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What is this about?

This explores the lattice-theoretic properties of the fuzzy processing of data and knowledge

structures, such as First-Order Terms (FOT s) and Order-Sorted Feature (OSF ) graphs. These

objects are ordered with endomorphic structure subsumption which characterizes consistent in-

stantiation of subterms, and more generally inheritance of features from a sort to its subsorts.

Constraint systems consisting of declarative rules and axioms formalizing these operations as

syntax-driven constraint normalization also provide effective operational interpretations. Extend-

ing these notions to assimilate distinct but similar objects can then be done by loosening semantic

congruence among constructors. This is achieved by fuzzifying the constraint system. This kind of

fuzzification can be defined and used as well for approximate data and knowledge representation

and processing thanks to richer attributed object and concept structures such as OSF graphs.

Why Lattice Theory?

Because it is the mathematics of consistent approximation. Indeed, when (fuzzy) approxima-

tion of FOT s or OSF graphs is defined as (fuzzy) structural subsumption, (fuzzy) unification is

the Greatest Lower Bound (glb) operation, and (fuzzy) generalization is the Least Upper Bound

(lub) operation. This provides a (fuzzy) glb operation over FOT s and OSF object structures

to act as, e.g., a kind of “(fuzzy) object join” to specify approximate retrieval patterns over an

object database. Dually, the lub operation is the computation of the most specific FOT or OSF
graph up to a fuzzy approximation degree that is their most specific approximate generalization at

that fuzzy approximation degree. Such could be used, e.g., for fuzzy object schema inference or

Machine Learning by fuzzy inductive reasoning. Therefore, understanding the formal operational

aspects of (fuzzy) structure unification and its dual (fuzzy) structure generalization are invaluable

pursuits most suitably formalized using Lattice Theory.

What is our objective?

It is to extend to fuzzy operations (to “fuzzify”) both lattice operations on FOT s and OSF
graphs. Calibrating such structures with fuzzy truth levels as approximation degrees can then ex-

ploit more expressive lattice-theoretic operations (fuzzy unification, but also fuzzy generalization).

Our pragmatic motivation is that such fuzzy lattice operations onFOT s andOSF graphs are very

convenient in structured data and knowledge representation and processing, such as approximate

Information Mining and Retrieval.

Is this still a bit too fuzzy?

Be that as it may, we — the authors — hope that you — the reader — will be prompted to

muse further into this book’s contents to understand what the foregoing techno-gibberish actually

means. Who knows? You may just share the frizzy fuzzy fun we felt defrizzing tangled fuzz, and

perhaps even be enticed to use, or extend, our ideas and results.

Keywords: Approximate Information Processing; Lattice Algebra; First-Order Terms; Order-

Sorted Feature Graphs; Fuzzy Unification; Fuzzy Generalization; Fuzzy Knowledge Repre-

sentation; Automated Fuzzy Reasoning; Pattern-directed Fuzzy Reasoning; Fuzzy Pattern

Induction; Fuzzy Machine Learning.
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Preamble

Our model of the world is, at best, fuzzy. What we hold to be true or false, as far as reasoning is

concerned, is a partial approximation of ideal concepts and relations among such. Yet, far from

suffering from this seeming imperfection, we are actually quite clever at many tasks involving

reasoning (including recognition and learning) precisely because we can efficiently make sense

out of approximate knowledge. It is, therefore, natural to wish that all AI tools be given the

capability of approximate reasoning as a practical means to make efficient pragmatic sense out

of the abundance of knowledge fed by the current supernova-size explosion of data — whether

extracting knowledge, learning from it, or using what is learned to render intelligent services for

useful aims; or all of that.1

The ideas reported in this book are some mathematical and computational reflections on ap-

proximate reasoning with data and knowledge represented as algebraic trees and, more generally,

labeled rooted graphs (i.e., most models). We view approximation as a partial order on object

structures composed of symbols, where some symbols may denote more or less similar concepts.

The ideas we have undertaken to develop here arose during the visit of the first author to Milan,

Italy, in the Fall of 2016, at the invitation of the second author. They are the consequence of a

congruence of minds intrigued at fuzzifying the power of lattice theory for data and knowledge

processing. They are the result of our discussions trying to give simple answers to simple ques-

tions. The initial question was simple indeed: “What happens to the Reynolds-Plotkin lattice of

FOT s with fuzzy unification and generalization?” But since this lattice is itself only a special

case of the lattice of rooted order-sorted feature graphs: “What happens when we fuzzify OSF
lattice operations?” We looked for intuitive, formal, and operational, answers to these questions.

This led, after some methodic and laborious research and a few initial but unsatisfying answers,

to this current collection of technical thoughts. These constitute, in our opinion, just a start.

We wish to share this, should there be anyone interested in the same or related topics. We

hope that the reader will draw satisfaction, even if only partially, in seeing a presentation of a

comprehensive, yet simple and coherent, family of algebraic structures for fuzzy deduction and

induction. It is our further wish that these ideas beget new ones in the reader’s mind since, as we

try to illustrate, we believe that there is a high potential for further work and applications.

We also took up the challenge of making this work destined to a wide audience, yet be self-

contained. Most of the needed background and vocabulary for the technical notions we use and/or

build upon are reviewed, summed-up in an appendix, where we cover all that is essential to un-

derstand the rest of this book, along with more examples and a quick review of the Generalized

Distributive Law, a generic efficient implementation technique for commutative semirings which

uses distributivity to optimize evaluation.

However, although this work may first appear as just one more theoretical niche for idle math-

1The expression “fuzzy logic” occurs 30 times in WIPO Technology Trends 2019 – Artificial Intelligence [130].

https://www.wipo.int/edocs/pubdocs/en/wipo_pub_1055.pdf
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ematicians, it has in fact a universal pragmatic purpose. A longer, however more accurate, title

should have perhaps been worded as, “Lattice-Theoretic Operations for Fuzzy Inference by

Deduction and Induction over Similar Data and Knowledge Structures.” Indeed, this inves-

tigation has led us to understand a universal model for efficiently implementing a powerful fuzzy

reasoning algebra over approximate subsumption-ordered object structures.

Developing a mathematically formal answer to our questions appeared indeed as a necessity

to us, but it was not our objective. Rather, the latter was to build formal bases for the correct and

efficient implementation of such lattice operations capable of approximate pattern recognition of

data and knowledge structures. Further still, even that was to constitute only the initial steps

towards building adequate tools for our ultimate longer-term aim: using these tools as well-honed

libraries for applications showing the benefits of our ideas in improving information retrieval and

approximate reasoning in general. So we adjoined, following the initial formal part, a discussion

in the form of a non-exhaustive grab-bag of several issues that have come to our attention in

the light of our understanding, reflecting on the consequences of our formal contribution on a

few connected domains, reviewing the state of art in these domains as related to our work. This

has also allowed us to be more accurate in situating our contribution in the context of otherwise

interesting, although different, works, and open the way to potentially fruitful connections.

In summary, we believe that this work has barely scratched open what appears like a bountiful

vein of ore in AI research that may very well turn out to be a mother lode of pragmatically valuable

and formally clean ideas. Indeed, we think that this is just a beginning.
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The parts that have been published have been indicated, where and when, and links given. The rest is

constituted of parts being elaborated and therefore still in a draft state. These are essentially sets of

notes and are meant to evolve into finished form as the writing is being completed. Thus, some of their

current contents is likely to be modified, or could be synthesized more succinctly, or may diseappear

altogether in a later update. Such parts are incomplete and/or possibly inconsistent in their current

form. Also, new parts may appear later.
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Generalities

Our expected readership is assumed to be at ease with, or at least not averse to, advanced senior-

level or graduate-level Symbolic Logic and Algebra;1 more specifically, basic Lattice Theory.2

Although not required, familiarity with some software specification and/or programming lan-

guages should be a plus. In particular, one should be comfortable with the syntax, data structures,

and operations of Logic Programming (e.g., Prolog).3 Also, one should not mind our making use

of formal notation as we find it helpful in conveying accurately what we mean. However, we

strive to keep this notation simple and intuitive, and also “easy to program.” Indeed, our leitmotiv

is deriving implementable methods from declarative specifications.

What follows in this introduction explains our motivation, provides an overview of the ideas

we discuss, and summarizes the book’s organization.

1.1 Motivation

In this work, we do not mean to deal with fuzzy concepts or fuzzy properties thereof. This would

require to encode existing knowledge and data bases to be populated with fuzzy entities. This

would not only be a formidable task to undertake but also an unrealistic assumption. Rather, we

wish to take the world of knowledge and data as it exists with possibly some additional informa-

tion relating various concept or data constructor symbols. This information consists in a fuzzy

measure of truth approximation derived from the meaning of symbols. For example, in a knowl-

edge base dealing with people records and supporting approximate-pattern information retrieval,

such a measure may indicate how “semantically close,” the symbols “person” and “individual”

(say) are to denote the same concepts (say with a .9 approximation degree).4 Additionally, relat-

ing some attributes of so similar concepts could identify, at a given approximation degree, which

attributes of a concept correspond to what attributes of a similar concept.

1https://www.encyclopediaofmath.org/index.php/Algebra of logic
2https://en.wikipedia.org/wiki/Lattice (order)
3https://en.wikipedia.org/wiki/Prolog
4Degree 0.0 meaning distinct; degree 1.0 meaning identical.

https://www.encyclopediaofmath.org/index.php/Algebra_of_logic
https://www.encyclopediaofmath.org/index.php/Lattice
https://www.encyclopediaofmath.org/index.php/Lattice
https://en.wikipedia.org/wiki/Prolog
https://www.encyclopediaofmath.org/index.php/Algebra_of_logic
https://en.wikipedia.org/wiki/Lattice_(order)
https://en.wikipedia.org/wiki/Prolog
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Authors’ comment: We need some general comparative discussion about structurally vs.

numerically assessed approximation — viz., First-Order Term (FOT ) or Order-Sorted Fea-

ture (OSF) structure vs. Fuzzy Set (FS) — lattice-theoretic calculi, and why it would be

interesting to combine both.

Such an example should contain realistically fuzzy concepts and expressions to help to moti-

vate the need for fuzzy order-sorted featured OSF patterns. For example (quoting all fuzzy

concepts or expressions), say we wish to retrieve:

Books on “advanced” “algebra” authored by a “not so well-known” mathemati-

cian from “Eastern Europe” “around the end of the 18th century” which have

had “a high impact” on the topic of “decision making” “today.”

This query pattern is vague. Indeed, several components in it (emphasized as quoted, bold-

faced) are specified that have an approximate interpretation which could be rendered as fuzzy.

On the other hand, it also corresponds to some typed attributed object structure (book, with

author, subject, etc.). It therefore comes naturally to express such a vague query as some fuzzy

OSF structure — say, with the following shape:

book

( author → mathematician

( fame → low

, origin → east-european

, period → end-of-18th-century

)

, subject → algebra

( level → advanced

)

, topic → decision-making

, impact → high

)

[To be completed later. . . ]

Other points to discuss/elaborate:

• Use fuzzy OSF generalization to aid, for example, in Machine Learning as a precious

initial focusing step prior to exploiting number-analytical techniques such as Bayesian

Nets or SVMs [150].

• While Propositional Logic (PL) is a Boolean lattice, Fuzzy Propositional Logic (FL)

is a Brouwer lattice (also referred to as a Heyting algebra) [121].5

OSF Logic is also a lattice algebra: it has an infimum operation (OSF unification) and

a supremum operation (OSF generalization). However, it is not a Boolean lattice. It is

not even distributive [4], [6]. Seeing anOSF term as a logical constraint, OSF unifica-

tion corresponds to Boolean conjunction, but OSF generalization is more approximate

than Boolean disjunction. This is true as well for the lattice of first-order terms ordered

5See Appendix Section 2.2.1.
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by subsumption,6 as was first shown by Reynolds [141] and, simultaneously and inde-

pendently, by Plotkin [135]. The lattice of ψ-terms (i.e., OSF terms in normal form)

can be extended with a disjunction operation. So-extended ψ-terms, called ǫ-terms in [4]

and [6], form a distributive lattice. It is not Boolean as it does not have complements.

Further extending ǫ-terms with a restricted (constructive) form of complementation can

provide a structure of Brouwer lattice.7

• cite relevant references and give BibTEX format and with a public pdf link (see to enrich

existing file main.bib — see BibTEX templates in bibtex-templates.bib).

N.B.: Not all current citations in this file are to be used, nor appropriate. They will be

eventually reviewed and cleaned.

• potential applications (approximate information retrieval, ...)

1.2 Objective

We seek to explore the “fuzzification” of operations on FOT s and OSF constraints as used in

Logic Programming (e.g., [61, 111], and [19]). We proceed by conjugating the lattice-theoretic

properties of FOT s and OSF -constraint graph algebras ordered by structure subsumption with

a fuzzy interpretation of equality. We start with the Reynolds-Plotkin original characterization

of first-order algebraic term subsumption as a lattice ordering, further extended into an OSF
constraint subsumption lattice, and further enhanced with fuzzy lattice operations.

We approach this study from the perspective of information approximation. In this context, we

focus essentially on fuzzifying lattice-theoretic operations on FOT s andOSF constraints. These

formal (strict) structures and the fuzzified lattice operations thereon may then be used in, e.g., ap-

proximate Data and Knowledge representation and processing. As it has been demonstrated in all

areas they have been applied to, Fuzzy Logic and Algebra offer greater flexibility and expressivity

for performing approximate deduction (inference) and induction (abstraction). Fuzzy inference

and abstraction operations over FOT s and OSF constraints are therefore bound to offer an ap-

preciated improvement of “smarts” in approximate pattern-based retrieval, mining, and learning.

In addition, these fuzzy operations are effective, efficient, and conservative extensions of their

crisp versions.

We shall always insist on formulating formal lattice-theoretic operations following declarative,

as opposed to procedural, specifications in the form of syntax-driven transformational rules which

can be applied in any order. Besides greatly simplifying proving their correctness by structural in-

duction, this eliminates irrelevant control issues and side-effectable environments which typically

clutter procedural specifications.

We also review some literature we felt relevant to our pursuit (even if only as potential topics

for further research) dealing with related formal notions from general correspondances between

arguments (positional or keyword) attributed structures based on syntactic terms, graph data struc-

tures, finite-state automata, and their fuzzification. We also provide a few examples of how these

6That is, by FOT matching modulo variable renaming.
7See [6], Section 6.1, Page 336: “Negative information.”
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structures may be put to use for approximate Knowledge Representation as they offer a more flex-

ible means to perform fuzzy deduction and induction over abstract attributed objects and concepts

represented as order-sorted feature constraints.

1.3 Organization of Contents

The rest of this book is organized as follows.

Chapter 2 reviews and defines the basic background notions and notations in Lattice Theory

and Fuzzy Set Theory that we use in the rest of this book.

Chapter 3 focuses on first-order terms and fuzzifying their lattice operations. Section 3.2

covers the necessary background on FOT s and Section 3.3 on FOT substitutions. Section 3.4

overviews background on the lattice of FOT s, and offers an original declarative approach to

FOT generalization that will later ease for us the task of fuzzifying this operation. Section 3.5

reviews the rules forFOT unification, while Section 3.6 develops an original approach for declar-

ativeFOT generalization. In Section 3.7, we proceed to fuzzify the Reynolds-PlotkinFOT sub-

sumption lattice. We start with a specific formal fuzzification of FOT unification due to Maria

Sessa. We then show how to make it more expressive by extending it to tolerate arity and/or

argument-order mismatch in addition to just similar functors, and proceed to define their respec-

tive dual fuzzy generalization operations.8 Finally, Section 3.9 recapitulates the contents of this

chapter.

Chapter 4 focuses on order-sorted feature constraints and fuzzifying their lattice operations.

Section 4.1 presents basic vocabulary and properties of order-sorted feature terms describing data

and knowledge structures, and exposes the OSF term lattice operations. Section 4.2 continues

with the fuzzification of the lattice operations on OSF terms.

Chapter 5 further extends the fuzzy-lattice constructions of the previous two chapters to be

able to define fuzzy unification and generalization of term structure over constructors that are

similar modulo partial schema-realignment. Section 5.1 motivates the issue with the case of

partial argument-aligment maps, and proposes a solution. Section 5.2 carries this over to general

feature alignment.

Chapter 6 puts this work in context. We review extant work that has some potential relation

to the work presented here. Section 6.1 overviews related work. Section 6.2 discusses further

work. Section 6.3 looks at implementations. Section 6.4 considers pragmatic upshots of using

some ideas in this book in proof-of-concept software realizations. It also goes into some details

regarding the implementation of a fuzzy partial order’s lattice operations. Section 6.5 speculates

about potential applications. Section 6.6 is a proposal for a convincing use case in the area of

intelligent information retrieval mixing fuzzy and Bayesian reasoning.

