## **OBJECTS AS CONSTRAINTS**

# A Formalism of Order-Sorted Featured Structures

Hassan Aït-Kaci ILOG, Inc.

2nd International School on Rewriting Nancy, July 2007

#### **OUTLINE**

- Motivation and background
- ▶ Basic order-sorted feature (OSF) formalism
- Disjunction and negation
- Partial features, extensional sorts, relational features (aggregation)
- $\triangleright \mathcal{OSF}$  theory unification
- ► Conclusion: A few fundamental principles...

### **MOTIVATION**

- ▶ Proposal: a formalism for representing objects that is: intuitive (objects as labelled graphs), expressive ("real-life" data models), formal (logical semantics), operational (executable), and efficient (constraint-solving)
- ► Why? *viz.*, ubiquitous use of labelled graphs to structure information naturally as in:
  - object-orientation, knowledge representation,
  - databases, constraint-based programming,
  - natural language processing, graphical interfaces,
  - concurrency and communication,
  - XML, RDF, "Semantic Web," etc., ...

### **BACKGROUND**

This work is the synthesis of research of many years by many people:

- ► Hassan Aït-Kaci (since 1983)
- ► Gert Smolka (since 1986)
- Andreas Podelski (since 1989)
- Franz Baader, Rolf Backhofen, Jochen Dörre, Martin Emele, Bernhard Nebel, Joachim Niehren, Ralf Treinen, Manfred Schmidt-Schauß, Remi Zajac, ...

## Basic $\mathcal{OSF}$ formalism

## OSF signature:

$$\langle \mathcal{S}, \leq, \wedge, \mathcal{F} \rangle$$

## s.t.:

- $ightharpoonup \mathcal{S}$  is a set of sorts containing the sorts  $\top$  and  $\bot$
- ▶  $\leq$  is a partial order on S ( $\bot$  is least element,  $\top$  is greatest element)
- ▶  $\langle S, \leq, \wedge \rangle$  is a lower semi-lattice ( $s \wedge s'$  is called the greatest common subsort of s and s')
- $\triangleright \mathcal{F}$  is a set of feature symbols.

### $\mathcal{OSF}$ ALGEBRAS

Given an OSF signature  $\langle S, \leq, \wedge, F \rangle$  an OSF algebra is a structure:

$$\mathfrak{A} = \langle D^{\mathfrak{A}}, (s^{\mathfrak{A}})_{s \in \mathcal{S}}, (\ell^{\mathfrak{A}})_{\ell \in \mathcal{F}} \rangle$$

## s.t.:

- $ightharpoonup D^{\mathfrak{A}} \neq \emptyset$  is a set: the domain of  $\mathfrak{A}$
- $ightharpoonup s^{\mathfrak{A}} \subseteq D^{\mathfrak{A}}$  for s in  $\mathcal{S}$   $(\top^{\mathfrak{A}} = D^{\mathfrak{A}}, \bot^{\mathfrak{A}} = \emptyset)$
- $(s \wedge s')^{\mathfrak{A}} = s^{\mathfrak{A}} \cap s'^{\mathfrak{A}}$
- ▶  $\ell^{\mathfrak{A}}: D^{\mathfrak{A}} \mapsto D^{\mathfrak{A}}$  for  $\ell$  in  $\mathcal{F}$  (*i.e.*,  $\ell^{\mathfrak{A}}$  is a (total) function from the domain to the domain)

## $\mathcal{OSF}$ HOMOMORPHISM

 $\mathcal{OSF}$  homomorphism between two  $\mathcal{OSF}$  algebras  $\mathfrak A$  and  $\mathfrak B$ :

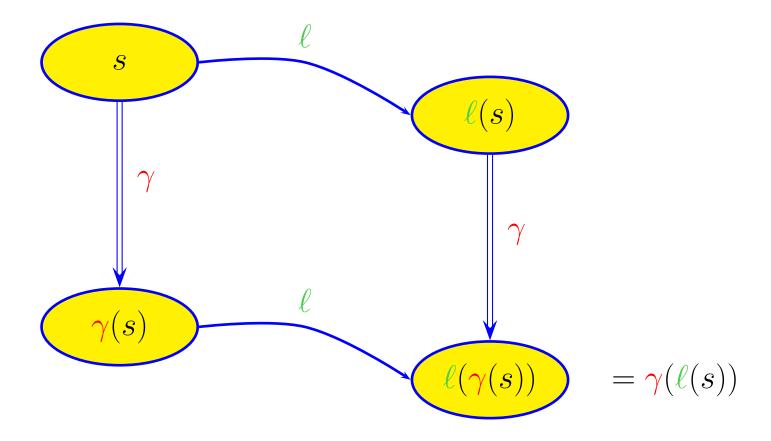
- $ightharpoonup \gamma: D^{\mathfrak{A}} \mapsto D^{\mathfrak{B}}$
- $> \gamma(\ell^{\mathfrak{A}}(d)) = \ell^{\mathfrak{B}}(\gamma(d))$  for all  $d \in D^{\mathfrak{A}}$
- $ightharpoonup \gamma(s^{\mathfrak{A}}) \subseteq s^{\mathfrak{B}} \text{ for all } s \in \mathcal{S}$

