
A Generic XML-Generating Metacompiler

Hassan Aı̈t-Kaci

HAK Language Technologies

hak@acm.org

May 2019

Abstract

This describes a feature of Jacc,1 a Java-based system in the fashion of Yacc,2 the well-

known metacompiler, where a minimalistic set of simple annotations may be specified on a

few grammar rules and terminal symbols to guide the automatic generation of code in XML

format. The annotations basically specify how to produce an XML construct out of the bits

and pieces of a concrete syntax tree (CST). The information is then used at parse-time by the

generated parser to build the actual XML tree in accordance with the specified patterns. This

annotation-driven process is one of tree transduction (from CST to XML tree). Compilers

generated from such annotated Jacc grammars can generate XML code for a wide class

of possible formats depending on the syle of annotation chosen for serializing a piece of

syntax corresponding to a few grammar rules and terminals. In this document, we present

the simple notation Jacc uses for such annotations decorating a Yacc-style BNF grammar,

and its operational semantics. We illustrate each construct with examples of its use.3 We also

explicate consistency conditions and DTD inference.

KEYWORDS: Metacompilers, XML, Annotation-driven XML-pattern generation

1Just another compiler compiler.
2Yet another compiler compiler.
3See online documentation.

1

http://www.hassan-ait-kaci.net/
http://www.hak-language-technologies.com/
mailto:hak@acm.org?subject=XML
https://www.hassan-ait-kaci.net/hlt/doc/hlt/code/language/syntax/xml/XmlAnnotationDoc/000StartHere.html


Contents

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 A summary overview of Jacc 3

3 XML serialization annotation 5

3.1 Basic annotation notation . . . . . . . . . . . . . . . . . . . . 5

3.2 More complex annotation notation . . . . . . . . . . . . . . . 7

3.2.1 Children annotation . . . . . . . . . . . . . . . . . . . 7

3.2.2 Examples of children annotation . . . . . . . . . . . . 8

3.2.3 Attributes annotation . . . . . . . . . . . . . . . . . . 9

3.2.4 Examples of attribute notation . . . . . . . . . . . . . 9

3.2.5 Interpreted special forms . . . . . . . . . . . . . . . . 10

3.3 Checking annotation consistency . . . . . . . . . . . . . . . . 11

3.4 DTD/Schema extraction . . . . . . . . . . . . . . . . . . . . 13



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

1 Introduction

1.1 Motivation

One of the most convenient aspects of the advent of the W3C eXtended Markup Language (XML)

is that is has become the universal format for representing code written in any language.

However, as universal as it may be, an XML document can only be encoded using a static

XML document template. This is not so convenient when the XML vocabulary for a class of

documents evolves by changing its constructs. One is then compelled to update old XML repre-

sentation into new versions of XML. This evolution management ought to be automated as far as

possible, and when not, made as simple and easy to put to use. This is the kind of service this

work provides using an XML metacompilation process simplifying the dynamic regeneration of

evolving XML target templates.

1.2 Approach

Our approach is simple: we use a simple annotation of the grammar of the language to be XML-

encoded specifying a syntax-rule-based scheme driving XML-code generation. How this is made

possible is explained in complete details in the rest of this document, which is organized as

follows. Section 2 overviews the functionality of Jacc. In Section 3, the XML annotation

notation is described in detail. This Jacc XML-annotation grammar is available in [7] and an

example of a generated XML serialization also [6].

2 A summary overview of Jacc

At first sight, Jacc may be seen as a “100% Pure Java” implementation of an LALR(1) parser

generator [1] in the fashion of the well known UNIX tool Yacc—“yet another compiler com-

piler” [8]. However, Jacc is much more than. . . just another compiler compiler: it extends

Yacc to enable the generation of flexible and efficient Java-based parsers and provides enhanced

functionality rarely available in other similar systems.

The fact that Jacc uses Yacc’s metasyntax makes it readily usable on most Yacc grammars.

Other Java-based parser generators all depart from Yacc’s format, requiring nontrivial metasyn-

tactic preprocessing to be used on existing Yacc grammars—which abound in the world, Yacc

being by far the most popular tool for parser generation. Importantly, Jacc is programmed in

pure Java—this makes it fully portable to all existing platforms, and immediately exploitable for

web-based software applications.