Chapter 7 concludes with some comments on the usefulness and future evolution of this work:

Section 7.1 recapitulates, Section 7.2 shares some thoughts on fuzziness, Section 7.3 indicates

further work.

We have also adjoined an appendix to review quickly some background material defining

basic notions useful to understand more easily the notions presented in this book, additionalOSF
constraint-solving rules and examples of OSF lattice operations.

8Parts of this section appeared in [20]; see presentation slides in [21].
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Preliminaries

Monism is the theory that anything less than everything is

nothing.

SAUL GORN—Self-Annihilating Sentences [88]

In this chapter, we provide a succinct summary of elementary formal notions, terminology,

and notation constituting background for the issues developed in this book. Section 2.1 reviews

basic terminology, defines formal set-theoretic properties of relations as sets of pairs. Section 2.2

extends the properties defined in Section 2.1 to their corresponding fuzzy notions.

2.1 Basic Algebra Terminology

This section is a brief review of essential terminology and facts in Set Theory and Set Algebra.

Section 2.1.1 defines relations, and functions as specific relations. Section 2.1.2 reviews properties

of relations. Section 2.1.3 reviews properties of specific structure-preserving mappings between

algebras called homomorphisms. Section 2.1.4 reviews elementary notions and notations in spe-

cific algebras called lattices.

2.1.1 Relations and functions

We assume known the following elementary set-theoretic notions and their usual mathematical

notation: set, empty set (∅), subset (⊆); set operations: intersection (A ∩ B), union (A ∪ B),

disjoint union (A⊎B), difference (A \B), Cartesian product (A×B), complement (A), powerset

(P(A)), cardinality (|A|); Boolean values and operations: true, false, and, or, not. We shall use

the notation a
def
= b as an indication that the expression a is defined as expression b.

A binary relation rAB on two sets A and B is a subset of their Cartesian product; i.e., rAB ⊆
A×B. Given n ∈ N, n ≥ 2, an n-ary relation, rA1...An

on n setsAi, i = 1, . . . , n, is a subset of their

Cartesian product; i.e., rA1...An
⊆ A1×An. For any set A, the relation 11A

def
= { 〈x, x〉 | x ∈ A }

is called the identity relation (or simply the identity) on A. The inverse relation (or simple the

inverse) of a relation rAB ⊆ A×B the relation r−1
AB ⊆ B×A the relation defined as: r−1

AB
def
= { 〈y, x〉 | 〈x, y〉 ∈ rAB }. Given three sets A, B, and C, and two relations rAB ⊆ A×B
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and rBC ⊆ B×C, the composition rAB ◦ rBC of two relations is defined as rAB ◦ rBC
def
=

{ 〈x, z〉 | ∃ y ∈ B s.t. 〈x, y〉 ∈ rAB and 〈y, z〉 ∈ rBC }. Note that any relation rAB ⊆ A×B
satisfies 11A ◦ rAB = rAB and rAB ◦ 11B = rAB .

A function f from a set A to a set B is a relation on A and B that associates to every element

of A a unique element of B (its image). Formally, ∀ x ∈ A, ∀ y ∈ B, ∀ y′ ∈ B, (〈x, y〉 ∈
f and 〈x, y′〉 ∈ f)⇒ y = y′. For this reason, we use the conventional notation y = f(x) rather

than 〈x, y〉 ∈ f , and the notation f : A → B to denote that f is a function from A (the domain

of f ), to B (the range of f ).1 Note that the identity relation 11A on any set A is a also a function

11A : A→ A from A to itself.

A function f from a set A to a set B is:

• injective (or one-to-one) iff different elements in the domain are mapped to different

elements in the range (formally, x 6= y ⇒ f(x) 6= f(y));2

• surjective (or onto) iff all elements in the range are images of some element in the domain

(formally, ∀ y ∈ B, ∃ x ∈ A, s.t. y = f(x));

• bijective (or one-to-one onto) iff it is both injective and surjective.

If a function f : A → B is bijective, then f ’s inverse is also a function f−1 : B → A since,

by definition of its inverse as a relation, ∀ y ∈ B, f−1(y) = x such that x ∈ A and y = f(x).
The inverse of f satisfies f−1(f(x)) = x for all x ∈ A, and f(f−1(y)) = y for all y ∈ B. This is

because f−1 ◦ f = 11A and f ◦ f−1 = 11B. Note that the inverse of a bijection is also a bijection.

Essentially, a bijection between two sets A and B indicates that these two sets can be identified as

each distinct element in one set corresponds to a unique distinct element in the other set.

2.1.2 Properties of relations

A binary relation r on a set S is a subset of the Cartesian product S×S; i.e., it is a set of pairs of

elements of S. We say that r is:

• reflexive iff:

11S×S ⊆ r (2.1)

where 11S is the identity relation on S;

• symmetric iff:

r = r−1 (2.2)

where r−1 is the inverse relation of r;

• antisymmetric iff:

r ∩ r−1 ⊆ 11S×S (2.3)

where r ∩ r′ is the intersection of r and r′; viz., the relation on S defined as: r ∩ r′
def
=

{ 〈x, y〉 | 〈x, y〉 ∈ r and 〈x, y〉 ∈ r′ };

1One will note that a relation rAB in A×B is also a function from A to P(B) [11].
2Or, equivalently, iff f(x) = f(y) ⇒ x = y.

Copyright c© 2020 by the Authors All Rights Reserved
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• transitive iff:

r ◦ r ⊆ r (2.4)

where r ◦ r′ is the composition of r and r′.

DEFINITION 2.1 (PREORDER) A relation r on a set S is a preorder on S iff it is reflexive and

transitive; i.e., iff r satisfies conditions (2.1) and (2.4).

DEFINITION 2.2 (EQUIVALENCE) A symmetric preorder r on a set S is called an equivalence

on S; that is, r satisfies conditions (2.1), (2.2), and (2.4).

An equivalence relation ≡ on a set S defines a partition of this set; namely, a collection of

non-empty subsets Si, 1 ≤ i ≤ I≡ ∈ N, of S (the equivalence classes) such that:

1 ≤ i 6= j ≤ I≡ ⇒ Si ∩ Sj = ∅ (2.5)

and:

S =
⋃

i ≤ I≡

Si (2.6)

where I≡, the index of ≡, is the number of equivalence classes of ≡ forming the partition of S.

The equivalence class of an element of x ∈ S is denoted [x]≡ and is defined as:

[x]≡
def
= { y ∈ S | x ≡ y }. (2.7)

DEFINITION 2.3 (PARTIAL ORDER) A relation r on a set S is a partial order on S iff it is an

antisymmetric preorder on S; i.e., iff r satisfies conditions (2.1), (2.3), and (2.4).

A partially-ordered set (or poset ) is a pair S,≤ where S is a set, and ≤ is a partial order on S.

2.1.3 Homomorphisms

A homomorphism is a function between two sets possessing an algebraic structure that preserve

this algebraic structure. See Appendix Section A.1 for a detailed ontology of some algebraic

structures relevant to the material in this book.

Given any algebraic structure A, whether its concerns relations or operations, and given two

sets A and B that are both A structures, a A-homomorphism is a function f : A → B such that

f(x ⋆ y) = f(x)f(⋆)f(y) for any operation ⋆ on A corresponding to operation f(⋆) on B, or xRy
implies f(x)f(R)f(y) for any relation R on A corresponding to a relation f(R) on B.

An common example of relation homomorphism is an order-homomorphism whenever an

order relation ≤A on A is mapped by f to an order relation ≤B on B such that the following is

satisfied: for all x ∈ A and y ∈ B, x ≤A y implies f(x) ≤B f(y).
An common example of operation homomorphism is a monoid-homomorphism whenever a

monoid operation ⋆A on A is mapped by f to a monoid operation ⋆B on B such that the following

is satisfied: for all x ∈ A and y ∈ B, f(x ⋆A y) = f(x) ⋆B f(y).
A homomorphism f : A→ B is:

Copyright c© 2020 by the Authors All Rights Reserved
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• a monomorphism iff f is injective;

• an epimorphism iff f is surjective;

• an isomorphism iff f is bijective (i.e., it is both a monomorphism and an epimorphism);

• an endomorphism iff A = B;

• an automorphism iff f is a bijective endomorphism.

2.1.4 Elementary lattice theory

Lattice Theory is the formal study of properties of specific partially-ordered sets that are closed

under some operations. It is one of the major mathematical formalisms (along with Algebra and

Logic) used in the formal semantics of computation. We review here basic background from

Lattice Theory that we rely on in this work: Section 2.1.4 gives the essentials and Section 2.1.4

explains modularity and distributivity.

We restrict ourselves to notions that are relevant to our presentation with the aim to make it as

self-contained as possible. For a comprehensive treatise on the subject, the definitive reference is

Birkhoff’s book [46].

Essentials

Let L,≤ be a poset.

If all pairs of elements x and y in L admit a unique greatest lower bound (glb) in L, noted

x ∧ y, then L,≤,∧ is called a (lower) semi-lattice; by definition, ∧ is necessarily commutative.

Dually, if all pairs of elements x and y in L admit a unique least upper bound (lub) in L, noted

x ∨ y, then L,≤,∨ is called an (upper) semi-lattice; by definition, ∨ is necessarily commutative.

DEFINITION 2.4 (LATTICE) A lattice L,≤,∧,∨ is a poset such that L,≤,∧ is a lower semi-

lattice and L,≤,∨ is an upper semi-lattice.

A lower semi-lattice L,≤,∧ is called complete if all (i.e., even non-finite) subsets X ⊆ L
admit a glb in L. Dually, an upper semi-lattice L,≤,∨ is called a complete, if all subsets X ⊆ L
admit a lub in L.

A lattice L,≤,∧,∨ is lower-complete iff L,≤,∧ is a complete lower semi-lattice. Dually, it

is upper-complete iff L,≤,∨ is a complete upper semi-lattice. A lattice is complete iff it is both

lower-complete and upper-complete.

When L has a greatest element, we call it “top” and write it “⊤.” Note that ⊤
def
=

∨

L by

definition. Dually, when L has a least element, we call it “bottom” and write it “⊥.” Also note

that ⊥
def
=
∧

L by definition.

PROPOSITION 2.1 (MODULAR INEQUALITY) In any lattice L,≤,∧,∨, the following holds:

if x ≤ y then x ∨ (z ∧ y) ≤ (x ∨ z) ∧ y (2.8)

for all x, y, z in L.

Copyright c© 2020 by the Authors All Rights Reserved
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PROPOSITION 2.2 (DISTRIBUTIVE INEQUALITIES) In any lattice L,≤,∧,∨, the following two

inequalities hold:

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ y), (2.9)

x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ y) (2.10)

for all x, y in L.

DEFINITION 2.5 (COMPLEMENTED LATTICE) A complemented lattice is a lattice L,≤,∧,∨
with top ⊤ and bottom ⊥ in which for any element x ∈ L, there is a unique complement x ∈ L
satisfying:

x ∨ x = ⊤ (2.11)

and:

x ∧ x = ⊥ (2.12)

DEFINITION 2.6 (BOOLEAN LATTICE) A Boolean lattice is a lattice that is also a boolean ring;

i.e., it is a distributive complemented lattice.

Modularity and distributivity

Intuitively, when thinking of an ordering as comparing information contents, submodularity —

i.e., Inequality (2.8) — and subdistributivity — i.e., Inequality (2.9) or Inequality (2.10) — express

the fact that there may be non-uniform distribution of information either horizontally (modularity)

or vertically (distributivity). When equalities rather than inequalities are required to hold always,

this restricts the class of lattices to fully modular and fully distributive lattices.

DEFINITION 2.7 (MODULAR LATTICE) A modular lattice L,≤,∧,∨ is a lattice in which the

modular inequality (2.8) becomes an equality everywhere; viz.,

if x ≤ y then x ∨ (z ∧ y) = (x ∨ z) ∧ y (2.13)

for all x, y, z in L.

A useful way to visualize what makes a lattice be modular is that, for all pair of elements x and

y, the interval between x and x ∨ y (= lub(x, y)) is order-isomorphic with the interval between

x∧ y (= glb(x, y)) and y. In other words, in a modular lattice, opposite edges of diamond-shaped

order diagrams are isomorphic (i.e., bijective and order-homomorphic). This is why modularity is

often referred to as the “diamond isomorphism” property.3 Formally, this means that for any pair

x and y, the two functions u→
(

u∨x
)

and v →
(

v∧y
)

are mutually inverse order isomorphisms.

The following result provides a simple test of modularity.

THEOREM 2.1 (MODULARITY CONDITION) Any lattice that admits a sublattice isomorphic to

the 5-element lattice on the left side of Figure 2.1 is not modular.

Copyright c© 2020 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 10 Version of April 10, 2020

©

© © ©

©

©

©

©

©

©

Non-modular lattice diagram Non-distributive lattice diagram

Figure 2.1: Non-modular and non-distributive lattice diagrams

DEFINITION 2.8 (DISTRIBUTIVE LATTICE) A distributive latticeL,≤,∧,∨ is a lattice in which

the inequality in condition (2.9) — or, equivalently the inequality in condition (2.10) — is strength-

ened into an equality everywhere.

The following result provides a simple test of distributivity.

THEOREM 2.2 (DISTRIBUTIVITY CONDITION) Any lattice that admits a sublattice isomorphic

to the 5-element lattice on the right side of Figure 2.1 is not distributive.

Therefore, a way to visualize whether a lattice is distributive is when all paths between two

related elements have equal lengths; namely, information contents varies uniformly vertically.

A useful property is that uniform vertical distribution of information entails necessarily uniform

horizontal distibution of information. Indeed, it is not difficult to derive the following important

fact.

THEOREM 2.3 Every distributive lattice is also modular.

2.2 Fuzzy Set Algebra

In this section, we review essential terminology and notation on Fuzzy Set algebra used in this

book. Section 2.2.1 covers fuzzy relations; Section 2.2.2 covers fuzzy equivalence relations (called

similarities); Section 2.2.3 covers fuzzy partial orders; Section 2.2.4 covers fuzzy lattices; and,

Section 2.2.5 covers hiher-order fuzzy sets.

The fuzzy operator symbol on [0.0, 1.0]× [0.0, 1.0] we shall use for fuzzy conjunction, also

called Triangular norm or T-norm,4 is ∧ (resp., ∨ for its fuzzy dual operation). This is generally

interpreted as min (resp., max); e.g., as in Zadeh’s seminal paper [176]. But other fuzzy operation

interpretations can be considered depending on the desired effect.

3https://en.wikipedia.org/wiki/Modular lattice#Diamond isomorphism theorem
4See https://www.encyclopediaofmath.org/index.php/Triangular norm.
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Thus, all the issues considered in this book are generic in the choice of fuzzy operators. In-

deed, in fuzzifying terms, or anything for that matter, it is important to realize that many kinds of

fuzziness may be obtained depending on the choice of these operators. In this section, we make

some general points regarding the interpretations of fuzzy operators over the continuous interval

[0.0, 1.0] other than the classical min and max.

Given to sets A and B, we use the notation BA to denote the set of functions from A to B.

DEFINITION 2.9 (FUZZY SET) A fuzzy set on a universe U is a function in [0.0, 1.0]U .

When ambiguity may arise, a conventional set will be explicitly qualified as a “crisp” set.5

In Set Theory, a set S of elements of a universeU is formally identified with its Boolean-valued

characteristic function 1S : U → { false, true } so that for all x in U , x ∈ S iff 1S(x) = true.

This defines a Boolean algebra isomorphism between the set of subsets of elements of U and

{ false, true }-valued functions on U . When identifying a set with its Boolean characteristic func-

tion, set operations become logical operations: intersection becomes conjunction [1S∩S′(x)
def
=

1S(x) and 1S′(x)], union becomes disjunction [1S∪S′(x)
def
= 1S(x) or 1S′(x)], and com-

plementation becomes negation [1S(x)
def
= not 1S(x)]. Another equivalent Boolean algebra

isomorphism is the one identifying the logical constants false and true with the numerical values

0 and 1, respectively, and the logical operations and, or, and not, with the numerical operations

min, max, and x → (1.0 − x), respectively.6 This is because these numerical operations on the

numbers 0 and 1 stay isomorphically internal to {0, 1} ⊂ [0.0, 1.0] with 0 < 1. Formally, this

amounts to plunging the discrete 2-valued poset ({0, 1},≤) homomorphically into the continuous

unit interval ([0.0, 1.0],≤) with the identical numerical operations (min, max, and x→ (1.0−x)).
Hence, when seen as [0.0, 1.0]-valued functions, these latter operations are a homomorphic exten-

sion of conventional Boolean algebra. This was the interpretation proposed originally by Zadeh

in his seminal article on Fuzzy Sets [176].

However, there are many other ways in which conventional two-valued Boolean {0, 1}-Logic

may be fuzzified by extending it to a multiple-valued logic depending on whether it allows multi-

ple discrete or continuous similarity degrees in [0.0, 1.0] (or any suitable “L-structure” [83, 74]).