Taking  $\mathfrak{A} = \mathfrak{B}$ ,  $\gamma$  is an  $\mathcal{OSF}$  endomorphism of  $\mathfrak{A}$ :

- $ightharpoonup \forall d \in D, \quad \gamma(\ell(d)) = \ell(\gamma(d))$
- $\triangleright \forall s \in \mathcal{S}, \ \gamma(s) \subseteq s$

This definition captures exactly inheritance of attributes.

## Inheritance = OSF endomorphism



Hence, inheritance is endomorphic approximation.

### $\mathcal{OSF}$ TERM SYNTAX

Let V be a countably infinite set of variables.

An OSF term is an expression of the form:

$$X: s(\ell_1 \Rightarrow t_1, \dots, \ell_n \Rightarrow t_n)$$

where:

- $ightharpoonup X \in \mathcal{V}$  is the root variable
- $\triangleright s \in \mathcal{S}$  is the root sort
- $ightharpoonup n \geq 0$  (if n = 0, we write X : s)
- $\blacktriangleright \{\ell_1, \ldots, \ell_n\} \subseteq \mathcal{F}$  are features
- $ightharpoonup t_1, \ldots, t_n$  are  $\mathcal{OSF}$  terms

#### **EXAMPLE**

```
X: person(name \Rightarrow N: \top(first \Rightarrow F: string), \\ name \Rightarrow M: id(last \Rightarrow S: string), \\ spouse \Rightarrow P: person(name \Rightarrow I: id(last \Rightarrow S: \top), \\ spouse \Rightarrow X: \top).
```

# Lighter notation:

```
X: person(name \Rightarrow \top(first \Rightarrow string), \\ name \Rightarrow id(last \Rightarrow S: string), \\ spouse \Rightarrow person(name \Rightarrow id(last \Rightarrow S), \\ spouse \Rightarrow X)).
```

## $\mathcal{OSF}$ TERM SEMANTICS

- $\triangleright \mathcal{OSF} \text{ term } t = X : s(\ell_1 \Rightarrow t_1, \dots, \ell_n \Rightarrow t_n)$
- $\triangleright \mathcal{OSF}$  interpretation  $\mathfrak{A}$
- ▶  $\mathfrak{A}$ -valuation  $\alpha: \mathcal{V} \mapsto D^{\mathfrak{A}}$

Denotation of t in  $\mathfrak{A}$  under valuation  $\alpha$ :

$$\llbracket t \rrbracket^{\mathfrak{A},\alpha} \stackrel{\mathrm{def}}{=} \{\alpha(X)\} \cap s^{\mathfrak{A}} \cap (\bigcap_{1 \leq i \leq n} (\ell_i^{\mathfrak{A}})^{-1} (\llbracket t_i \rrbracket^{\mathfrak{A},\alpha}))$$

Denotation of t in  $\mathfrak{A}$  under all possible valuations:

$$\llbracket t \rrbracket^{\mathfrak{A}} \stackrel{\mathsf{DEF}}{=} \bigcup_{\alpha: \mathcal{V} \mapsto D^{\mathfrak{A}}} \llbracket t \rrbracket^{\mathfrak{A}, \alpha}.$$

## $\mathcal{OSF}$ CLAUSE SYNTAX

For X and X' variables in V, s a sort in S, and  $\ell$  a feature in F, an OSF constraint is one of:

- $\rightarrow X:s$
- $X.\ell \doteq X'$
- $\rightarrow X \doteq X'$

An  $\mathcal{OSF}$  clause is a conjunction of  $\mathcal{OSF}$  constraints—*i.e.*, a set of  $\mathcal{OSF}$  constraints

