setting and unsetting operations are defined. In Section A.3, the three boolean operations—
conjunction, disjunction, and negation—are defined. In Section A.4, some implementation
considerations are discussed.

A.1 Bit code representation

The idea is intuitively simple. It consists of representing a bit vector as a finite array of k

(k € N) pairs of integer indices (/;, u;), fori = 0,...,k — 1, such that, for all indices
i=0,...,k—2:

0<li<uj <liy1 <up_1. (1)
We shall refer to such a sequence k pairs, k € N, { (l;,u;) |1 =0,...,k— 1} as a compact

code. For k = 0, this is written as the empty sequence {}.

Given a compact code representation of a bit vector V, each pair (I, u) represents a max-
imal contiguous sequence of 1’s (hereafter referred to as a “packet”) in V. Thus, the i-th
packet of a bit vector is represented as the pair of indices (/;, u;) such that /; is the index of
the lowest bit in the packet, and u; is the index of the first 0-bit following the packet.

For example, the bit vector 0011111001111000000110000 corresponds to the
compact code (i.e., sequence of packet pairs):27 { (4,06), (12, 16), (18, 23) }.

The empty bit vector (containing all 0’s) is represented as the empty sequence {}. The
length of a bit vector represented by a compact code sequence of k pairs (or packets) is uy.
The size of a compact code C of k pairs (or packets) is k (i.e., its number of packets).

A.2 Bit operations

Let C ={(li,u;)|i=0,...,k}beacompact code of k packets (k > 0). Given a number
n € N, and a compact code C of k packets as defined above, we say that:?8

— n is within a packet of C iff 3i € [0, k — 1] such that /; < n < u;—in which case we
shall write C.packet(n) = i;
— n is between packets of C iff either one of the three statements holds:

1. n <lp;or,
2. up_1 <n;or,
3. Ji €[0,k—2]suchthatu; <n < lj41.

If a number 7 is between packets of a compact code C of size k, we define two functions
C.prev(n) and C.next(n) for each of the three possible respective cases above as follows
(where the symbol ‘?’ means “undefined”):

1. C.prev(n) A ? and C.next(n) & lo;

2. C.prev(n) déf uy and C.next(n) déf ?;

3. C.prev(n) déf u; and C.next(n) déf liy1.
For such a number n, we say that:

— nisleft-adjacent in C if n = C.next(n) — 1;

2TRecall that a bit vector is written with its lowest bit to the right.

28In what follows, we shall use the “dot” notation of object-oriented methods to denote all functions or
operations on codes.

@ Springer



J Intell Inf Syst

— nisright-adjacent in C if n = C.prev(n);
— nisadjacent in C if it is both left-adjacent and right-adjacent in C.

Note that if n is between packets and adjacent, this necessarily means that the two packets
on each side are only separated by a single 0-bit (the bit in position n in the denoted bit
vector).

N.B.: In all the compact code expressions to follow, we use the implicit convention that
a packet with undefinable bounds is simply omitted. Thus, we will always use the nota-
tion { (lo, uo), ..., {lk—1, Ux—1) } to denote a compact code, where k > O up to the above
conventions regardless of the actual number of packets. For example, for k = 0 this will
correspond to the empty code {}, and for k = 1, this will correspond to the single-packet
code { {lp, ug) }.

We define the following bit-setting operations on C. These methods operate “in place”
by modifying a code C that invokes them.

— C.set(n), for n € N, which sets the n-th bit of the bit vector denoted by C to 1.

— C.set(n,m),forn,m € N, n < m, which sets to 1 all the bits from position n (inclusive)
to position m (exclusive) of the bit vector denoted by C.

— C.unset(n), for n € N, which sets the n-th bit of the bit vector denoted by C to 0.

— C.unset(n,m), for n,m € N,n < m, which sets to 0 all the bits from position n
(inclusive) to position m (exclusive) of the bit vector denoted by C.

For m < n, both C.set(n,m) and C.unset(n,m) are no_ops—i.e., they leave C
unchanged. Since set(n) is equivalent to set(n, n + 1), we will just give the methods for
set(n, m) and similarly for unset(n).