Jacc further stands out among other known parser generators, whether Java-based or not,

thanks to several additional features. The most notable are:

• Jacc uses the most efficient algorithm known to date for its most critical computation

(viz., the propagation of LALR(1) lookahead sets). Traditional Yacc implementations use

the method originally developed by DeRemer and Penello [3]. Jacc uses an improved

method due to Park, Choe, and Chang [9], which drastically ameliorates the method of by

May 2019 Page 3 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

DeRemer and Penello. To this author’s best knowledge, no other (available) Java-based

metacompiler system implements the Park, Choe, and Chang method [2].

• Jacc allows the user to define a complete class hierarchy of parse node classes (the ob-

jects pushed on the parse stack and that make up the parse tree: nonterminal and terminal

symbols), along with any Java attributes to be used in semantic actions annotating grammar

rules. All these attributes are accessible directly on any pseudo-variable associated with a

grammar rule constituents (i.e., $$, $1, $2, etc.).

• Jaccmakes use of all the well-known conveniences defining precedences and associativity

associated to some terminal symbols for resolving parser conflicts that may arise. While

such conflicts may in theory be eliminated for any LALR(1) grammar, such a grammar is

rarely completely obtainable. In that case, Yacc technology falls short of providing a safe

parser for non-LALR grammar. Yet, Jacc can accommodate any such eventual unresolved

conflict using non-deterministic parse actions that may be tried and undone.

• Further still, Jacc can also tolerate non-deterministic tokens. In other words, the same

token may be categorized as several distinct lexical units to be tried in turn. This allows,

for example, parsing languages that use no reserved keywords (or more precisely, whose

keywords may also be tokenized as identifiers, for instance).

• Better yet, Jacc allows dynamically (re-)definable operators in the style of the Prolog lan-

guage (i.e., at parse-time). This offers great flexibility for on-the-fly syntax customization,

as well as a much greater recognition power, even where operator symbols may be over-

loaded (i.e., specified to have several precedences and/or associativity for different arities).

• Jacc supports partial parsing. In other words, in a grammar, one may indicate any nonter-

minal as a parse root. Then, constructs from the corresponding sublanguage may be parsed

independently from a reader stream or a string.

• Jacc automatically generates a full HTML documentation of a grammar as a set of in-

terlinked files from annotated /**...*/ javadoc-style comments in the grammar file,

including a navigatable pure grammar in “Yacc form,” obtained after removing all seman-

tic and serialization annotations, leaving only the bare syntactic rules.

• Jacc may be directed to build a parse-tree automatically (for the concrete syntax, but also

for a more implicit form which rids a concrete syntax tree of most of its useless infor-

mation). By contrast, regular Yacc necessitates that a programmer add explicit semantic

actions for this purpose.

• Jacc supports a simple annotational scheme for automatic XML serialization of com-

plex Abstract Syntax Trees (ASTs). Grammar rules and non-punctuation terminal symbols

(i.e., any meaning-carrying tokens such as, e.g., identifiers, numbers, etc.) may be anno-

tated with simple XML templates expressing their XML forms. Jacc may then use these

templates to transform the Concrete Parse Tree (CST) into an AST of radically different

May 2019 Page 4 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

structure, constructed as a JDOM XML document.4 This yields a convenient declarative

specification of a tree transduction process guided by just a few simple annotations, where

Jacc’s “sensible” behavior on unannotated rules and terminals works “as expected.” This

greatly eases the task of retargeting the serialization of a language depending on variable

or evolving XML vocabularies.

With Jacc, a grammar can be specified using the usual familiar Yacc syntax with semantic

actions specified as Java code. The format of the grammar file is essentially the same as that

required by Yacc, with some minor differences, and a few additional powerful features. Not

using the additional features makes it essentially similar to the Yacc format.

For details on how Jacc extends Yacc to support Prolog-style dynamic operators, see [4].

For instructions on how to organize a Jacc grammar, please refer to [5] the documentation of the

grammar format, or to the description of grammar commands. If you wish to use Jacc, follow

these simple steps. You may also want to peruse the code of Jacc grammar examples listed in

the references.

3 XML serialization annotation

We need a means to annotate a Jacc grammar so as to ease and automate the process of speci-

fying an XML serialization for the language defined by the grammar. The way we proceed is by

annotating some rules and terminals to produce an XML form built out of those XML forms built

for the constituents of the CST (i.e., from a terminal’s contents or a rule’s RHS).

To this end, Jacc will come handy. This section describes a (meta-)grammar for a simple

annotation language meant to enable passing XML formatting information from a Jacc grammar

to a Jacc parser. This language is that of the forms that go between square brackets either

in the %xmlinfo command annotating a terminal or appearing in a rule being annotated for

XML conversion for serialization purposes. Doing this gives us great flexibility for extending or

modifying the annotation meta-syntax simply by:

1. modifying the Jacc grammar source file;

2. running the jacc command on it to regenerate the XmlAnnotationParser Java source;

3. recompiling.

