Chapter 9

Computational Logic

9.1 Introduction

The goal of this chapter is to provide a self-contained formal account of first-tenderalgebras
and predicate calculus for the purpose of understanding symbolic processing technigquas+o i
ment logical reasoning. Although logical inference presented here reliesiaigamt resolution
refutation the formal material we introduce is also relevant to other methods nadirbate €.9,
tableaux, equations, natural deductietg).

9.2 Algebraic Terms

We first present basic notions for first-order terms and substitutions. Then, webdes non-

deterministic unification procedure as a set of solution-preserving transfonmah a set of equa-
tions due to the logician Jacques Herbrand [33] and later rediscovered by tpeteorscientists
Alberto Martelli and Ugo Montanari [43]. Then, we present a recursive dlguorc version, and
finally an efficient iterative unification algorithm.

9.2.1 Syntax and semantics

DEFINITION 9.2.1 (SGNATURE) An (operator)signatures a collectiont = 4 ., ¥, of (oper-
ator) symbols. -

Operator symbols are the elements of a signatdrethey are also calleéunction symbols or
functors Thearity of a functorf € ¥, is the number.. It denotes the number of argumentsfof
Functors of arity) are also calle¢onstansymbols. It will always be assumed that # 0.

83

PROGRAMMING LANGUAGES

DEFINITION 9.2.2 (-INTERPRETATION) A X-interpretatiory is a pair (D3, [- [5) where:

e D, is a set, called thelomainof interpretation;

e [_]5: X, — (D5 — Ds)is adenotatiorfunction mapping functors of arity to n-ary
operations on the domain.

A Y-interpretation is also calledX-algebra.

Note that, sincé-ary operations on a sétare simply elements of, this definition implies that
[¥0]5 € D; (i.e., constant symbols denote elements of the domain).

EXAMPLE 9.2.1 Consider a signature with ¥, = {¢}, ¥1 = {¢}, and¥, = {x}.

One possiblé-interpretation is given byt = (N, [-]%), whereN is the set of all natural numbers,
and[_]« is such that:

o [¢]n=0;
o [In(n) =n+1;
o [xm(n,m)=n+m.

Another possibl& -interpretation is given bY5 = (W, [_]an), whereW is the set of all strings of
a’s, and] _]qy is such that:

Tl ="
o [¢]om(w) = aw;
o [*]au(u,v) = uo.

Let X be a signature. The s&t of ground terms(or 0-order terms) is defined inductively as
follows.

DEFINITION 9.2.3 (QROUND TERMS The set ofjround termdy; is the smallest set such that:
o if c € ¥y thenc e Ty;
o if feX,andt, e Tyfore=1,... ,n,thenf(ty,... ,1,) € Tx.

Note that for7s, to be well-defined, it is necessary that ().

EXAMPLE 9.2.2 Considering again the signatuteof Example 9.2.1, the following are examples
of terms inTy: o, <(9), *(9,<(9)), s(x(s,5(9))), etc...

PAGE 84 0F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

For a termt in 7y, thedenotationof ¢ in a X-interpretatiord is [¢];, given by the functiorf _ |5 :
Ts. — D5 defined as follows:

o ift =ce Ny, then[t]y = [c];

o ift = f(t1,....t,), then[t]s = [[f]]g([[tl]]g, . ,[[tn]]g>.

ExamMPLE 9.2.3 Considering again the signatureof Example 9.2.1 and the interpretatiofis
andyJ defined there, the following are the denotations in either interpretations of esme in
Tz.'

t [tlw [tlw

0 0o "

(o) 1o
NN 2 "aa"
*(9,<(0)) rra
s(x(s(s(9)),¢(0))) 4 "aaaa"

There is one particulat-interpretation that is worth noticing, whose domaifmisitself! Namely,
the interpretatio¥s whereDx, = 75 and[-]z, is such that:

[[f]]iz(tlv"' 7tn):f(t17"' 7tn) (91)

forany f € ¥,,(n > 0), andt; € 7y for: = 1,... ,n. Clearly,[f]x, : (Dz,)" — Dx, is an
n-ary operation orDs,. as prescribed, and therefafg is abona fideX-interpretation. It is called
the freeinterpretation (also theyntacticinterpretation, oinitial interpretation). Note that in the
free interpretation the denotation of a term is simply itself.

LetV be a countably infinite set of symbols, calleatiables assumed distinct fromi (i.e., VNX =
0).
The set offirst-order termsoverY. andV is the setly, y defined as follows:

DEFINITION 9.2.4 (RRST-ORDER TERM9 The set offirst-order) term</y, v is the smallest set
such that:

o if X € VthenX € Ty y;

o if c € ¥gthenc e Ty y;

1To distinguish between variable symbols functors, we wailldw the convention of using symbols starting with
uppercase letters for variables, while functors will betstg with lowercase letters.

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 850F 217

PROGRAMMING LANGUAGES

o if feX,andt, e Tyyfori=1,... n,thenf(ty,... ,t,) € Txy.

EXAMPLE 9.2.4 Given the signatur® such thatf € X3, h € ¥y, k € ¥4, anda € ¥y, and given
thatW, X,Y, andZ are variablesi¥, thetermd (Z, h(Z, W), k(W) andf(k(X), k(Y. k(a)),Y)
are I'nsz.

Given a termt € 7y v, we define the séV (¢) of variables of as follows:
o ift=X eV, thenV(t) = {X};
o if t =cc Xy, thenV(t) = 0
o if t = f(ty,... 1), thenV(t) = [J_, V(t;).
Clearly7s is the subset of; y containing all terms without variables. That is,
Ty ={t€Tey | V(1) =0}.

DEFINITION 9.2.5 (MALUATION) LetJ be a X-interpretation. AnJ-valuation« is a function
mapping variables to elements in the domain of interpretation;d.e.y — Dj.

For a givenJ-valuationa and a terny in 7y, the denotatiorjt]5 of ¢ is given by the function
[-15 : 7s,yv — D5 defined as follows:

o if t =X €V, then[t]§ = a(X);
o if t = c e Xy, then[t]s = [c]x
o ift=f(t,... 1), then[t]s = [[f]]3<[[t1]]g“, . ,[[tn]]§>.

To lighten notation, whenever the context makes clear which interpretatiomig liged, we may
omit specifyingd and write only] _] or [-]~ instead of] _] or [_]5, and only “valuation” instead
of “J-valuation.”