A.2.1 Bit setting

There are four cases to consider for which performing C.set(n, m) modifies C as follows.

1. If n is within a packet in C (say, C.packet(n) = i) and m is within a packet in C (say,
C.packet(m) = j), then, if i = j, C.set(n, m) leaves C unchanged. Else (if i < j),?
then C becomes:

{ ...,(li,uj),... }
2. [Ifnis within a packet in C (say, C.packet(n) = i) and m is between packets in C, then
C becomes:
{ . i uj), ...}
if m is left-adjacent in C and C.next(m) = [;;
(2)
{....i,m), ...}

otherwise.

3. If n is between packets in C and m is within a packet in C (say, C.packet(m) = j),
then C becomes:
[ liuj), ...}
if n is right-adjacent in C and C.prev(n) = u;;
3
{ ..., (nujy), ...}
otherwise.

29Note that i # j implies necessarily that i < j (by Condition (1) and since n < m).

@ Springer



J Intell Inf Syst

4. [If both n and m are between packets in C, then C becomes:

(... {iuj), ...}
if n is right-adjacent in C and C.prev(n) = u;, and
if m is left-adjacent in C and C.next(m) = [;;

{ ..., {iym)y, ...}
if n is right-adjacent in C and C.prev(n) = u;, and
if m is not left-adjacent in C;
“)
{....(nuj), ...}
if n is not right-adjacent in C, and
if m is left-adjacent in C and C.next(m) = I;;

{...,(n,m),...}

otherwise.

A.2.2 Bit unsetting

Here again, there are four cases to consider for which performing C.unset(n, m) modifies
C as follows.

1. If both n and m are between packets in C: if C.prev(n) = C.prev(m) (or, equiva-

lently, if C.next(n) = C.next(m)), then C.unset(n, m) leaves C unchanged; else, C
becomes:

{ ..., {li, C.prev(n)), (C.next(m), u;),... }.

2. If nis within a packet in C (say, C.packet(n) = i) and m is between packets in C, then
C becomes:

{ ..., i1, ui1), (C.next(m), uj), ... }
if n = [;, where C.next(m) =1;;
(5)
{....{Li,n), (Cnext(m), uj),...}
else (i.e., if n > I;), where C.next(m) =1;.

3. If n is between packets in C and m is within a packet in C (say, C.packet(m) = j),
then C becomes:

{ ..., Cprevim)), {Ljy1,ujt1), ... }
ifm=uj; — 1, where C.prev(m) = u;;
(6)
{ ... (i, Cprev(n))., (m,uj). ... }
else (i.e.,ifm <uj— 1), where C.prev(m) = u;.

@ Springer



J Intell Inf Syst

4. [If both n is within a packet (say, C.packet(n) = i), and m is within a packet (say,
C.packet(m) = i) in C, then C becomes:

{ ol uizn), e, uj—1), .00 )
ifn =1;, and
itm=u; y;

{ ... ictuio1), (m,uj), ...}
ifn =1[;, and
iftm<ujq;
(7
{ ... dion), Ly ujo), ... )
ifn > [;, and
iftm=u; i;

{....{,n), (muj), ...}
ifn > [;, and
itm<ujq.

A.3 Boolean operations

Let:

C={{j,u;)|i=0,....k—1}
and:

C’:{(lg,ug)|i:0,...,k’—l}

be two compact code pair sequences, with k > 0 and £’ > 0.
A.3.1 Conjunction

Invoking C.and(C’) will modify C according to C’ by unsetting all the bits in C that are
between packets in C’, leaving C” unchanged.

If C = {}, then C is left unchanged; else, if C’ = {}, then C becomes {}.

Else (i.e.,if k > 0 and K’ > 0), C is modified by invoking:

- C.unset(0, [); and,
- C.unset(u;,llfH),fori =0uptoi =k — 1; and,
- C.unset(u),_,,ur_1).

Note that in practice, when proceeding in the above order, as soon the first argument of
any unset(. . .) is greater than or equal to uy_1, there is no need to perform the unsetting nor
proceed any further.

