OBJECTS AS CONSTRAINTS

A Formalism of
Order-Sorted Featured Structures

Hassan Ait-Kaci
ILOG, Inc.

2nd International School on Rewriting
Nancy, July 2007

OUTLINE

» Motivation and background
» Basic order-sorted feature (OSF) formalism
» Disjunction and negation

» Partial features, extensional sorts, relational features
(aggregation)

» OSF theory unification

» Conclusion: A few fundamental principles...

MOTIVATION

» Proposal: a formalism for representing objects that is:
Intuitive (objects as labelled graphs), expressive (‘real-life” data
models), formal (logical semantics), operational (executable), and
efficient (constraint-solving)

» Why? viz., ubiquitous use of labelled graphs to structure
iInformation naturally as In:

— object-orientation, knowledge representation,

— databases, constraint-based programming,
—natural language processing, graphical interfaces,
—concurrency and communication,

— XML, RDF, “Semantic Web,” etc., ...

BACKGROUND

This work is the synthesis of research of many years by many
people:

» Hassan Ait-Kaci (since 1983)
» Gert Smolka (since 1986)

» Andreas Podelski (since 1989)

» Franz Baader, Rolf Backhofen, Jochen Dorre, Martin Emele,
Bernhard Nebel, Joachim Niehren, Ralf Treinen, Manfred
Schmidt-Schaul3, Remi Zajac, ...

BAsIC OSF FORMALISM

OSF signature:
(S, <, A\, F)
S.1.:
» S IS a set of containing the sorts | and
» < Is apartial orderon S (L is element, T Is
element)
» (S, <, A)lisa (Is called the
of s and s’)

» F IS a set of

OSF ALGEBRAS

Given an OSF signature (S, <, A, F) an OSF algebra is a
structure:

A = <DQ[7 (SQ[)5687 (ém)fe,ﬁ

S.L.:

» D% £ ()is a set; the domain of 2
» 4 C DY forsinS

(s A =4

» (% D% DY forfin F

OSF HOMOMORPHISM

OSF homomorphism between two OSF algebras 2l and ‘5:

> D% — D?®
b ((%(d)) = (P (y(d)) for all d € D?
»(s?) CsPforallse S

Taking 2l = B, v Is an of A

»vVde D, y(l(d)) = Ll(y(d))
»VseS, v(s) Cs

This definition captures exactly

INHERITANCE = OSF ENDOMORPHISM

Hence, inheritance is endomorphic approximation.

OSF TERM SYNTAX

Let V be a countably infinite set of

An OSF term Is an expression of the form:
X:s(ly = t1,.... 0 = tn)

where:

» X € Vs the root variable
» s € S Is the root sort
»n >0 (ifn =0, we write X : s)

» {(1,...,0,} C F are features

»11,...,t, are OSF terms

EXAMPLE

X :person(name = N : T(first = F : string),
name = M :id(last = S : string),
spouse = P : person(name = I :id(last = S : T),
spouse = X : T)).

Lighter notation:

X : person(name = T(first = string),
name = id(last = S : string),
spouse = person(name = id(last = 9,
spouse = X)).

AOSF TERM SEMANTICS

» OSFtermt =X :s(l] = t1,..., 0, = 1)
» OSF interpretation 2
» 2-valuation o : V — D%

Denotation of ¢ In 2l under valuation «:

[(]* {aX)} ns* 0 () @)

1<i<n

Denotation of 7 in 2(under all possible valuations:

OSF CLAUSE SYNTAX

For X and X’ variables in V, s asortin S, and ¢ a feature in
JF,an OSJF constraint iIs one of:

» X S
» X 0= X'
» X = X/

An OSF clause Is a conjunction of OSFconstraints—i.e.,

> 01 On,

SEMANTICS OF OSJF CLAUSES

of OSF constraints in an OSF algebra 2 by a

valuation Is defined by:

> A akEX:s iff a(X)es?