In essence, any Boolean Algebra can be fuzzified by extending its basic Boolean connectives

and, or, not, on the {0, 1} similarity degrees of characteristic function (and thus the set operations

intersection, union, and complementation), respectively into generic Boolean Lattice operations

∧, ∨, x→ x on [0.0, 1.0]-valued functions whereby:

1. 1S∩S′(x)
def
= 1S(x) ∧ 1S′(x),

2. 1S∪S′(x)
def
= 1S(x) ∨ 1S′(x),

3. 1S(x)
def
= 1S(x).

This may look like an innocuous property, but it turns out that, as thoroughly explained in Dubois

and Prade’s comprehensive treatise on Fuzzy Sets and Systems [74],7 there may be many other

5This is the commonly used qualifier, in contrast to “fuzzy.”
6We use the notation “x→ e” to denote the nameless function associating the expression e to the formal argument

x; it is expressed as λx.e in functional programming.
7See also the more recent [180].
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possible choices for the lattice operations on [0.0, 1.0] for ∧, ∨, and x→ x besides min, max, and

x → (1.0 − x). It is for this reason, and with no loss of generality, that we use the former three

generic operations rather than the latter specific more intuitive (and more familiar) ones in this

book since our results hold in all general fuzzy algebras.

All we need are lattice operations ∧ and ∨ (and x→ x) on [0.0, 1.0], which can then be made

to apply to fuzzy sets defined as functions in [0.0, 1.0]U by pointwise extension. Namely:

∧ : [0.0, 1.0]U×[0.0, 1.0]U → [0.0, 1.0]U

∨ : [0.0, 1.0]U×[0.0, 1.0]U → [0.0, 1.0]U

x→ x
def
= 1.0− x : [0.0, 1.0]U → [0.0, 1.0]U

⊤
def
= x→ 1.0 : [0.0, 1.0]U

⊥
def
= x→ 0.0 : [0.0, 1.0]U







































(2.14)

so that:

• [0.0, 1.0]U ,∧,⊤ is a commutative monoid,

• [0.0, 1.0]U ,∨,⊥ is a commutative monoid,

• ∧, ∨ are mutually distributive,

• ⊥ = ⊤,

• ⊤ = ⊥,

and, for all fuzzy sets φ, φ1, φ2:

• φ ∧ ⊥ = ⊥,

• φ ∨ ⊤ = ⊤,

• φ1 ∧ φ2 = φ1 ∨ φ2,

• φ1 ∨ φ2 = φ1 ∧ φ2,

• φ = φ.

From this, a plethora of familiar algebraic and order-theoretic properties ensue [46]. In the lit-

erature, the “∧” operator is sometimes called “T-norm” (for “triangular norm”), while the “∨”

operator is sometimes called “T-conorm” or “S-norm.” Thanks to their algebraic properties, they

can be derived from one another by duality using:

φ1 ∧ φ2 =
(

φ1 ∨ φ2

)

φ1 ∨ φ2 =
(

φ1 ∧ φ2

)

.

(2.15)

In particular, since φ
def
= 1.0− φ:

φ1 ∧ φ2 = 1.0−
(

(1.0− φ1) ∨ (1.0− φ2)
)

φ1 ∨ φ2 = 1.0−
(

(1.0− φ1) ∧ (1.0− φ2)
)

.
(2.16)
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For example, here are three popular such ∧ and ∨ operations on [0.0, 1.0] used in practice [74],

[102]:

• “Gödel” fuzzy operators:

{

α1 ∧G
α2

def
= min(α1, α2)

α1 ∨G
α2

def
= max(α1, α2)

(2.17)

• “Product” (or “probabilistic”) fuzzy operators:

{

α1 ∧P
α2

def
= α1α2

α1 ∨P
α2

def
= α1 + α2 − α1α2

(2.18)

• “Łukasiewicz” fuzzy operators:

{

α1 ∧L
α2

def
= max(0.0, α1 + α2 − 1.0)

α1 ∨L
α2

def
= min(α1 + α2, 1.0)

(2.19)

Choosing any of these, or others, will determine how fuzzy inference is affected by each argument.

For example, contrary to the “Gödel” fuzzy conjunction ∧G that imposes the value of one over the

other of two truth values, the “Product” version ∧P is less “drastic” and will take a more balanced

consideration of the values of both arguments. There are a few other fuzzy operators that have

been given specific denominations that correspond to particular situations.8 But one may design

their own adequate ∧ operator (or ∨ operator since one can be derived from the other by duality).9

Be that as it may, in all the actual numerical examples provided in this book for illustration,

we use min (resp., max), for simplicity reasons.

2.2.1 Fuzzy relation

Let us now fuzzify the conventional set theoretic definitions reviewed in Section 2.1.2. It is a

straightforward homomorphic extension of the conventional view of (crisp) sets as {0, 1}-valued

functions to [0.0, 1.0]-valued functions. Indeed, the former are just a particular case of the more

general (fuzzy) sets seen as [0.0, 1.0]-valued characteristic functions.10 That is, all the fuzzy no-

tions are obtained as straightforward extensions of their crisp counterparts through a Boolean

lattice homomorphism. The advantage of the fuzzy extension over conventional sets is that, being

structurally richer, it is more expressive. It is a homomorphic extension insofar as all the formal

algebraic properties of fuzzy sets and fuzzy-set connectives reduce to their conventional crisp ver-

sions when unfuzzifying the truth value φ(x) of every fuzzy element φ(x)/x of a fuzzy set φ into

a crisp value in {0, 1} for truth values which, when compared to a given value α in [0.0, 1.0], are

either strictly less (assimilated to 0), or greater or equal (assimilated to 1). Informally, this is the

8See, e.g.: http://www.nicodubois.com/bois5.2.htm.
9Designing specific fuzzy norms can be done visually in 3D using publicly available tools such as, e.g.,

http://www.math.uri.edu/ b̃kaskosz/flashmo/graph3d2/.
10Such a fuzzy characteristic function is called a “membership function” in the literature following Zadeh’s original

terminology [176].
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crisp set of elements with “at least” α as fuzzy truth value. This is called a fuzzy set’s “α-cut” φα

such that φα(x)
def
= 0 whenever φ(x) < α and φα(x)

def
= 1 whenever φ(x) ≥ α, for any given

approximation degree α in [0.0, 1.0].
We shall identify a fuzzy set φ on a set S with a function (φ : S → [0.0, 1.0]) ∈ [0.0, 1.0]S.

DEFINITION 2.10 (FUZZY RELATION) A fuzzy relation on a set S is a fuzzy set on S×S.

The following properties generalize those of crisp binary relations seen in Section 2.1.2. Like

in the crisp case, we will look closer at essentially two kinds of fuzzy binary relations: fuzzy

orders and fuzzy equivalences.11

Let ρ : S×S → [0.0, 1.0] be a fuzzy relation on S. We say that ρ is:

• reflexive iff:

11S×S ≤ ρ (2.20)

where 11S×S is the fuzzy identity relation on S defined as: 11S×S(x, y) = 1 if x = y and

0 if x 6= y, for all x and y in S; and ≤ is fuzzy set inclusion defined as: ρ ≤ ρ′ iff

ρ(x, y) ≤ ρ′(x, y), for all x and y in S;

• symmetric iff:

ρ = ρ−1 (2.21)

where ρ−1 is the fuzzy inverse of ρ; viz., the fuzzy relation on S defined as: ρ−1(x, y)
def
=

ρ(y, x), for all x and y in S;

• antisymmetric iff:

ρ ∧ ρ−1 ≤ 11S×S (2.22)

where the fuzzy meet ρ ∧ ρ′ is the fuzzy relation on S defined as:
(

ρ ∧ ρ′
)

(x, y)
def
=

ρ(x, y) ∧ ρ′(x, y), for all x and y in S;

• transitive iff:

ρ ◦ ρ ≤ ρ (2.23)

where the fuzzy composition ρ ◦ ρ′ is the fuzzy relation on S defined as:
(

ρ ◦ ρ′
)

(x, y)
def
=

∨

z∈S

(

ρ(x, z) ∧ ρ′(z, y)
)

, for all x and y in S.

DEFINITION 2.11 (FUZZY PREORDER) A fuzzy relation ρ on a set S is a fuzzy preorder on S
iff it is reflexive and transitive; i.e., iff r satisfies conditions (2.20) and (2.23).

11See [174] for even finer and more expressive kinds of useful fuzzy relations that can be defined algebraically.
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2.2.2 Similarity

DEFINITION 2.12 (FUZZY EQUIVALENCE) A fuzzy equivalence ρ on a set S is a fuzzy relation

on S which is a symmetric fuzzy preorder on S — that is, ρ satisfies conditions (2.20), (2.21), and

(2.23).

A fuzzy equivalence relation is also called “similarity” relation in the literature [102]. For this

reason, we speak of “similarity degree” to denote the truth value of a pair so related.

A similarity relation∼ on a set S is a fuzzy equivalence relation on S; i.e., a fuzzy set of pairs

of S×S. When S is a finite discrete set, say indexed over {1, . . . , n}, since a similarity relation

∼ on S is a fuzzy subset of S×S, the three conditions of an equivalence can be visualized on a

square n×n matrix ∼∈ {1, . . . , n}2 → [0.0, 1.0] as follows. For all i, j, k = 1, . . . , n:

• reflexivity: i ∼ i = 1.0 (i.e., entries on the diagonal are equal to 1.0);
• symmetry: i ∼ j = j ∼ i (i.e., all symmetric entries on either side of the diagonal are

equal);
• transitivity: i ∼ k∧k ∼ j ≤ i ∼ j, for any k ∈ { 1, . . . , n} (i.e., going via an intermediate

element will always result in a smaller or equal similarity degree than going directly).12

Given a similarity relation ∼ on a set S, the subset of [0.0, 1.0] denoted DEGREES
∼ and

defined as DEGREES
∼ def

= {α ∈ [0.0, 1.0] | x ∼α y, for somex, y ∈ S } is called the “similarity

degree set” of ∼. A similarity degree α ∈ DEGREES
∼ can thus be used as an approximation-

degree condition, and a similarity can be rendered a crisp equivalence on S by keeping only pairs

in ∼ with similarity degree greater than or equal to α (i.e., the α-cut of the similarity).

The similarity class [x]∼α of an element x ∈ S at an approximation degree α in [0.0, 1.0] given

a similarity∼ on S is defined as:

[x]∼α
def
= { y ∈ S | x ∼β y, for some β ∈ [α, 1.0] }. (2.24)

Thus, as the similarity degree α decreases from 1.0 down to 0.0, more similarities appear in ∼α

between pairs of distinct elements of S that were not related in α-cuts of ∼ at greater approx-

imation degrees. In other words, as α decreases, the equivalence classes of ∼α grow larger by

coalescing classes of lesser similarity degrees; that is, for any x ∈ S, if α ≤ β, then [x]∼β ⊆ [x]∼α .

In particular, it is always the case that [x]∼0.0 = S; indeed, then, all elements are indistinguishable.

Note finally that, for any pair 〈x, y〉 in S×S and similarity ∼: S×S → [0.0, 1.0], if x ∼α y for

some α in [0.0, 1.0], then x ∼β y for all β ∈ [0, α]. For this reason, unless otherwise specified,

whenever we use an approximation degree as a subscript, we mean the greatest such degree.

2.2.3 Fuzzy partial order

DEFINITION 2.13 (FUZZY PARTIAL ORDER) A fuzzy relation ρ on a set S is a fuzzy partial

order on S iff it is an antisymmetric fuzzy preorder; i.e., iff ρ satisfies conditions (2.20), (2.22),

and (2.23).

12Here and elsewhere in this book, we shall use ∧/∨ for fuzzy conjunction/disjunction in generic formulas. We

prefer using these more general symbols in our formalization since which specific fuzzy operations are used is irrel-

evant, as justified in Section 2.2. However, we shall use min/max in all the illustrative examples we give that use

actual numbers.
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For a fuzzy partial order, as in the case of a fuzzy equivalence relation, when S is a finite

discrete set {x1, . . . , xn}, the three conditions of the above definition can be visualized on a square

n×n matrix � in [0.0, 1.0]2 as follows:

• reflexivity and transitivity (just as for a similarity matrix);

• antisymmetry: the matrix must be triangular (up to reordering of columns and lines); this

is because �ij > 0 implies �ji = 0, for all i, j = 1, . . . , n (i.e., all symmetric entries on

either side of the diagonal may not be both non-zero).

For example, the fuzzy binary relation � on the 6-element set {x1, . . . , x6} defined as the

fuzzy min/max reflexive-transitive closure of the following weighted acyclic graph:13

x5 x6

x2 x3 x4

x1

≺.6 ≺.5 ≺.6 ≺.4

≺.8 ≺.2 ≺.6

corresponds to the following fuzzy matrix:

�
def
=

















1.0 0.8 0.2 0.6 0.6 0.4
0.0 1.0 0.0 0.0 0.6 0.0
0.0 0.0 1.0 0.0 0.5 0.0
0.0 0.0 0.0 1.0 0.6 0.4
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0

















(2.25)

upon which these conditions can be verified — which means that the fuzzy relation � so defined

is a fuzzy partial order on the set {x1, x2, x3, x4, x5, x6}.
Note that, just as in the crisp case, any fuzzy preorder � on a set S (i.e., a fuzzy relation on S

that is reflexive and transitive) always implicitly defines the following fuzzy relations:

• a similarity∼ on S defined, for any α ∈ [0.0, 1.0], as:

∼α
def
= �α ∧ �α (2.26)

where �α is the fuzzy relation defined as: �α
def
= �−1

α ;

• a fuzzy partial order�, a fuzzy set of partial orders �α on each partition Π∼
β of S generated

by ∼ in the fuzzy partition Π∼ def
= {Π∼

β | β ∈ DEGREES
∼ }, such that:

[x]∼β �α [y]∼β iff x′ �α y′ (2.27)

for some x′ ∈ [x]∼β and some y′ ∈ [y]∼β .
13This example is from [177].
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2.2.4 Fuzzy lattice

DEFINITION 2.14 (FUZZY LATTICE) A fuzzy lattice is a family of lattices 〈L,≤α,∨α,∧α〉 on

partitions Πα of similarity classes at each approximation degree α ∈ DEGREES
∼ where ∼ is

defined as (2.26).

Authors’ comment: Summarize relevant material from [29], [121], [60], using our notation

to be consistent with the rest.

[To be completed later. . . ]

2.2.5 Higher-order fuzzy sets

A “Type-2 Fuzzy Set” is a fuzzy set where the approximation degree is itself fuzzy. This was

introduced by Zadeh [179] in 1975 in response to criticisms regarding the fact that the approxima-

tion degrees used in Fuzzy Logic do not represent uncertainty as probabilities do. A probability

entails possible fluctuations of likelihood. This is not so for fuzzy truth values. There are no mo-

ments (mean, variance, higher-order moments), nor even (first, second, higher) derivatives. So in

order to introduce a less commited notion of fuzziness, Zadeh introduced fuzzy values of higher

types.

The idea is to fuzzify the membership value: instead of a value in [0.0, 1.0] (called a “Type-1”

membership value), a Type-2 membership value is a non-empty closed-interval [α, β] ⊆ [0.0, 1.0]
(i.e., 0.0 ≤ α < β ≤ 1.0). Writing ∧1 and ≤1 the Type-1 fuzzy conjunction and ordering on

[0.0, 1.0], a ∧2 operation on Type-2 values is defined as:14

[α, β] ∧2 [α
′, β ′]

def
= [α ∧1 α

′, β ∧1 β
′], (2.28)

from which the corresponding ordering of the fuzzy Type-2 values is derived as:

[α, β] ≤2 [α, β
′] iff α ≤1 α

′ and β ≤1 β
′. (2.29)

The process can be repeated in this way for fuzzy sets of higher types. If we define a Type-0

fuzzy set as a crisp set (i.e., where membership values are in {0, 1}), and a Type-n fuzzy set for

any n > 0 as a fuzzy set whose membership values are Type-(n−1) values (i.e., intervals of fuzzy

Type-(n−1) values), for any n > 0, then Equation (2.28) and Equation (2.29) can be generalized

to define fuzzy conjunction and ordering of Type-n for any n > 0. That is,

[α, β] ∧n [α
′, β ′]

def
= [α ∧n−1 α

′, β ∧n−1 β
′], (2.30)

and:

[α, β] ≤n [α, β ′] iff α ≤n−1 α
′ andβ ≤n−1 β.

′ (2.31)

An essential result in [179] is that (2.30) and (2.31) confer a fuzzy lattice structure to any

Type-n fuzzy set, for any n ≥ 0.

14Op. cit., pp. 241ff.