A.3.2 Disjunction

Invoking C.or(C’) will modify C according to C’ by setting all the bits in C that are within
packets in C’, leaving C’ unchanged.
If C" = {}, then C is left unchanged,; else, if C = {}, then C becomes (a copy of) C’.
Else (i.e.,if k > 0 and ¥’ > 0), C is modified by invoking:

- Cset(ll,u}),fori =0uptoi =k"— 1.

@ Springer



J Intell Inf Syst

A.3.3 Negation

Since a bit vector is open-ended, we may define its negation only up to a length at
least greater than its highest 1-bit position. This operation is denoted as C.not(n). Thus,
{}.not(n), is undefined for any n > 0.

Otherwise, for a non-empty code C = { (lp, uo), ..., (lk—1, ur—1) } and n > wuy_q,
C.not(n) modifies C to become:

{0, lo)s .., (uis lig1), oy (Ug—1,1) }.

Again, following our convention, if [o = 0, (0, [p) being undefinable, the first element
of C.not(n) is(ug, [1). Similarly, if n = wuy_1, then (ur_1, n) is undefinable and the last
element of C.not(n) is (ur—_», lx—1).

A.4 Implementation considerations

We need to come up with a data structure for representing a compact code that would enable
retaining maximal efficiency in the bit setting and unsetting operations, and hence in the
boolean operations that rely on them.

Most frequently used operations on such a data structure C for an integer n are:

—  C.packet(n)—for n inside a packet in C, returning that packet number;

— C.prev(n)—for n between packets in C, returning the upper index of the packet
preceding n;

— C.next(n)—for n between packets in C, returning the lower index of the packet
following n;

— adding/removing a packet.

Because the elements of a code sequence are ranges rather than integers, one cannot
expect hashed @(1) time access to find out whether a given integer lies within or between
packets. So structures such as defined by the Java classes java.util.HashSet or
java.util.LinkedHashSet cannot be used.

In order to make these operations at most O (log(k)) time for a compact code of size k,
one way is to represent a compact code as a balanced binary tree of pairs of bit position
spans (l;, u;), taking advantage of the ordering imposed by condition (1).

Thus, the java.util.TreeSet class looks like a convenient choice, since it offers
the required data structure properties in addition to defining methods such as first, last,
higher, lower, add, remove, efc., as well as an order-respecting iterator.

On the other hand, the java.util.TreeSet is missing a replace method—which
is critically needed for setting and unsetting bits. It is also missing an insert method that
splices a new sequence of packet pairs into an existing compact code, which may also be
often used. One must resort to several add/remove method invocations to replace or insert
elements, which incur new searches (and possible intermediate rebalancing of the tree) each
time. This is a waste since replacing and inserting can be done in O(1) time when having
already found the required elements, and only one (final) O(log(k)) tree rebalancing.

Hence, rather than relying on the ready-to-use java.util.TreeSet class, it may be
more beneficial to implement a new specific class for a compact code as a doubly linked
list and a balanced binary tree adapted for the specific nature of its pair elements. This

@ Springer



J Intell Inf Syst

would make transparent the double links of each pair element and ease replacement and
insertion.°

A.5 Discussion

A similar data structure was proposed by researchers in data and knowledge bases
in (Agrawal et al. 1989). However, the authors did not use that representation for lattice
operations as we do here. Instead, they focused on using it for obtaining more compact
range-sequence codes for the transitive closure of the “is-a” relation of a taxonomy. That
representation is equivalent to the one we specify here and to the one in (Ait-Kaci et al.
1989). Contrary to (Ait-Kaci et al. 1989), they define an element’s code as the union of
index ranges from the post-order arrangement of the a spanning tree of the “is-parent-of”
relation of a taxonomy. Each concept in the taxonomy (i.e., each element in the poset) of
post-order index j is then encoded as the interval (i, j) where i is the smallest post-order
index of all its descendants. Although they did not do it, it is easy to show that their rep-
resentation is equivalent to bit vectors. But they did not specify lattice operations on their
data structures as we do for ours in this document. What they focused on was minimizing
the total number of packets in range codes. In order to do so, they suggest generating codes
based on the “optimal” spanning tree for generating the most compact set of codes. The
data structure and algorithm for what they call “compressed transitive closure” do not main-
tain dynamic interval consistency caused by potential adjacency as we do here.3! Although
they do cite (Ait-Kaci et al. 1989), Agrawal et al. do so only in the conclusion as they had
just noticed its publication. They suggest that their approach and that exposed in Ait-Kaci
et al. (1989) might be combined for processing large taxonomies. As far as we know, no
follow-up on this suggestion was carried out.

