
Chapter 9

Computational Logic

9.1 Introduction

The goal of this chapter is to provide a self-contained formal account of first-orderterm algebras
and predicate calculus for the purpose of understanding symbolic processing techniques to imple-
ment logical reasoning. Although logical inference presented here relies essentially on resolution
refutation, the formal material we introduce is also relevant to other methods not treated here (e.g.,
tableaux, equations, natural deduction,etc.).

9.2 Algebraic Terms

We first present basic notions for first-order terms and substitutions. Then, we describe a non-
deterministic unification procedure as a set of solution-preserving transformations on a set of equa-
tions due to the logician Jacques Herbrand [33] and later rediscovered by the computer scientists
Alberto Martelli and Ugo Montanari [43]. Then, we present a recursive algorithmic version, and
finally an efficient iterative unification algorithm.

9.2.1 Syntax and semantics

DEFINITION 9.2.1 (SIGNATURE) An (operator)signatureis a collection� = Un�0 �n of (oper-
ator) symbols.

Operator symbols are the elements of a signature�; they are also calledfunctionsymbols or
functors. Thearity of a functorf 2 �n is the numbern. It denotes the number of arguments off .
Functors of arity0 are also calledconstantsymbols. It will always be assumed that�0 6= ;.

83

PROGRAMMING LANGUAGES

DEFINITION 9.2.2 (�-INTERPRETATION) A�-interpretationI is a pair hDI; [[]]Ii where:� DI is a set, called thedomainof interpretation;� [[]]I : �n ! (DnI ! DI) is a denotationfunction mapping functors of arityn to n-ary
operations on the domain.

A �-interpretation is also called a�-algebra.

Note that, since0-ary operations on a setS are simply elements ofS, this definition implies that[[�0]]I � DI (i.e., constant symbols denote elements of the domain).

EXAMPLE 9.2.1 Consider a signature� with �0 = f�g, �1 = f&g, and�2 = f?g.
One possible�-interpretation is given byN = hN; [[]]Ni, whereN is the set of all natural numbers,
and[[]]N is such that:� [[�]]N = 0;� [[&]]N(n) = n+ 1;� [[?]]N(n;m) = n+m.

Another possible�-interpretation is given byW = hW; [[]]Wi, whereW is the set of all strings ofa’s, and[[]]W is such that:� [[�]]W = "";� [[&]]W(w) = aw;� [[?]]W(u; v) = uv.

Let � be a signature. The setT� of ground terms(or 0-order terms) is defined inductively as
follows.

DEFINITION 9.2.3 (GROUND TERMS) The set ofground termsT� is the smallest set such that:� if c 2 �0 thenc 2 T�;� if f 2 �n andti 2 T� for i = 1; : : : ; n, thenf(t1; : : : ; tn) 2 T�.

Note that forT� to be well-defined, it is necessary that�0 6= ;.
EXAMPLE 9.2.2 Considering again the signature� of Example 9.2.1, the following are examples
of terms inT�: �, &(�), ?(�; &(�)), &(?(�; &(�))), etc...

PAGE 84 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

For a termt in T�, thedenotationof t in a�-interpretationI is [[t]]I, given by the function[[]]I :T� !DI defined as follows:� if t = c 2 �0, then[[t]]I = [[c]]I;� if t = f(t1; : : : ; tn), then[[t]]I = [[f]]I�[[t1]]I; : : : ; [[tn]]I�.

EXAMPLE 9.2.3 Considering again the signature� of Example 9.2.1 and the interpretationsN
andW defined there, the following are the denotations in either interpretations of someterms inT�: t [[t]]N [[t]]W� 0 ""&(�) 1 "a"&(&(�)) 2 "aa"?(�; &(�)) 1 "a"&(?(&(&(�)); &(�))) 4 "aaaa"

There is one particular�-interpretation that is worth noticing, whose domain isT� itself! Namely,
the interpretationT� whereDT� = T� and[[]]T� is such that:[[f]]T�(t1; : : : ; tn) = f(t1; : : : ; tn) (9.1)

for any f 2 �n; (n � 0), andti 2 T� for i = 1; : : : ; n. Clearly, [[f]]T� : (DT�)n ! DT� is ann-ary operation onDT� as prescribed, and thereforeT� is abona fide�-interpretation. It is called
the free interpretation (also thesyntacticinterpretation, orinitial interpretation). Note that in the
free interpretation the denotation of a term is simply itself.

LetV be a countably infinite set of symbols, calledvariables, assumed distinct from� (i.e.,V\� =;).
The set offirst-order termsover� andV is the setT�;V defined as follows:1

DEFINITION 9.2.4 (FIRST-ORDER TERMS) The set of(first-order) termsT�;V is the smallest set
such that:� if X 2 V thenX 2 T�;V ;� if c 2 �0 thenc 2 T�;V ;

1To distinguish between variable symbols functors, we will follow the convention of using symbols starting with
uppercase letters for variables, while functors will be starting with lowercase letters.

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 85 OF 217

PROGRAMMING LANGUAGES� if f 2 �n andti 2 T�;V for i = 1; : : : ; n, thenf(t1; : : : ; tn) 2 T�;V .

EXAMPLE 9.2.4 Given the signature� such thatf 2 �3, h 2 �2, k 2 �1, anda 2 �0, and given
thatW ,X,Y , andZ are variables inV, the termsf(Z; h(Z;W); k(W)) andf(k(X); h(Y; k(a)); Y)
are inT�;V .

Given a termt 2 T�;V , we define the setV(t) of variables oft as follows:� if t = X 2 V, thenV(t) = fXg;� if t = c 2 �0, thenV(t) = ;;� if t = f(t1; : : : ; tn), thenV(t) = Sni=1V(ti).
ClearlyT� is the subset ofT�;V containing all terms without variables. That is,T� = ft 2 T�;V j V(t) = ;g:
DEFINITION 9.2.5 (VALUATION) Let I be a�-interpretation. AnI-valuation� is a function
mapping variables to elements in the domain of interpretation; i.e.,� : V ! DI.
For a givenI-valuation� and a termt in T�;V the denotation[[t]]�I of t is given by the function[[]]�I : T�;V !DI defined as follows:� if t = X 2 V, then[[t]]�I = �(X);� if t = c 2 �0, then[[t]]�I = [[c]]I;� if t = f(t1; : : : ; tn), then[[t]]�I = [[f]]I�[[t1]]�I ; : : : ; [[tn]]�I�.

To lighten notation, whenever the context makes clear which interpretation is being used, we may
omit specifyingI and write only[[]] or [[]]� instead of[[]]I or [[]]�I, and only “valuation” instead
of “I-valuation.”