9.2.2 Substitutions

Let ¢ andt’ be two terms iy y, and letX € V. Then, the term* —*' is the term obtained from
by replacing all occurrences, if any, of the varialdlen ¢ by ¢'. Formally,

t if t=2X;
Xt _ ¢ if tcV andt# X; 02
c |f t:CEZO,
tX<—t/7_,.,tX<—t/ ifthth---,tn,nZL
1 n

PAGE 86 0F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

A substitutionis a finitely non-identical assignment of terms to variables;a functions from Y
to 7x y such that the setX € V | X # o(X)} is finite. This set is called thdomainof o and
denoted bydom(c). Such a substitution is also written as a set such as {t,/ X, }?_, where
dom(c)= {X;}", ando(X;) = t; for: = 1 ton. The set{t;}, is called theangeof ¢ and is
denoted asan(o).
A substitutions is uniquely extended to a functianfrom 7y, ,, to 75, as follows:

e 7(X)=0(X),if X €V,

e 7(a) =a,if a € Ey;

L E(f(tlv s 7tn)) — f(E(tl)v s 7E(tn))a |f f € an tz S TE,Va (1 S Z S n)

Since they coincide oW, and for notation convenience, we deliberately confuse a substittition
and its extensio@. Also, rather than writingr(¢), we shall writeto. Given two substitutions
o = {t;/X;}iL, andd = {s;/Y;}7_,, their compositionrd is the substitution which yields the
same result on all terms as first applyinghen applying on the result. One computes such a
composition as the set:

cw::(ﬁaﬁX|UXTeU}—{X/X|Afedonman>u(p-@/Y|yfedonmﬂ})

Note thatly, the identity function or, is a substitution. In set form, it is simply the empty gt
therefore, it is called thempty substitutionThe set of substitutions is augmented with a special
elementl, called thefailing substitution, such that:

lo=cl =1
for any substitutionr.

EXAMPLE 9.25 If o = {f(YV)/X,U/V} andd = {b/ X, f(a)/Y,V/U}, then composing and
0 yields

ol ={f(f(a)/X, fla)/Y,V/U}
while composing ando gives
o ={b/X, fla)/Y,U/V}.

Composition defines a preordese(, a reflexive and transitive relation) on substitutions. A substi-
tution o is more generathan a substitutiol (written o <) iff there exists a substitutiop such
thatd = op.

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 870F 217

PROGRAMMING LANGUAGES

EXAMPLE 9.2.6 {f(Y)/X} is more general thafif (f(a))/X, f(a)/Y}.

DEFINITION 9.2.6 (VARIABLE RENAMING) A (variable) renaming is an injective substitution
such thatran(c) C V.

The set form of a renaming i8;/ X, }7_, such thaty; £ Y; for: # j. Clearly, ifp = {Y;/ X},

is a renaming, then sois its inverge! = {X;/Y;},, andpp™" = pp~' = 0.

It is not difficult to see that it < # andd < o thenos andd are essentially the same substitutions
“up to renaming” some variables and we write~ o. Formally,c < § andf < o, iff there is a
renamingp such thatr = fp andd = op~!. It easy to verify that- is an equivalence relation on
substitutions.

DEFINITION 9.2.7 (GQROUND SUBSTITUTION A ground substitution is a substitution such that
ran(o) C Ty.

Let us denote the set of all ground substitutionsas

DEFINITION 9.2.8 ((QROUND EXTENSION For any substitutionr, theground extensionf o is
the setext(co) of all ground substitutions that are less general tharThat is,

ext(c)={0 € Ss | o <0}

9.2.3 Unification

Let t; andt, be two terms. If there exists a subsitutierz L such that,c = ¢,0, thent; andt,

are said taunify, ando is called aunifier of ¢; andt,. If ¢t; and#, unify, then there exists aost
general unifieyrup to variable renaming, of andt, MGU(?1,).

An equationis a pair of terms, writtem = . A substitutions is asolution(or aunifier) of a set of
equations{s, = t;}_, iff s,0 = t,ocforall: = 1,... ,n. Two sets of equations asguivalentff

they both admitll andonly the same solutions. Following [43], we define two transformations on
sets of equationsterm decompositioandvariable elimination They both preserve solutions of
sets of equations.

Let £ be a set of equations.

e Term Decomposition

If £ contains an equation of the forfis, ... ,s,) = f(t1,... ,t,), wheref € ¥,,, (n > 0),
thenthe sef’ = & — {f(s1,... ,5,) = f(t1,... ,t,)} U {s; = t;}7, is equivalent tef .2

2If n = 0, the equation is simply deleted.

PAGE 880F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

e Variable Elimination

If £ contains an equation of the forih = ¢t wheret £ X, thenthesef’ = (£ — {X =t})oU
{X =t} whereo = {t/X}, is equivalenttc.

A set of equations is partitioned into two subsets: isolvedpart and itsunsolvedpart. The
solved part is its maximal subset of equations of the fofm- ¢ such thatX occurs nowhere in
the full set of equations except as the left-hand side of this equation alone. The dnzait/és
the complement of the solved part. A set of equations is said tollyesolvediff its unsolved part

is empty.

Following is a unification algorithm. It is a non-deterministic normalizapoocedure for a given
set& of equations which repeatedly chooses and performs one of the following transtormati
until none applies or failure is encountered.

(u.l) Select any equation of the form= X wheret is not a variable, and rewrite it 8 = ¢.
(u.2) Select any equation of the fori = X and erase it.

(u.3) Select any equation of the forif(sy,...,s,) = g(t1,... ,t,) Wheref € ¥, andg €
Ym,(nym > 0);if f # g orn # m, stop with failure; otherwise, it = 0 erase the
equation, elsén > 1) replace it withn equationss;, = ¢,, (i = 1,... ,n).

(u.4) Select any equation of the foriXi = ¢ whereX is a variable which occurs somewhere
else in the set of equations and such that X. If ¢ is of the formf(¢4,... ,t¢,), where
/€ ¥,,andif X occurs int, then stop with failure; otherwise, let= {¢/ X'} and replace
every other equatioh= r by lo = ro.

If this procedure terminates with success, the set of equations which enasr¢fes outcome is
fully solved. Its solved part definesmaost general unifierup to varaible renaming, of all the
terms participating as sides of equationg’inif it terminates with failure, the set of equatiofiss
unsatisfiable and no unifier for it exists.