 $ightharpoonup \phi_1$  & ... &  $\phi_n$ 

## SEMANTICS OF $\mathcal{OSF}$ CLAUSES

Satisfaction of OSF constraints in an OSF algebra  $\mathfrak{A}$  by a valuation  $\alpha: \mathcal{V} \mapsto D^{\mathfrak{A}}$  is defined by:

$$\triangleright \ \mathfrak{A}, \alpha \models X : s$$

iff 
$$\alpha(X) \in s^{\mathfrak{A}}$$

$$\triangleright$$
  $\mathfrak{A}, \alpha \models X \doteq Y$ 

iff 
$$\alpha(X) = \alpha(Y)$$

$$ightharpoonup \mathfrak{A}, \alpha \models X.\ell \doteq Y$$

iff 
$$\ell^{\mathfrak{A}}(\alpha(X)) = \alpha(Y)$$

$$\triangleright$$
  $\mathfrak{A}, \alpha \models \phi_1$  & ... &  $\phi_n$  iff  $\mathfrak{A}, \alpha \models \phi_i$   $\forall i = 1, \ldots, n$ 

## From $\mathcal{OSF}$ terms to $\mathcal{OSF}$ clauses

An 
$$\mathcal{OSF}$$
 term  $t = X : s(\ell_1 \Rightarrow t_1, \dots, \ell_n \Rightarrow t_n)$ 

is dissolved into an OSF clause  $\phi(t)$  as follows:

$$\varphi(t) \stackrel{\text{\tiny DEF}}{=\!\!\!=} X: s \quad \& \quad X.f_1 \doteq X_1 \quad \& \quad \dots \quad \& \quad X.f_n \doteq X_n$$

$$\& \quad \varphi(t_1) \quad \& \quad \dots \quad \& \quad \varphi(t_n)$$

where  $X_1, \ldots, X_n$  are the root variables of  $t_1, \ldots, t_n$ .

Theorem: 
$$\mathfrak{A}, \alpha \models \varphi(t) \iff [t]^{\mathfrak{A}, \alpha} \neq \emptyset$$

### Example of $\mathcal{OSF}$ term dissolution

```
t = X : person(name \Rightarrow N : \top (first \Rightarrow F : string),
                   name \Rightarrow M : id(last \Rightarrow S : string),
                   spouse \Rightarrow P: person(name \Rightarrow I: id(last \Rightarrow S: \top),
                                           spouse \Rightarrow X : \top)
\varphi(t) = X : person \& X. name \doteq N \& N: \top
                      & X. name \doteq M & M: id
                       & X. spouse \doteq P & P: person
                      & N. first \doteq F & F: string
                      & M. last \doteq S & S: string
                      & P.name \doteq I & I:id
                      & I.last \doteq S & S: \top
                       & P. spouse \doteq X & X: \top
```

## BASIC $\mathcal{OSF}$ TERM NORMALIZATION

# (1) Sort Intersection

$$\phi \& X : s \& X : s' \qquad \phi \& X \doteq X'$$

$$\phi \& X : s \wedge s'$$

## (3) Variable Elimination

$$\phi \& X \doteq X'$$

$$\phi[X'/X] \& X \doteq X'$$

$$\begin{array}{ll} \text{if} & X \neq X' \\ \text{and} & X \in \textit{Var}(\phi) \end{array}$$

# (2) Inconsistent Sort

$$\phi \& X : \bot$$

$$X:\bot$$

## (4) Feature Functionality

$$\phi \& X.\ell \doteq X' \& X.\ell \doteq X''$$

$$\phi \& X.\ell \doteq X' \& X' \doteq X''$$

# $\mathcal{OSF}$ TERM UNIFICATION = $\mathcal{OSF}$ TERM NORMALIZATION person employee student faculty staff intern piotr pablo simon don john sheila art judy bob elena

## $\mathcal{OSF}$ TERM UNIFICATION = $\mathcal{OSF}$ TERM NORMALIZATION

```
X: student
    (roommate => person(rep => E : employee),
     advisor => don(secretary => E))
δ
Y : employee
    (advisor => don(assistant => A),
     roommate => S : student(rep => S),
     helper => simon(spouse => A))
&
X = Y
```

## $\mathcal{OSF}$ TERM UNIFICATION = $\mathcal{OSF}$ TERM NORMALIZATION

```
X: intern
    (advisor => don(assistant => A,
                     secretary => S),
     helper => simon(spouse => A),
     roommate => S : intern(rep => S))
&
X = Y
\delta
```

## Extended OSF terms

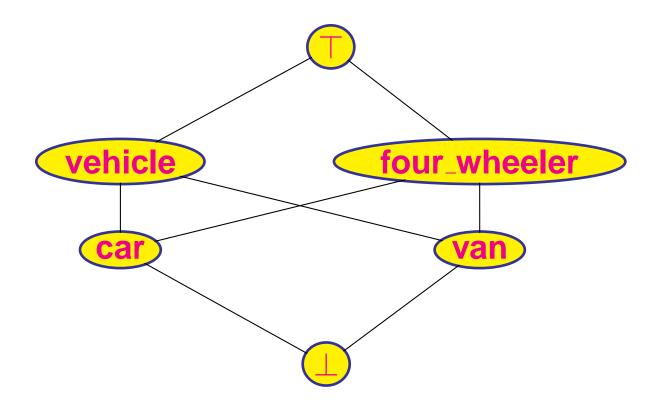
# Basic OSF terms may be extended to express:

- Non-lattice sort signatures
- Disjunction
- Negation
- Partial features
- Extensional sorts (i.e., denoting elements)
- ► Relational features (a.k.a., "roles")
- Aggregates
- Sort definitions (a.k.a., "OSF theories")

## Extended OSF terms

```
OsfTerm ::= [Variable: ]Term
            Term ::= ConjunctiveTerm
                    DisjunctiveTerm
                    NegativeTerm
ConjunctiveTerm ::= Sort [ ( Attribute + ) ]
      Attribute := Feature \Rightarrow OsfTerm
DisjunctiveTerm ::= { OsfTerm | * }
   NegativeTerm ::= ¬ OsfTerm
```

## **ENABLING NON-LATTICE SIGNATURES USING DISJUNCTION**



Non-unique GLBs are disjunctive sorts:

vehicle  $\land$  four\_wheeler = {car; van}

## DISJUNCTIVE $\mathcal{OSF}$ TERMS

Syntax of disjunctive OSF terms:

$$\{t_1;\ldots;t_n\}$$

Semantics of disjunctive OSF terms:

$$\llbracket\{t_1; \dots; t_n\}\rrbracket^{\mathfrak{A}, \alpha} \stackrel{\text{\tiny DEF}}{=} \bigcup_{1 \leq i \leq n} \llbracket t_i \rrbracket^{\mathfrak{A}, \alpha}$$

Disjunctive OSF clauses:

$$\varphi(\{t_1;\ldots;t_n\}) \stackrel{\text{\tiny DEF}}{=} \varphi(t_1) \parallel \ldots \parallel \varphi(t_n)$$

$$\mathfrak{A}, \alpha \models \phi_1 \parallel \ldots \parallel \phi_n \quad \text{iff} \quad \mathfrak{A}, \alpha \models \phi_i \quad \text{for some } i = 1, \ldots, n$$

## DISJUNCTIVE $\mathcal{OSF}$ NORMALIZATION

(5) Non-unique GLB

 $\phi \& X : s \& X : s'$ 

where  $\{s_i\}_{i=0}^n$ 

 $\phi$  &  $(X:s_1\parallel\ldots\parallel X:s_n)\stackrel{ exttt{DEF}}{=} \max_{\leq}\{t\in\mathcal{S}\mid t\leq s \text{ and } t\leq s'\}$ 

(6) Distributivity

 $\phi \& (\phi' \parallel \phi'')$ 

 $(\phi \& \phi') \parallel (\phi \& \phi'')$ 

(7) Disjunction

 $\phi \parallel \phi'$ 

## **NEGATION**

Syntax of negative OSF terms:  $\neg t$ 

Semantics of negative  $\mathcal{OSF}$  terms:  $\llbracket \neg t \rrbracket^{\mathfrak{A}} \stackrel{\text{\tiny DEF}}{=} D^{\mathfrak{A}} \setminus \llbracket t \rrbracket^{\mathfrak{A}}$ 

Complemented sorts:  $[s]^{\mathfrak{A}} \stackrel{\text{\tiny DEF}}{=} D^{\mathfrak{A}} \setminus [s]^{\mathfrak{A}}$ 

Sorted variable simplification:

$$\varsigma(X:s) \stackrel{\text{def}}{=} X:s$$
if  $s \in \mathcal{S}$ 

$$\varsigma(X:\overline{\overline{s}}) \stackrel{\text{def}}{=} \varsigma(X:s)$$

$$\varsigma(X:\overline{\{s_1;\ldots;s_n\}}) \stackrel{\text{\tiny DEF}}{=} \varsigma(X:s_1) \& \ldots \& \varsigma(X:s_n)$$

## NEGATIVE OSF TERMS

Dissolving negative OSF terms into OSF clauses eliminates negation:

$$\varphi(\neg(\neg t)) \ \stackrel{\text{def}}{=} \ \varphi(t)$$
 
$$\varphi(\neg\{t_1; \dots; t_n\}) \ \stackrel{\text{def}}{=} \ \varphi(\neg t_1) \ \& \ \dots \ \& \ \varphi(\neg t_n)$$
 
$$\varphi(\neg X : s(\ell_i \Rightarrow t_i)_{i=1}^n) \ \stackrel{\text{def}}{=} \ \varsigma(X : \overline{s})$$
 
$$\parallel \ X.\ell_1 \stackrel{.}{=} X_1 \ \& \ \varphi(\neg t_1) \\ \parallel \ X.\ell_1 \stackrel{.}{=} X_1' \ \& \ X_1' \not = X_1 \ \& \ \varphi(t_1) \\ \dots \\ \parallel \ X.\ell_n \stackrel{.}{=} X_n' \ \& \ Y_n' \not = X_n \ \& \ \varphi(t_n)$$
 
$$\parallel \ X.\ell_n \stackrel{.}{=} X_n' \ \& \ X_n' \not = X_n \ \& \ \varphi(t_n)$$