9.2.2 Substitutions

Let t andt0 be two terms inT�;V , and letX 2 V. Then, the termtX t0 is the term obtained fromt
by replacing all occurrences, if any, of the variableX in t by t0. Formally,tX t0 = 8>>>>><>>>>>: t0 if t = X;t if t 2 V and t 6= X;c if t = c 2 �0;f(tX t01 ; : : : ; tX t0n) if t = f(t1; : : : ; tn); n � 1: (9.2)

PAGE 86 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

A substitutionis a finitely non-identical assignment of terms to variables;i.e., a function� fromV
to T�;V such that the setfX 2 V j X 6= �(X)g is finite. This set is called thedomainof � and
denoted bydom(�). Such a substitution is also written as a set such as� = fti=Xigni=1 wheredom(�)= fXigni=1 and�(Xi) = ti for i = 1 to n. The setftigni=1 is called therangeof � and is
denoted asran(�).
A substitution� is uniquely extended to a function� from T�;V to T�;V as follows:� �(X) = �(X), if X 2 V;� �(a) = a, if a 2 �0;� �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)), if f 2 �n, ti 2 T�;V ; (1 � i � n).
Since they coincide onV, and for notation convenience, we deliberately confuse a substitution�
and its extension�. Also, rather than writing�(t), we shall writet�. Given two substitutions� = fti=Xigni=1 and� = fsj=Yjgmj=1, their composition�� is the substitution which yields the
same result on all terms as first applying� then applying� on the result. One computes such a
composition as the set:�� = �ft�=X j t=X 2 �g � fX=X j X 2 dom(�)g� [�� � fs=Y j Y 2 dom(�)g�:
Note that1V, the identity function onV, is a substitution. In set form, it is simply the empty set;;
therefore, it is called theempty substitution. The set of substitutions is augmented with a special
element?, called thefailing substitution, such that:?� = �? = ?
for any substitution�.

EXAMPLE 9.2.5 If � = ff(Y)=X;U=V g and� = fb=X; f(a)=Y; V=Ug, then composing� and� yields�� = ff(f(a))=X; f(a)=Y; V=Ug
while composing� and� gives�� = fb=X; f(a)=Y; U=V g:
Composition defines a preorder (i.e., a reflexive and transitive relation) on substitutions. A substi-
tution� is more generalthan a substitution� (written� � �) iff there exists a substitution� such
that� = ��.
Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 87 OF 217

PROGRAMMING LANGUAGES

EXAMPLE 9.2.6 ff(Y)=Xg is more general thanff(f(a))=X; f(a)=Y g.
DEFINITION 9.2.6 (VARIABLE RENAMING) A (variable) renaming� is an injective substitution
such thatran(�) � V.

The set form of a renaming isfYi=Xigni=1 such thatYi 6= Yj for i 6= j. Clearly, if� = fYi=Xigni=1
is a renaming, then so is its inverse��1 = fXi=Yigni=1, and���1 = ���1 = ;.
It is not difficult to see that if� � � and� � � then� and� are essentially the same substitutions
“up to renaming” some variables and we write� � �. Formally,� � � and� � �, iff there is a
renaming� such that� = �� and� = ���1. It easy to verify that� is an equivalence relation on
substitutions.

DEFINITION 9.2.7 (GROUND SUBSTITUTION) A ground substitution� is a substitution such thatran(�) � T�.

Let us denote the set of all ground substitutions asS�.

DEFINITION 9.2.8 (GROUND EXTENSION) For any substitution�, theground extensionof � is
the setext(�) of all ground substitutions that are less general than�. That is,ext(�) = f� 2 S� j � � �g:
9.2.3 Unification

Let t1 andt2 be two terms. If there exists a subsitution� 6= ? such thatt1� = t2�, thent1 andt2
are said tounify, and� is called aunifier of t1 andt2. If t1 andt2 unify, then there exists amost
general unifier, up to variable renaming, oft1 andt2 MGU(t1; t2).
An equationis a pair of terms, writtens = t. A substitution� is asolution(or aunifier) of a set of
equationsfsi = tigni=1 iff si� = ti� for all i = 1; : : : ; n. Two sets of equations areequivalentiff
they both admitall andonly the same solutions. Following [43], we define two transformations on
sets of equations—term decompositionandvariable elimination. They both preserve solutions of
sets of equations.

Let E be a set of equations.� Term Decomposition

If E contains an equation of the formf(s1; : : : ; sn) = f(t1; : : : ; tn), wheref 2 �n, (n � 0),
then the setE 0 = E � ff(s1; : : : ; sn) = f(t1; : : : ; tn)g [fsi = tigni=1 is equivalent toE.2

2If n = 0, the equation is simply deleted.

PAGE 88 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION� Variable Elimination

If E contains an equation of the formX = twheret 6= X, then the setE 0 = (E � fX = tg)�[fX = tg where� = ft=Xg, is equivalent toE.

A set of equationsE is partitioned into two subsets: itssolvedpart and itsunsolvedpart. The
solved part is its maximal subset of equations of the formX = t such thatX occurs nowhere in
the full set of equations except as the left-hand side of this equation alone. The unsolved part is
the complement of the solved part. A set of equations is said to befully solvediff its unsolved part
is empty.

Following is a unification algorithm. It is a non-deterministic normalizationprocedure for a given
setE of equations which repeatedly chooses and performs one of the following transformations
until none applies or failure is encountered.(u:1) Select any equation of the formt = X wheret is not a variable, and rewrite it asX = t.(u:2) Select any equation of the formX = X and erase it.(u:3) Select any equation of the formf(s1; : : : ; sn) = g(t1; : : : ; tm) wheref 2 �n andg 2�m; (n;m � 0); if f 6= g or n 6= m, stop with failure; otherwise, ifn = 0 erase the

equation, else(n � 1) replace it withn equationssi = ti; (i = 1; : : : ; n).(u:4) Select any equation of the formX = t whereX is a variable which occurs somewhere
else in the set of equations and such thatt 6= X. If t is of the formf(t1; : : : ; tn), wheref 2 �n, and ifX occurs int, then stop with failure; otherwise, let� = ft=Xg and replace
every other equationl = r by l� = r�.

If this procedure terminates with success, the set of equations which emergesas the outcome is
fully solved. Its solved part defines amost general unifier, up to varaible renaming, of all the
terms participating as sides of equations inE. If it terminates with failure, the set of equationsE is
unsatisfiable and no unifier for it exists.