Copyright c© 2020 by the Authors All Rights Reserved
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One way to view this generalization of “traditional” Type-1 fuzzy sets into Type-2 fuzzy sets

is as adding a fuzzy dimension: instead of 2D, where a membership is caracterized as pair 〈x, α〉
giving the [0.0, 1.0] fuzzy membership of x as α, a Type-2 fuzzy set is a 3D triple 〈x, α, β〉 to ex-

press that 〈x, α〉 has β as its Type-1 fuzzy truth value: 〈〈x, α〉, β〉; i.e., that the fuzzy membership

value α for x has itself the fuzzy truth value β.

Similarly, higher-type fuzzy sets correspond to higher-dimension fuzzy sets (i.e., fuzzy set of

fuzzy sets). Mathematically, for any n > 0, Type-n fuzzy membership functions take values in

n-dimensional subsets of [0.0, 1.0]n, and Type-n fuzzy elements are (n+1)-tuples in S×[0.0, 1.0]n.

Technically, Zadeh’s definition requires all fuzzy sets to be convex fuzzy sets [176].15 Infor-

mally, a convex fuzzy set on a compact continuous set of elements is one such that element mem-

bership values never zig-zag up, then down, then up again, for increasing elements. A non-convex

fuzzy set can always be “convexified” into its convex hull; i.e., into the least convex membership

function containing it (for the fuzzy subset ordering).16 This is the assumption made by Zadeh

in [179].

15Op. cit., pp. 346ff.
16Geometrically, this is done by “shrink-wrapping” a non-convex set using any of the many existing

convex-hull algorithms known in Computational Geometry.
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Version of April 10, 2020

First-Order Terms

3.1 Introduction

We are motivated by the versatile use of the First-Order Term (FOT ) as a data structure as done

in Logic Programming thanks to the unification operation ([95] and [120]) and Inductive Logic

Programming thanks to the generalization (or “anti-unification”) operation ([156] and [94]). We

extend the formal characterization of the set of FOT s modulo variable renaming as a lattice due

to Reynolds ([141]) and Plotkin ([135]) to such an algebraic structure where similarities among

distinct constructors may exist that tolerate fuzzy FOT approximation. We study how these

notions may be formalized while abiding by a fully declarative approach based on constraint

processing in the same way as crisp unification is presented in [95] and [120], as opposed to a

procedural control-conscious algorithm such as Robinson’s [142].

Origins of unification and generalization

Unification The earliest printed account of the FOT unification operation, although not under

this name, appears in 1930 in Jacques Herbrand’s PhD thesis [95].1 Later, in 1960, Dag Prawitz

uses this as part of his Natural Deduction proof procedure for First-Order Logic [137]. Chap. 5

of Herbrand’s thesis is first translated into English in 1967 by Jean van Heijenoort [166], and his

full thesis is translated into English in 1971 by Warren Goldfarb [96].2 In his thesis, although he

does not call it “unification,” Herbrand describes a declarative specification for FOT equation

normalization more than 30 years before J. Alan Robinson actually gives the familiar name to

an equivalent procedural method and dubbing it “unification” in order to extend his resolution

principle from Proposition Logic to First-Order Logic [142]. This fact is already explicitly pointed

out in 1976 by Gérard Huet in his French thèse d’état [97]. These rules are later used explicitly by

Martelli and Montanari in 1982 (20 years after Robinson’s paper, and 55 years after Herbrand’s

1930 PhD thesis) in their method seeking to optimize Robinsons’s algorithm [120]. They do

not cite Herbrand’s thesis, although it is explicitly cited in Huet’s 1976 thesis which they cite.

Probably because its name first appears in his paper on proof by resolution in First-Order Logic

1Op. cit., Chap. 5, Sec. 2.4, pp. 95–97, where it corresponds to expanding an equation into normal form that

verifies what he calls “Property A.”
2Chap. 5 is on pp. 148ff.

http://archive.numdam.org/article/THESE_1930__110__1_0.pdf
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
http://ai.vub.ac.be/~ydehauwe/decl_prog/7_InductiveLogicProgramming.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/transysalg.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
https://www.academia.edu/3240410/A_Machine-Oriented_Logic_Based_on_the_Resolution_Principle
http://archive.numdam.org/article/THESE_1930__110__1_0.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1755-2567.1960.tb00558.x/full
https://www.academia.edu/3240410/A_Machine-Oriented_Logic_Based_on_the_Resolution_Principle
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
http://archive.numdam.org/article/THESE_1930__110__1_0.pdf
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in [142] and this name has been used in Logic Programming, most current venues attribute the

paternity ofFOT unification to Robinson.3 While the name was indeed his coinage, the operation

however was not new.

Generalization In 1970, John Reynolds and Gordon Plotkin publish each an article, in the same

volume, each giving a different but equivalent procedure for the generalization of two FOT s. The

former calls it “anti-unification” ([141], page 138), and the latter calls it “least generalization”

([135], page 155). Each describes a method for computing the most specific FOT subsuming

two given FOT s in finitely many steps. The method consists in scanning them simultaneously

from left to right as long as they agree, and where they disagree generating a pair of minimal

generalizing substitutions by introducing a fresh variable, each time replacing the disagreeing

terms with this new variable wherever they occur again simultaneously in each term.

Interestingly, in their 1982 ACM ToPLaS article on unification [120], Martelli and Montanari

use a method that computes generalization of two terms implicitly (so-called “common parts”)

in preprocessing equations into congruence classes of terms (called “multi-equations”). This is

in order to make unification more efficient by solving not just one equation but many at a time.

However, they do not point out that this common-part form derived from two terms, by keeping

only what is common in both, is in fact the dual of their unified form, which brings into one term

what is in either.

3.2 Formalizing First-Order Terms

The FOT was introduced as a data structure in software programming by the Prolog language.4

Thus, the FOT is Prolog’s universal data structure in exactly the same way as the S-expression

is that of LISP.5 In this chapter, we formalize the FOT data structure as it is used in Logic

Programming, then we expose in this formal setting its lattice-theoretic characterization before

studying fuzzy extensions thereof.6

Using formal algebra notation, we write TΣ,V for the set of FOT s on an operator signature

Σ
def
=
⊎

n≥0Σn where Σn is a set of n-ary operator symbols. The set V is a countably infinite set

of variables. Also following Prolog’s tradition, we shall designate an element f in Σ as a functor,

with arity(f) denoting its number of arguments.7 This set TΣ,V can then be defined inductively

as:

TΣ,V
def
= V ∪ { f(t1, . . . , tn) | f ∈ Σn, n ≥ 0, and ti ∈ TΣ,V , 1 ≤ i ≤ n }.

We write c instead of c() for a constant c ∈ Σ0. Also, when the set Σ of functor symbols and the

set V of variables are implicit from the context, we simply write T instead of TΣ,V .

3For example, https://en.wikipedia.org/wiki/Unification (computer science).
4https://en.wikipedia.org/wiki/Prolog
5https://en.wikipedia.org/wiki/Lisp (programming language)
6Parts of this chapter have appeared in [20] and [22]. For presentation slides, see [21].
7When arity(f) = n, this is sometimes denoted by writing f/n.

Copyright c© 2020 by the Authors All Rights Reserved
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http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Unification_(computer_science)#A_unification_algorithm
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://www.researchgate.net/publication/326282595
https://www.researchgate.net/publication/332237109
https://www.researchgate.net/publication/319478283


D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 21 Version of April 10, 2020

The set var(t) of variables occurring in a FOT t ∈ T is defined as:8

var(t)
def
=

{

{X } if t = X ∈ V
⋃n

i=1 var(ti) if t = f(t1, . . . , tn).

A term t such that var(t) = ∅ is called a ground term. We call T∅ the subset of T of ground terms.

The depth of a FOT t is a value in N defined inductively as:

depth(t)
def
=

{

0 if t ∈ V ∪ Σ0;

1 + maxni=1 depth(ti) if t = f(t1, . . . , tn) with n > 0.

The var and depth notation is extended to a set of terms T ⊂ T as var(T )
def
=
⋃

t∈T var(t) and

depth(T )
def
= maxt∈T depth(t).

3.3 Substitution

In this section, we give a brief essential account ofFOT substitutions. For additional terminology

and proofs of formal properties, please refer to A.2. Further formal order-theoretic properties of

FOT substitution and unification are also studied in [75].

In order to express the notion of instance of a term, the concept of variable substitution σ is

formalized as a functional mapping σ : V → TΣ,V that is the identity function everywhere on V

except on a finite set of n variables, n ∈ N, written dom(σ)
def
= {Xk | Xk 6= σ(Xk) }k=n

k=1 , and

called the domain of σ. The range of a substitution σ is the set of terms in T defined as ran(σ)
def
= { t ∈ T | ∃X ∈ dom(σ) s.t. σ(X) = t }.

Such a mapping σ from V to T is then extended homomorphically to a mapping σ̄ from T to

T as follows:

σ̄(t)
def
=

{

σ(X) if t = X ∈ V

f(σ̄(t1), . . . , σ̄(tn)) if t = f(t1, . . . , tn)
(3.1)

which, because it coincides with σ on V , will be written simply σ rather than σ̄, even when applied

to non-variable terms. In a similar fashion, substitutions may be applied to equations, as well as

to sets of terms or set of equations in the obvious manner.

We shall denote as SUBST
T

the set of functions in V → T that are substitutions. Because it

is non-identical only on a finite number of variables, we can express a substitution σ in SUBST
T

as a finite set of “term/variable” pairs of the form { σ(Xk)/Xk | Xk 6= σ(Xk), k = 1, . . . , n }
associating each of a finite set of n variables with a term not equal to it. When the number n of

variables is equal to 0, this set is empty, giving the identity on V, which we shall call the empty

substitution. Each pair t/X in a substitution’s set notation is read “term t is substituted for all

occurrences of variable X .”

By tradition, rather than the prefix parenthesized notation usually used for functional applica-

tion, substitution application to a term is written in postfix notation; viz., tσ instead of σ(t). Thus,

8We shall use Prolog’s convention of writing variables with capitalized symbols.

Copyright c© 2020 by the Authors All Rights Reserved
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as defined by Expression (3.1), a substitution σ is a function in T → T mapping a term t into

another one noted tσ, called its (σ-)instance, obtained after replacing all occurrences in t (if any)

of variables in dom(σ), the domain of the substitution, by the term associated with this variable

by σ. If var(ran(σ)) = ∅, σ is called a ground substitution, and for any term t in T , tσ ∈ T∅ and

is called a ground instance of t.
We define the composition of two substitutions σ ∈ SUBST

T
and θ ∈ SUBST

T
seen as finite

sets of non-identical term/variable pairs as the set of pairs written as σθ and defined in terms of σ
and θ as:

σθ
def
=

(

{ tθ/X | t/X ∈ σ } \ {X/X | X ∈ dom(σ) }
)

∪
(

θ \ { u/Y | Y ∈ dom(σ) }
)

.

(3.2)

3.4 FOT Subsumption Lattice

The lattice-theoretic properties of FOT s as data structures were initially and independently stud-

ied by Reynolds (in [141]) and Plotkin (in [134] and [135]). They both noted that the set T is

preordered by term subsumption (denoted as ‘�’); viz., t � t′ (and we say: “t′ subsumes t”) iff

there exists a variable substitution σ ∈ SUBST
T

such that t′σ = t. Two FOT s t and t′ are consid-

ered “equal up to variable renaming” (denoted as t ≃ t′) whenever both t � t′ and t′ � t. Then,

the quotient set of first-order terms modulo variable renaming augmented with a bottom element

T/≃ ∪ {⊥T } has a lattice structure for subsumption. It has a least element ⊥T that corresponds to

no term in T , since there exists no term that is an instance of all terms. It has a top element which

is the set of all variables V , since V is the class of any variable modulo renaming.

Unification corresponds to the greatest lower bound (glb) operation. This is the case also for

failure of unification as in this case the glb operation results in ⊥T . Given two FOT s t1 and

t2, unifying them is seeking to compute a substitution of their variables σ such that: t1σ = t2σ.

Such a substitution, when one exists, is not unique since any less general substitution satisfies the

equation; indeed, then t1σθ = t2σθ for any θ ∈ SUBST
T

. We want only the most general such

substitution. That is, for any other substitution θ ∈ SUBST
T

such that t1θ = t2θ, then necessarily

θ � σ. This is why it is called the Most General Unifier (mgu) of t1 and t2 [142]. If no such

substitution exists, unification fails and returns ⊥T as the glb of t1 and t2, and no substitution.

Formally, this is equivalent to instantiating the two terms with a bottom substitution⊥SUBST
T

that is

added to SUBST
T

. This new substitution is a zero element in the quotient monoid of substitutions

with composition. Namely, for all σ ∈ SUBST
T

, σ⊥SUBST
T

= ⊥SUBST
T
σ = ⊥SUBST

T
; which

implies that ⊥SUBST
T
� σ for all σ ∈ SUBST

T
. From this, it follows necessarily that, for all

t ∈ T , t⊥SUBST
T
= ⊥T . Thus, when t1 and t2 are not unifiable, mgu(t1, t2) = ⊥SUBST

T
.

The dual operation, generalization of two terms, yields a term that is their least upper bound

(lub) for subsumption. That is, it finds the most specific term t, and two most general substitutions

σ1 and σ2 such that ti = tσi for i = 1, 2. Importantly, unlike unification, generalization cannot

fail. This is because two term structures having different functors, or two unequal terms one of

which is a variable, are always generalizable into a new variable (which may be construed as

“anything”). Also, generalization yields two substitutions rather than just one like for unification.

Copyright c© 2020 by the Authors All Rights Reserved
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This is because a variable in the generalizing term t may correspond to two different instantiations

in t1 and t2. Unification, on the other hand, seeks the same instantiation for all the variables in t1
and t2 to compute their most general common instance.

This can be summarized as the lattice diagram shown in Figure 3.1. In this diagram, given a

pair of terms 〈t1, t2〉, the pair of substitutions 〈σ1, σ2〉 are their respective most general generaliz-

ers, and the substitution σ is the pair’s most general unifier (mgu).

t = lub(t1, t2)

t1 = tσ1 t2 = tσ2

t =

{

t1σ = t2σ
tσ1σ = tσ2σ

}

= glb(t1, t2)

σ1 σ2

σ σ

Figure 3.1: Subsumption lattice operations

Example 3.1 FOT lattice operations — Consider the terms t1 and t2 defined as:

t1
def
= f(a, g(X1, b), Y1, g(a, Y1)),

t2
def
= f(X2, Y2, g(X2, g(X2, b)), g(X2, g(a, Z2))).

Their most general unifier mgu(t1, t2) is the substitution σ given by:

σ = { a/X2, g(X1, b)/Y2, g(a, g(a, b))/Y1 , g(a, b)/Z2 }

and so their greatest lower bound glb(t1, t2) = t is given by:

t = t1σ = t2σ = f(a, g(X1, b), g(a, g(a, b)), g(a, g(a, g(a, b)))).

Dually, their least upper bound lub(t1, t2) = t is given by t = f(X,Y,Z, g(U, V )), with their most

general generalizers 〈σ1, σ2〉 such that:

t1 = tσ1 with σ1 = { a/X, g(X1 , b)/Y, Y1/Z, a/U, Y1/V }

t2 = tσ2 with σ2 = {X2/X, Y2/Y, g(X2, g(X2, b))/Z,X2/U, g(a, Z2)/V }.

Next, we formalize these lattice operations on FOT s by specifiying them as declarative con-

straint normalization.

Copyright c© 2020 by the Authors All Rights Reserved
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3.5 FOT Unification Rules

Figure 3.2 illustrates FOT unification as a commutative diagram constraint. Solving such a con-

t1
?
= t2

t1σ = t2σ

σ σ

Figure 3.2: FOT unification as a constraint

straint is done by a system of equation-normalization rules that we shall call Herbrand-Martelli-

Montanari [95], [120]. These rules are given in Figure 3.3. Each rule can be proven correct as a

solution-preserving transformation of a set of equations. In Rule VARIABLE ELIMINATION, the no-

tation E[t/X ] denotes the set of equations E in which the term t is substituted for all occurrences

of the variable X .

Thus, we can use these rules to unify two FOT s t1 and t2, starting with the singleton set of

equations E
def
= { t1

.
= t2 }.9 Then, we transform this set of equations using any applicable rule

in any order until none applies. This always terminates into a finite set of equations E ′. If all the

equations in E ′ are of the form X
.
= t with X occurring nowhere else in E ′, then this is a most

general unifying substitution (up to consistent variable renaming) σ
def
= { t/X | X

.
= t ∈ E ′ }

solving the original equation (i.e., t1σ = t2σ); otherwise, there is no solution.

In the rules of Figure 3.3, Rule VARIABLE ELIMINATION has the side condition X 6∈ var(t) to

prevent cyclic terms (such as, e.g.,X = f(X)) whose presence indicates noFOT solutions. This

condition could be omitted if wished, thus extending the set of FOT s and solutions of equations

to rational FOT s — also called “infinite trees” (see, e.g., [165], [103], [62]).