## NEGATIVE $\mathcal{OSF}$ TERM NORMALIZATION

# (8) Variable Disequality

$$\phi \& X \neq X$$

 $\perp$ 

# (9) Sort Complement

$$\phi \& X : \overline{s}$$

$$\phi \& X : s'$$

if 
$$s' \in \max_{\leq} \{t \in \mathcal{S} \mid s \nleq t \text{ and } t \nleq s\}$$

### PARTIAL FEATURES

Partial features have restricted domains:

$$\exists y, y = \ell(x) \text{ only if } x \in \mathbf{\textit{Dom}}(\ell)$$

Declaring partial feature domains:

$$\textit{Dom}: \mathcal{F} \mapsto \mathbf{2}^{\mathcal{S}}$$

s.t.  $\operatorname{\textit{Dom}}(\ell) \stackrel{\text{\tiny DEF}}{=}$  set of maximal sorts where  $\ell$  is defined. Can also declare a feature's range:  $\operatorname{\textit{Ran}}_{\mathcal{S}}: \mathcal{F} \mapsto \mathcal{S}$  for  $s \in \operatorname{\textit{Dom}}(\ell)$ .

(10) Partial Feature

$$\frac{\phi \& X.\ell \doteq X'}{\phi \& X.\ell \doteq X' \& X:s \& X':s'} \quad \text{if} \quad s \in \mathbf{\textit{Dom}}(\ell)$$
 and  $\mathbf{\textit{Ran}}_s(\ell) = s'$ 

## PARTIAL FEATURES (EXAMPLE)

Assume  $\{nil, cons, list\} \subseteq S$  such that:

$$nil < list \\ cons < list$$

and  $\{hd, tl\} \subseteq \mathcal{F}$  such that:

$$egin{array}{cccc} oldsymbol{Dom}(hd) & \stackrel{ exttt{DEF}}{=} & \{cons\} \ oldsymbol{Dom}(tl) & \stackrel{ exttt{DEF}}{=} & \{cons\} \ \end{array}$$

then:

$$\begin{array}{ccc} list(tl \Rightarrow X) & \leadsto & cons(tl \Rightarrow X) \\ int(tl \Rightarrow X) & \leadsto & \bot \end{array}$$

The fact that some sorts denote singletons (e.g., numbers) is not part of our axioms so far!

*i.e.*,

$$f(a \Rightarrow 1, b \Rightarrow 1) \not\leq f(a \Rightarrow X, b \Rightarrow X)$$

because:

$$f(a \Rightarrow X : s, b \Rightarrow X' : s) \leq f(a \Rightarrow Y, b \Rightarrow Y)$$
 iff  $X = X'$ 

A sort that denotes a singleton, whenever all its images by a specific set of features do, is called extensional.

Extensional sorts are element constructors.

Let  $\mathcal{E} \subseteq Minimals(\mathcal{S})$  be the set of extensional sorts with rank function:

$$Arity: \mathcal{E} \mapsto \mathbf{2}^{\mathcal{F}}$$

e.g.: 
$$Arity(n) = \emptyset \quad \forall n \in \mathbb{N}$$

$$Arity(nil) = \emptyset$$

$$Arity(cons) = \{hd, tl\}$$

Extensional sorts obey an axiom reminiscent of the axiom of functionality; viz.,

if 
$$Arity(f) = n$$
 and  $X_i = Y_i$   $(\forall i = 1, ..., n)$   
then  $f(X_1, ..., X_n) = f(Y_1, ..., Y_n)$ 

# (11) Weak Extensionality

The Weak Extensionality rule works, but not for cyclic terms; *viz.*:

let 
$$s \in \mathcal{E}$$
 and  $Arity(s) = \{\ell\}$ 

then 
$$X:s(\ell \Rightarrow X) \& X':s(\ell \Rightarrow X')$$

or 
$$X:s(\ell \Rightarrow X') \& X':s(\ell \Rightarrow X)$$

are not reduced! So we need a stronger condition for cycles.