EXAMPLE 9.2.7 The setE = fp(Z; h(Z;W); f(W)) = p(f(X); h(Y; f(a)); Y)g is normalized
as follows:fZ = f(X) ; h(Z;W) = h(Y; f(a)) ; f(W) = Y g [by (u:3)]fZ = f(X) ; h(f(X);W) = h(Y; f(a)) ; f(W) = Y g [by (u:4)]fZ = f(X) ; f(X) = Y ; W = f(a) ; f(W) = Y g [by (u:3)]fZ = f(X) ; Y = f(X) ; W = f(a) ; f(W) = Y g [by (u:1)]fZ = f(X) ; Y = f(X) ; W = f(a) ; f(W) = f(X)g [by (u:4)]
Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 89 OF 217

PROGRAMMING LANGUAGESfZ = f(X) ; Y = f(X) ; W = f(a) ; f(f(a)) = f(X)g [by (u:4)]fZ = f(X) ; Y = f(X) ; W = f(a) ; f(a) = Xg [by (u:3)]fZ = f(X) ; Y = f(X) ; W = f(a) ; X = f(a)g [by (u:1)]fZ = f(f(a)) ; Y = f(f(a)) ; W = f(a) ; X = f(a)g [by (u:4)]
producing the substitution� = ff(f(a))=Z; f(a)=W; f(f(a))=Y; f(a)=Xg
which is theMGU of p(Z; h(Z;W); f(W)) andp(f(X); h(Y; f(a)); Y) and both yield the same
term p(f(f(a)); h(f(f(a)); f(a)); f(f(a)))
when applied the substitution�.

Recursive unification

A recursive unification algorithm is given in Figure 9.1.

This algorithm assumes that a term is represented as a typeTERM which is a union type (or su-
pertype) of two types:VARIABLE and NON-VARIABLE . The typeNON VARIABLE is a record
structure with fields for the functor (a string), the arity (an integer), and the subterms (an array of
terms). That is,

type NON VARIABLE = structuref STRING functor;
INT arity;
TERM subterms[];g (9.3)

We assume that a boolean functionis variable(TERM t) is defined that returnstrue if t is of type
VARIABLE andfalse if t is of typeNON-VARIABLE .

The algorithm of Figure 9.1 also assumes that a substitution is represented by anabstract data type
SUBSTITUTION that implements all the necessary operations (i.e., composition and application).

Efficient unification

A more efficient unification algorithm is given in Figure 9.3. It is based on theUNION/FIND

method [2].

PAGE 90 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

SUBSTITUTION function mgu (TERM t1; TERM t2)beginreturn unify(t1; t2; ;);end
SUBSTITUTION function unify (TERM t1; TERM t2; SUBSTITUTION �)begin

TERM u1 t1�;
TERM u2 t2�;if is variable(u1) thenif occurs in(u1; u2) then return ?else return �fu2=u1g;if is variable(u2) thenif occurs in(u2; u1) then return ?else return �fu1=u2g;if u1:functor = u2:functor and u1:arity = u2:arity thenbegin

SUBSTITUTION � �;
INT i 1;while i � u1:arity and � 6= ? dobegin� unify(u1:subterms[i]; u2:subterms[i]; �);i i+ 1;endreturn �;endelse return ?;end

Figure 9.1: A recursive unification algorithm

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 91 OF 217

PROGRAMMING LANGUAGES

BOOLEAN function occurs in (VARIABLE v; TERM t)begin
BOOLEAN found false;if is variable(t) then found (t = v)elsebegin

INT i 1;while i � t:arity and :found dobeginfound occurs in(v; t:subterms[i])i i+ 1;endendreturn found ;end
Figure 9.2: Variable occurrence test

Besides the fact that the algorithm of Figure 9.1 is recursive, its source of inefficiency is the re-
peated applications and compositions of substitutions. For these operations, the representation of
a substitution as a set of term/variable pairs will necessitate association table lookups and various
set operations. All this can be avoided by eliminating the explicit representation of substitution.
Instead, a variable will store the term to which it is bound in its own structure. The typeVARIABLE

is thus modified as follows:

type VARIABLE = structuref STRING name;
TERM binding;g (9.4)

wherebinding is initialized to the variable itself to indicate that the variable isunbound.

With this representation, accessing a variable always necessitates following a possible chain of
bindings until an unbound variable or a non-variable term is found. This operation, calledvariable
dereferenceis given in Figure 9.4. Using variable dereference, there is no need to composeor
apply substitutions.

The unification algorithm of Figure 9.3 uses this together with an iterative control to achieve better
performance than the algorithm in Figure 9.1

PAGE 92 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

BOOLEAN function unify (TERM t1; TERM t2)begin
STACK stack ;;push(t1; stack);push(t2; stack);
BOOLEAN success true;while stack 6= ; and success dobegin

TERM u1 deref (pop(stack));
TERM u2 deref (pop(stack));if u1 6= u2 thenif is variable(u1) thenif occurs in(u1; u2) then success falseelse u1:binding u2elseif is variable(u2) thenif occurs in(u2; u1) then success falseelse u2:binding u1elseif u1:functor = u2:functor and u1:arity = u2:arity thenfor INT i 1 until u1:arity dobeginpush(u1:subterms[i]; stack);push(u2:subterms[i]; stack);endelse success false;endreturn success;end

Figure 9.3: A more efficient unification algorithm

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 93 OF 217

PROGRAMMING LANGUAGES

TERM function deref (TERM t)begin
TERM u t;while is variable(u) and u:binding 6= u dou u:binding ;return u;end

Figure 9.4: Variable dereference

BOOLEAN function occurs in (VARIABLE v; TERM t)begin
STACK stack ;;push(t; stack);
BOOLEAN found false;while stack 6= ; and :found dobegin

TERM u deref (pop(stack));if is variable(u) then found (u = v)elsefor INT i 1 until u:arity dopush(u:subterms[i]; stack);endreturn found ;end
Figure 9.5: Variable occurrence test with variable dereference

PAGE 94 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

9.3 Predicate Calculus

9.3.1 Syntax

Let � = Un�0 �n and� = Un�0�n be two signatures, andV a set of variables. The symbols in� will be referred to as “predicate” symbols.

We define the set� of well-formed formulaeover�;�;V.

DEFINITION 9.3.1 (WELL-FORMED FORMULA) A well-formed formula(“wff” for short) is an
element of�, the smallest set such that:

1. true 2 �;

2. false 2 �;

3. if p 2 �n andti 2 T�;V for i = 1; : : : ; n, thenp(t1; : : : ; tn) 2 �;

4. if � 2 �, then:� 2 �;

5. if � 2 � and�0 2 �, then� ^ �0 2 �;

6. if � 2 � and�0 2 �, then� _ �0 2 �;

7. ifX 2 V and� 2 �, then9X:� 2 �;

8. ifX 2 V and� 2 �, then8X:� 2 �.