Example 3.2 FOT unification — Consider the equation set { t1
.
= t2 } for the terms t1 and t2 of

Example 3.1:

{ f(a, g(X1, b), Y1, g(a, Y1))
.
= f(X2, Y2, g(X2, g(X2, b)), g(X2, g(a, Z2))) }

and let us apply the rules of Figure 3.3:

• Rule TERM DECOMPOSITION:

{ a
.
= X2, g(X1, b)

.
= Y2, Y1

.
= g(X2, g(X2, b)), g(a, Y1)

.
= g(X2, g(a, Z2)) } ;

9In such equations, we use the notation t1
.
= t2 not to confuse it with the equality symbol “=” (at the meta-level).
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TERM DECOMPOSITION

[n ≥ 0]

E ∪ { f(s1, . . . , sn)
.
= f(t1, . . . , tn) }

E ∪ { s1
.
= t1, . . . , sn

.
= tn }

VARIABLE ERASURE

E ∪ {X
.
= X }

E

VARIABLE ELIMINATION

[X 6∈ var(t); X occurs in E]

E ∪ {X
.
= t }

E[t/X] ∪ {X
.
= t }

EQUATION ORIENTATION

[t 6∈ V]

E ∪ { t
.
= X }

E ∪ {X
.
= t }

Figure 3.3: Herbrand-Martelli-Montanari unification rules

• Rule EQUATION ORIENTATION to a
.
= X2:

{X2
.
= a, g(X1, b)

.
= Y2, Y1

.
= g(X2, g(X2, b)), g(a, Y1)

.
= g(X2, g(a, Z2)) } ;

• Rule VARIABLE ELIMINATION to X2
.
= a:

{X2
.
= a, g(X1, b)

.
= Y2, Y1

.
= g(a, g(a, b)), g(a, Y1)

.
= g(a, g(a, Z2)) } ;

• Rule EQUATION ORIENTATION to g(X1, b)
.
= Y2:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, Y1)

.
= g(a, g(a, Z2)) } ;

• Rule VARIABLE ELIMINATION to Y1
.
= g(a, g(a, b)):

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, g(a, g(a, b)))

.
= g(a, g(a, Z2)) } ;

• Rule TERM DECOMPOSITION to g(a, g(a, g(a, b)))
.
= g(a, g(a, Z2)):

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), a

.
= a, g(a, g(a, b))

.
= g(a, Z2) } ;

• Rule TERM DECOMPOSITION to a
.
= a:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, g(a, b))

.
= g(a, Z2) } ;

• Rule TERM DECOMPOSITION to g(a, g(a, b))
.
= g(a, Z2):

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), a

.
= a, g(a, b)

.
= Z2 } ;
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• Rule TERM DECOMPOSITION to a
.
= a:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, b)

.
= Z2 } ;

• Rule EQUATION ORIENTATION to g(a, b)
.
= Z2:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), Z2

.
= g(a, b) } .

This last equation set is in normal form defining the substitution

σ = { a/X2, g(X1, b)/Y2, g(a, g(a, b))/Y1 , g(a, b)/Z2 }.

So the greatest lower bound t
def
= glb(t1, t2) of:

t1
def
= f(a, g(X1, b), Y1, g(a, Y1))

and:

t2
def
= f(X2, Y2, g(X2, g(X2, b)), g(X2, g(a, Z2)))

is given by:

t = t1σ = t2σ = f(a, g(X1, b), g(a, g(a, b)), g(a, g(a, g(a, b)))).

3.6 FOT Generalization Rules

Next, we present a set of constraint normalization rules forFOT generalization which are equiva-

lent to the procedural method of Reynolds and Plotkin. The advantage of specifying this operation

in this manner rather than procedurally as done originally by Reynolds and Plotkin is that each rule

or axiom relates a pair of prior substitutions to a pair of posterior substitutions based only on local

syntactic-pattern properties of the terms to generalize, and this without resorting to side-effects

on global structures. In this way, the terms and substitutions involved are derived as solutions of

logical syntactic constraints. In addition, correctness of the so-specified operation is made much

easier to establish since we only need to prove each rule’s correctness independently of that of the

others. Finally, the rules also provide an effective means for the derivation of an operational se-

mantics for the so-specified operation by constraint solving, without need for control specification

as any applicable rule may be invoked in any order.10

DEFINITION 3.1 (GENERALIZATION JUDGMENT) A generalization judgment is an expression

of the form:

(

σ1
σ2

)

⊢

(

t1
t2

)

t

(

θ1
θ2

)

(3.3)

where σi ∈ SUBST
T

, θi ∈ SUBST
T

, ti ∈ T (i = 1, 2), and t ∈ T .

10Such as the Herbrand-Martelli-Montanari rules w.r.t. to Robinson’s procedural unification algorithm.
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Informally, it reads: “given two prior substitutions σ1 and σ2, the term t is the least general-

ization of terms t1σ1 and t2σ2 with posterior substitutions θ1 and θ2.” How all the constituents

of such a generalization judgment must be related to constitute what we shall consider a valid

judgment, is defined next.

DEFINITION 3.2 (GENERALIZATION JUDGMENT VALIDITY) AFOT generalization judgment

such as (3.3) is said to be valid whenever, for i = 1, 2:

1. tiσi = tθi; and,

2. ∃ δi ∈ SUBST
T

s.t. ti = tδi and θi = δiσi (i.e., ti � t and θi � σi).

Figure 3.4 illustrates the validity of aFOT generalization judgment as a commutative diagram

constraint.

t

t1 t2

t1σ1 t2σ2

= tδ1 tδ2 =

(

σ1
σ2

)

⊢

(

t1
t2

)

t

(

θ1
θ2

)

= tθ1 tθ2 =

δ1 δ2

σ1 σ2

δ 1
σ 1

=
θ 1

θ
2
=
δ
2 σ

2

Figure 3.4: FOT generalization judgment validity as a constraint

DEFINITION 3.3 (TRIVIAL FOT GENERALIZATION JUDGMENT) The FOT generalization

judgment:

true
def

=

(

∅
∅

)

⊢

(

t
t

)

t

(

∅
∅

)

(3.4)

where t is an arbitrary term in T is called a “trivial FOT generalization judgment.”

LEMMA 3.1 (TRIVIAL FOT GENERALIZATION JUDGMENT VALIDITY) The trivial FOT
generalization judgment true is always valid.
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PROOF This follows from Definition 3.2 since in this particular case the equations of the

first condition of Definition (3.2) becomes t = t, which is trivially true for any term t ∈ T .

�

Contrary to unification normalization rules which are expressed as conditional rewrite rules

whereby a prior form (the “numerator”) is related to a posterior form (the “denominator”), these

normalization rules are more naturally rendered as (conditional) Horn clauses of judgments (i.e.,

Prolog clauses of judgments). This is as convenient as rewrite rules since a Prolog-like operational

semantics can then readily provide an effective interpretation.11 Thus, a generalization rule is of

the form:

[φ]
J1 . . . Jn

J
(3.5)

where φ is an optional side meta-condition, and J, J1, . . . , Jn are judgments, and it reads, “when-

ever the side condition φ holds, if all the n antecedent judgments J1, . . . , Jn are valid, then the

consequent judgment J is also valid.” Such a generalization rule without a specified antecedent

(a “numerator”) is called a “generalization axiom.” Such an axiom is said to be valid iff its conse-

quent (the “denominator”) is valid whenever its optional side condition holds. It is equivalent to a

rule where the only antecedent is the trivial generalization judgment true.

DEFINITION 3.4 (GENERALIZATION RULE CORRECTNESS) A generalization rule such as Rule

(3.5) is correct iff Jk is a valid judgment for all k = 1, . . . , n implies that J is a valid judgment,

whenever the side condition φ holds.

Given t1 and t2 two FOT s, in order to find the most specific term t and most general substitu-

tions σi, i = 1, 2, such that tσi = ti, i = 1, 2, one needs to establish the generalization judgment:

(

∅
∅

)

⊢

(

t1
t2

)

t

(

σ1
σ2

)

. (3.6)

In other words, this expresses the upper half of Figure 3.1 whereby t = lub(t1, t2), with most

general substitutions σ1 and σ2. We give a complete set of normalization axioms and rule for

generalization for all syntactic patterns in Figure 3.5.

Rule “EQUAL FUNCTORS” specifies a sequence of judgments constrained as a sequence. It

does so exactly as a so-called “Definite Clause Grammar” (or DCG) rule does with a Prolog

clause.12 This rule uses an “unapply” operation (‘↑’) on a pair of terms (t1, t2) given a pair

11This operational semantics is also efficient because it does not need backtracking as long as the complete set of

conditions of a ruleset covers all but mutually exclusive syntactic patterns.
12A DCG rule (see https://www.metalevel.at/prolog/dcg) is a Horn rule expressing constraints on

a sequence of words constituting a sentence. The judgment sequencing in the rules we define uses exactly the same

kind of constraint: the posterior pair of substitutions of a judgment must match the prior pair of substitutions of the

judgment following it. However, contrary to a DCG rule that constrains an ordered sequence of constituents, the

order of constraints on the antecedent judgments on the arguments is arbitrary. We choose the same order as that of

the arguments as it is the most natural, but it could be any of its permutations as long as the sequence’s posterior/prior

constraints are consistent with the chosen argument ordering.
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EQUAL VARIABLES

(

σ1
σ2

)

⊢

(

X
X

)

X

(

σ1
σ2

)

VARIABLE-TERM

[t1 ∈ V or t2 ∈ V ; t1 6= t2; X is new]

(

σ1
σ2

)

⊢

(

t1
t2

)

X

(

σ1{ t1/X }
σ2{ t2/X }

)

UNEQUAL FUNCTORS

[m ≥ 0, n ≥ 0; m 6= n or f 6= g; X is new]

(

σ1
σ2

)

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

X

(

σ1{ f(s1, . . . , sm)/X }
σ2{ g(t1, . . . , tn)/X }

)

EQUAL FUNCTORS

[n ≥ 0]

(

σ1
σ2

)

⊢

(

s1
t1

)

↑

(

σ1
σ2

)

u1

(

σ1
1

σ1
2

)

. . .

(

σn−1
1

σn−1
2

)

⊢

(

sn
tn

)

↑

(

σn−1
1

σn−1
2

)

un

(

σn
1

σn
2

)

(

σ1
σ2

)

⊢

(

f(s1, . . . , sn)
f(t1, . . . , tn)

)

f(u1, . . . , un)

(

σn
1

σn
2

)

Figure 3.5: Generalization axioms and rule
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of substitutions (σ1, σ2). It may be conceived as (and in fact is) the result of simultaneously

“unapplying” σi from ti into a common variable X only if such X is bound to ti by σi, for

i = 1, 2. If there is no such a variable, it is the identity. This operation avoids the introduction of

a new variable when generalizing two already generalized terms. Formally, this is defined as:

(

t1
t2

)

↑

(

σ1
σ2

)

def
=























(

X
X

)

if ∃X ∈ V, ti = Xσi, for i = 1, 2;

(

t1
t2

)

otherwise.

(3.7)

Note also that Rule “EQUAL FUNCTORS” is defined for n ≥ 0. For n = 0, it becomes the

following axiom for any constant c and any two substitutions σi, i = 1, 2:

(

σ1
σ2

)

⊢

(

c
c

)

c

(

σ1
σ2

)

. (3.8)

Referring to the axioms (seen as rules with no antecedent) and the rule of Figure 3.5, we first

establish the following fact.

LEMMA 3.2 In Rule EQUAL FUNCTORS of Figure 3.5, taking σ0
i

def

= σi, for i = 1, 2, the

substitutions σ0
i , . . . , σ

n
i are such that, for all k, 1 ≤ k ≤ n, σk

i � σk−1
i , for i = 1, 2.

PROOF We proceed by induction on the depth d of the terms; i.e., we consider only terms

of depth less than or equal to d.

1. d = 0: This limits terms to constants and variables. The inequality between prior and

posterior substitutions is satisfied for the first three axioms: the posterior substitutions

are all either equal to the corresponding prior substitutions or of the form θ = σ{t/X}
where X is a new variable and σ is the corresponding prior substitution; that is, θ � σ.

As well, when limited to terms of 0 depth, Rule EQUAL FUNCTORS becomes the single

judgment Axiom (3.8), which preserves the substitutions.

2. d > 0: Let us assume that this is true for all terms of depth strictly less than d. We now

consider two terms at least one of which is of depth d. For Axiom EQUAL VARIABLES,

the same argument given above for the case d = 0 justifies concluding that θ � σ, since

then θ = σ . For Axiom VARIABLE-TERM and Axiom UNEQUAL FUNCTORS, this true

for terms t1 and t2 of any depth since the posterior substitutions are both less general

then the corresponding prior substitutions. As for Rule EQUAL FUNCTORS, there are

two possible cases for the generalized terms in its consequent (the “denominator”):

(a) n = 0: then, the conclusion follows true by Axiom (3.8).

(b) n ≥ 0: since the unapply operation (3.7) yields either a pair of terms having the

same depth as the corresponding terms it is applied to, or 0 (because it can only

be a new variable), we can say that all the terms of unapplied pairs of arguments

in the judgments of the rule’s antecedent (the “numerator”) are of depth at most
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d−1. Therefore, all the terms in the n antecedent judgments satisfy our inductive

hypothesis; namely: σk
i � σk−1

i , for all k = 1, . . . , n. Then, by transitivity of the

“more general” ordering on substitutions, the conclusion follows.

Hence, this establishes that, for both i = 1, 2, σk
i is monotonically refined from more general

to less as k increases from 1 to n. �

From this lemma, the following corollary follows by transitivity of the � preorder on substi-

tutions.

COROLLARY 3.1 In Rule EQUAL FUNCTORS, the substitutions σk
i are such that, for all k, 1 ≤

k ≤ n, σn
i � σn−1

i � . . . � σ1
i � σ0

i , for i = 1, 2.

It is also verified in the proof of the following theorem.

THEOREM 3.1 The axioms and the rule of Figure 3.5 are correct.

PROOF We must show that they satisfy the conditions of Definition 3.4. For each of the

three axioms of Figure 3.5 this means that they must be always valid as judgments, satisfying

the conditions of Definition 3.2, which are:

– Condition 1 : tiσi = tθi,

– Condition 2 : ti � t and θi � σi

for i = 1, 2, for a generalization judgment such as (3.3) in Definition 3.1. These conditions

for the axioms and the rule of Figure 3.5 translate as the following.

Condition 1.

– EQUAL VARIABLES: it amounts to the two identities Xσi = Xσi, i = 1, 2;

– VARIABLE-TERM: it amounts to the two identities tiσi = tiσi, i = 1, 2;

– UNEQUAL FUNCTORS: it amounts to the two equations:

f(s1, . . . , sn)σ1 = Xσ1{ f(s1, . . . , sn)/X },
g(t1, . . . , tn)σ2 = Xσ2{ g(t1, . . . , tn)/X },

which, because X is a new variable that does not occurs in either σ1 or σ2, can be

simplified to the identities:

f(s1, . . . , sn) = f(s1, . . . , sn),
g(t1, . . . , tn) = g(t1, . . . , tn).

Condition 2. All threes cases are tautologies:

– EQUAL VARIABLES: X � X and σi � σi, i = 1, 2;

– VARIABLE-TERM: ti � X and σi{ti/X} � σi, i = 1, 2;
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– UNEQUAL FUNCTORS:

f(s1, . . . , sn) � X and σ1{ f(s1, . . . , sn)/X } � σ1,
g(s1, . . . , sn) � X and σ2{ g(s1, . . . , sn)/X } � σ2.

As for Rule EQUAL FUNCTORS, as required by Definition 3.4, we must show that if all the

judgments in the numerator are valid, then the judgment in the denominator must be valid

too. Let us proceed by induction on the argument-position number k, for k = 1, . . . , n.

For n = 0, this rule becomes Axiom (3.8), a judgment that is trivially valid since the

conditions of Definition 3.2 become the identity c = c, the term inequality c � c, and the

substitution inequalities σi � σi, for i = 1, 2.

For n > 0, a fuzzy judgment in the rule’s antecedent, for each argument-position k =
1, . . . , n, is of the form:

(

σk−1
1

σk−1
2

)

⊢

(

sk
tk

)

↑

(

σk−1
1

σk−1
2

)

uk

(

σk
1

σk
2

)

that is, the form given by Definition 3.1, whose formal validity conditions are given by

Definition 3.2, which in the above case is equivalent to:
(

vk1
vk2

)

def
=

(

sk
tk

)

↑

(

σk−1
1

σk−1
2

)

and

(

σk−1
1

σk−1
2

)

⊢

(

vk1
vk2

)

uk

(

σk
1

σk
2

)

.