> AaEX=Y iff a(X)=alY)

> AakEXI=Y iff (X)) =a(Y)

» A o ¢ on I AakEe¢, Vi=1,....n

FROM OSF TERMS TO OSF CLAUSES

An OSFterm t=X :s(l1 = t1,..., 0, = tp)

IS into an OSF clause ¢(t) as follows:
() X :s X.f1 =Xy X.fn=X,
p(t1) » p(tn)
where X1, ..., X,, are the root variables of ¢, ..., %,.

Theorem: 2. o = (1) [(]2 £ ¢

EXAMPLE OF OSF TERM DISSOLUTION

t = X :person(name = N : T(first = F : string),
name = M : id(last = S : string),
spouse = P : person(name = I :id(last = S : T),
spouse = X : T))

o(t) = X : person X.name = N N:T
X.name =M M:d
X . spouse = P P person
N. first = F F': string
M.last =S S string
P.name =1 I :d
I.last =S ST
P . spouse = X X: T

BAasiC OSF TERM NORMALIZATION

(1) Sort Intersection (3) Variable Elimination

. ./ . /
1) X 15 X s O X=X X 4X

and X € Var(¢)

¢ & X:sNs PIX'/X] & X=X’

(2) Inconsistent Sort (4) Feature Functionality
o & XL o & Xl=X & Xt=X"

X1 oL X=X & X' =X

OSF TERM UNIFICATION = OSJF TERM NORMALIZATION

persa

student

/|

Csimork elena> Card(judy) (donijonn3 sheila>

(bob) @ pabl

OSF TERM UNIFICATION = OSF TERM NORMALIZATION

OSF TERM UNIFICATION = OSF TERM NORMALIZATION

X . intern
(advi sor => don(assistant => A,
secretary => 9),
hel per => sinon(spouse => A),
roommate => S . Iintern(rep => 9))

EXTENDED OSF TERMS

Basic OSF terms may be extended to express:

» Non-lattice sort signatures
» Disjunction

» Negation

» Partial features

» Extensional sorts

» Relational features

» Aggregates

» Sort definitions

EXTENDED OSF TERMS

Osf Term:= | Variabl e: | Term
Term:= Conj unctiveTerm
| Di sjunctiveTerm
| NegativeTerm
Conj unctiveTerm:= Sort [(Attribute”) |
Attribute .= Feature = Gsf Term

Di sjunctiveTerm:= { OsfTerm |; Gsf Term|® }

NegativeTerm:= — Gsf Term

ENABLING NON-LATTICE SIGNATURES USING DISJUNCTION

vehicle

< four wheeler >

Non-unique GLBs are

vehicle Afour wheeler = {car;van}

DISJUNCTIVE OSF TERMS

Syntax of disjunctive OSF terms:
{ti; ... ta}

Semantics of disjunctive OSF terms:

[{{tﬂ e ;tn}]]gl’& U [[ti]]gl,oz

Disjunctive OSF clauses:
p({t1;--stnt) = o) || .. [o(tn)

WWalkEor | ... || o, Iff AakEoe, forsomei=1,....n

DISJUNCTIVE OSF NORMALIZATION

(5) Non-unique GLB

¢ A s X:s where {s;}",

o (X 51 ... || X :sp) max<{te€ S|t <sandt < s}
(6) Distributivity (7) Disjunction

¢ & (¢ ¢") ¢ || ¢

(¢ & @) [(¢ & ¢) &

NEGATION

Syntax of negative OSF terms: —t
Semantics of negative OSF terms: [t
Complemented sorts: [5]* == D%\ [s]*

Sorted variable simplification:

(X :s) X :s

D\ [t]*

S(X :sp)

fsc S

NEGATIVE OSF TERMS

Dissolving negative OSF terms into OSF clauses eliminates

negation:

p(t)

p(mt1) & oo &op(ty)

(X :5)

X0 =X, ©(—t1)

X0 =X & X4 X & olty)

Xty =X/

X7/1 # Xn W(%)

NEGATIVE OSF TERM NORMALIZATION

(8) Variable Disequality
o & X#X

L

(9) Sort Complement
0) X5

If s emax{teS|sLtandt £ s}

0) X5

PARTIAL FEATURES

Partial features have restricted domains:
dy, y={(x) onlyif = € Dom(/)
Declaring partial feature domains:
Dom : F s 2°

s.t. Dom(/) set of maximal sorts where ¢ is defined. Can
also declare a feature’s range: Ran, : 7 — & for s € Dom(/).