Et voilà ! ...

3.1 Basic annotation notation

We first introduce the basic annotation notation for the very common case when the XML tree

to be constructed from the CST is homomorphic to the CST in that it only needs information

that is local to the CST node. We will extend this notation later when the tree construction is

heteromorphic, needing information from below this node.

4http://www.jdom.org/

May 2019 Page 5 / 14

http://www.jdom.org/


HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

In order for the parser of the annotation notation to stay small and light-weight, as well as

avoiding ambiguity and stay strictly within LALR(1) recognition power, we will adopt the fol-

lowing very simple keyword-driven syntax. For example:

A0 : A1 A2 A3 A4

[

nsprefix : "foo"

localname : "Azero"

attributes : {a = "bar blah", b="blech"}
children : (2, 3)

]

;

means that the XML form of an A0 node (created when the parser uses this grammar rule bottom-

up) will look like:

<foo:Azero a="bar blah" b="blech">

(XML form of A2)

(XML form of A3)

</foo:Azero>

In such an annotation, appearing in any order, the notation "keyword : value" is

such that keyword is an admissible keyword. An admissible keyword is such that there may

be at most one occurrence per annotation of a possibly incomplete prefix of one of nsprefix,

localname, attributes, or children.

Such an admissible keyword is followed by a value, which may be either an identifier, a

single- or double-quoted string, or a list between curly braces {...}, or parentheses (...), the

nature of this list’s brackets and elements depending on the keyword (see the annotation grammar

for details).

The annotation is meant to be light-weight. So, all these keywords may be abbreviated to any

non-empty case-insensitive prefix of their full form, and some punctuation may be used inter-

changeably or simply omitted: e.g., the ‘:’ separating keywords and values, the ‘,’ separating

list elements, as well as unnecessary quotes, are all in fact optional. The following key/value

separator symbols may be used: ‘:’ ‘=’ ‘->’ ‘=>’ or they may be simply omitted. Similarly,

the following list separator symbols may be used: ‘,’ (comma), ‘;’ (semicolon), or they may be

simply omitted.

For example, the annotation shown above could as well be written as follows:

A0 : A1 A2 A3 A4

[

NS : foo

LO : Azero

AT : {a -> ’bar blah’; b -> blech}
CH : (2 3)

]

;

May 2019 Page 6 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

3.2 More complex annotation notation

The simple notation above is all one needs in many common cases: it works whenever the XML

serialization pattern is constructible only from the immediate constituents of the rule’s LHS

(A0)—i.e., the XML trees of the rule’s RHS symbols (when n > 0). It is, however, insuffi-

cient for expressing XML serialization patterns that depend on sub-elements contained within

those of the XML serialization of the RHS symbols. The simple case is called homomorphic tree

transduction, while the more complex case is called heteromorphic tree transduction.5

A more elaborate XML annotation notation extends the above basic notation by allowing the

values of attributes and children in the annotation to take on more complex forms denoting a

reference to the desired XML constructs within the XML trees already built for the CST children

of this node. Following are some simple color-coded examples illustrating the meaning of these

annotations, showing how the basic notation for homomorphic tree-transduction annotations for

attribute and children is extended to express heteromorphic tree-transduction as well.

3.2.1 Children annotation

The full form of the annotation expression for specifying children is:

CH:(... w1 ... wnc[x1. ... .xm]/a ...)

of which only c is mandatory. The four parts of a child specification expression are such as

described next.

1. The wrapper path w1...wn is optional: each wrapper wi is a pair made of a (unquoted,

single-quoted, or double-quoted) string (an XML tag), followed by a distribution marker,

which is either a dot (‘.’), or an asterisk (‘*’). Using a dot triggers single wrapping, while

using an asterisk triggers distributive wrapping (at the nesting level specified).

2. The child—there are two cases:

(a) in a rule’s annotation, c is a positive integer and denotes a position in the rule’s RHS

(i.e., a position in the CST) and refers to the XML tree corresponding to the child

CST at this position;

(b) if not a number, c must be a special form. In this case, there may be nothing trailing

after c; i.e., [x1. ... .xm]/a is empty.

3. The XML tree path [x1. ... .xm] is optional; if not empty, it denotes a path in the

XML tree corresponding to referring a CST child, each xj being a positive integer denoting

a child position in the XML tree rooted in this referring CST child.