Wffs of the form 1–4 are calledatomicformulae. A wff of the form 4 is called a(positive) literal.
A wff of the form:p(t1; : : : ; tn) is called anegative literal,

The symbols:, ^, and_ are called(logical) connectivesand are pronounced, respectively,“not,”
“and,” and“or.” They are also called, respectively,negation, conjunctionanddisjunction. The
symbols9 and8 are called(logical) quantifiersand are pronounced, respectively,“there exists”
and“for all”. For9X:� and8X:�, the wff� is called the(quantification) scopeofX. For:�, the
wff � is called thescope of negation.

We could define syntacticallŷ in terms of_ and:, or alternatively define_ in terms of̂ and:,
by using one of:� � ^ �0 iff :(:� _ :�0);� � _ �0 iff :(:� ^ :�0):
Similarly,9 could be defined syntactically in terms of8 and:, or alternatively8 in terms of9 and:, by using one of:

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 95 OF 217

PROGRAMMING LANGUAGES� 9X:� iff :(8X:(:�));� 8X:� iff :(9X:(:�)).
These four syntactic identities above are known asDeMorgan’s laws.

Alternatively, rather than taking the DeMorgan’s syntactic identities asprimitives, we will see
that defining a wff as we did in Definition (9.3.1) we can provide a direct semantics to all the
given connectives and quantifiers (as opposed to defining some syntactically from others) thereby
provingDeMorgan’s laws and other syntactic identities astheorems.3

We will use two other logical connectives by defining them in terms of those introduced in the
syntax of Definition (9.3.1):� implication:�! �0 (� implies�0) is defined as:� _ �0;� logical equivalence:�$ �0 (� is logically equivalent to�0) is defined as(�! �0) ^ (�0!�).
Given a wff�, we define the setFV(�) of free variablesof � as follows:� FV(true) = ;;� FV(false) = ;;� FV(p(t1; : : : ; tn)) = Sni=1V(ti);� FV(:�) = FV(�);� FV(� ^ �0) = FV(�) [FV(�0);� FV(� _ �0) = FV(�) [FV(�0);� FV(9X:�) = FV(�)� fXg;� FV(8X:�) = FV(�)� fXg.
DEFINITION 9.3.2 (FREE VARIABLE) A variableX is said tooccur freein a wff � iff X 2FV(�).
DEFINITION 9.3.3 (LOGICAL SENTENCE) A (logical) sentence� is a wff such thatFV(�) = ;.

3See Definition (9.3.5), Theorem (9.3.1) and Theorem (9.3.2).

PAGE 96 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

Logical sentences are also calledclosed formulae.

Let � be a wff, lett be a term inT�;V , and letX 2 V. Then, the wff�X t is the wff obtained from� by replacing allfreeoccurrences, if any, of the variableX in � by t. Formally,�X t = 8>>>>>>>>>><>>>>>>>>>>: � if � = true or � = false;p(tX t1 ; : : : ; tX tn) if � = p(t1; : : : ; tn); n � 1;: X t if � = : ;�X t1 ^ �X t2 if � = �1 ^ �2;�X t1 _ �X t2 if � = �1 _ �2; if � = 9X: or � = 8X: : (9.5)

9.3.2 Semantics

It is possible to give a formal meaning to wffs relying on natural language and the intuitive under-
standing that we (humans) have of the words “true” and “false.” Many texts in Formal Logic do
so, and then use the meaning attributed to syntactic logical formulae by such a linguistic semantics
in formal metalogical proofs (e.g., soundness, completeness, compactness,etc.). However, such
proofs are typically inductions on the syntactic structure of formulae and thereforeoften long-
winded and rather mechanical—indeed, tedious. Thus, this style of metalogical proofsis known
assyntacticor proof-theoretic.

Another way of defining the formal meaning of wffs does not rely directly on the informal linguistic
notion of truth and falsity, but defines such notions by means of formal mathematics—typically Set
Theory. This way of attributing a semantics to logical formulae specifies the meaning of a wff as a
well-defined mathematical object through a denotational mapping and therefore allows all formal
metalogical reasoning to be carried out in the semantic universe. This styleof metalogical proofs
is known assemanticor model-theoretic, and the proofs are typically more immediate and direct
(as opposed to inductive) since they do no involve syntactic objects, but use instead their abstract
mathematical meanings. Such a style of semantics was proposed by the mathematician and logician
Alfred Tarski, and is the approach we will follow.

DEFINITION 9.3.4 (�;�-INTERPRETATION) A �;�-interpretationI = hDI; [[]]Ii is a�-inter-
pretation such that the denotation function[[]]I is extended to� by mapping predicates of arityn
to n-ary relations on the domain. Namely,[[p]]I � DnI ; for anyp 2 �n:
In order to build a formal notion of truth not defined in terms of our informal intuition,we will
characterize the meaning of a formula as a set. Intuitively, because a formula may have free

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 97 OF 217

PROGRAMMING LANGUAGES

variables, its meaning will bethe set of all variable valuationsthat allow it to make “consistent”
sense in some formal way.

For example, let us assume that we have a unary predicate symbol:human. Also, let us assume that
the domain of interpretation is the set of all living things on Earth. Then,human(X) will make
sense only for those variable valuations that mapX to a human being. We can thus define the
meaningor denotation[[human(X)]] to be the set of all valuations that mapX to a human being.
Assume now that we also have a binary predicateolder. Now, the wffhuman(X) ^ older(X;Y)
will make sense only for valuations that mapX to a human being (e.g., John Doe) and Y to
another (e.g., Lisa McIntosh) such that John Doe is older than Lisa McIntosh. In other words, the
meaning[[human(X)^older (X;Y)]] of the wffhuman(X)^older(X;Y) is simply obtained as the
set intersectionof the meanings[[human(X)]] and[[older(X;Y)]] of the two parts of the formula.
This is the essence of the Tarskian-style of semantics that we present below.

Let I be a�;�-interpretation.

DEFINITION 9.3.5 (SEMANTICS OF WFFS) The denotation[[�]]I of a wff� is defined by a map-
ping [[]]I : �! 2V!DI as follows:4� [[true]]I = V ! DI;� [[false]]I = ;;� [[p(t1; : : : ; tn)]]I = f� j h[[t1]]�I; : : : ; [[tn]]�Ii 2 [[p]]Ig;� [[:�]]I = [[�]]I;� [[� ^ �0]]I = [[�]]I \ [[�0]]I;� [[� _ �0]]I = [[�]]I [[[�0]]I;� [[9X:�]]I = Sd2DIf� j �X!d 2 [[�]]Ig;� [[8X:�]]I = Td2DIf� j �X!d 2 [[�]]Ig.
Note that the meanings of the syntactic symbolstrue andfalse are not defined in terms of natural
language. Rather,true denotes the set of all possible valuations, andfalse the empty set.