EXAMPLE 9.2.7 The set€ = {p(Z,h(Z, W), f(W)) = p(f(X), (Y, f(a)),Y)} is normalized
as follows:

{72 =1(X), M(Z,W)=n(Y, [(a)), (W)=Y} [by (u.3)]
{Z = 1(X), h(f(X), W) =h(Y, [(a)), [(W) =Y} [by (u.4)]
{(Z=0(X), J(X)=Y, W= [f(a), [(W)=Y} [by (u.3)]
{(Z=7(X), Y =[(X), W=[fla), J(W)=Y} [by (u.1)]
{Z=0(X), Y =[J(X), W= [la), (W)= F(X)} [by (u.4)]

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 890F 217

PROGRAMMING LANGUAGES

{2 =0(X), Y =J(X), W= [(a), f(f(a)) = F(X)} [by (u.4)]
{(Z=7(X), Y =[(X), W=[(a), [(a) = X} [by (u.3)]
{(Z=7(X), Y =[(X), W= [fla), X = fla)} [by (u.1)]
{(Z=1a), Y = [([(a)), W= [fla), X = fla)} [by (u.4)]

producing the substitution

o = {f(f(a))/Z. f(a)/W. F(F(a))/Y, f(a)/ X}

which is themcu of p(Z, h(Z, W), f(W)) andp(f(X), (Y, f(a)),Y) and both yield the same
term

p(f(f(a)), h(f(f(a)), [(a)), F(f(a)))

when applied the substitutian

Recursive unification

A recursive unification algorithm is given in Figure 9.1.

This algorithm assumes that a term is represented as arsgpe which is a union type (or su-
pertype) of two types:VARIABLE and NON-VARIABLE. The typeNON_VARIABLE is a record
structure with fields for the functor (a string), the arity (an integer), &edstibterms (an array of
terms). That is,

type NON_VARIABLE = structure
{ STRING functor
INT arity; (9.3)
TERM subterm§];

}

We assume that a boolean functistvariable TERM) is defined that returritsue if ¢ is of type
VARIABLE andfalseif ¢ is of typeNON-VARIABLE.

The algorithm of Figure 9.1 also assumes that a substitution is representedlbsticact data type
SUBSTITUTION that implements all the necessary operatiom®s Composition and application).

Efficient unification

A more efficient unification algorithm is given in Figure 9.3. It is based onuReN/FIND
method [2].

PAGE 900F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

SUBSTITUTION function mgu (TERM ¢y, TERM ;)
begin
return unify(t1,t2,0);
end

SUBSTITUTION function wunify (TERM #, TERM {;, SUBSTITUTION o)
begin
TERM uy « 110}
TERM uy + 1y0;
if is_variable(uy) then
if occurs_in(uy,uy) then return L
else return o{uy/u;};

if is_variable(uy) then
if occurs_in(uz,uq) then return L

else return o{u;/us};

if wy.functor = ug.functor and wuq.arity = uy.arity then

begin
SUBSTITUTION 6 « ag;
INT ¢« 1;
while ¢ < wy.arity and 6 # 1 do
begin
0 — unify(uq.subterms(i], us.subtermsli], §);
1 — 1+ 1;
end
return 4,
end

else return 1;
end

Figure 9.1: A recursive unification algorithm

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 910F 217

PROGRAMMING LANGUAGES

BOOLEAN function occurs_in (VARIABLE v, TERM t)
begin
BOOLEAN found « false;
if is_variable(t) then found «— (1 =v)
else
begin
INT i — 1;
while ¢ < t.arity and —found do
begin
found «— occurs_in(v,t.subterms[i])
1 — 1+ 1;
end
end
return found;
end

Figure 9.2: Variable occurrence test

Besides the fact that the algorithm of Figure 9.1 is recursive, its sourceftitieecy is the re-
peated applications and compositions of substitutions. For these operations, tsentsgtien of
a substitution as a set of term/variable pairs will necessitate aswwctable lookups and various
set operations. All this can be avoided by eliminating the explicit represemtaf substitution.
Instead, a variable will store the term to which it is bound in its own stinec The type/ARIABLE

is thus modified as follows:

type VARIABLE = structure
{ STRING name
TERM binding
}

wherebindingis initialized to the variable itself to indicate that the variablamdound.

With this representation, accessing a variable always necessitdimsifig a possible chain of
bindings until an unbound variable or a non-variable term is found. This operation, catlatle
dereferencas given in Figure 9.4. Using variable dereference, there is no need to corapose
apply substitutions.

The unification algorithm of Figure 9.3 uses this together with an iterative@dntachieve better
performance than the algorithm in Figure 9.1

(9.4)

PAGE 92 0F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

BOOLEAN function unify (TERM t1, TERM {3)
begin
STACK stack + {;
push(ty, stack);
push(ty, stack);
BOOLEAN success « true;
while stack # () and success do
begin
TERM wuy « deref(pop(stack));
TERM uy « deref (pop(stack));
if uy # uy then
if is_variable(uy) then
if occurs_in(uy,uz) then success «+ false
else wuq.binding «— us
else
if is_variable(usy) then
if occurs_in(uy,uy) then success «+ false
else wus.binding «— uy
else

for INT 7« 1 until wu.arity do
begin
push(uy.subtermsli], stack);
push(uy.subtermsli], stack);
end
else success « false;
end
return success;
end

if wy.functor = ug.functor and wuy.arity = uy.arity then

Figure 9.3: A more efficient unification algorithm

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft

ABE 930F 217

PROGRAMMING LANGUAGES

TERM function deref (TERM t)
begin
TERM u « ¢;
while is_variable(u) and wu.binding # u do
u «— u.binding;
return u;
end

Figure 9.4: Variable dereference

BOOLEAN function occurs_in (VARIABLE v, TERM t)
begin
STACK stack + {;
push(t, stack);
BOOLEAN found « false;
while stack # () and —found do
begin
TERM u « deref (pop(stack));
if is_variable(u) then found «— (u =v)
else
for INT ¢+ 1 until w.arity do
push(u.subterms|i], stack);
end
return found;
end

Figure 9.5: Variable occurrence test with variable dereference

PAGE 94 0F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

9.3 Predicate Calculus

9.3.1 Syntax

LetY = |4,., 2, andIl = [., II,, be two signatures, and a set of variables. The symbols in
IT will be referred to as “predicate” symbols.

We define the seb of well-formed formula®ver . 11, V.