4. The attribute reference /a is optional; when present, a is a (possibly unquoted, single-

quoted, or double-quoted) string; it must be the name of an XML attribute in the ultimate

XML tree referred to by c[x1. ... .xm], and denotes the string content making up

the value of that XML attribute.

5The Greek etymology of the words says precisely that: “homo-morphic” = “similar form” (from the Greek

“ηoµo-µo̺ϕoς ,” meaning “same shape”), and “hetero-morphic” = “of dissimilar form” (from the Greek “ηετε̺o-

µo̺ϕoς ,” meaning “different shape”).

May 2019 Page 7 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

3.2.2 Examples of children annotation

Basic children annotation The notation:

CH:(2, 4)

specifies that the XML children are, in this order:

1. the XML form of 2nd child CST,

2. the XML form of 4th child CST.

Extended children annotation

• Grandchild reference—the notation:

CH:(2[1], 4[2])

specifies that the XML children are, in this order:

1. the 1st XML component of the XML form of 2nd child CST,

2. the 2nd XML component of the XML form of 4th child CST.

• Descendant reference—the notation:

CH:(2[1.4], 1[2.1.3])

specifies that the XML children are, in this order:

1. the 4th XML component of 1st XML component of the XML form of 2nd child CST,

2. the 3rd XML component of 1st XML component of 2nd XML component of the XML

form of 1st child CST.

• Attribute reference—the notation:

CH:(2[1.4]/foo)

specifies that the only XML child is the string value of the attribute named foo of the 4th

XML component of 1st XML component of the XML form of 2nd child CST.

• Wrappers—the notation:

CH:(foo.2, bar.fuz.4)

specifies that the XML children are, in this order:

1. <foo>(XML form of 2nd child CST)</foo>

2. <bar><fuz>(XML form of 4th child CST)</fuz></bar>

May 2019 Page 8 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

By default, wrappers do not distribute over their contents. In other words, the resulting

form will be one with all the contents wrapped in a single nesting of wrappers. If it is

desired to override this default behavior and actually distribute a wrapper tag path over the

sequence making up the contents being wrapped, then one uses an asterisk (‘*’) instead of

a dot (‘.’), as in, e.g.:

CH:(foo*2, bar*fuz.4)

Thus, using an asterisk rather than a dot in specifying a wrapper path triggers one of three

things depending on whether the contents being wrapped is:

1. nothing—in which case nothing is generated;

2. a single XML element—in which case the wrapped single element is generated;

3. a sequence of XML elements—in which case the corresponding sequence of wrapped

elements is generated.

3.2.3 Attributes annotation

The full form of the annotation expression for specifying an attribute is:

AT:{... foo=c[x1. ... .xm]/a ...}

of which only c is mandatory.

• If [x1. ... .xm]/a is missing, then c may be only one of:

1. a literal string—e.g., "bar"; or,

2. a special form—i.e., $VALUE or $TEXT.

• If [x1. ... .xm] is present, the xi’s are a sequence of dot-separated positive integers,

an XML tree path referencing an XML subtree. Then, the annotation must be that of a rule

and c must be a positive integer denoting the position a child CST for the current rule (a

position in the rule’s RHS). It refers to the XML tree of child CST at that position.

If /a is present, it must be the name of an attribute in the XML tree so referenced. This

annotation denotes the string value of this attribute in that XML tree. If /a is missing, then

the annotation denotes the text content of the XML tree so referenced.

3.2.4 Examples of attribute notation

Basic attribute annotation The notation:

AT:{foo="bar"}

sets the attribute named foo to the literal string value "bar".

May 2019 Page 9 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

Extended attribute annotation

• Child’s text value—the notation:

AT:{foo=3}

sets the attribute named foo to the text value of the XML form of 3rd child CST.

• Child’s attribute value—the notation:

AT:{foo=3/bar}

sets the attribute named foo to the value of the attribute named bar in the XML form of

3rd child CST.

• Descendant’s text value—the notation:

AT:{foo=3[1.2]}

sets the attribute named foo to the text value of the 2nd XML component of the 1st XML

component of the XML form of the 3rd child CST.

• Descendant’s attribute value—the notation:

AT:{foo=3[1.2]/bar}

sets the attribute named foo to the value of the attribute named bar located in the 2nd

XML component of the 1st XML component of the XML form of the 3rd child CST.

• Terminal value—in a terminal’s annotation only, the notation:

AT:{foo=$VALUE}

sets the attribute named foo to the value of the terminal node actually parsed.