Let us now assume that all the judgments in the rule’s antecedent are valid. That is, for

k = 1, . . . , n, for i = 1, 2 (taking σ0
i

def
= σi):

– Condition 1 of Definition 3.2 holds:

ukσ
k
i = vki σ

k−1
i ; (3.9)

– Condition 2 of Definition 3.2 holds:

vki � uk and σk
i � σk−1

i . (3.10)

Condition 1. By Equation (3.7), this means that for all k = 1, . . . , n:

(

vk1
vk2

)

=























(

X
X

)

if sk = Xσk−1
1 and tk = Xσk−1

2 for some variableX ;

(

sk
tk

)

otherwise.

In other words, for each k = 1, . . . , n, there are two cases:

1. sk = Xσk−1
1 and tk = Xσk−1

2 for some variable X; then, by Axiom EQUAL VARI-

ABLES, we must have uk = X , and σk
i = σk−1

i for i = 1, 2; and therefore Equa-

tions (3.9) entail:

skσ
k−1
1 = Xσk−1

1 σk−1
1 = Xσk−1

1 = Xσk
1 = ukσ

k
1

tkσ
k−1
2 = Xσk−1

2 σk−1
2 = Xσk−1

2 = Xσk
2 = ukσ

k
2 .
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2. There is no such variable X; in which case, Equations (3.9) also become:

skσ
k−1
1 = ukσ

k
1

tkσ
k−1
2 = ukσ

k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in

the axioms, for any argument position k, 1 ≤ k ≤ n, we have:

σk
i = σ0

i { τ1/X1 } . . . { τℓ/Xℓ }

where each of the variables X1 . . .Xℓ, with 0 ≤ ℓ, is a variable possibly introduced in the

validity of the judgment corresponding to some argument preceding position k. Therefore,

for any argument position k, 1 ≤ k ≤ n:

skσ
0
1 = skσ

1
1 = . . .= skσ

k−1
1

tkσ
0
2 = tkσ

1
2 = . . .= tkσ

k−1
2

as well as:

ukσ
k
1 =ukσ

k+1
1 = . . .= ukσ

n
1

ukσ
k
2 =ukσ

k+1
2 = . . .= ukσ

n
2

because σk
i affects only new variables introduced in some axioms satisfying the validity of a

subterm of argument at position k; and because the same variable in uk is always instantiated

by the same term, and thus as well all at higher argument positions.

This means that in both cases we have, for all k = 1, . . . , n:

skσ
0
1 = ukσ

n
1 ,

tkσ
0
2 = ukσ

n
2 .

Therefore, for k = n:

f(s1, . . . , sn)σ
0
1 = f(u1, . . . , un)σ

n
1 ,

f(t1, . . . , tn)σ
0
2 = f(u1, . . . , un)σ

n
2 .

This proves Condition 1.

Condition 2. By transitivity of the ≤ ordering on approximation degrees and that of the �
preorder on SUBST

T
, both parts of Condition 2 of our induction hypothesis (3.10) implies

that:

f(s1, . . . , sn) � f(u1, . . . , un),

f(t1, . . . , tn) � f(u1, . . . , un),

and:

σi � σn
i for i = 1, 2;

which completes the proof. �
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In particular, with empty prior substitutions, we obtain the following corollary.

COROLLARY 3.2 (FOT GENERALIZATION) Whenever the judgment

(

∅
∅

)

⊢

(

t1
t2

)

t

(

σ1
σ2

)

is valid, then tσi = ti, for i = 1, 2.

Example 3.3 FOT generalization — Consider the terms f(a, a, a) and f(b, c, c).

• Let us find term t and substitutions σ1 and σ2 such that tσ1 = f(a, a, a) and tσ2 = f(b, c, c); that

is, let us try to solve the following constraint problem:

(

∅
∅

)

⊢

(

f(a, a, a)
f(b, c, c)

)

t

(

σ1
σ2

)

• By Rule EQUAL FUNCTORS, we must have t = f(u1, u2, u3) since:

(

∅
∅

)

⊢

(

f(a, a, a)
f(b, c, c)

)

f(u1, u2, u3)

(

σ1
σ2

)

where:

– u1 is the generalization of

(

a
b

)

↑

(

∅
∅

)

; that is, of a and b; and by Rule UNEQUAL FUNC-

TORS:

(

∅
∅

)

⊢

(

a
b

)

X

(

{ a/X }
{ b/X }

)

therefore u1 = X;

– u2 is the generalization of

(

a
c

)

↑

(

{ a/X }
{ b/X }

)

; that is, of a and c; and by Rule UNEQUAL

FUNCTORS:

(

{ a/X }
{ b/X }

)

⊢

(

a
c

)

Y

(

{ a/X, a/Y }
{ b/X, c/Y }

)

so u2 = Y ;

– u3 is the generalization of

(

a
c

)

↑

(

{ a/X, a/Y }
{ b/X, c/Y }

)

; that is, of Y and Y ; and by Rule EQUAL

VARIABLES:

(

{ a/X, a/Y }
{ b/X, c/Y }

)

⊢

(

Y
Y

)

Y

(

{ a/X, a/Y }
{ b/X, c/Y }

)

so u3 = Y ;
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• therefore, this yields:

(

∅
∅

)

⊢

(

f(a, a, a)
f(b, c, c)

)

f(X,Y, Y )

(

{ a/X, a/Y }
{ b/X, c/Y }

)

that is t = f(X,Y, Y ) with σ1 = { a/X, a/Y } such that tσ1 = f(a, a, a), and σ2 = { b/X, c/Y }
such that tσ2 = f(b, c, c).

Example 3.4 Generalization of ground FOT s — Let us now consider the terms f(a, g(b, a), b))
and f(b, g(a, b), a));

• let us find term t and substitutions σ1 and σ2 s.t. tσ1 = f(a, g(b, a), b)) and tσ2 = f(b, g(a, b), a);
i.e., let us try to solve the following constraint problem:

(

∅
∅

)

⊢

(

f(a, g(b, a), b)
f(b, g(a, b), a)

)

t

(

σ1
σ2

)

• By Rule EQUAL FUNCTORS, we must have t = f(u1, u2, u3) since:

(

∅
∅

)

⊢

(

f(a, g(b, a), b)
f(b, g(a, b), a)

)

f(u1, u2, u3)

(

σ1
σ2

)

where:

– u1 is the generalization of

(

a
b

)

↑

(

∅
∅

)

; that is of a and b; and by Rule UNEQUAL FUNCTORS:

(

∅
∅

)

⊢

(

a
b

)

X

(

{ a/X }
{ b/X }

)

and therefore u1 = X;

– u2 = g(v1, v2) is the generalization of

(

g(b, a)
g(a, b)

)

↑

(

{ a/X }
{ b/X }

)

; that is, of g(b,X) and

g(a,X); and by Rule EQUAL FUNCTORS:

∗ v1 is the generalization of

(

b
a

)

↑

(

{ a/X }
{ b/X }

)

; that is, of b and a; and by Rule UNEQUAL

FUNCTORS:
(

{ a/X }
{ b/X }

)

⊢

(

b
a

)

Y

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so v1 = Y ;

∗ v2 is the generalization of

(

a
b

)

↑

(

{ a/X, b/Y }
{ b/X, a/Y }

)

; that is, of X and X; and by Rule

EQUAL VARIABLES:
(

{ a/X, b/Y }
{ b/X, a/Y }

)

⊢

(

X
X

)

X

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so v2 = X;

therefore:
(

{ a/X }
{ b/X }

)

⊢

(

g(b,X)
g(a,X)

)

g(Y,X)

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so u2 = g(Y,X);
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– u3 is the generalization of

(

b
a

)

↑

(

{ a/X, b/Y }
{ b/X, a/Y }

)

; that is, of Y and Y ; and by Rule EQUAL

VARIABLES:

(

{ a/X, b/Y }
{ b/X, a/Y }

)

⊢

(

Y
Y

)

Y

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so u3 = Y ;

• therefore, this yields:

(

∅
∅

)

⊢

(

f(a, g(b, a), b)
f(b, g(a, b), a)

)

f(X, g(Y,X), Y )

(

{ a/X, b/Y }
{ b/X, a/Y }

)

that is t = f(X, g(Y,X), Y ) with σ1 = { a/X, b/Y } such that tσ1 = f(a, g(b, a), b), and

σ2 = { b/X, a/Y } such that tσ2 = f(b, g(a, b), a).

Example 3.5 Generalization of non-ground FOT s — Let us apply theFOT generalization axioms

and rules of Figure 3.5 to the following FOT s:

t1
def
= h(f(a,X1), g(X1, b), f(Y1, Y1)), and t2

def
= h(X2,X2, g(c, d)).

• Let us find term t and substitutions σ1 and σ2 such that tσ1 = h(f(a,X1), g(X1, b), f(Y1, Y1)) and

tσ2 = h(X2,X2, g(c, d)); that is, let us try to solve the constraint problem:

(

∅
∅

)

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))
h(X2,X2, g(c, d))

)

t

(

σ1
σ2

)

.

• By Rule EQUAL FUNCTORS, we must have t = h(u1, u2, u3) since:

(

∅
∅

)

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))
h(X2,X2, g(c, d))

)

h(u1, u2, u3)

(

σ1
σ2

)

where:

– u1 is the generalization of

(

f(a,X1)
X2

)

↑

(

∅
∅

)

; that is of f(a,X1) and X2; and by Rule

VARIABLE-TERM:

(

∅
∅

)

⊢

(

f(a,X1)
X2

)

X

(

{ f(a,X1)/X }
{X2/X }

)

so u1 = X;

– u2 is the generalization of

(

g(X1, b)
X2

)

↑

(

{ f(a,X1)/X }
{X2/X }

)

; that is, of g(X1, b) and X2; and

by Rule VARIABLE-TERM:

(

{ f(a,X1)/X }
{X2/X }

)

⊢

(

g(X1, b)
X2

)

Y

(

{ . . . , g(X1, b)/Y }
{ . . . ,X2/Y }

)

so u2 = Y ;
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– u3 is the generalization of

(

f(Y1, Y1)
g(c, d)

)

↑

(

{ f(a,X1)/X, g(X1 , b)/Y }
{X2/X,X2/Y }

)

; that is, of f(Y1, Y1)

and g(c, d); and by Rule UNEQUAL FUNCTORS:

(

{ f(a,X1)/X, g(X1 , b)/Y }
{X2/X,X2/Y }

)

⊢

(

f(Y1, Y1)
g(c, d)

)

Z

(

{ . . . , f(Y1, Y1)/Z }
{ . . . , g(c, d)/Z }

)

and so u3 = Z;

• therefore, this yields:

(

∅
∅

)

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))
h(X2,X2, g(c, d))

)

h(X,Y,Z)

(

{ . . . , f(Y1, Y1)/Z }
{ . . . , g(c, d)/Z }

)

that is, t = h(X,Y,Z) with:

σ1 = { f(a,X1)/X, g(X1, b)/Y, f(Y1, Y1)/Z }

s.t. tσ1 = h(f(a,X1), g(X1, b), f(Y1, Y1)); and,

σ2 = {X2/X,X2/Y, g(c, d)/Z }

s.t. tσ2 = h(X2,X2, g(c, d)).

3.7 Fuzzy Lattice Operations on FOT s

For the formal Fuzzy Algebra notation and terminology that we use in the remainder of this work,

see Chapter 2, Section 2.2.

3.7.1 Fuzzy FOT unification

Sessa’s weak unification

A fuzzy unification operation onFOT s, dubbed “weak unification,” was proposed by Maria Sessa

in [157] which consists in normalizing fuzzy equations between conventional FOT s modulo a

similarity relation ∼ over functor symbols [74]. This similarity relation is then homomorphically

extended to one over all FOT s.

Example 3.6 Functor similarity matrix — Given a similarity (i.e., a fuzzy equivalence) relation

∼ on a finite signature Σ = ∪nΣn, as explained in [74], this information is represented as a matrix in

Σ×Σ → [0.0, 1.0]. For example, if the signature Σ is the union of Σ0 = { a, b, c, d }, Σ2 = { f, g },
Σ3 = {h }, and Σn = ∅ otherwise (n = 1 or n ≥ 4), and with a similarity that is the reflexive, symmetric,
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and transitive closure of the pairs a ∼0.7 b, c ∼0.6 d, and f ∼0.9 g. This corresponds to the similarity

matrix whose rows and columns are indexed by elements of Σ:

∼
def
=

a b c d f g h

a 1 0.7 0 0 0 0 0
b 0.7 1 0 0 0 0 0
c 0 0 1 0.6 0 0 0
d 0 0 0.6 1 0 0 0
f 0 0 0 0 1 0.9 0
g 0 0 0 0 0.9 1 0
h 0 0 0 0 0 0 1

Following Maria Sessa’s formal setting [157], we assume given such a similarity relation be-

tween functors of equal arity (i.e., which admit the same number of arguments). Upon this basis,

this similarity can be extended homomorphically from functors to FOT s as follows. Let ∼ be a

similarity on functors of equal arity in a signature Σ.

DEFINITION 3.5 (SESSA’S FOT SIMILARITY) The fuzzy relation∼T on TΣ,V is defined induc-

tively as follows:

1. ∀X ∈ V, X ∼T
1 X;

2. ∀X ∈ V, ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X;

3. if f ∈ Σn and g ∈ Σn with f ∼α g, and if si ∈ T and ti ∈ T are such that si ∼T
αi

ti for

i = 1, . . . , n, then:

f(s1, . . . , sn) ∼
T
α∧

∧n
i=1 αi

g(t1, . . . , tn). (3.11)

THEOREM 3.2 The relation ∼T defined by Definition 3.5 is a similarity relation on the set of

FOT s TΣ,V .

PROOF See proof of more general Theorem 3.3 below, as this is a particular case of that

theorem where every similar pairs of functors have same arity and every argument position

mapping is the identity. �

Since from the above definition of similarity ∼T extends homomorphically a similarity ∼ on

the functors to all FOT s in T , we shall also assimilate ∼T to ∼. This allows to define formally

fuzzy subsumption amongFOT s as the fuzzy relation� on T that can be verified to be a preorder

(modulo variable renaming) as a corollary of Theorem 3.2.

DEFINITION 3.6 (FUZZY FOT SUBSUMPTION) For all terms t1 ∈ T and t2 ∈ T , t1 is said to

be subsumed by t2 for some α in [0.0, 1.0] (and this is written t1 �α t2) if and only if there exists

a substitution σ ∈ SUBST
T

such that t1 ∼α t2σ.
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Note that, for the identity similarity on the signature and α = 1, this reduces to the classical

definition of term subsumption, as expected.

In Definition 3.6, the more specific term t1 is then called a fuzzy instance of term t2 realized

with subsititution σ at approximation degree α. It comes also that the “more general” relation on

FOT substitutions extends to a “fuzzy more general” fuzzy relation on substitutions, which can

also readily be verified to be a fuzzy preorder on SUBST
T

as a corollary of Theorem 3.2. It is

formally equivalent to the relation defined in [157].13

DEFINITION 3.7 (FUZZY “MORE GENERAL” ORDERING ON FOT SUBSTITUTIONS) If σ1
and σ2 are two substitutions in SUBST

T
and α in [0.0, 1.0], we say that σ1 is less general than σ2

at approximation degree α (and this is written σ1 �α σ2), if and only if for any term t ∈ T , it is

true that tσ1 �α tσ2 as terms.

Also as expected, note that for the identity similarity on the signature and α = 1, this reduces to

the classical “more general than” ordering on substitutions.

The following fuzzy relation defined on SUBST
T

can also be verified to be a similarity as a

corollary of Theorem 3.2.14

DEFINITION 3.8 (FOT SUBSTITUTION SIMILARITY) Given an approximation degree α in

[0.0, 1.0], two substitutions σ and θ in SUBST
T

are said to be α-similar (written σ ∼α θ) iff

tσ ∼α tθ for all FOT t in T .

Therefore, referring to Definition 3.6 of fuzzy FOT subsumption, it comes as a fact that:

LEMMA 3.3 For any two substitutions σ and θ in SUBST
T

and approximation degree α in

[0.0, 1.0], σ �α θ iff σ ∼α θδ for some substitution δ.

PROOF Stating that σ �α θ, by Definition 3.7, is equivalent to stating that tσ �α tθ, for

any t ∈ T . By Definition 3.6, this is equivalent to stating that for all term t, tσ ∼α tθδ, for

some substitution δ; namely, again by Definition 3.7, that σ ∼α θδ. �

The following two facts regarding the fuzzy term subsumption relation on terms and the fuzzy

“more general” relation on substitutions will be useful later in proof arguments.

LEMMA 3.4 For any two approximation degrees α and β in [0.0, 1.0], for any terms t1, t2, and t3
in T , if t1 �α t2 and t2 �β t3, then t1 �α∧β t3.