DEFINITION 9.3.1 (WELL-FORMED FORMULA) A well-formed formula(“wff” for short) is an
element ofp, the smallest set such that:

true € @;

false € ®;

ifpell,andt; € Tyyfori =1,... ,n, thenp(ty,... ,t,) € ®;
if o € &, then—¢ € P;

if p € ®and¢’ € ®, theng A ¢’ € O;

if p € ®and¢’ € ®,theng Vv ¢' € @;

if X e Vand¢ € ¢, thendX.¢ € ;

© N o g~ w0 bd R

if X e Vand¢ € ¢, thenvX.¢ € .

Wifs of the form 1-4 are calledtomicformulae. A wif of the form 4 is called gpositive) literal
A wff of the form —p(t4, ... ,t,) is called anegative literal

The symbols-, A, andV are calledlogical) connectiveand are pronounced, respectivéhlypt,’
“and,” and“or” They are also called, respectivehggation conjunctionanddisjunction The
symbols3 andV are calledlogical) quantifiersand are pronounced, respectiveélfere exists”
and“for all’. FordX.¢ andV.X.¢, the wff ¢ is called thgquantification) scopef X. For—¢, the
wif ¢ is called thescope of negatian

We could define syntactically in terms ofv and—, or alternatively define in terms ofA and—,
by using one of:

o oA iff —(¢V —¢');
o SV & iff ~(=d A d).

Similarly, 3 could be defined syntactically in terms'wand—, or alternativelyv in terms of4 and
-, by using one of:

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 950F 217

PROGRAMMING LANGUAGES

o 3X.6 iff ~(VX.(m¢));
o VX.¢ iff ~(3X.(~g)).

These four syntactic identities above are knowba®lorgan’s laws

Alternatively, rather than taking the DeMorgan’s syntactic identitieprasitives, we will see
that defining a wff as we did in Definition (9.3.1) we can provide a direct secsii all the
given connectives and quantifiers (as opposed to defining some syntactically ers)dhereby
provingDeMorgan’s laws and other syntactic identitiegtzsorems

We will use two other logical connectives by defining them in terms of those intrdduacthe
syntax of Definition (9.3.1):

e implication: ¢ — ¢’ (¢ implies¢’) is defined as¢ Vv ¢;

e logical equivalences « ¢’ (¢ is logically equivalent t@') is defined ag¢ — ¢') A (¢’ —

?).
Given a wff¢, we define the séf'V (¢) of free variablesof ¢ as follows:
o FV(true) = 0;
o FV(jalse) = 0;
e FV(p(t1,...,t,)) =U~, V(t:);

o FV(=¢) =FV(¢);

FV(¢ A ¢') =FV(6) UFV(¢');

FV(¢Vv¢')=FV(6) UFV(s);
o FV(IX.¢) = FV(¢) — {X};
o FV(VX.6) = FV(¢) — {X}.

DEFINITION 9.3.2 (RREEVARIABLE) A variable X is said tooccur freein a wif ¢ iff X &
FV($).

DEFINITION 9.3.3 (LoGICAL SENTENCE) A (logical) sentence is a wff such thaF'V(¢) = 0.

3See Definition (9.3.5), Theorem (9.3.1) and Theorem (9.3.2)

PAGE 96 OF 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

Logical sentences are also callddsed formulae

Let ¢ be a wff, lett be a term ir7x ,, and letX € V. Then, the wff¢* — is the wff obtained from
¢ by replacing allfree occurrences, if any, of the variahlin ¢ by ¢. Formally,

0] if ¢ =true or ¢ = false;
pEh T i g =plt,. . ta)n > 1
e i 6=y
¢X<_t - X1 X1 H — . (95)
o7 T A 93 if &= d1 A ¢
¢y TV gyt if &= 1V ¢
o if ¢—3X.4 or ¢ =YX,

9.3.2 Semantics

It is possible to give a formal meaning to wffs relying on natural language andtiliéve under-

standing that we (humans) have of the words “true” and “false.” Many texts im&ldrogic do

so, and then use the meaning attributed to syntactic logical formulae by sagigtic semantics
in formal metalogical proofse(g, soundness, completeness, compactreis3, However, such
proofs are typically inductions on the syntactic structure of formulae and therefi@me long-

winded and rather mechanical—indeed, tedious. Thus, this style of metalogical jgr&afsvn

assyntacticor proof-theoretic

Another way of defining the formal meaning of wifs does not rely directly on the infdmuauistic
notion of truth and falsity, but defines such notions by means of formal mathemdyipally Set
Theory. This way of attributing a semantics to logical formulae spectiiesteaning of a wff as a
well-defined mathematical object through a denotational mapping and theretmws all formal
metalogical reasoning to be carried out in the semantic universe. This$tyletalogical proofs

is known assemanticor model-theoreticand the proofs are typically more immediate and direct
(as opposed to inductive) since they do no involve syntactic objects, but usaditisesr abstract
mathematical meanings. Such a style of semantics was proposed by the maiheraatl logician
Alfred Tarski, and is the approach we will follow.

DEFINITION 9.3.4 &, II-INTERPRETATION A X, II-interpretatiori = (D, [-]5) is a X-inter-
pretation such that the denotation functipn], is extended tdl by mapping predicates of arity
to n-ary relations on the domain. Namely,

[p]s € D5, foranyp € I1,.

In order to build a formal notion of truth not defined in terms of our informal intuitiwa, will
characterize the meaning of a formula as a. séttuitively, because a formula may have free

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 97 0F 217

PROGRAMMING LANGUAGES

variables, its meaning will bthe set of all variable valuationthat allow it to make “consistent”
sense in some formal way.

For example, let us assume that we have a unary predicate symipan Also, let us assume that
the domain of interpretation is the set of all living things on Earth. Themari.X') will make
sense only for those variable valuations that mapo a human being. We can thus define the
meaningor denotation]human(X')] to be the set of all valuations that mapto a human being.
Assume now that we also have a binary predicdder. Now, the wif human(X) A older(X,Y)

will make sense only for valuations that map to a human beinge(g, John Dog and Y to
another €.g, Lisa Mclntosh such that John Doe is older than Lisa McIntosh. In other words, the
meaninguman(X) A older(X,Y)] of the wifhumari X) Aolder(X, V') is simply obtained as the
set intersectiorof the meaning$ruman(X)] and[older(X,Y)] of the two parts of the formula.
This is the essence of the Tarskian-style of semantics that we present below.

LetJ be aX, II-interpretation.