3.2.5 Interpreted special forms

In addition to the above notation (and default behavior), we provide the following conveniences

to specify finer details on the XML appearance from the information present in the CST thanks

to the following built-in special forms, which all starting with a dollar sign (‘$’), followed by the

(case-insensitive) form identifier and possible arguments between parentheses and separated by a

legal list separator; namely, blank space, ‘,’ (comma), or ‘;’ (semicolon).

May 2019 Page 10 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

Extracting the value of a terminal The notation $VALUE may appear in an XML annotation

expression for either a rule or a terminal whenever the CST construct it refers to is that of a

terminal. For example:

• an attribute value string; e.g., the notation:

%xmlinfo SHTOONG [ L:"BAR" N:"Foo" A:{ fuz = $VALUE } ]

specifies that a terminal symbol SHTOONG with print value "Gloop" will be serialized as

follows:

<Foo:BAR fuz="Gloop"/>

• a single XML content string; e.g., the notation:

%xmlinfo SHTOONG [ L:"BAR" N:"Foo" C:( $VALUE ) ]

specifies that a terminal symbol SHTOONG with print value "Gloop" will be serialized as

follows:

<Foo:BAR>Gloop</Foo:BAR>

Concatenating pieces of text Wherever text is expected, we may use the notation $TEXT(...)

to denote the text string resulting from the concatenation of the text strings denoted by its argu-

ments, each of which may be either a literal (possibly single- or double-quoted) string, or a refer-

ence to a text value deeper in a descendant CST’s XML structure using the XML tree reference

notation c[x1...xn]/a, where the [x1...xn] and /a parts are optional.

This construct comes handy for composing a text string on the fly to make up the text value

of a child or an attribute. For example, given the annotations in Figure 1, the piece of Entry

syntax:

bar@less:top

gets serialized as:

<Place type="[top]less">bar</Place>

3.3 Checking annotation consistency

We need to enforce consistent number referencing in the tree addresses used in the notation—i.e.,

the numbers that refer to RHS nodes and XML elements (the ci’s and the xi’s below). Indeed,

they should (be made to) obey the following necessary conditions (all easy to justify):

• Condition 1: An annotation for a terminal, or for a rule with an empty RHS, should not

be allowed to use a tree address in any attribute specifier (only symbol, quoted string,

or number). A terminal’s annotation CH may only contain wrappers and a reference to

$VALUE.

May 2019 Page 11 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

%xmlinfo ID

[

L : "Identifier"

A : { name = $VALUE}
]

%xmlinfo STR

[

L : "String"

A : { value = $VALUE}
]

Type : ID ’:’ ID

[

L : "Type"

A : { general = 1/name special = 3/name }
]

;

Entry : STR ’@’ Type

[

L : "Place"

A : { type = $TEXT( "[" 3/special "]" 3/general ) }
C : ( 1/value )

]

;

Figure 1: Example of annotations using the $VALUE and $TEXT special forms

• Condition 2: In an annotation AT:{...}, the name of an attribute following an XML tree

reference must be a legal attribute of the element so referenced.

• Condition 3: In a rule annotation CH:(...ci[...]...), the number of ci’s must be

between 1 and the length of the rule’s RHS.

• Condition 4: In an annotation CH:(...), two distinct occurrences of XML content refer-

ences must not be allowed to be one another’s prefix or duplicate address. In other words,

no tree address may occur more that once in the same annotation; and, whenever a tree

address occurs in an annotation, none of its prefixes may occur in the same annotation.

In other words, whenever the child path expression c[x1. ... .xn] occurs in a CH

annotation, then neitherc[x1. ... .xn−1], nor c[x1. ... .xn−2], . . . , nor c[x1],

nor c may be allowed to occur in the same CH annotation.

May 2019 Page 12 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

For example, both the CH annotations CH:(1 2) and CH:(1 2[1] 2[2]) are legal;

however, neither CH:(1 2 1) nor CH:(1 2[1] 1[2]) are.

• Condition 5: Whenever a tree address of the form c[x1.x2. ... .xn] occurs, then

for it to be consistent, this entails that the XML form of the CST node referenced by c

must consist of exactly one XML element—as opposed to none or many. This is true iff the

referenced RHS symbol is either a value-carrying terminal, or a non-terminal all of whose

possible XML forms are each single XML elements. time.