## STRONG EXTENSIONALITY

Proceed coinductively from roots to leaves carrying a context  $\Gamma$ , a set of pairs  $s/\{X_1,\ldots,X_n\}$  s.t.  $X_i \in \mathcal{V}$   $(i=1,\ldots,n)$  and  $s \in \mathcal{E}$  occurs at most once in  $\Gamma$ :

# (12) Extensional Occurrence

$$\Gamma \uplus \{s/V, \dots,\} \vdash \phi \& X : s$$

$$\Gamma \uplus \{s/V \cup \{X\}, \ldots\} \vdash \phi \& X : s$$

if 
$$s \in \mathcal{E}$$
 and  $X \notin V$   
and  $\forall f \in Arity(s)$ :  
 $\{X.f \doteq X', X' : s'\} \subseteq \phi$   
with  $s' \in \mathcal{E}$ 

# (13) Strong Extensionality

$$\Gamma \uplus \{s/\{X,X',\ldots\} \vdash \phi\}$$

$$\Gamma \uplus \{s/\{X,\ldots\} \vdash \phi \& X \doteq X'$$

if 
$$s \in \mathcal{E}$$

## FIRST-ORDER TERMS AS $\mathcal{OSF}$ TERMS

Let  $\Sigma \stackrel{\text{\tiny DEF}}{=} \biguplus_{n \in \mathbb{N}} \Sigma_n$  be a ranked signature.

The first-order (rational) terms in  $\mathcal{T}_{\Sigma,\mathcal{V}}$  are  $\mathcal{OSF}$  terms s.t.:

- $\triangleright S \stackrel{\text{\tiny DEF}}{=} \Sigma \cup \{\top, \bot\}$  is a flat lattice
- $ightharpoonup \mathcal{F} \stackrel{\mathtt{DEF}}{=\!\!\!=\!\!\!=} \mathbb{N} \setminus \{0\}$
- $ightharpoonup Arity(\top) \stackrel{\mathtt{DEF}}{=\!\!\!=\!\!\!=} \emptyset$
- ► Arity( $\bot$ )  $\stackrel{\text{DEF}}{=}$  { $i \in \mathbb{N}^* \mid i \leq \max\{n > 0 \mid \Sigma_n \neq \emptyset\}$  }
- $\blacktriangleright \forall f \in \Sigma_n : Arity(f) \stackrel{\mathtt{DEF}}{=} \{1, \dots, n\}$
- $\blacktriangleright \forall i \in \mathcal{F} : \quad \mathbf{Dom}(i) \stackrel{\mathtt{DEF}}{=} \bigcup_{i < n} \Sigma_n$

### RELATIONAL FEATURES AND AGGREGATION

Relational features are set-valued features:

$$\forall \langle x, y \rangle \in A \times B : \langle x, y \rangle \in R \text{ iff } y \in R[x] \text{ iff } x \in R^{-1}[y]$$

Sets are a particular case of monoidal aggregates:

- ▶ the notation "X : s" is generalized to carry an optional value  $e \in \mathcal{E}$
- "X = e : s" means "X has value e of sort s"  $(X \in \mathcal{V}, e \in \mathcal{E}, s \in \mathcal{S})$
- ▶ the shorthand "X = e" means "X = e: T"
- when the sort  $s \in S$  denotes a commutative monoid  $\langle \star, \mathbf{1}_{\star} \rangle$ , the shorthand "X : s" means " $X = \mathbf{1}_{\star} : s$ ."

#### RELATIONAL FEATURES AND AGGREGATION

The semantic conditions are thus extended:

$$\mathfrak{A}, \alpha \models X = e : s \text{ iff } e^{\mathfrak{A}} \in s^{\mathfrak{A}} \text{ and } \alpha(X) = e^{\mathfrak{A}}$$

(14) Value Aggregation

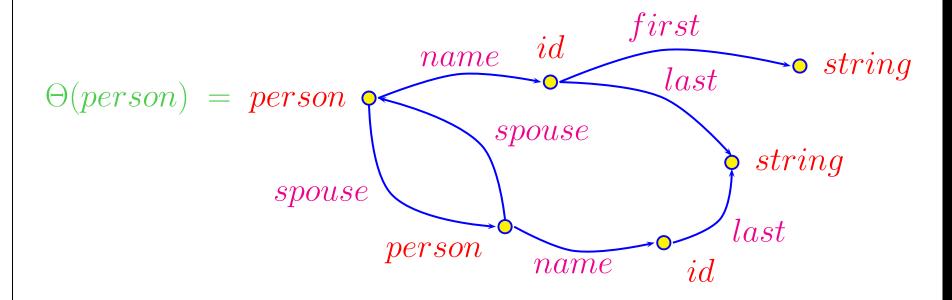
$$\frac{\phi \& X = e : s \& X = e' : s'}{\phi \& X = e \star e' : s \land s'}$$
 if  $s$  and  $s'$  are both subsorts of commutative monoid  $\langle \star, \mathbf{1}_{\star} \rangle$ 

N.B.: This works for any commutative monoid—not just sets!