DEFINITION 9.3.5 (SEMANTICS OF WFF9 The denotatiorf¢], of a wff ¢ is defined by a map-
ping[_J5: ® — 2¥~P> as follows?*

o [true]y = V — Dy;

o [false]; = 0;
o [p(ti.-. ta)]s = {a [([t5.... . [ta]5) € [pls}s
o [¢]s = [4l

[¢AdTs = [6]sn ¢
[¢V Tl = [0]5U [¢]s
[3X.6l = Usep,{a [o*~* € [¢ls};
VX0l = Nyep,{a | o® " € [¢]}.

Note that the meanings of the syntactic symhlels andfalse are not defined in terms of natural
language. Rathetyue denotes the set of all possible valuations, frisk the empty set.

ExAMPLE 9.3.1 Consider a set of two elementsandb, and two predicates such th4t.) holds
but notp(b), and bothq(a) andq(b) hold. This is expressed formally in our setting as having
I, = {p, ¢} and an interpretatiotf with Dy = {a, b} and]]« such that:

o [pla = {a};

4The notationf*—" in defined in Equation (A.1) on Page 182.

PAGE 98 0F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

d [[Q]]?Zl = {av b}
The meaning o6 = 3X.p(X) in2l is given by Definition (9.3.5) as follows:

[l = Ugepg ta [¥ 7% € [p(X)]a}
= Ude{a,b}{a | X~ e [p(X)]a}
={ala®7 € [p(X)]a} U {a] " € [p(X)]a}
={alaX e {B|B(X) =a}} U {a] X" € {B]|B(X) = a}}
={ala® 7 (X)=a} U {a|a¥7"(X) = a}
=(V—="Dyg) U

= [true]y.
The meaning o6 = VX.p(X) in® is given by:

[l = Nuepg ta | ¥~ € [p(X)]a}
= Mol | 0¥ =1 € (X))
={ala® e [p(X)]e} N {a| o~ € [p(X)]a}
={alaX7 e {B|B(X) =a}} N {a] X" € {B]B(X) = a}}
={a|a* ™ (X)=a} N {a|a* (X)) = a}
=(V—=Dyg) N0

= [false]s.

The meaning o = VX.q(X) in 2 is given by:

[6]a = Nuepy e | ¥~ € [g(X)]a}
= Naegapyia | =7 € [a(X)]a)
={a|a® ™ e [g(X)]ad 0 {a]a® "€ [o(X)]a}
={a|a¥7" e {B|B(X) eDa}} N {ala*~" e {3|B(X)e Da}}
={a|aX7 eV =Dy} n {a|a¥PcV =Dy}
=(V—="Dy) N (V— Dy)
= [true]y.
Note that all that has been presented for the first-order predicate logio idils for propositional

logic. Indeed, if we limitlI only toIl, (i.e, II, = @ for n > 1), then we obtain a propositional
calculus by eliminating quantified wffs. There is also no need for a ternbedge , since the only

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 990F 217

PROGRAMMING LANGUAGES

possible literals arg € II,. Recall that a nullary relation is eith@ror 1. Therefore, the semantics
of a propositional predicatg is either that offalse if p denoted), or that oftrue if p denotest.
Hence, the “truth value” of a propositional formula is obtained as eithek] or [false]. The
propositional calculus is thus a simple degenerate case of the first-order predicaius.

Clearly, because a logical sentence does not have free variables, itdéttow Definition (9.3.5)
that the meaning of a sentence is always equal either to the meantag air to the meaning
of false. This is an unambiguous and rigorous definitioriagfical truth which allows us to refer
to a logical sentence as being true or false irrespective of what “true’atgse’f mean in natural
language.

Note that this notion of logical truth depends on the particular interpretationtstelic where
denotations take their meanings. Namely,

DEFINITION 9.3.6 (XTISFACTION) An interpretationd is said tosatisfya wff ¢ (written asf=5

) iff [¢]5 = [true]s.
An interpretatiory is said to satisfy a set of wffls (written asi=5 I') if it satisfieseverywff in I'.

DEFINITION 9.3.7 (TAUTOLOGICAL EQUIVALENCE) Two wffs¢ and ¢’ are said to beéautolog-
ically equivalentwritten as¢ H ¢') iff [¢]5 = [¢'] for all interpretations3.

DEFINITION 9.3.8 (MALID WFF) A wff¢ is said to bevalid (written as= ¢) iff it is tautologically
equivalent tatrue.

Note that the well-known DeMorgan'’s identities are obtained as consequencesefrhatics of
wifs.

THEOREM 9.3.1 (DEMORGAN'S EQUIVALENCES The following are tautological equivalences:
o (6N¢)H ¢V g
o ~(6V) H 9N,
o ~31X.0 HVX.(—-9¢);
o VX.¢ H IX.(—9).

PrOOF This is left as exercise.

Other familiar syntactic identities are obtained as consequences of thatgend wifs. In the
following, £ stands for eithefi or v, ando stands for eithen or V.

THEOREM 9.3.2 (SYNTACTIC IDENTITIES) The following are tautological equivalences:

PAGE 1000F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KACI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

o —true H false;

o —false H true;

o =6 &

o oA true H ¢;

o & A false H false;

o &V true H true;

o ¢V false H ¢;

o po¢' g o9

o (pog)od"H go(d o),

° PN (V) H(pAP)V (A",

¢ PV (P AP)H (V) A(SV");

e IX.(0V ¢)H (IX.¢)V (IX.¢);

e VX.(p A &) H (VX.0) A (VX.¢);

e DX.OV.0HQY.OX.0;

¢ OX.oH ¢ if X € FV();

o OX.6HQY.6XY if Y ¢ FV();

o DX.(d0¢)H (QAX.¢)od if X ¢ FV(¢).
PROOF This is left as exercise.

DEFINITION 9.3.9 (RRENEX FORMULA) A wff is aprenexformula (or in prenex form) iff it does
not contain any quantifiers, or if it is of the forfd.X.¢ where¢ is a prenex formula.

In other words, a prenex formula has all its quantifiers, if any, occur at thetolitesorem (9.3.2)
can be used to show that any wff is equivalent to a prenex formula.

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 1010F 217

PROGRAMMING LANGUAGES

9.3.3 Logical inference

DEFINITION 9.3.10 (LoGICAL CONSEQUENCH A wff¢ is alogical consequencef a set of wifs
I' (writtenT" F ¢) iff, for every interpretatioryy, =5 ¢ whenevel=; I'.

In other words]' - ¢ iff every interpretation satisfying also satisfies.