EXAMPLE 9.3.1 Consider a set of two elementsa andb, and two predicates such thatp(a) holds
but notp(b), and bothq(a) and q(b) hold. This is expressed formally in our setting as having�1 = fp; qg and an interpretationA with DA = fa; bg and[[]]A such that:� [[p]]A = fag;

4The notationfa!b in defined in Equation (A.1) on Page 182.

PAGE 98 OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION� [[q]]A = fa; bg.
The meaning of� = 9X:p(X) in A is given by Definition (9.3.5) as follows:[[�]]A = Sd2DAf� j �X!d 2 [[p(X)]]Ag= Sd2fa;bgf� j �X!d 2 [[p(X)]]Ag= f� j �X!a 2 [[p(X)]]Ag [f� j �X!b 2 [[p(X)]]Ag= f� j �X!a 2 f� j �(X) = agg [f� j �X!b 2 f� j �(X) = agg= f� j �X!a(X) = ag [f� j �X!b(X) = ag= (V ! DA) [;= [[true]]A:
The meaning of� = 8X:p(X) in A is given by:[[�]]A = Td2DAf� j �X!d 2 [[p(X)]]Ag= Td2fa;bgf� j �X!d 2 [[p(X)]]Ag= f� j �X!a 2 [[p(X)]]Ag \ f� j �X!b 2 [[p(X)]]Ag= f� j �X!a 2 f� j �(X) = agg \ f� j �X!b 2 f� j �(X) = agg= f� j �X!a(X) = ag \ f� j �X!b(X) = ag= (V ! DA) \ ;= [[false]]A:
The meaning of� = 8X:q(X) in A is given by:[[�]]A = Td2DAf� j �X!d 2 [[q(X)]]Ag= Td2fa;bgf� j �X!d 2 [[q(X)]]Ag= f� j �X!a 2 [[q(X)]]Ag \ f� j �X!b 2 [[q(X)]]Ag= f� j �X!a 2 f� j �(X) 2 DAgg \ f� j �X!b 2 f� j �(X) 2 DAgg= f� j �X!a 2 V ! DAg \ f� j �X!b 2 V ! DAg= (V ! DA) \ (V ! DA)= [[true]]A:
Note that all that has been presented for the first-order predicate logic is also valid forpropositional
logic. Indeed, if we limit� only to�0 (i.e., �n = ; for n � 1), then we obtain a propositional
calculus by eliminating quantified wffs. There is also no need for a term algebraT�;V since the only

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 99 OF 217

PROGRAMMING LANGUAGES

possible literals arep 2 �0. Recall that a nullary relation is either; or 1. Therefore, the semantics
of a propositional predicatep is either that offalse if p denotes;, or that oftrue if p denotes1.
Hence, the “truth value” of a propositional formula is obtained as either[[true]] or [[false]]. The
propositional calculus is thus a simple degenerate case of the first-order predicate calculus.

Clearly, because a logical sentence does not have free variables, it follows from Definition (9.3.5)
that the meaning of a sentence is always equal either to the meaning oftrue or to the meaning
of false. This is an unambiguous and rigorous definition oflogical truth which allows us to refer
to a logical sentence as being true or false irrespective of what “true” or “false” mean in natural
language.

Note that this notion of logical truth depends on the particular interpretation structureI where
denotations take their meanings. Namely,

DEFINITION 9.3.6 (SATISFACTION) An interpretationI is said tosatisfya wff� (written asj=I�) iff [[�]]I = [[true]]I.
An interpretationI is said to satisfy a set of wffs� (written asj=I �) if it satisfieseverywff in �.

DEFINITION 9.3.7 (TAUTOLOGICAL EQUIVALENCE) Two wffs� and�0 are said to betautolog-
ically equivalent(written as� à �0) iff [[�]]I = [[�0]]I for all interpretationsI.

DEFINITION 9.3.8 (VALID WFF) A wff� is said to bevalid (written asj= �) iff it is tautologically
equivalent totrue.
Note that the well-known DeMorgan’s identities are obtained as consequences of thesemantics of
wffs.

THEOREM 9.3.1 (DEMORGAN’ S EQUIVALENCES) The following are tautological equivalences:� :(� ^ �0) à :� _ :�0;� :(� _ �0) à :� ^ :�0;� :9X:� à 8X:(:�);� :8X:� à 9X:(:�).
PROOF This is left as exercise.

Other familiar syntactic identities are obtained as consequences of the semantics of wffs. In the
following,Q stands for either9 or 8, and� stands for either̂ or_.

THEOREM 9.3.2 (SYNTACTIC IDENTITIES) The following are tautological equivalences:

PAGE 100OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION� :true à false;� :false à true;� ::� à �;� � ^ true à �;� � ^ false à false;� � _ true à true;� � _ false à �;� � � �0 à �0 � �;� (� � �0) � �00 à � � (�0 � �00);� � ^ (�0 _ �00) à (� ^ �0) _ (� ^ �00);� � _ (�0 ^ �00) à (� _ �0) ^ (� _ �00);� 9X:(� _ �0) à (9X:�) _ (9X:�0);� 8X:(� ^ �0) à (8X:�) ^ (8X:�0);� QX:QY:� à QY:QX:�;� QX:� à � if X 62 FV(�);� QX:� à QY:�X Y if Y 62 FV(�);� QX:(� � �0) à (QX:�) � �0 if X 62 FV(�0).
PROOF This is left as exercise.

DEFINITION 9.3.9 (PRENEX FORMULA) A wff is aprenexformula (or in prenex form) iff it does
not contain any quantifiers, or if it is of the formQX:� where� is a prenex formula.

In other words, a prenex formula has all its quantifiers, if any, occur at the outset. Theorem (9.3.2)
can be used to show that any wff is equivalent to a prenex formula.

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 101OF 217

PROGRAMMING LANGUAGES

9.3.3 Logical inference

DEFINITION 9.3.10 (LOGICAL CONSEQUENCE) A wff� is a logical consequenceof a set of wffs� (written� ` �) iff, for every interpretationI, j=I � wheneverj=I �.

In other words,� ` � iff every interpretation satisfying� also satisfies�.

DEFINITION 9.3.11 (SATISFIABILITY) A wff is said to besatisfiableiff there is at least one in-
terpretationI such thatj=I �.

If � is satisfied inI then there must be someI-valuation� in [[�]]I, and we write� j=I �.

Logical inference is the process of transforming a wff into another one in such a way as to preserve
its satisfiability.