(10) Partial Feature

. /
¢ XL=X if s € Dom(/)

and Rany(/) = ¢

) X0=X' X s X" s

PARTIAL FEATURES (EXAMPLE)

Assume {nil, cons,list} C S such that:

nil < list
cons < list

and {hd,tl} C F such that:

Dom(hd) {cons}
Dom(t/) {cons}

then:

list(tl = X) cons(tl = X)
int(tl = X) 1

EXTENSIONAL SORTS

The fact that some sorts denote singletons (e.g., numbers)
IS not part of our axioms so far!

l.e.,
fla=1,b=1) fla= X,b= X)
because:

fla=X:5b=X":5) < fla=Y,b=Y) iff X=X’

A sort that denotes a , whenever all its images by a
do, is called extensional.

EXTENSIONAL SORTS
Extensional sorts are element constructors.

Let £ C Minimals(S) be the set of extensional sorts with
rank function:

Arity : £ — 27

e.g.: Arity(n) = 0 VYnelN
Arity(nil) = ()
Arity(cons) = {hd,tl}

EXTENSIONAL SORTS

Extensional sorts obey an axiom reminiscent of the axiom of
functionality; viz.,

if Arity(f)=n and X, =Y, Vi=1,...,n)
then f(Xl,...,Xn) = f(Yl,...,Yn)

(11) Weak Extensionality

. /.
¢ & X:is & X'is if s € & and V¢ € Arity(s):

¢ X s X = X' {(Xf=Y,X.f=Y}Co¢

EXTENSIONAL SORTS

The rule works, but not for cyclic terms;
VIZ.:
let s € £ and Arity(s) = {/}
then X :s(/ = X) & X':s5(0 = X

or X :s({=X") & X':s({=X)

are not reduced! So we need a stronger condition for cycles.

STRONG EXTENSIONALITY

Proceed coinductively from roots to leaves carrying a context
[yasetof pairs s/{X,..., X} st. X; €V (and
se& In [

(12) Extensional Occurrence
fsefand X €V

Fw{s/V,....} = ¢ X s and Vf ¢ Arity(s) :
Xf=X X :.slC
P {s/VUIX}...JFo & X évithfs’eg Ul

(13) Strong Extensionality

Py {s/{X, X" ...} ¢ —
IT s €

Pw{s/{X,..}F¢ & X =X’

FIRST-ORDER TERMS AS OSF TERMS

Let > — [4,,cn 2 be aranked signature.

The In 7y, , are OSF terms s.t..

» S — X U{T, L} is aflat lattice

» F — N\ {0}

» Arity(T) = ()

» Arity(L) — {1 e N* | i < max{n > 0|3, # 0} }
» Ve, Arity(f) = {1,...,n}

»Vie F: Dom(i) = U<, Xn

T if f € Dom(z)
1 otherwise

»Vie F¥feX: Rang(i) {

RELATIONAL FEATURES AND AGGREGATION

Relational features are set-valued features:

V(z,y) € Ax B: (x,y) € R iff ye R[z] iff e Ry

Sets are a particular case of

» the notation “X : s” Is generalized to carry an optional
value e € £

» ‘X = ¢ : 5" means “X has value e of sort s”
(X eV, ec&, se8)

» the shorthand “X = ¢e¢” means “X =e: T”

» when the sort s € S denotes a commutative monoid (x, 1),
the shorthand “X : s" means “X =1, : s”

RELATIONAL FEATURES AND AGGREGATION

The semantic conditions are thus extended:

UakEX=c:siff e and a(X)=c*

(14) Value Aggregation

- VR,
¢ X =e:s A =c s if s and s’ are both subsorts of

commutative monoid (x, 1,)

0) X=exe :sNs

N.B.: This works for any commutative monoid—not just sets!