It is clear how the work of (Agrawal et al. 1989), although orthogonal to ours, could
be adapted to our needs as well in order to improve its space consumption. However, it
is to be noted that their code-compaction method requires a topologically ordered poset.
For very large taxonomies (over 1 million elements) the price of sorting the taxonomy
might be worth spending only for once-for-all prepocessing prior to query time (Ait-Kaci
and Amir 2013; Amir and Ait-Kaci 2013). Also, the question of incrementality is not
addressed.

Finally, although this work has been motivated for obtaining a compact representation
of binary codes encoding a partial order, it comes as evident that the data structure, and
operations on it, specified in this appendix can represent any set of integers (or integer-
indexed set) seen as a sequence of intervals. Set intersection is realized as the conjunction
described in Section A.3.1; set union as the disjunction described in Section A.3.2; and, set
complementation as the negation described in Section A.3.3. Therefore, it can readily be
used for this purpose as well.

30 Actually, the java.util.TreeSet does maintain a doubly-linked list for its elements in order to ensure
its two ordered iterators (ascending and descending). But this structure is not made public and one cannot
splice in new elements from a given found element. But it is a simple matter to modify the source code of
java.util.TreeSet.java and adapt it to what is needed.

31In fact, they see that only as a possible a posteriori optimization, but one that would cause their optimal
spanning-tree finding algorithm to be incorrect if applied incrementally while it is executed.

@ Springer



J Intell Inf Syst

References

Agrawal, R., Borgida, A., & Jagadish, H.V. (1989). Efficient management of transitive relationships
in large data and knowledge bases. In J. Clifford, B.G. Lindsay, & D. Maier (Eds.), Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, (Vol. 18(2) pp. 253—
262). Portland: ACM, SIGMOD Record. [Available online http://dbs.informatik.uni-halle.de/Lehre/
DBS _11a_SS02/p253-agrawal.pdf].

Ait-Kaci, H. (1991). Warren’s Abstract Machine: A Tutorial Reconstruction. Cambridge: The MIT Press.
[Available online http://wambook.sourceforge.net/].

Ait-Kaci, H. (2007). Data models as constraint systems—A key to the Semantic Web. Constraint Processsing
Letters, 1(1), 33-88. [Available online www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf].

Ait-Kaci, H., & Amir, S. (2013). Classifying and querying very large taxonomies—a comparative study to the
best of our knowledge. CED.AR Technical Report Number 2, CEDAR Project, LIRIS, Département
d’Informatique, Université Claude Bernard Lyon 1, Villeurbanne, France. [Available online http://cedar.
liris.cnrs.fr/papers/ctr2.pdf].

Ait-Kaci, H., Boyer, R., Lincoln, P., & Nasr, R. (1989). Efficient implementation of lattice operations.
ACM Transactions on Programming Languages and Systems, 11(1), 115-146. [Available online http://
hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf].

Ait-Kaci, H., & Di Cosmo, R. (1993). Compiling order-sorted feature term unification Vol. 7. France: PRL
Technical Note, Digital Paris Research Lab, Rueil-Malmaison. [Available online http://hassan-ait-kaci.
net/pdf/PRL-TN-7.pdf].

Amir, S., & Ait-Kaci, H. (2013). CEDAR: a fast taxonomic reasoner based on lattice operations. In
Proceedings of the ISWC 2013 Posters & Demonstrations Track, Sydney, Australia (pp. 9-12).

Amir, S., & Ait-Kaci, H. (2014a). CEDAR: efficient reasoning for the semantic web. In Tenth Interna-
tional Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2014 (pp. 157-163),
Marrakech, Morocco.

Amir, S., & Ait-Kaci, H. (2014b). Design and implementation of an efficient semantic web reasoner. CEDAR
Technical Report Number 12, CED.AR Project, LIRIS, Département d’Informatique, Université Claude
Bernard Lyon Vol. 1, Villeurbanne, France. [Available online http://cedar.liris.cnrs.fr/papers/ctr12.pdf].