DEFINITION 9.3.12 (CANONICAL INTERPRETATION) An interpretationI is canonicaliff when-
everj=I � thenj=J � for all interpretationsJ.

THEOREM 9.3.3 (CANONICITY OF THE TERM ALGEBRA) The�-algebraT� is canonical.

In other words, in order to establish whether a wff� is satisfiable inany interpretation at all, it is
sufficient to establish whether� is satisfiable for a valuation mapping variables to ground terms.

Since any substitition� defines a mapping fromV to T�;V , it also defines a set ofT�-valuations�� in its ground extension which are obtained by “completing”� by composing it with some
ground substitution�. We will exploit this later for resolution-refutation where it is sufficientto
establish that a wff� is satisfiable inT� (and therefore in all other interpretations) by showing that:�� à false for some (not necessarily ground) substitution.

Note that, although two similar quantifiers that follow one another may be swapped in a wff without
changing the meaning of the wff (e.g., 8X:8Y:�and8Y:8X:�mean the same), such isnot the case
if the two quantifiers are different (e.g., 8X:9Y:� and9Y:8X:� do not have the same meaning!).

Consider a wff of the form8X:9Y:�: intuitively, the occurrence of the existential variableY in the
scope of the universal variableX establishes afunctional dependencebetweenX andY . Indeed,
given an interpretationI such thatj=I 8X:9Y:�, for any fixed elementd 2 DI, there will be
a valuation� 2 [[8X:9Y:�]]I such that�(X) = d (by definition of the meaning of8); and for
any such�(X), there is auniquelydetermined element�(Y) (by definition of the meaning of9).
Therefore, this characterizes�(Y) as afunctionof �(X). Let s� : DI ! DI be this function,
and let us consider the new interpretationJ obtained fromI by adding a new elements in �1
with denotation[[s]]J=s�. Then, by construction,J satisfies the wff8X:�Y s(X). Conversely, ifJ satisfies the wff8X:�Y s(X), then, by Definition (9.3.5),I must satisfy8X:9Y:� (by using�(Y) = s�(�(X)) for any valuation�. In fact, this is true regardless of the specific functions�:
it can be any function inDI ! DI—what matters is that it provides a witness as the valuation of

PAGE 102OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATIONY as a function of an element valuating the universal variableX in whose scopeY appears. Such
a witness function is called aSkolem function, after the logician Thoralf Skolem who originally
introduced the concept.

The idea of using Skolem witness functions to eliminate existential variablescan be expressed in
general term as the following theorem.

THEOREM 9.3.4 (SKOLEMIZATION) Let � = 8X1: � � � 8Xn:9X: ; (n � 0) be a wff; then, for
any interpretationI: j=I � iff j=I 8X1: � � � 8Xn: X s(X1;��� ;Xn) wheres is a newn-ary function
symbol.

Note that forn = 0, Theorem (9.3.4) indicates that any valuation that satisfies the wff�X c, wherec is a new constant symbol, will also satisfy the wff9X:�.

Clausal form

Resolution is a logical inference rule that we will introduce later. It applies to wffs in a specific
form calledclausalform.

DEFINITION 9.3.13 (CLAUSE) A clauseis a wff consisting of a disjunction of (positive or nega-
tive) literals.

Note that a clause does not contain any quantifiers.

DEFINITION 9.3.14 (CLAUSAL FORMULA) A wff is aclausal formula(or in clausal form) iff it is
a conjunction of clauses where no variable occurs in two different clauses.

For convenience, a clausal formula is simply represented as a set of clauses.

Any wff can be put in clausal form by the repeated combined applications of DeMorgan’s laws,
the syntactic identities of Theorem (9.3.2), reduction to prenex form and skolemization. Figure 9.6
contains the complete set of rewrite rules that are needed to normalize any wff into an equivalent
clausal formula. Figure 9.7 specifies a procedure using these rules which performs the following
sequence of transformations, at each step repeatedly applying any rule mentioned between the
square brackets until none applies.5 The correctness of this procedure follows directly from the
foregoing theorems. Termination is also easy to establish.

EXAMPLE 9.3.2 Let us follow the procedure on the following wff:8X:�p(X)! �8Y:(p(Y)! p(f(X;Y))) ^ :8Y:(q(X;Y)! p(Y))�� (9.22)

5All the rules in Figure 9.6 are to be appliedup to commutativity and associativityof _ and^.

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 103OF 217

PROGRAMMING LANGUAGES

�$ �0 =) (�! �0) ^ (�0 ! �) (9.6)�! �0 =) :� _ �0 (9.7)::� =) � (9.8):(� _ �0) =) (:�) ^ (:�0) (9.9):(� ^ �0) =) (:�) _ (:�0) (9.10):(9X:�) =) 8X:(:�) (9.11):(8X:�) =) 9X:(:�) (9.12)

if X occurs outside� : 9X:� =) 9Y:�X Y (Y is new) (9.13)

if X occurs outside� : 8X:� =) 8Y:�X Y (Y is new) (9.14)8X1: � � �8Xn:9X:� =) 8X1: � � �8Xn:�X s(X1;��� ;Xn) (s is new) (9.15)(8X:�) _ �0 =) 8X:(� _ �0) (9.16)(8X:�) ^ �0 =) 8X:(� ^ �0) (9.17)8X:� =) � (9.18)� _ (�1 ^ �2) =) (� _ �1) ^ (� _ �2) (9.19)

if X 2 V(�0) : � ^ �0 =) �X Y ^ �0 (Y is new) (9.20)�1 ^ � � � ^ �n =) f�1; : : : ; �ng (9.21)

Figure 9.6: Rules for Reduction to Clausal Normal Form

PAGE 104OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

1. Eliminate non-primitive connectives[Rules (9.6) and (9.7)]

2. Reduce the scope of negations[Rules (9.8)–(9.12)]

3. Standardize quantified variables[Rules (9.13) and (9.14)]

4. Eliminate existential quantifiers[Rule (9.15)]

5. Convert to prenex form[Rules (9.16) and (9.17)]

6. Eliminate universal quantifiers[Rule (9.18)]

7. Reduce to conjunctive normal form[Rule (9.19)]

8. Rename variables[Rule (9.20)]

9. Eliminate conjunctions [Rule (9.21)]

Figure 9.7: Procedure for Reduction to Clausal Normal Form1: Eliminate non-primitive connectives:8X:�:p(X) _ �8Y:(:p(Y) _ p(f(X;Y))) ^ :8Y:(:q(X;Y) _ p(Y))��2: Reduce the scope of negations:8X:�:p(X) _ �8Y:(:p(Y) _ p(f(X;Y))) ^ 9Y:(q(X;Y) ^ :p(Y))��3: Standardize quantified variables:8X:�:p(X) _ �8Y:(:p(Y) _ p(f(X;Y))) ^ 9Z:(q(X;Z) ^ :p(Z))��4: Eliminate existential quantifiers:8X:�:p(X) _ �8Y:(:p(Y) _ p(f(X;Y))) ^ (q(X; g(X)) ^ :p(g(X)))��
Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 105OF 217