PROOF Let t1 �α t2 and t2 �β t3; this is, by definition, equivalent to t1 ∼α t2σ, for some

σ ∈ SUBST
T

, and t2 ∼β t3θ, for some θ ∈ SUBST
T

. However, for any set S, any pair

〈x, y〉 in S×S, and any similarity ∼: S×S → [0.0, 1.0], if x ∼α y for some α in[0.0, 1.0],
then x ∼β y for all β ∈ [0, α].15 This, the fact that α ∧ β ≤ α and α ∧ β ≤ β, together

with our assumption, entail then that t1 ∼α∧β t2σ and t2 ∼α∧β t3σ; which, by transitivity of

∼α∧β , implies that t1 ∼α∧β t3σ; that is, t1 �α∧β t3. �

13Op. cit., Page 410, Definition 6.2
14An equivalent definition is given in [101].
15See 2.2.2.
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COROLLARY 3.3 For any two approximation degrees α and β in [0.0, 1.0], for any substitutions

σ1, σ2, and σ3 in SUBST
T

, if σ1 �α σ2 and σ2 �β σ3, then σ1 �α∧β σ3.

PROOF Let σ1 �α σ2 and σ2 �β σ3; this is, by definition, equivalent to stating that for any

term t ∈ T , tσ1 �α tσ2 and tσ2 �β tσ3. By Lemma 3.4, it follows that for any term t ∈ T ,

tσ1 �α∧β tσ3; that is, σ1 �α∧β σ3. �

Using the definition of similarity between terms in T extending one on functors of equal

arity, Sessa proposes to extend the FOT unification problem to the following fuzzy unification

problem: given two FOT s t1 and t2 in T , find the most general substitution σ ∈ SUBST
T

and

maximum approximation degree α in [0.0, 1.0] such that t1σ ∼α t2σ. Figure 3.6 expresses fuzzy

unification as a commutative diagram constraint.

t1
?
∼

α
t2

t1σ ∼α t2σ

α ∈ [0.0, 1.0]

σ σ

Figure 3.6: Fuzzy unification as a constraint

In Figure 3.7, we provide a set of declarative rewrite rules for fuzzy unfication equivalent

to Sessa’s case-based “weak unification algorithm” [157]. To simplify the presentation of these

rules while remaining faithful to Sessa’s weak unification algorithm, it is assumed for now that

functor symbols f/m and g/n of different arities m 6= n are never similar. This follows Sessa’s

assumption for weak unification, which fails on term structures of different arities. (See Case (2)

of the weak unification algorithm given in [157], Page 413.) Later, we will relax this and allow

functors of different arities to be similar.

The rules of Figure 3.7 transform Eα, a finite conjunctive set E of equations among FOT s

along with an associated approximation degree α in [0.0, 1.0], intoE ′
α′ , another set of equationsE ′

at approximation degree α′ in [0, α]. Given to solve a fuzzy unification equation s
.
= t between two

FOT s s and t, we start by forming the set { s
.
= t }1 (i.e., a singleton equation set at approximation

degree 1), then transform it using any applicable rules in Figure 3.7 until either the approximation

degree of the transformed set of equations is 0 (in which case there is no solution to the original

equation, not even a fuzzy one), or the final resulting set Eα is a solution at approximation degree

α in the form of a variable substitution σ
def
= { t/X | X

.
= t ∈ E } such that sσ ∼α tσ.

In [157],16 a transformation rule of a set of equation at approximation degree is considered to

16Op. cit., Page 410.
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WEAK TERM DECOMPOSITION

[f ∼β g; n ≥ 0]

(E ∪ { f(s1, . . . , sn)
.
= g(t1, . . . , tn) })α

(E ∪ { s1
.
= t1, . . . , sn

.
= tn })α∧β

VARIABLE ERASURE

(E ∪ {X
.
= X })α

Eα

VARIABLE ELIMINATION

[X 6∈ var(t); X occurs in E]

(E ∪ {X
.
= t })α

(E[t/X] ∪ {X
.
= t })α

EQUATION ORIENTATION

[t 6∈ V]

(E ∪ { t
.
= X })α

(E ∪ {X
.
= t })α

Figure 3.7: Normalization rules corresponding to Maria Sessa’s “weak unification”

be correct when all the solutions of the posterior set are also solutions of the anterior set but with

a possibly lesser similarity degree, which is also our Definition 3.10.17

Example 3.7 FOT fuzzy unification — Taking the functor signature of Example 3.6, let us consider

the fuzzy equation set:

{h(f(a,X1), g(X1, b), f(Y1, Y1))
.
= h(X2,X2, g(c, d)) }1 (3.12)

and let us apply the rules of Figure 3.7:

• Rule WEAK TERM DECOMPOSITION with α = 1 and β = 1:

{ f(a,X1)
.
= X2, g(X1, b)

.
= X2, f(Y1, Y1)

.
= g(c, d) }1 ;

• Rule EQUATION ORIENTATION to f(a,X1)
.
= X2 with α = 1:

{X2
.
= f(a,X1), g(X1, b)

.
= X2, f(Y1, Y1)

.
= g(c, d) }1 ;

• Rule VARIABLE ELIMINATION to X2
.
= f(a,X1) with α = 1:

{X2
.
= f(a,X1), g(X1, b)

.
= f(a,X1), f(Y1, Y1)

.
= g(c, d) }1 ;

• Rule WEAK TERM DECOMPOSITION to g(X1, b)
.
= f(a,X1) with α = 1 and β = .9:

{X2
.
= f(a,X1),X1

.
= a, b

.
= X1, f(Y1, Y1)

.
= g(c, d) }.9 ;

17Note that in [157], no explicit proof for of formal correctness of “weak unification algorithm” is given: it is

just mentioned that “it can be proven following the same line of the proof” for crisp unification in classible Logic

Programming in [34].
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• Rule VARIABLE ELIMINATION to X1
.
= a with α = .9:

{X2
.
= f(a, a),X1

.
= a, b

.
= a, f(Y1, Y1)

.
= g(c, d) }.9 ;

• Rule WEAK TERM DECOMPOSITION to b
.
= a with α = .9 and β = .7:

{X2
.
= f(a, a),X1

.
= a, f(Y1, Y1)

.
= g(c, d) }.7 ;

• Rule WEAK TERM DECOMPOSITION to f(Y1, Y1)
.
= g(c, d) with α = .7 and β = .9:

{X2
.
= f(a, a),X1

.
= a, Y1

.
= c, Y1

.
= d }.7 ;

• Rule VARIABLE ELIMINATION to Y1
.
= c with α = .7:

{X2
.
= f(a, a),X1

.
= a, Y1

.
= c, c

.
= d }.7 ;

• Rule WEAK TERM DECOMPOSITION to c
.
= d with α = .7 and β = .6:

{X2
.
= f(a, a),X1

.
= a, Y1

.
= c }.6 .

This last equation set is in normal form with similarity degree .6 and defines the substitution σ given by:

σ = { a/X1, c/Y1, f(a, a)/X2 } (3.13)

so that:

t1σ = h(f(a, a), g(a, b), f(c, c)) ∼.6 h(f(a, a), f(a, a), g(c, d)) = t2σ. (3.14)

Generic fuzzy FOT unification

From our perspective, a fuzzy unification operation ought to be able to fuzzify full FOT unifica-

tion: whether (1) functor symbol mistmatch, and/or (2) arity mismatch, and/or (3) in which order

subterms correspond. Sessa’s fuzzification of unification as weak unification misses on the last

two items. This is unfortunate as this can turn out to be quite useful. In real life, there is indeed

no such garantee that argument positions of different functors match similar information in data

and knowledge bases, hence the need for alignment [114].

Still, Sessa’s approach has several qualities:

• It is simple — specified as a straightforward extension of crisp unification: only one rule

(Rule “FUZZY TERM DECOMPOSITION”) may alter the fuzziness of an equation set by tol-

erating similar functors.

• It is conservative — neither FOT s nor FOT substitutions per se need be fuzzified; so

conventional crisp representations and operations can be used; if restricted to only 0 or 1
similarity degrees, it is equivalent to crisp FOT unification.
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We now give an extension of Sessa’s weak unification which can tolerate such similarity

among functors of different arities. We are given a similarity relation ≈ : Σ×Σ → [0.0, 1.0]

on a ranked signature Σ
def
=
⊎

n≥0Σn. Unlike M. Sessa’s equal-arity condition, we now allow

similar symbols with distinct arities, or equal arities but different argument orders.

Example 3.8 Similar functors with different arities — Consider person/3, a functor of arity 3,

and individual/4, a functor of arity 4 with:

• person/3 ≈.9 individual/4; and,

• one-to-one position mapping p : { 1, 2, 3 } → { 1, 2, 3, 4 }:

from person/3 to individual/4 with p : { 1→ 1, 2→ 3, 3→ 4 }

so that:

person(Name,SSN,Address) ≈p
.9 individual(Name,DoB,SSN,Address)

where we write f ≈p
α g to denote a pair in the similarity relation ≈ consisting of a functor f and a functor

g, with similarity degree α and f -to-g argument-position mapping p; in our example, this is rendered as:

person ≈
{ 1→1,2→3,3→4 }
.9 individual.

With this kind of specification, we can tolerate not only fuzzy mismatching of terms with distinct func-

tors person and individual up to a realigning correspondence of argument positions from person

to individual specified as p, all with a similarity degree of .9.

We formalize this by requiring that the fuzzy equivalence relation ≈ on Σ be such that:

• for each pair of functors 〈f, g〉 ∈ Σm×Σn where 0 ≤ m ≤ n and f ≈ g, and any approx-

imation degree α, there exists a one-to-one (i.e., injective) mapping µα
fg : { 1, . . . , m } →

{ 1, . . . , n } associating each of them argument positions of f with a unique position among

the n arguments of g, which we shall express as f ≈µα
fg g;

• argument-position alignment mappings between similar functors must be consistent at any

approximation level; namely, they must satisfy the following four conditions:

– approximation consistency: for any functors f ∈ Σ and g ∈ Σ, and any approximation

degrees α ∈ [0.0, 1.0] and β ∈ [0.0, 1.0] :

α ≤ β ⇒ µα
fg ⊆ µβ

fg (as sets of pairs); (3.15)

– reflexive consistency: for any functor f/n and any degree α ∈ [0.0, 1.0]:

µα
ff = 11{1,...,n}; (3.16)

– symmetric consistency: for any two equal-arity functors f/n and g/n and any degree

α ∈ [0.0, 1.0]:

µα
fg ◦ µ

α
gf = 11{1,...,n}; (3.17)
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– transitive consistency: for any three functors f/m, g/n, h/ℓ s.t. 0 ≤ m ≤ n ≤ ℓ and

any degree α ∈ [0.0, 1.0]:

µα
fh = µα

gh ◦ µ
α
fg. (3.18)

Figure 3.8 illustrates Condition (3.16), Figure 3.9 illustrates Condition (3.17), and Figure 3.10

illustrates Condition (3.18). Note that Condition (3.18) applies when 0 ≤ m ≤ n ≤ ℓ; so the

f/n

≈µff= 11{1,...,n}

Figure 3.8: Identity consistency for FOT argument mapping

µfg : {1, . . . , n} → {1, . . . , n}

f/n g/n

µgf : {1, . . . , n} → {1, . . . , n}

≈µfg=≈µ−1
gf

≈µgf=≈µ−1
fg

Figure 3.9: Invertibility consistency for equal-arity FOT argument mapping

one-to-one argument-position mappings always go from a smaller set to a larger set. There is

no loss of generality with this assumption as this will be taken into account in the definition of

non-aligned FOT similarity,18 and in the normalization rules.19 This amounts to systematically

taking a FOT with functor of least arity as similarity class representative. Finally, note also

that such a class representative is not unique because for similar functors of equal arity, it can

be either terms due to Condition (3.17). Indeed, then the set of positions are equal and there are

two injections from this set to itself in each direction which are mutually inverse bijections; i.e.,

inverse permutations in the order of arguments realigning one’s with the other’s in either direction.

The similarity degrees in both directions are always equal due to symmetry of similarity.

18Cf., Definition 3.9 below.
19Cf., Figure 3.11 below, Rule FUZZY EQUATION ORIENTATION.
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m ≤ n n ≤ ℓ

µfg : { 1, . . . ,m } → { 1, . . . , n } µgh : { 1, . . . , n } → { 1, . . . , ℓ }

f/m g/n h/ℓ

m ≤ ℓ

µfh = µgh ◦ µfg : { 1, . . . ,m } → { 1, . . . , ℓ }

≈µfg ≈µgh

≈µfh =≈µgh◦µfg

Figure 3.10: Compositional consistency for non-aligned FOT argument mapping

Fuzzy unification with similar functors and arity mismatch

As in the case of similarity restricted to functors of equal arities only, the similarity with argument

position alignment mapping on functors can be extended homomorphically to a similarity on

FOT s. Let ≈ be a similarity on functors of any arity in a signature Σ. To lighten notation, rather

than writing systematically f ≈µfg g for two functors f and g such that arity(f) ≤ arity(g),
we shall sometimes simply write f ≈p

α g, with p standing for the injective argument realignment

mapping µfg.

DEFINITION 3.9 The fuzzy relation ≈T on TΣ,V is defined inductively as:

1. ∀X ∈ V, X ≈T
1 X;

2. ∀X ∈ V, ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X;

3. if s = f(s1, . . . , sm) and t = g(t1, . . . , tn) with n < m, then s ≈T t = t ≈T s;

4. if f ∈ Σm and g ∈ Σn with m ≤ n and f ≈p
α g, and if si ∈ T , i = 1, . . . , m, and tj ∈ T ,

j = 1, . . . , n, are such that si ≈
T
αi
tp(i) for all i ∈ { 1, . . . , m }, then:

f(s1, . . . , sm) ≈
T
α∧

∧m
i=1 αi

g(t1, . . . , tn). (3.19)

THEOREM 3.3 (NON-ALIGNED FOT SIMILARITY) The fuzzy relation ≈T on the set T of

FOT s specified in Definition 3.9 is a similarity.

PROOF We must establish that ≈T is reflexive, symmetric, and transitive.

Reflexivity: we must show that t ≈T
1 t, for all t ∈ T . We proceed by induction on the

depth of the term. Base case: either t = X ∈ V , in which case, by the first condition of

Definition 3.9,X ≈T
1 X; or, t = c ∈ Σ0, in which case the fourth condition of Definition 3.9
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and the fact that c ≈1 c implies that c ≈T
1 c, for all c ∈ Σ0. Inductive case: let us assume

that ≈T is reflexive for all terms of depth less than or equal to d, and consider the term

t = f(t1, . . . , tn) of depth d + 1; then, the fourth condition of Definition 3.9 implies also

that t ≈T t since, by Condition (3.16) and the fact that ≈ is a similarity, f ≈
11{1,...,n}

1 f for all

f ∈ Σn, for any arity n > 0.

Symmetry: we must show that s ≈T t = t ≈T s for all s and t in T . When either of the

terms is a variable, this is so by the two first cases of Definition 3.9. When s = f(s1, . . . , sm)
and t = g(t1, . . . , tn), it is is always the case that ≈T is symmetric on such pairs since the

third condition of Definition 3.9, states precisely that in this case ≈T is symmetric.

Transitivity: we must show that (s ≈T t ∧ t ≈T u) ≤ s ≈T u for all terms s, t, u. There

are eight possibilities:

(1) s ∈ V and t ∈ V and u ∈ V;
(2) s ∈ V and t ∈ V and u 6∈ V;
(3) s ∈ V and t 6∈ V and u ∈ V;
(4) s ∈ V and t 6∈ V and u 6∈ V;

(5) s 6∈ V and t ∈ V and u ∈ V;
(6) s 6∈ V and t ∈ V and u 6∈ V;
(7) s 6∈ V and t 6∈ V and u ∈ V;
(8) s 6∈ V and t 6∈ V and u 6∈ V.

– Case (1) : s ∈ V, t ∈ V, u ∈ V . In this case, there are five possiblities. Using different

variable names to denote different variables, the corresponding similarity degrees for

s ≈T t, t ≈T u, and s ≈T u, for each possibility do indeed satisfy the inequality.

Namely:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u
X Y Z 0 ∧ 0 ≤ 0
X Y Y 0 ∧ 1 ≤ 1
X Y X 0 ∧ 0 ≤ 1
X X Y 1 ∧ 0 ≤ 0
X X X 1 ∧ 1 ≤ 1

– Case (2) : s ∈ V, t ∈ V, u 6∈ V . There are two possibilities, each satisfying the

inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u
X X u 1 ∧ 0 ≤ 0
X Y u 0 ∧ 0 ≤ 0

– Case (3) : s ∈ V, t 6∈ V, u ∈ V . There are two possibilities, and each satisfies the

inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u
X t X 0 ∧ 0 ≤ 1
X t Y 0 ∧ 0 ≤ 0

– Case (4) : s ∈ V, t 6∈ V, u 6∈ V . There is only one possibility, for any α ∈ [0.0, 1.0],
which satisfies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u
X t u 0 ∧ α ≤ 0
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– Case (5) : s 6∈ V, t ∈ V, u ∈ V . There are two possibilities, and each satisfies the

inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u
s X X 0 ∧ 1 ≤ 0
s X Y 0 ∧ 0 ≤ 0

– Case (6) : s 6∈ V, t ∈ V, u 6∈ V . There is only one possibility, for any α ∈ [0.0, 1.0],
which satisfies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u
s X u 0 ∧ 0 ≤ α

– Case (7) : s 6∈ V, t 6∈ V, u ∈ V . There is only one possibility, for any α ∈ [0.0, 1.0],
which satisfies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u
s t X α ∧ 0 ≤ 0

– Case (8) : s 6∈ V, t 6∈ V, u 6∈ V . In this case, we must have s = f(s1, . . . , sm),
t = g(t1, . . . , tn), and u = h(u1, . . . , uℓ). We detail this case below.