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the £L envelope. In L. P. Kaelbling, & A. Saffiotti (Eds.),
Proceedings of the 19th International Joint Conference on Artificial Intelligence (pp. 364-369).
Edinburgh: IJCAI’05, Morgan Kaufmann Publishers. [Available online www.ijcai.org/papers/0372.pdf].

Baader, F., Lutz, C., & Suntisrivaraporn, B. (2006). CEL—a polynomial-time reasoner for life science ontolo-
gies. In U. Furbach, & N. Shankar (Eds.), Proceedings of the 3rd international joint conference on
automated reasoning, (Vol. 4130 pp. 287-291). Seattle: IJCAR’06, Springer-Verlag LNAI [Available
online http://lat.inf.tu-dresden.de/research/papers/2006/BaaLutSun-1JCAR-06.pdf].

Ballard, G., Demmel, J., Holtz, O., & Schwartz, O. (2014). Communication costs of Strassen’s
matrix multiplication. Communications of the ACM, 57(2), 107-114. [Available online https://
aspire.eecs.berkeley.edu/wp/wp-content/uploads/2014/02/Communication-Costs-of-Strassen % E2 % 80%
99s-Matrix-Multiplication.pdf].

Coppersmith, D., & Winograd, S. (1990). Matrix multiplication via arithmetic progressions. Journal of Sym-
bolic Computation, 9(3), 251-280. [Available online http://www.sciencedirect.com/science/article/pii/
S0747717108800132].

Cousot, P. (1996). Abstract interpretation. ACM Computing Surveys—Symposium on Models of Programming
Languages and Computation, 28(2), 324-328. Tutorial summary:[Available online http://www.di.ens.fr/
~cousot/Al/IntroAbsInt.html].

Fikes, R., Hayes, P., & Horrocks. 1. (2004). OWL-QL—a language for deductive query answering on the
Semantic Web. Journal of Web Semantics, 2(1), 19-29. [Available online http://www.sciencedirect.com/
science/article/pii/S1570826804000137].

Fischer, M.J., & Meyer, A.R. (1971). Boolean matrix multiplication and transitive closure. In Proceedings of
the 12th annual symposium on switching and automata theory, SWAT 71, (pp. 129-131), Washington:
IEEE Computer Society. [Available online rjlipton.files.wordpress.com/2009/10/matrix1971.pdf].

Haarslev, V., Hidde, K., Mdller, R., & Wessel, M. (2011). The RacerPro knowledge representation and rea-
soning system. Semantic Web Journal, 1, 1-11. [Available online http://www.semantic-web-journal.net/
sites/default/files/swj109_3.pdf].

Haarslev, V., & Mdller, R. (2001). RACER system description. In R. Gore, A. Leitsch, & T. Nipkow (Eds.),
Proceedings of the Ist international joint conference on automated reasoning (pp. 701-706). Siena:
IJCAR’01, Springer-Verlag. [Available online https://www.ifis.uni-luebeck.de/~moeller/papers/2001/
HaMoO1la.pdf].