PROGRAMMING LANGUAGES5: Convert to prenex form:8X:8Y:�:p(X) _ �:p(Y) _ p(f(X;Y)) ^ (q(X; g(X)) ^ :p(g(X)))��6: Eliminate universal quantifiers::p(X) _ �:p(Y) _ p(f(X;Y)) ^ (q(X; g(X)) ^ :p(g(X)))�7: Reduce to conjunctive normal form:�:p(X) _ :p(Y) _ p(f(X;Y))� ^ �:p(X) _ q(X; g(X))� ^ �:p(X) _ :p(g(X))�8: Rename variables:�:p(X1) _ :p(Y) _ p(f(X1; Y))� ^ �:p(X2) _ q(X2; g(X2))� ^ �:p(X3) _ :p(g(X3))�9: Eliminate conjunctions:f :p(X1) _ :p(Y) _ p(f(X1; Y)); :p(X2) _ q(X2; g(X2)); :p(X3) _ :p(g(X3)) g
The procedure terminates with a clausal formula which is equivalent to the original wff (9.22).

Resolution

Let p be a nullary predicate, and let us consider the clausal formulafp;:pg. Clearly, this wff
is the same asp ^ :p, which can be easily shown to be tautologically equivalent tofalse. For
convenience, we shall writefalse as; and call it theempty clause.

Let us now consider the clause� = fp _ �;:p _ �0g. Written with full connectives, it is the same(p _ �) ^ (:p _ �0). Using implications, it becomes(:p ! �) ^ (p ! �0). Becausep is either
true or false, one of the two implications is necessarily true. Therefore,� is false whenever� _ �0
is false. Thus, to check whether� is false it is sufficient to check that� _ �0 is false.

With the same reasoning, we can see that� = fp _ �;:p _ �0g [�0 is false whenever the clausal
formulaf� _ �0g [�0 is false.

Let q be ann-ary predicate and� = fq(~t) _ �;:q(~s) _ �0g [�0.6 Because all variables in this
clause are universally quantified, it must be satisfied in the term interpretation for all valuations of

6We use the notation~t as a shorthand for a sequencet1; : : : ; tn of 0 or more terms.

PAGE 106OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

the variables. Ifq(~t) andq(~s) unify with MGU �, they are calledcomplementary literals. Then,
any ground substitution inext(�) is a particular variable valuation which must also satisfy�. In
other words,� is satisfiable if the clause�� is satisfiable. But, in�� thesameliteral q(~t)� occurs
(like p above) both positively and negatively. Therefore, following the same reasoning, to establish
that� is false, it is sufficient to establish that this is also the case for theclause obtained when both
complementary literals are eliminated from��; namely,(f� _ �0g [�0g)�.

This justifies the correctness of the following general inference rule.

DEFINITION 9.3.15 (RESOLUTION) Resolutionis an inference rule transforming a clausal for-
mula� (i.e., a set of clauses) into a clausal formula�0 using the following transformation:� let � and�0 be two clauses in�;� let ` a positive literal in � and:`0 a negativeliteral in �0 such thatMGU(`; `0) = � and� 6= ?;� �0 = ��� � f�; �0g� [n(�� f`g) _ (�0 � f:`0g)o��.

The set of clauses� being transformed by resolution is called theresolvent. The pair of com-
plementary literals used in performing a resolution transformation is called the resolving pair.
Performing a resolution transformation is also calledresolvingthe clause.

Resolution is in fact many familiar inference rules in disguise.� ^ (�!) ` (Modus Ponens)(�!) ^ : ` :� (Modus Tollens)(�!) ^ (! �) ` �! � (Cut)(�!) ^ (:�! �) ` _ � (Join)� ^ :� ` false (Contradiction)
Note that the resolution rule does not transform a clausal formula into an equivalent formula.
Rather, it transforms it into a formula whose falsity implies that of the original one. This is be-
cause unifying a pair of complementary literals selects particular valuations, which only allows to
conclude that if such a valuation falsifies the transformed wff, then it will also falsify the original
formula. In other words, if� is a clausal formula and�0 is derived from� by resolution then, for
any wff �, in order to estabish whether� ` �, it is sufficient to establish� ^ :� ` false. Thus, to
establish that a wff� is a logical consequence of a set of wffs� it is sufficient to establish that the
empty clause; can be derived by repeated application of the resolution rule to the clausal form of

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 107OF 217

PROGRAMMING LANGUAGES� ^ :�. This, also known asproof by contradiction, is the essence of the proof procedure known
asresolution-refutation.

The general provability of wffs in the first-order predicate calculus is summed up in the two fol-
lowing results.

THEOREM 9.3.5 (UNDECIDABILITY OF FIRST-ORDER PREDICATE CALCULUS)

There is no procedure that permits, for any sentence�, to establish effectively whetherj= � in
finitely many steps.

THEOREM 9.3.6 (SEMI-DECIDABILITY OF FIRST-ORDER PREDICATE CALCULUS)

There is a procedure that permits, for any sentence�, to establish effectively whether6j= � in
finitely many steps.

PROOF The non-deterministic procedure that consists of applyingall possible resolution transformations to
the clausal form of� will produce; if and only if 6j= ��, for some substitution� .

In other words, Theorems 9.3.5 and 9.3.6 say that it is not possible in general for a computer to
prove a theorem, but it is possible for it to disprove one. However, the complexity of the task
is in general quite great. The resolution procedure being non-deterministic, it turns out that the
difficulty will lie in devising a correctproof strategyto choose among many potential resolving
pairs.