IDEA: Augment the sort ordering with constraints imposing:

- sorts of features
- coreference equations

e.g., define the sort person to abide by the structure:



### $\mathcal{OSF}$ THEORY

An OSF theory is a function:  $\Theta : S \mapsto \Psi$ 

An OSF theory is order-consistent iff it is monotonic:

$$s \le s' \Rightarrow \Theta(s) \le \Theta(s')$$

# OSF theory unification problem:

Given an order-consistent  $\mathcal{OSF}$  theory  $\Theta$ , normalize any term of sort s taking into account the  $\mathcal{OSF}$  constraints  $\Theta(s)$ .

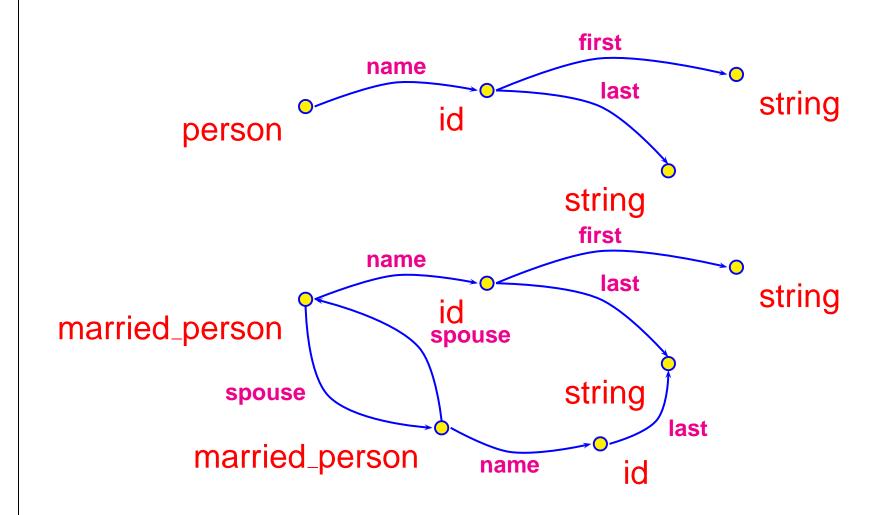
**Theorem** OSF theory unification is undecidable.

#### $\mathcal{OSF}$ THEORY

However... there is an algorithm such that:

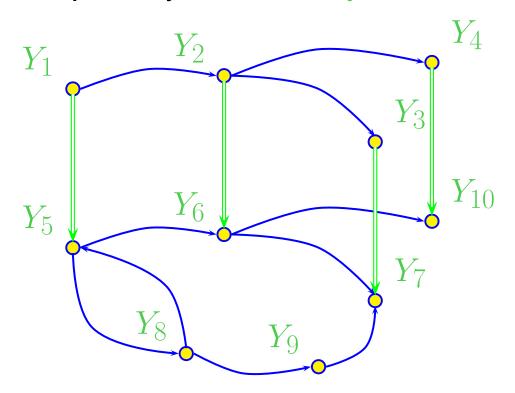
- inconsistent terms are always normalized to ⊥ in finitely many steps;
- normalization can perform OSF constraint inheritance from the theory lazily;
- there is an efficient algorithm which is complete for a large class of OSF theories;
- only one rule completes it (and may cause divergence).

## $\mathcal{OSF}$ THEORY UNIFICATION (EXAMPLE)



The fact that an OSF theory is order-consistent yields an endomorphic mapping of theory variables.

In particular, the sort ordering  $\leq$  and the GLB operation  $\wedge$  extend homomorphically to all theory variables.



#### $\mathcal{OSF}$ THEORY UNIFICATION first $Y_4$ $\mathbf{name}\ Y_2$ $Y_1$ last string id person $Y_3$ string $Y_{10}$ first $\mathbf{name}\ Y_{6}$ $Y_5$ last string id married\_person $Y_7$ spouse string spouse $Y_8$ last married\_person name id

# Normalizing:

```
P: person(name \Rightarrow \top(last \Rightarrow "Smith"))
```

- &  $P: married\_person(spouse \Rightarrow Q)$
- &  $Q: person(name \Rightarrow id(last \Rightarrow S))$

# yields, among other things:

 $P: married\_person$ 

 $\& Q: married\_person$ 

& S: "Smith"...