OSF THEORY UNIFICATION

IDEA: Augment the sort ordering with constraints imposing:

e sorts of features
e coreference equations

e.g., define the sort to abide by the structure:
y fairst
name ZO O string
person
spouse
string
spouse
last

peETSon ~__ o

name id

OSF THEORY

An OSF theoryis a function: © : § — U

An OSF theory is order-consistent iff it Is monotonic:

s<s = O(s) <O

Given an order-consistent OSF theory O, normalize
any term of sort s taking into account the OSF con-
straints O(s).

Theorem OSF theory unification is undecidable.

OSF THEORY

However... there is an algorithm such that:

» iInconsistent terms are always normalized to L in finitely
many steps;

» nhormalization can perform OSF constraint inheritance from
the theory lazily;

» there is an efficient algorithm which is complete for a large
class of OSF theories;

» only one rule completes it (and may cause divergence).

OSF THEORY UNIFICATION (EXAMPLE)

name O

O/\-}O last string
person Id

name

married_person

spouse

married_person

OSF THEORY UNIFICATION

The fact that an OSF theory iIs order-consistent yields an
endomorphic mapping of

In particular, the sort ordering < and the GLB operation A
extend homomorphically

SRR

\O

OSF THEORY UNIFICATION

first

name @)
O/\ido last string
person
string
first
name 0
B © ast string
married_person spouse
spouse string
_/O last
married_person name

Id

OSF THEORY UNIFICATION

Normalizing:

P : person(name = T (last = “Smith”))
P : married_person(spouse = ())
Q : person(name = id(last = S))

yields, among other things:

P : married_person
Q) : married_person

S “Smith” ...

OSF THEORY UNIFICATION

(0) Frame Allocation
I X s 1)

fvseS, VFel: X\Yy¢F

PUAX\YsH F Xis & ¢

OSF THEORY UNIFICATION (EMPTY THEORY)

(1) Sort Intersection
I {{X\Yy}UF} X:s & X:6 & ¢

FUHX\Y gt UF} B X:sns & o

(2) Inconsistent Sort

PUWAX\Y JUF} = ¢

0 1

OSF THEORY UNIFICATION (EMPTY THEORY)

(3) Variable Elimination

. /
: X=X & ¢ it X £ X

and X € Var(I') U Var(¢)

MX//X] - X =X & g[X'/X]

(4) Feature Functionality
M X=X & Xe=X" & ¢

P X=X &L X' =X" & ¢

OSF THEORY UNIFICATION (NON-EMPTY THEORY)

(5) Feature Inheritance (if4/(Y) =Y’ and X'\Y' ¢ F)
' {{X\Y}UF} ¢ & X=X

_/

D JUX\Y, X\YIUF} F ¢ & X0=X' & X' Sort(Y)

_/

(6) Frame Merging
FUH{X\YUFRA{X\YUE} - ¢

[U{{X\YS/\S/}UFUF/} ¢

OSF THEORY UNIFICATION (NON-EMPTY THEORY)

(7) Frame Reduction

[

_/

HX\Y, X\Y'IU F}

[

_/

UX\Y U F;

(8) Theory Coreference
MU XY, X\Y} U F}

ify <Y’

FURX\YUF)

OSJF THEORY UNIFICATION (STRONG NORMALIZATION)

(9) Theory Feature Completion

r & if X\Y € Fforsome F el
and X\Y’ e F'forsome F' €T

and both /(Y), ¢(Y') exist

and Z is new

- XA=Z & ¢

F—— . — . — — — e —— — — ———— —

CONCLUSION

We have overviewed a formalism of objects where:

» “real-life” objects are viewed as logical constraints
» objects may be approximated as set-denoting constructs

» object normalization rules provide an efficient operational
semantics

» consistency extends unification (and thus matching)

» this enables rule-based computation (whether rewrite or
logical rules) over general graph-based objects

» this yield a powerful means for effectively using ontologies

For more information:
hak@ | og. com

http://koala.ilog.fr/w ki/bin/view Mal n/ HassanAi t Kaci

[Thank You For Your Attention! j