EXAMPLE 9.3.3 Let us use resolution refutation to prove that if all men are human, and all humans
are mortal, and if Socrates is a man, then Socrates is mortal . We will denote Socrates bysocrates2�0, the “man” relation byman 2 �1, the “human” relation byhuman2 �1, and the “mortal ”
relation bymortal2 �1. Then, we define the wffs:�1 = 8X:(man(X)! human(X))�2 = 8X:(human(X)! mortal(X))�3 = man(socrates)� = �1 ^ �2 ^ �3
from which to derive:� = mortal(socrates):
In order to establish� ` �, we will resolve the clausal form of the wff�^:�. This clausal formula

PAGE 108OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

is: f :man(X1) _ human(X1) ; (9.23):human(X2) _mortal(X2) ; (9.24)

man(socrates) ; (9.25):mortal(socrates) g: (9.26)

The resolving pairhhuman(X1);:human(X2)i between Clauses (9.23) and (9.24), with the sub-
stitutionfX1=X2g, yields the resolvent:f :man(X1) _mortal(X1) ; (9.27)

man(socrates) ; (9.28):mortal(socrates) g: (9.29)

Next, we can resolve Clause (9.27) and Clause (9.29) onhmortal(X1);:mortal(socrates)i with
the substitutionfsocrates=X1g, yielding the resolvent:f :man(socrates) ; (9.30)

man(socrates) g: (9.31)

This contains only one complementary pair with the empty substitution. Resolving thisyields the
empty clause. Therefore, the proof is completed.

Prolog

Logic programming languages, of which Prolog [16, 40, 59, 46] isthemost popular representative,
express programs as relational rules of the form:r0(~t 0) :- r1(~t 1); : : : ; rn(~t n): (9.32)

where theri’s are relationals symbols and the~t i’s are tuples of first-order terms. This syntax is in
fact a variation of the implication:r1(~t 1) ^ : : : ^ rn(~t n)! r0(~t 0): (9.33)

This, in turn, is just the clause:r1(~t 1) _ : : : _ rn(~t n) _ :r0(~t 0): (9.34)

One reads such a rule as: “For all bindings of their variables, the terms~t 0 are in relationr0 if the
terms~t 1 are in relationr1 and : : : the terms~t n are in relationrn.” In the case wheren = 0,

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 109OF 217

PROGRAMMING LANGUAGES

the rule reduces to the simple unconditional assertion, orfact, r0(~t 0) that the terms~t 0 are in
relationr0. A fact will be written omitting the:- symbol. These rules are calleddefinite clauses;7

expressions such asri(~t i) are calledatoms; theheadof a definite clause is the atom on the left of
the :- symbol, and itsbodyis the conjunction of atoms on its right.

For example, the following are two definite clauses, the first one being a fact:

conc([]; L; L):
conc(H:T;L;H:R) :- conc(T;L;R): (9.35)

where ‘[]’ 2 �0 is a constant and the function symbol ‘:’ 2 �2 is written in infix notation. This
may be used as a program to concatenate two lists where[] is used as a list terminator.8

A queryis a clause of the form:

:- q1(~s 1); : : : ; qm(~s m): (9.36)

A query as shown above may be read: “Does there exist some binding of variables such that the
terms~s 1 are in relationq1 and: : : ~s m are in relationqm?” To emphasize that this is interpreted
as a question, the symbol:- is then written?- as in:9

?- q1(~s 1); : : : ; qm(~s m): (9.37)

SLD resolution is a non-deterministic deduction rule by which queries are transformed. It takes
its origins in Automatic Theorem Proving based on the Resolution Principle discovered by J. Alan
Robinson [51] and was proposed by Robert A. Kowalski [36] as a computation rule. Technically,
it is characterized as linear resolution over definite clauses, using a selection function. Linear
resolution is a particular strategy of the general resolution rule whereby thatone single fixed clause
keeps being transformed by resolving it against other clauses in a given set. SLD resolution is a
further restriction of linear resolution where (1) the fixed clause is a query, (2) clauses in the
set are definite, and (3) an oracular function selects which atom in the query to resolve on and
which definite clause in the set to resolve against. Thus, the letters “SLD” stand respectively for
“Selection,” “ Linear,” and “Definite.”

More specifically, using the above Prolog notation for queries and rules, SLD resolution consists
in choosing an atomqi(~s i) in the query’s body and a definite clause in the given set whose headr0(~t 0) unifieswith qi(~s i) thanks to a variable substitution� (i.e., qi(~s i)� = r0(~t 0)�), then
replacing it by the body of that clause in the query, applying substitution� to all the new query.
That is,

?- q1(~s 1)�; : : : ; qi�1(~s i�1)�; r1(~t 1)�; : : : ; rn(~t n)�; qi+1(~s i+1)�; : : : ; qm(~s m)�:
(9.38)

7A definite clauseis a clause that containsat most onenegative literal.
8For example,1:2:3:[] is a list. Edinburgh Prolog syntax uses[XjY] instead ofX:Y ; it also uses a simplified

variant to express a listin extenso, allowing writing [1,2,3] rather than[1j[2j[3j[]]]].
9Prolog rules and queries are the only possible forms of definite clauses.

PAGE 110OF 217 June 25, 1999—Incomplete Draft Copyrightc
 Hassan ÄIT-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

The process is repeated and stops when and if the query’s body is empty (success) or norule
head unifies with the selected atom (failure). There are two non-deterministic choices made in the
process: one of an atom to rewrite in the query and one among the potentially many rules whose
head unifies with this atom. In any case, SLD resolution issound(i.e., it does not derive wrong
solutions) and, provided these choices are made by a fair non-deterministic selection function, it is
alsocomplete(i.e., it derives all solutions).

Prolog’s computation rule is a particular deterministic approximation of SLD resolution. Specif-
ically, it is a flattening of SLD resolution emulating a depth-first search.It sees a program as an
orderedset of definite clauses, and a query or definite clause body as anorderedset of atoms.
These orders are meant to provide a rigid guide for the two choices made by the selection function
of SLD resolution. Thus, Prolog’s particular computation strategy transforms a query by rewriting
the query attempting to unify its leftmost atom with the head of the first rule according to the order
in which they are specified. If failure is encountered, a backtracking step tothe latest rule choice
point is made, and computation resumed there with the next alternative given by the following
rule. For example, if the two clauses for predicateconcare given as above, then the Prolog query
‘?- conc(1:2:T; 3:4:[]; L):’ succeeds with the substitutionT = []; L = 1:2:3:4:[], while the query
‘?- conc(1:2:[];X; 3:Y):’ fails.

Strategies for choice of where to apply linear resolution are all logically consistent in the sense
that if computation terminates, the variable binding exhibited is a legitimate solution to the original
query. In particular, like non-deterministic SLD resolution, Prolog resolutionis sound. However,
unlike non-deterministic SLD resolution, it isincomplete. Indeed, Prolog’s particular strategy of
doing linear resolution may diverge although finitely derivable solutions to a query may exist. For
example, if the definite clauses forconcare given in a different order (i.e., first the rule, then the
fact), then the query ‘?- conc(X;Y;Z):’ never terminates although it has (infinitely many) finitely
derivable solutions!

Copyright c
 Hassan ÄIT-KACI June 25, 1999—Incomplete Draft PAGE 111OF 217