DEFINITION 9.3.11 (ATISFIABILITY) A wif is said to besatisfiablaff there is at least one in-
terpretationJ such that=; ¢.

If ¢ is satisfied ir0 then there must be sondevaluationa in [¢]5, and we writex =5 ¢.

Logical inference is the process of transforming a wff into another one in suci asta preserve
its satisfiability.

DEFINITION 9.3.12 (ANONICAL INTERPRETATION) An interpretationd is canonicalff when-
everl=5 ¢ thenl=5 ¢ for all interpretationsy.

THEOREM 9.3.3 (CANONICITY OF THE TERM ALGEBRA) TheX-algebra7sy, is canonical.

In other words, in order to establish whether a wif satisfiable iranyinterpretation at all, it is
sufficient to establish whetheris satisfiable for a valuation mapping variables to ground terms.

Since any substitition defines a mapping fro to 7y, it also defines a set dfy-valuations

af in its ground extension which are obtained by “completimgby composing it with some
ground substitutiod. We will exploit this later for resolution-refutation where it is sufficieat
establish that a wip is satisfiable ir/y, (and therefore in all other interpretations) by showing that
—¢o H false for some (not necessarily ground) substitution.

Note that, although two similar quantifiers that follow one another may be swappeudf without
changing the meaning of the wi.g, vV .X.VY.¢ andvY.V X.¢ mean the same), suchristthe case
if the two quantifiers are differene(g, V.X.3Y.¢ and3Y.¥ X.¢ do not have the same meaning!).

Consider a wff of the forn¥ X.3Y".¢: intuitively, the occurrence of the existential variablen the
scope of the universal variablé establishes &unctional dependendsetweenX andY'. Indeed,
given an interpretatiod such that=, V.X.3Y.¢, for any fixed elemend € D5, there will be
a valuationa € [v.X.3Y.¢]; such thatw(X) = d (by definition of the meaning of); and for
any suchn(X), there is auniquelydetermined element(}") (by definition of the meaning aof).
Therefore, this characterizeg}”) as afunctionof «(X). Lets, : Dy — Dy be this function,
and let us consider the new interpretatprobtained fromJ by adding a new elementin X,
with denotation]s];=s.. Then, by constructiory satisfies the wffy.X.¢"—*(X). Conversely, if
3 satisfies the wifv X.¢" ==X then, by Definition (9.3.5)7 must satisfyvX.3Y.¢ (by using
a(Y) = s,(a(X)) for any valuationo. In fact, this is true regardless of the specific functign
it can be any function iy — Dy—what matters is that it provides a witness as the valuation of

PAGE 1020F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

Y as a function of an element valuating the universal variabla whose scop&” appears. Such
a witness function is called 8kolem functionafter the logician Thoralf Skolem who originally
introduced the concept.

The idea of using Skolem witness functions to eliminate existential variablee expressed in
general term as the following theorem.

THEOREM 9.3.4 (KOLEMIZATION) Let¢ = VX;.---VX,.3X., (n > 0) be a wif; then, for
any interpretatior: |=5 ¢ iff =5 VX, - - VX, 0¥ (X0 X0) wheres is a newn-ary function
symbol.

Note that for. = 0, Theorem (9.3.4) indicates that any valuation that satisfies the\wff, where
¢ Is a new constant symbol, will also satisfy the wiX.¢.

Clausal form

Resolution is a logical inference rule that we will introduce later. It agpitewffs in a specific
form calledclausalform.

DEFINITION 9.3.13 (QAUSE) A clauseis a wif consisting of a disjunction of (positive or nega-
tive) literals.

Note that a clause does not contain any quantifiers.

DEFINITION 9.3.14 (QAUSAL FORMULA) A wff is aclausal formuldor in clausal formiff it is
a conjunction of clauses where no variable occurs in two different clauses.

For convenience, a clausal formula is simply represented as a set ofsclause

Any wff can be put in clausal form by the repeated combined applications of Dellerigavs,
the syntactic identities of Theorem (9.3.2), reduction to prenex form and skaleomzFigure 9.6
contains the complete set of rewrite rules that are needed to normalizeffanyovan equivalent
clausal formula. Figure 9.7 specifies a procedure using these rules which petfarfollowing
sequence of transformations, at each step repeatedly applying any rule merdeinween the
square brackets until none applfeShe correctness of this procedure follows directly from the
foregoing theorems. Termination is also easy to establish.

EXAMPLE 9.3.2 Let us follow the procedure on the following wif:

VX, (p<X> — (FAp(Y) = XY D) A Y- (g(X.Y) — p<Y>>)) (0.22)

SAll the rules in Figure 9.6 are to be appliag to commutativity and associativio§ v andA.

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 1030F 217

PROGRAMMING LANGUAGES

¢ = (06—)N —)

p—¢ = ¢V
e = ¢
(V) = (=) A (=)
(oA G) = (=) V (=)
~(3X.6) = VX.(~¢)
~(VX.¢) = IX.(~¢)
if X occurs outside : IX.¢p — IV.oX Y
if X occurs outside : VX.¢p = VV.oX 7
VX1 VX, 3X.0 = VXq.-- VX% 5K Xn)
(VX.0)V ¢ — YX.(6V)
(VX.0)A ¢ = YX.(6A)
VX.¢p = ¢
PV (P1Ad2) = (9V 1) A (PV ¢2)

ifXeV(g): ongd = ¢V Ag

¢1AA¢n = {¢17-"7¢n}

(9.6)
(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(Y is new) (9.13)
(Y is new) (9.14)

(s is new) (9.15)
(9.16)
(9.17)
(9.18)
(9.19)
(Y is new) (9.20)

(9.21)

Figure 9.6: Rules for Reduction to Clausal Normal Form

PAGE 1040F 217 June 25, 1999—Incomplete Draft

CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

Eliminate non-primitive connective$Rules (9.6) and (9.7)]
. Reduce the scope of negatiofRules (9.8)—(9.12)]
. Standardize quantified variableggkules (9.13) and (9.14)]

. Eliminate existential quantifierdRule (9.15)]

1.
2
3
4
5. Convert to prenex formjRules (9.16) and (9.17)]
6. Eliminate universal quantifierdRule (9.18)]

7. Reduce to conjunctive normal forrfRule (9.19)]
8. Rename variableqRule (9.20)]

9

. Eliminate conjunctions [Rule (9.21)]

Figure 9.7: Procedure for Reduction to Clausal Normal Form

1. Eliminate non-primitive connectives:

(00 ¥ (VY)Y DY) A g X, 7) Y (1)))