(0) Frame Allocation

$$\Gamma$$
  $\vdash X:s \& \phi$ 

$$\Gamma \bigcup \{\{X \backslash Y_s\}\} \vdash X : s \& \phi$$

if 
$$\forall s' \in \mathcal{S}, \ \forall F \in \Gamma : \ X \backslash Y_{s'} \notin F$$

## $\mathcal{OSF}$ THEORY UNIFICATION (EMPTY THEORY)

## (1) Sort Intersection

$$\Gamma \bigcup \{\{X \backslash Y_{s'}\} \cup F\} \quad \vdash X : s \& X : s' \& \phi$$

$$\Gamma \bigcup \{\{X \backslash Y_{s \wedge s'}\} \cup F\} \vdash X : s \wedge s' \& \phi$$

## (2) Inconsistent Sort

$$\Gamma \bigcup \{\{X \backslash Y_{\perp}\} \cup F\} \vdash \phi$$

### $\mathcal{OSF}$ THEORY UNIFICATION (EMPTY THEORY)

## (3) Variable Elimination

$$\Gamma \qquad \vdash X \doteq X' \& \phi$$

$$\Gamma[X'/X] \vdash X \doteq X' \& \phi[X'/X]$$

if 
$$X \neq X'$$
 and  $X \in \mathit{Var}(\Gamma) \cup \mathit{Var}(\phi)$ 

## (4) Feature Functionality

$$\Gamma \vdash X.\ell \doteq X' \& X.\ell \doteq X'' \& \phi$$

$$\Gamma \vdash X.\ell \doteq X' \& X' \doteq X'' \& \phi$$

### $\mathcal{OSF}$ THEORY UNIFICATION (NON-EMPTY THEORY)

(5) Feature Inheritance (if  $\ell(Y) = Y'$  and  $X' \setminus Y' \notin F$ )

$$\Gamma \bigcup \{\{X \backslash Y\} \cup F\} \qquad \qquad \vdash \phi \& X.\ell \doteq X'$$

$$\Gamma \cup \{\{X \setminus Y, X' \setminus Y'\} \cup F\} \vdash \phi \& X.\ell \doteq X' \& X' : Sort(Y')$$

(6) Frame Merging

$$\Gamma \cup \{\{X \backslash Y_s\} \cup F, \{X \backslash Y_{s'}\} \cup F'\} \vdash \phi$$

$$\Gamma \cup \{\{X \backslash Y_{s \wedge s'}\} \cup F \cup F'\} \qquad \vdash \phi$$

### $\mathcal{OSF}$ THEORY UNIFICATION (NON-EMPTY THEORY)

## (7) Frame Reduction

$$\frac{\Gamma \bigcup \{\{X \backslash Y, X \backslash Y'\} \cup F\} \vdash \phi}{\Gamma \bigcup \{\{X \backslash Y\} \cup F\} \vdash \phi}$$
 if  $Y \leq Y'$ 

# (8) Theory Coreference

$$\Gamma \bigcup \{\{X \backslash Y, X' \backslash Y\} \cup F\} \vdash \phi$$

$$\Gamma \bigcup \{\{X \backslash Y\} \cup F\} \vdash \phi \& X \doteq X'$$

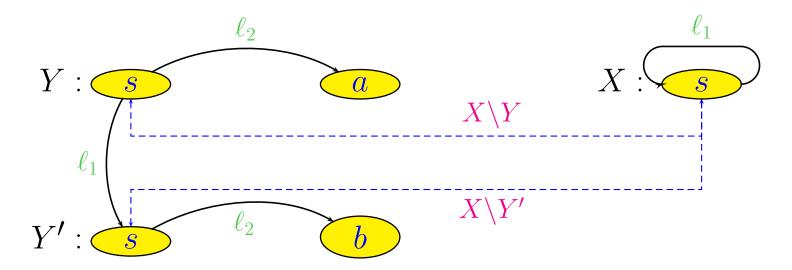
### $\mathcal{OSF}$ THEORY UNIFICATION (STRONG NORMALIZATION)

# (9) Theory Feature Completion

$$\Gamma \vdash \phi$$

$$\Gamma \vdash X.\ell \doteq Z \& \phi$$

if  $X \setminus Y \in F$  for some  $F \in \Gamma$ and  $X \setminus Y' \in F'$  for some  $F' \in \Gamma$ and both  $\ell(Y)$ ,  $\ell(Y')$  exist and Z is new



#### CONCLUSION

We have overviewed a formalism of objects where:

- "real-life" objects are viewed as logical constraints
- objects may be approximated as set-denoting constructs
- object normalization rules provide an efficient operational semantics
- consistency extends unification (and thus matching)
- this enables rule-based computation (whether rewrite or logical rules) over general graph-based objects
- this yield a powerful means for effectively using ontologies

For more information:

hak@ilog.com

http://koala.ilog.fr/wiki/bin/view/Main/HassanAitKaci

Thank You For Your Attention!