@ Springer


http://dbs.informatik.uni-halle.de/Lehre/DBS_IIa_SS02/p253-agrawal.pdf
http://dbs.informatik.uni-halle.de/Lehre/DBS_IIa_SS02/p253-agrawal.pdf
http://wambook.sourceforge.net/
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://cedar.liris.cnrs.fr/papers/ctr2.pdf
http://cedar.liris.cnrs.fr/papers/ctr2.pdf
http://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
http://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
http://hassan-ait-kaci.net/pdf/PRL-TN-7.pdf
http://hassan-ait-kaci.net/pdf/PRL-TN-7.pdf
http://cedar.liris.cnrs.fr/papers/ctr12.pdf
http://www.ijcai.org/papers/0372.pdf
http://lat.inf.tu-dresden.de/research/papers/2006/BaaLutSun-IJCAR-06.pdf
https://aspire.eecs.berkeley.edu/wp/wp-content/uploads/2014/02/Communication-Costs-of-Strassen%E2%80%99s-Matrix-Multiplication.pdf
https://aspire.eecs.berkeley.edu/wp/wp-content/uploads/2014/02/Communication-Costs-of-Strassen%E2%80%99s-Matrix-Multiplication.pdf
https://aspire.eecs.berkeley.edu/wp/wp-content/uploads/2014/02/Communication-Costs-of-Strassen%E2%80%99s-
http://www.sciencedirect.com/science/article/pii/S0747717108800132
http://www.sciencedirect.com/science/article/pii/S0747717108800132
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.sciencedirect.com/science/article/pii/S1570826804000137
http://www.sciencedirect.com/science/article/pii/S1570826804000137
http://rjlipton.files.wordpress.com/2009/10/matrix1971.pdf
http://www.semantic-web-journal.net/sites/default/files/swj109_3.pdf
http://www.semantic-web-journal.net/sites/default/files/swj109_3.pdf
https://www.ifis.uni-luebeck.de/~moeller/papers/2001/HaMo01a.pdf
https://www.ifis.uni-luebeck.de/~moeller/papers/2001/HaMo01a.pdf

J Intell Inf Syst

Hoare, C.A.R. (1961). Algorithm 63: Partition, algorithm 64: Quicksort. Communications of the ACM, 4(7),
321-321. [Available online http://comjnl.oxfordjournals.org/content/5/1/10.full.pdf].

Horrocks, 1., & Sattler, U. (2007). A tableau decision procedure for SHOZ Q. Journal of Automated Rea-
soning, 39(3), 249-276. [Available online http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/
2007/HoSa07a.pdf].

Kazakov, Y. (2009). Consequence-driven reasoning for horn SHZQ ontologies. In C. Boutilier (Ed.), Pro-
ceedings of the 21st international conference on artificial intelligence (pp. 2040-2045). Pasadena:
IJCATI’09, Association for the Advancement of Artificial Intelligence. [Available online http://ijcai.org/
papers09/Papers/IJCAI09-336.pdf].

Kazakov, Y., Krotzsch, M., & Simancéik, F. (2011). Unchain my £ £ reasoner. In R. Rosati, S. Rudolph, & M.
Zakharyaschev (Eds.), Proceedings of the 24th international workshop on description logics. Barcelona:
DL’11, CEUR Workshop Proceedings. [Available online http://ceur-ws.org/Vol-745/paper_54.pdf].

Lawley, M.J., & Bousquet, C. (2010). Fast classification in Protégé: Snorocket as an OWL 2 EL reasoner.
In T. Meyer, M. A. Orgun, & K. Taylor (Eds.), Proceedings of the 2nd Australasian ontology workshop:
Advances in ontologies (pp. 45-50). Adelaide: AOW’10, ACS. [Available online http://krr.meraka.org.
za/~aow2010/Lawley-etal.pdf].

Manna, Z., & Waldinger, R. (1991). Fundamentals of deductive program synthesis. In A. Apostolico, & Z.
Galil (Eds.), Combinatorial algorithms on words, NATO ISI Series: Springer. [Available online http://
lara.epfl.ch/~kuncak/t/MannaWaldingerTSE.pdf].

Motik, B., Shearer, R., & Horrocks, I. (2009). Hypertableau reasoning for description
logics. Journal of Artificial Intelligence Research, 36(1), 165-228. [Available online
www.jair.org/media/2811/live-2811-4689-jair.pdf].

Shearer, R., Motik, B., & Horrocks, I. (2008). HermiT: A highly-efficient OWL reasoner. In U. Sattler, &
C. Dolbear (Eds.), Proceedings of the 5th international workshop on OWL experiences and directions.
Karlsruhe: OWLED’08, CEUR Workshop Proceedings. [Available online http://www.cs.ox.ac.uk/ian.
horrocks/Publications/download/2008/ShMHO08b.pdf].

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner.
Journal of Web Semantics, 5(2), 51-53. This is a summary; full paper: [Available online http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.96.5433 &rep=rep 1 &type=pdf].

Stothers, A. (2010). On the complexity of matrix multiplication. Edinburgh: PhD thesis, University of
Edinburgh. [Available online http://www.maths.ed.ac.uk/assets/files/pgrexternalfiles/theses/probability/
stothers.pdf].