These five conditions must be verified statically at grammar analysis time (before gram-

mar generation). Violation of any of these conditions at parser-generation time should raise

an exception and be reported as an error. If all these conditions hold, then the code for the

method xmlify(Element container) defined in the class ParseNode, and the method

createXmlForm(ParseNode node, Element root) defined in the class XmlInfo,

is guaranteed to work safely.

3.4 DTD/Schema extraction

Note that when all annotations are consistent, we may wish to extract more static information

from the annotated grammar. It is indeed possible to infer the global nature of the admissible

XML documents generated from a specific annotated grammar at parser-generation time using

simple static analysis of the grammar. From this we may then generate a DTD or an XML Schema

describing the type of XML documents produced from serializing well-formed syntactic units.

This may then be optionally adjoined to the produced XML document as a seal of verifiable

well-formedness.

When extracting the types of XML elements from annotations verifying a property such as

[Condition 2] above, it is necessary to know the XML “element type” of the referenced XML

node. This “type,” of the form nsPrefix:localName, may be computed statically by an-

alyzing the grammar’s annotations, and deriving the exact XML element “type” for each tree

reference in the annotations. This is done as follows.

To each grammar symbol A, we associate its xmlFormType: a RegularExpression

denoting the set of possible XML element types that A may expand into when serialized into its

XML form:

• if A is an unannotated terminal that does not carry a value, then A’s xmlFormType is

empty (i.e., RegularExpression.EMPTY);

• if A is an annotated or a value-carrying terminal, then A’s xmlFormType is a single XML

element whose name is the symbol’s name if non-annotated, or specified by the annotation,

otherwise;

May 2019 Page 13 / 14



HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

• if A is a non-terminal whose rule set is: A : A11 . . . A1n1

| A21 . . . A2n2

...

| Am1 . . . Amnm

;
then A’s xmlFormType is the union, for each rule index i, of the Xi’s, where each Xi is

the xmlFormType corresponding to the i-th rule for A (for 0 ≤ i ≤ m), and computed as

follows:

– if the i-th rule for A is annotated, then Xi is the XML type of the single XML element

specified by the annotation;

– otherwise, Xi is the concatenation of those of the Aij’s (for 0 < j < ni).

References

[1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[2] CHOE, K.-M. Private communication (choe@compiler.kaist.ac.kr). Korean Ad-

vanced Institute of Science and Technology, Seoul, South Korea, December 2000.

[3] DEREMER, F., AND PENELLO, T. Efficient computation of lookahead sets. ACM Transac-

tions of Programming Languages and Systems 4, 4 (October 1982), 615–749.

[4] HASSAN A ÏT-KACI. Main documentation for grammar Term.grm. Software Documenta-

tion, January 2013. (available online).

[5] HASSAN A ÏT-KACI. Jacc: (much more than) Just another compiler compiler. Software Doc-

umentation, December 2014. (available online).

[6] HASSAN A ÏT-KACI. Example of a Jacc meta-XML annotation’s effect. Software Documen-

tation, January 2018. (available online).

[7] HASSAN A ÏT-KACI. Main documentation for Jacc’s meta-XML annotation. Software Doc-

umentation, January 2018. (available online).

[8] JOHNSON, S. C. Yacc: Yet another compiler compiler. Computer Science Technical Re-

port 32, AT&T Bell Labs, Murray Hill, NJ (USA), 1975. Reprinted in the 4.3BSD Unix

Programmer’s Manual, Supplementary Documents 1, PS1:15. UC Berkeley, 1986.

[9] PARK, J., CHOE, K.-M., AND CHANG, C. A new analysis of LALR formalisms. ACM

Transactions of Programming Languages and Systems 7, 1 (January 1985), 159–175.

May 2019 Page 14 / 14

http://hassan-ait-kaci.net/hlt/src/hlt/language/jaccapps/term/docs/TermDoc/000StartHere.html
http://hassan-ait-kaci.net/hlt/doc/hlt/jaccdoc/000_START_HERE.html
https://www.hassan-ait-kaci.net/hlt/src/hlt/language/jaccapps/xml/docs/XmlGenExDoc/000StartHere.html
https://www.hassan-ait-kaci.net/hlt/doc/hlt/code/language/syntax/xml/XmlAnnotationDoc/000StartHere.html

	Introduction
	Motivation
	Approach

	A summary overview of Jacc
	XML serialization annotation
	Basic annotation notation
	More complex annotation notation
	Children annotation
	Examples of children annotation
	Attributes annotation
	Examples of attribute notation
	Interpreted special forms

	Checking annotation consistency
	DTD/Schema extraction