2. Reduce the scope of negations:

(00 v (V)Y ULV A BYG(X) 1)))

3. Standardize quantified variables:

X, (00 v (V) U A B2 2) A0l 2)))

4. Eliminate existential quantifiers:
(=00 v (W)Y PUCE VI A aXgX)) A =plolX)))))

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 1050F 217

PROGRAMMING LANGUAGES

5. Convert to prenex form:

VX0V () VYA (X gC0) A —lg(X)))
6. Eliminate universal quantifiers:

p(X)V (=p(Y)VRLFCLY) A (9(X,9(X)) A -plg(X))

7. Reduce to conjunctive normal form:

(=p(X) v =p(Y) VLX)) A (Sp(X) V a(X, (X)) A (=p(X) V =plg(X)))
8. Rename variables:

(=P(X0) v =p(Y) V(X YD)) A (2p(X2) V (X g(Xa)) A (Sp(Xa) V plg(X))

9. Eliminate conjunctions:

{ ~p(X0) vV =p(Y) Vp(f(X1,Y)), —p(X2)V q(X2,9(X32)), —p(X3)V —p(g(X3)) }

The procedure terminates with a clausal formula which is equivalent to thi@alwff (9.22).

Resolution

Let p be a nullary predicate, and let us consider the clausal forfulap}. Clearly, this wff
is the same ap A —p, which can be easily shown to be tautologically equivalerfiatee. For
convenience, we shall wrialse as() and call it theempty clause

Let us now consider the clause= {p Vv ¢, —~p Vv ¢'}. Written with full connectives, it is the same
(pV o)A (—pV ¢). Using implications, it becomegsp — ¢) A (p — ¢'). Because is either
true or false, one of the two implications is necessarily true. Therefasefalse wheneves v ¢’

is false. Thus, to check whethErs false it is sufficient to check thatV ¢’ is false.

With the same reasoning, we can see that {p V ¢, —p Vv ¢’} U 1" is false whenever the clausal
formula{¢ v ¢’} UT" is false.

Let ¢ be ann-ary predicate andl = {¢() V ¢,—¢(5)V ¢'} UT".® Because all variables in this
clause are universally quantified, it must be satisfied in the term intatjgne for all valuations of

6\We use the notation as a shorthand for a sequerige. . . ,t,, of 0 or more terms.

PAGE 1060F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

the variables. 1f(7) andg(5) unify with MGU ¢, they are calledomplementary literalsThen,
any ground substitution iaxt(c) is a particular variable valuation which must also satisfyin
other wordsJ is satisfiable if the clausgs is satisfiable. But, ii'o thesameliteral ¢(¢)o occurs
(like p above) both positively and negatively. Therefore, following the samenaag, to establish
thatl' is false, it is sufficient to establish that this is also the case fozlthese obtained when both
complementary literals are eliminated frdim; namely,({¢ Vv ¢'} U T"})o.

This justifies the correctness of the following general inference rule.

DEFINITION 9.3.15 (REsoLUTION) Resolutionis an inference rule transforming a clausal for-
mulal (i.e., a set of clauses) into a clausal formdlausing the following transformation:

e let ¢ and¢’ be two clauses if;

e let (a positiveliteral in ¢ and =’ a negativeliteral in ¢’ such thatmcu(/,¢') = o and
o# 1;

o= (e) ufio— v @ - e} o

The set of clausek being transformed by resolution is called ttesolvent The pair of com-
plementary literals used in performing a resolution transformationlisccéhe resolving pair
Performing a resolution transformation is also caliesblvingthe clause.

Resolution is in fact many familiar inference rules in disguise.

dN(p—) F b (Modus Ponens

(¢ —=P)A— F = (Modus Tollens

(p =N W =& F ¢ (Cut)
(= V)N(md =& F DV (Join)
dN—-¢ F false (Contradiction

Note that the resolution rule does not transform a clausal formula into an eaduivatenula.
Rather, it transforms it into a formula whose falsity implies that of thgioal one. This is be-
cause unifying a pair of complementary literals selects particular vahstwhich only allows to
conclude that if such a valuation falsifies the transformed wff, then Italgb falsify the original
formula. In other words, i is a clausal formula and’ is derived from¢ by resolution then, for
any wff I', in order to estabish wheth&rt- ¢, it is sufficient to establisi' A —¢ I false. Thus, to
establish that a wi is a logical consequence of a set of wiffét is sufficient to establish that the
empty clausd can be derived by repeated application of the resolution rule to the clausabfor

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 1070F 217

PROGRAMMING LANGUAGES

I' A =¢. This, also known aproof by contradictionis the essence of the proof procedure known
asresolution-refutation

The general provability of wffs in the first-order predicate calculus is sachap in the two fol-
lowing results.

THEOREM 9.3.5 (UINDECIDABILITY OF FIRST-ORDER PREDICATE CALCULU9

There is no procedure that permits, for any senteacéo establish effectively whethes ¢ in
finitely many steps.

THEOREM 9.3.6 (SEMI-DECIDABILITY OF FIRST-ORDER PREDICATE CALCULUS

There is a procedure that permits, for any sentenceo establish effectively whethgt ¢ in
finitely many steps.

PROOF The non-deterministic procedure that consists of applglhgossible resolution transformations to
the clausal form of will producef if and only if [~ ¢o, for some substitution .

In other words, Theorems 9.3.5 and 9.3.6 say that it is not possible in general forpateoito
prove a theorem, but it is possible for it to disprove one. However, the compleixthe task

is in general quite great. The resolution procedure being non-deterministiast aut that the
difficulty will lie in devising a correctproof strategyto choose among many potential resolving
pairs.

EXAMPLE 9.3.3 Let us use resolution refutation to prove that if all men are human, and allifeuma
are mortal, and if Socrates is a man, then Socrates is mortal. We witel&ocrates bgocrates=

Yo, the “man” relation byman < 11, the “human” relation bynuman < 1I,, and the “mortal”
relation bymortal € II,. Then, we define the wifs:

¢ = VX.(manX) — human.X))
¢ = VX.(humari.X') — mortal(X))
$s = marsocrates

I'=¢1 Az N o3

from which to derive:

¢ = mortal(socrates.