Strassen, V. (1969). Gaussian elimination is not optimal. Numerische Mathematik, 13, 354-356.

Thomas, E., Pan, J.Z., & Ren, Y. (2010). TrOWL: Tractable OWL 2 reasoning infrastructure. In L. Aroyo, G.
Antoniou, E. Hyvnen, A. ten Teije, H. Stuckenschmidt, L. Cabral, & T. Tudorache (Eds.), Proceedings
of the 7th extended semantic web conference (pp. 431-435). Heraklion: ESWC’10, Springer. [Available
online http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/TPR2010.pdf].

Tsarkov, D., & Horrocks, I. (2006). FaCT++ description logic reasoner: System description. In U. Furbach,
& N. Shankar (Eds.), Proceedings of the 3rd international joint conference on automated reasoning
(pp. 292-297). Seattle: 1JCAR’06, Springer. [Available online http://www.cs.ox.ac.uk/Ian.Horrocks/
Publications/download/2006/TsHoO6a.pdf].

Warren Jr, H.S. (1975). A modification of Warshall’s algorithm for the transitive closure of binary rela-
tions. Communications of the ACM, 18(4), 218-220. [Available online http://dl.acm.org/citation.cfm?
1d=360746].

Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11-12.

Williams, V.V. (2011). Breaking the Coppersmith-Winograd barrier: University of California at Berke-
ley and Stanford University. [Available online http://www.cs.rit.edu/~rlc/Courses/Algorithms/Papers/
matrixMult.pdf].

@ Springer


http://comjnl.oxfordjournals.org/content/5/1/10.full.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2007/HoSa07a.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2007/HoSa07a.pdf
http://ijcai.org/papers09/Papers/IJCAI09-336.pdf
http://ijcai.org/papers09/Papers/IJCAI09-336.pdf
http://ceur-ws.org/Vol-745/paper_54.pdf
http://krr.meraka.org.za/~aow2010/Lawley-etal.pdf
http://krr.meraka.org.za/~aow2010/Lawley-etal.pdf
http://lara.epfl.ch/~kuncak/t/MannaWaldingerTSE.pdf
http://lara.epfl.ch/~kuncak/t/MannaWaldingerTSE.pdf
https://www.jair.org/media/2811/live-2811-4689-jair.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2008/ShMH08b.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2008/ShMH08b.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5433&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5433&rep=rep1&type=pdf
http://www.maths.ed.ac.uk/assets/files/pgrexternalfiles/theses/probability/stothers.pdf
http://www.maths.ed.ac.uk/assets/files/pgrexternalfiles/theses/probability/stothers.pdf
http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/TPR2010.pdf
http://www.cs.ox.ac.uk/Ian.Horrocks/Publications/download/2006/TsHo06a.pdf
http://www.cs.ox.ac.uk/Ian.Horrocks/Publications/download/2006/TsHo06a.pdf
http://dl.acm.org/citation.cfm?id=360746
http://dl.acm.org/citation.cfm?id=360746
http://www.cs.rit.edu/~rlc/Courses/Algorithms/Papers/matrixMult.pdf
http://www.cs.rit.edu/~rlc/Courses/Algorithms/Papers/matrixMult.pdf

	Classifying and querying very large taxonomies with bit-vector encoding
	Abstract
	Introduction
	Semantic-web reasoning
	The state of the art
	Our method

	Experimental work
	Experiment setup
	``Just the facts, Ma'am!''
	Classification
	Querying

	Discussion
	Relative performance
	Bare taxonomies
	Static processing



	Pragmatic issues
	Detecting cycles
	Problem
	Solution

	Decoding

	Further work
	Conclusion
	Acknowledgments
	Conflict of interests
	Funding
	Appendix:  
	A Compact codes
	A.1 Bit code representation
	A.2 Bit operations
	A.2.1 Bit setting
	A.2.2 Bit unsetting
	A.3 Boolean operations
	A.3.1 Conjunction
	A.3.2 Disjunction
	A.3.3 Negation
	A.4 Implementation considerations
	A.5 Discussion
	References