In order to establish - ¢, we will resolve the clausal form of the wiffA —~¢. This clausal formula

PAGE 1080F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

is:

{ —-man(X;) vV human X,) , (9.23)
—humariX,) v mortal(X3) , (9.24)
mar{socrates , (9.25)
—mortal(socrate$ }. (9.26)

The resolving paithuman X,), -humariX,)) between Clauses (9.23) and (9.24), with the sub-
stitution{ X,/ X}, yields the resolvent:

{ —=man X;) v mortal(X;) , (9.27)
mar(socrates , (9.28)
—mortal(socrate$ }. (9.29)

Next, we can resolve Clause (9.27) and Clause (9.29hwrtal(X,), ~mortal(socrate$) with
the substitutiod socrate$ X, }, yielding the resolvent:

{ =mansocrates$, (9.30)
mar(socrates }. (9.31)

This contains only one complementary pair with the empty substitution. Resolvingehds the
empty clause. Therefore, the proof is completed.
Prolog

Logic programming languages, of which Prolog [16, 40, 59, 48jésnost popular representative,
express programs as relational rules of the form:

To(Fo) .- Tl(Fl),... ,Tn(t_)n). (932)

where the-’s are relationals symbols and the’s are tuples of first-order terms. This syntax is in
fact a variation of the implication:

Tl(t_)l)/\ /\rn(fn) — To(t_)o). (933)
This, in turn, is just the clause:

Tl(t_)l)\/ ...Vrn(t_)n)\/_‘ro(t_)o). (934)

One reads such a rule agwot all bindings of their variables, the terms, are in relationr, if the
termst ; are in relationr; and... the termst¢ ,, are in relationr,.” In the case where = 0,

Copyright(© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 1090F 217

PROGRAMMING LANGUAGES

the rule reduces to the simple unconditional assertioriact (7 o) that the terms’’, are in
relationr,. A fact will be written omitting the - symbol. These rules are callddfinite clausg$
expressions such ag 7 ;) are callecatoms theheadof a definite clause is the atom on the left of
the : - symbol, and itdodyis the conjunction of atoms on its right.

For example, the following are two definite clauses, the first one being a fact:

cond|[], L,).
condH.T,L,H.R): - condT, L, R).

where {]' € ¥, is a constant and the function symbdl £ ¥, is written in infix notation. This
may be used as a program to concatenate two lists Whisrased as a list terminatbr.

A queryis a clause of the form:
.- Q1(§1),--- 7qm(§m) (936)

A query as shown above may be rea@oes there exist some binding of variables such that the
terms 3, are in relationg; and... s, are in relationg,,?” To emphasize that this is interpreted
as a question, the symbot is then writter?- as in®

?- (51)se s (S m) (9.37)

SLD resolution is a non-deterministic deduction rule by which queries are cramsfl. It takes

its origins in Automatic Theorem Proving based on the Resolution Principleweissd by J. Alan

Robinson [51] and was proposed by Robert A. Kowalski [36] as a computation rule. Taltyni
it is characterized as linear resolution over definite clauses, usieteeation function. Linear
resolution is a particular strategy of the general resolution rule wherebgrbaingle fixed clause
keeps being transformed by resolving it against other clauses in a given $2treSalution is a

further restriction of linear resolution where (1) the fixed clause is a qy2byclauses in the
set are definite, and (3) an oracular function selects which atom in the queegdlve on and
which definite clause in the set to resolve against. Thus, the letters™Stand respectively for
“Selectiori “ Linear,” and “Definite”

(9.35)

More specifically, using the above Prolog notation for queries and rules, Stdlut®n consists

in choosing an atom;(§;) in the query’s body and a definite clause in the given set whose head
ro(1 o) unifieswith ¢;(5 ;) thanks to a variable substitutian (i.e., ¢;(5:)c = ro(1 o)o), then
replacing it by the body of that clause in the query, applying substitutiomall the new query.
That is,

?- q1(§1)0-7“‘ 7Qi—1(§i—1)0-7 rl(t_)l)av"' 7rn(t_)n)0-7 Qi+1(§i+1)0-7"' 7qu(§m)U

(9.38)

A definite clausés a clause that contaias most oneegative literal.

8For example,1.2.3.]] is a list. Edinburgh Prolog syntax usgg|Y] instead ofX.Y; it also uses a simplified
variant to express a ligth extensopallowing writing [1,2,3] rather thafil |[2|[3|[]]]].

9Prolog rules and queries are the only possible forms of defatauses.

PAGE 1100F 217 June 25, 1999—Incomplete Draft CopyrightHassan Ar-KAcCI

FOUNDATIONS, DESIGN, AND IMPLEMENTATION

The process is repeated and stops when and if the query’s body is empty (successuler no
head unifies with the selected atom (failure). There are two non-detstiaichoices made in the
process: one of an atom to rewrite in the query and one among the potentially mesyhdse
head unifies with this atom. In any case, SLD resolutiosoignd(i.e., it does not derive wrong
solutions) and, provided these choices are made by a fair non-deterministiosefieaction, it is
alsocompletqi.e., it derives all solutions).

Prolog’s computation rule is a particular deterministic approximation of Sldbluion. Specif-
ically, it is a flattening of SLD resolution emulating a depth-first seattbees a program as an
orderedset of definite clauses, and a query or definite clause body asdaredset of atoms.
These orders are meant to provide a rigid guide for the two choices made by thmsdlatction
of SLD resolution. Thus, Prolog’s particular computation strategy transformsrg lpyeewriting
the query attempting to unify its leftmost atom with the head of the first ederaing to the order
in which they are specified. If failure is encountered, a backtracking stéye tatest rule choice
point is made, and computation resumed there with the next alternative givédre bgliowing
rule. For example, if the two clauses for predicadmcare given as above, then the Prolog query
‘?- cond1.2.7,3.4.[], L). succeeds with the substitutidh = [], L = 1.2.3.4.[], while the query
‘?- condl.2.[], X,3.Y). fails.

Strategies for choice of where to apply linear resolution are all logicalhsistent in the sense
that if computation terminates, the variable binding exhibited is a legiéis@lution to the original
query. In particular, like non-deterministic SLD resolution, Prolog resolus@ound However,
unlike non-deterministic SLD resolution, it iscomplete Indeed, Prolog’s particular strategy of
doing linear resolution may diverge although finitely derivable solutions to a quayyemist. For
example, if the definite clauses fooncare given in a different order.¢€., first the rule, then the
fact), then the query?- cond X, Y, 7).’ never terminates although it has (infinitely many) finitely
derivable solutions!

Copyright© Hassan AT-KAcI June 25, 1999—Incomplete Draft ABE 1110F 217