We must then show that:
(

f(s1, . . . , sm) ≈T g(t1, . . . , tn)
)

∧
(

g(t1, . . . , tn) ≈T h(u1, . . . , uℓ)
)

≤

f(s1, . . . , sm) ≈
T h(u1, . . . , uℓ).

By symmetry of ≈T , all cases are equivalent to when 0 ≤ m ≤ n ≤ ℓ, so we assume that

this is so, with f ≈
µfg
α g and g ≈

µgh

β h. By the fourth condition of Definition 3.9, the above

inequality is the same as the following one:

(

f ≈ g ∧
∧m

i=1 si ≈
T tµfg(i)

)

∧ bigl(g ≈ h ∧
∧n

j=1 tj ≈
T uµgh(j)bigr)

≤

f ≈ h ∧
∧m

i=1 si ≈
T uµfh(i).

Using commutativity of ∧, let us rearrange the different factors of the conjunction in the

lefthand-side of this inequality as:

(

f ≈ g ∧ g ≈ hbigr) ∧
(
∧m

i=1 si ≈
T tµfg(i) ∧ tµfg(i) ≈

T uµgh(µfg(i))

)

∧ ∆

≤

f ≈ h ∧
∧m

i=1 si ≈
T uµfh(i)

where ∆ stands for the remaining conjunction
∧j 6∈ran(µfg)

j∈{1,...,n} tj ≈
T uµgh(j). Let us now proceed

by induction on the depth of the terms to verify this inequality. For terms of depth 0, it is
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satisfied since it reduces to the transitivity inequality of≈ on Σ0. Let us assume that it holds

for terms of depth less than d, and that at least one of the terms s, t, or u, is of depth d.

By transitivity of ≈ on Σ, we have (f ≈ g) ∧ (g ≈ h) ≤ f ≈ h. Also, by the inductive

hypothesis, the transitivity inequality for ≈T holds for all similar subterms of depth less

than or equal to d. Therefore, this assumption entails that for all i ∈ {1, . . . , m}:

si ≈
T tµfg(i) ∧ tµfg(i) ≈

T uµgh(µfg(i)) ≤ si ≈
T uµgh(µfg(i));

thus, since, by Condition (3.18), it is required that the mappings be consistent and satisfy

µfh = µgh ◦ µfg, and by isotonicity of ∧ w.r.t. ≤, this is equivalent to:

m
∧

i=1

(si ≈
T tµfg(i)) ∧ (tµfg(i) ≈

T uµfh(i)) ≤
m
∧

i=1

si ≈
T uµfh(i).

In summary, the inequality we seek to establish is of the form A ∧ B ∧ ∆ ≤ A′ ∧ B′, and

we have shown that A ≤ A′ and B ≤ B′. From this, the inequality follows by isotonicity of

∧ w.r.t. ≤. �

Since we have just formally defined a new notion of similarity ≈T on T extending Sessa’s

similarity ∼T to non-aligned functors, all the properties we covered for ∼T carry over to corre-

sponding extensions for terms with non-aligned functors. Namely, Definitions 3.6–3.8 and Lem-

mas 3.3–3.4, as well as Corollary 3.3, where the term similarity∼T is replaced with any similarity

on T such as ≈T (or∼∼∼T that we shall define later and prove also to be a similarity on T extending

≈T ). Indeed, it is easy to see that all these notions are valid algebraically when parameterized

with any relation on FOT proven to be a similarity on T .

Weak unification with fuzzy functor/arity mismatch

Starting with the Herbrand-Martelli-Montanari ruleset of Figure 3.3, fuzziness is introduced in

Sessa’s weak unification by relaxing “TERM DECOMPOSITION” to make it also tolerate possible

arity or argument-order mismatch in two structures being unified. It is the only rule that does not

preserve the equation set’s similarity degree. In the same manner, Rule FUZZY NON-ALIGNED-

ARGUMENT TERM DECOMPOSITION in Figure 3.11 is the only one that may possibly alter (de-

crease) the equation set’s similarity degree. Also, the given functor similarity relation ≈ on Σ is

adjoined a position mapping from argument positions of a functor f to those of a functor g when

f ≈α g with f 6= g, for some α in (0.0, 1.0]. This is then taken into account in tolerating a fuzzy

mismatch between two term structures s
def
= f(s1, . . . , sm) and t

def
= g(t1, . . . , tn). This may

involve a mismatch between the terms’ functor symbols (f and g), their arities (m and n), subterm

ordering, or a combination. We first reorient all such equations by flipping sides so that the left-

hand side is the one wih lesser or equal arity. In this manner, assuming f ≈p
β g and 0 ≤ α, β ≤ 1,

an equation set of the form:
{

. . . , f(s1, . . . , sm)
.
= g(t1, . . . , tn), . . .

}

α
for 0 ≤ m ≤ n

acquires its new similarity degree α ∧ β due to functor and arity mismatch when equated. Thus,

a fully fuzzified term-decomposition rule should proceed by replacing a structure equation by the

conjunction of equations between their respective subterms at corresponding indices given by the
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FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION

[

0 ≤ m ≤ n; f ≈p
β g
]

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) })α

(

E ∪ { s1
.
= tp(1), . . . , sm

.
= tp(m) }

)

α∧β

FUZZY EQUATION ORIENTATION

[0 ≤ m < n]

(E ∪ { g(t1, . . . , tn)
.
= f(s1, . . . , sm) })α

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) })α

Figure 3.11: Fuzzy FOT unification’s non-aligned decomposition and orientation rules

one-to-one argument mapping p : { 1, . . . , m } → { 1, . . . , n }, but (possibly) decreasing the orig-

inal equation set similarity degree by conjoining it with that of the decomposed terms’ functor

pair; that is,
{

. . . , s1
.
= tp(1), . . . , sm

.
= tp(m), . . .

}

α∧β
. Note that all the subterms in the right-

hand side term that are arguments at indices which are not p-images are ignored as they have no

counterparts in the left-hand side. These terms are simply dropped as part of the approximation.

This generic rule is shown in Figure 3.11 along with another rule needed to make it fully effective:

a rule reorienting a term equation into one with a lesser-arity term on the left.

DEFINITION 3.10 (FUZZY UNIFICATION RULE CORRECTNESS) A fuzzy unification rule that

transforms a pair Eα consisting of a set of equations E and a prior approximation degree α, into

a pair E ′
β consisting of a set of equations E ′ and a posterior approximation degree β, is said to

be correct iff β is the largest degree such that β ≤ α and all the solutions of E ′ are also solutions

of E at approximation degree β.

Note that this notion of correctness, contrary to that of crisp unification, does not require that all

solutions of the posterior sets of equations be the same as those of of the prior set. It only states

that this is so at a possibly lesser posterior approximation degree.

THEOREM 3.4 The fuzzy unification rules of Figure 3.7 where Rule “WEAK TERM DECOMPO-

SITION” is replaced by the rules of Figure 3.11 are correct.

PROOF Rules VARIABLE ELIMINATION, VARIABLE ERASURE, and EQUATION ORIENTA-

TION are those, unchanged, of Maria Sessa’s weak unification. Their correctness follows

from those of the corresponding Herbrand-Martelli-Montanari rules since all three rules
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keep their similarity degree α unchanged under the same side conditions as their crisp ver-

sions. As for Rule FUZZY EQUATION ORIENTATION, it is also correct as it simply uses the

symmetry of equality or similarity denoted by the
.
= relation and it leaves the similarity

degree unchanged.

The correctness of Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION fol-

lows from the fact that it tolerates equations between two distinct but similar functors, f on

the left and g on the right, by “paying a toll” as the most general way this can be true is by

reducing the prior equation set’s similarity degree α to α∧β. It must do so whenever a prior

equation set contains an equation between two terms whose respective head functors f and

g are β-similar with f having at most as many arguments as g. It collects m correspond-

ing subterm equations from the two terms’ subterms using the specific one-to-one argument

mapping p that associates with each position i among f ’s m a unique specific position p(i)
among g’s n, n ≥ m. Orienting all functorial term equations to have the lesser number of

arguments on the left guarantees completeness over all such syntactic patterns. By structural

induction, assuming that all si ≈α∧β tp(i) for all i ∈ { 1, . . . , m }, then whenever f ≈p
β g,

we must also have f(s1, . . . , sm) ≈α∧β g(t1, . . . , tn) (by definition, since α ∧ β ≤ α) for

whatever arguments of g at indices missed by p and these two terms are in the same sim-

ilarity class at approximation degree α ∧ β for arbitrary arguments in these positions (by

definition of f ≈p
β g and since α ∧ β ≤ β). The rest of the equations in E that were true

at approximation degree α must now be considered true only up to approximation degree

α∧β in order to account for f and g being functors of possibly fuzzier similarity β. Hence,

all solutions of the new set of equations are also solutions of the previous one, although only

at the possibly lesser approximation degree α ∧ β. This approximation degree is also the

greatest such degree by virtue of the ∧ operation yielding the infimum of its operands.

Finally, when m = n this rule is correct in either direction since a consistent similarity on a

signature requires by definition that equal-arity functors f and g have arguments in bijection

(inverse permutations of the set { 1, . . . , n }): f ≈p
α g and g ≈p−1

α f . In this case, the set of

solutions of the new equation set is also a solution of the previous one, with equal similarity

degree.

As for termination, it follows (like that of the Herbrand-Martelli-Montanari rules) from

(1) the finite width and depth of FOT s, and (2) there being no rule that is indefinitely

applicable. Regarding (1), term decomposition always replaces a term equation with finitely

many shallower term equations, which is a well-known well-founded process guaranteed to

terminate (multiset ordering [5]). Regarding (2), Rule FUZZY EQUATION ORIENTATION

may not be reapplied to the same functors thanks to the side condition m < n.

In other words, applying this modified ruleset to E1
def
= { s

.
= t }1, an equation set of

similarity degree 1 (in any order as long as a rule applies and its similarity degree is not

zero) always terminates. And when the final equation set is a substitution σ at approximation

degree α, σ is the most general substitution (up to a variable renaming) that is a solution

at approximation degree α (i.e., sσ ≈α tσ), and α is the greatest approximation degree for

which this is true. �
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Example 3.9 FOT fuzzy unification with similar functors of different arities — Take a functor

signature such that: { a, b, c, d } ⊆ Σ0, { f, g, ℓ } ⊆ Σ2, {h } ⊆ Σ3; and let us further assume the functor

similarity that is the reflexive symmetric transitive closure of:20

a ≈.7 b, c ≈.6 d, f ≈
{ 1→2,2→1 }
.9 g, g ≈

{ 1→2,2→1 }
.9 f, and ℓ ≈

{ 1→2,2→3 }
.8 h.

Let us consider the fuzzy equation set { t1
.
= t2 }1:

{h(X, g(Y, b), f(Y, c))
.
= ℓ(f(a, Z), g(d, c)) }1 (3.20)

and let us apply the rules of Figure 3.7 where rule WEAK TERM DECOMPOSITION has been replaced by

the rules of Figure 3.11:

• Rule FUZZY EQUATION ORIENTATION with α = 1 because arity(ℓ) < arity(h); new set:

{ ℓ(f(a, Z), g(d, c))
.
= h(X, g(Y, b), f(Y, c)) }1;

• Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION with α = 1 and β = .8

since ℓ ≈
{ 1→2,2→3 }
.8 h; new set: { f(a, Z)

.
= g(Y, b), g(d, c)

.
= f(Y, c) }.8;

• Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to f(a, Z)
.
= g(Y, b) with

α = .8 and β = .9 since f ≈
{ 1→2,2→1 }
.9 g; new set: { a

.
= b, Z

.
= Y, g(d, c)

.
= f(Y, c) }.8;

• Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to a
.
= b with α = .8 and

β = .7 since a ≈.7 b; new set: {Z
.
= Y, g(d, c)

.
= f(Y, c) }.7;

• Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to g(d, c)
.
= f (Y, c) with

α = .7 and β = .9 since f ≈
{ 1→2,2→1 }
.9 g; new set: {Z

.
= Y, d

.
= c, c

.
= Y }.7;

• Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to d
.
= c with α = .7 and

β = .6 since d ≈.6 c; new set: {Z
.
= Y, c

.
= Y }.6;

• Rule EQUATION ORIENTATION to c
.
= Y with α = .6; new set:: {Z

.
= Y, Y

.
= c }.6.

• Rule VARIABLE ELIMINATION to Y
.
= c with α = .6; new set: {Z

.
= c, Y

.
= c }.6.

This last equation set at approximation degree .6 is in normal form and defines the substitution σ =

{ c/Z, c/Y } so that: t1σ = h(X, g(Y, b), f(Y, c))σ ≈.6 ℓ(f(a, Z), g(d, c))σ = t2σ; that is: t1σ =

h(X, g(c, b), f(c, c)) ≈.6 ℓ(f(a, c), g(d, c)) = t2σ.

Example 3.10 Example 3.9 with more expressive symbols — Example 3.9 uses abstract generic

symbols such as f , g, a, b, . . . , which have the advantage, being one-letter symbols, to make each nor-

malization step more compact to write. But one may be more content with a more illustrative choice of

identifiers as would be the case of a real-life data base.

So let us give such names to functors of Example 3.9 in the case of a gift-shop Prolog database which

describes various configurations for multi-item gift boxes containing such items as flowers, sweets, etc.,

which can be already joined as pairs or not joined as loose couples. In such a database are consigned

facts over objects identified by the following functors (each corresponding to the one indicated from Exam-

ple 3.9):

20The argument mapping is the identity by default.
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• a/0
def
= violet,

• b/0
def
= lilac,

• c/0
def
= chocolate,

• d/0
def
= candy,

• f/2
def
= pair,

• g/2
def
= couple,

• h/3
def
= small-gift-box,

with the closure under reflexivity, symmetry, and transitivity of the following similar pairs:

• violet ∼.7 lilac,

• chocolate ∼.6 candy,

• pair ∼.9 couple.

With these functors and their similarity degrees, Equation (3.12) now reads:

(t1)

small-gift-box ( pair(violet,X1)
, couple(X1,lilac)
, pair(Y1, Y1)
)

.
=

(t2)

small-gift-box ( X2

, X2

, couple(chocolate,candy)
)

Substitution (3.13) obtained after normalization is now defined as follows, using the new functor sym-

bols:

σ
def
= {X1 = violet, Y1 = chocolate,X2 = pair(violet,violet)}

and yields the fuzzy solution:
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(t1σ)

small-gift-box ( pair(violet,violet)
, couple(violet,lilac)
, pair(chocolate,chocolate)
)

∼.6

(t2σ)

small-gift-box ( pair(violet,violet)
, pair(violet,violet)
, couple(chocolate,candy)
)

with similarity degree .6 capturing the fuzzy degree to which σ solves the original equation.

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION is a very general rule for

normalizing fuzzy equations over FOT structures. It has the following convenient properties:

1. it accounts for fuzzy mismatches of similar functors of possibly different arity or order of

arguments;

2. when restricted to tolerating only similar equal-arity functors with matching argument po-

sitions, it reduces to Sessa’s weak unification’s WEAK TERM DECOMPOSITION rule;

3. when similarity degrees are further restricted to be in { 0, 1 }, it is the Herbrand-Martelli-

Montanari TERM DECOMPOSITION rule;

4. it requires no alteration of the standard notions of FOT s andFOT substitutions: similarity

among FOT s is derived from that of signature symbols;

5. finally, and most importantly, it keeps fuzzy unification in the same complexity class as crisp

unification: that of Union-Find [173].21

As a result, it is more general than all other extant approaches we know which propose a fuzzy

FOT unification operation. The same will be established for the fuzzification of the dual oper-

ation: first a limited “functor-weak” FOT generalization corresponding to the dual operation of

Sessa’s “weak” unification, then to a more expressive “functor/arity-weak” FOT generalization

corresponding to our extension of Sessa’s unification to functor/arity weak unification.

3.7.2 Fuzzy FOT generalization

While there has been relatively intense interest in devising a fuzzy FOT unification operation,

we know of no work regarding its dual operation, fuzzy FOT generalization. This comes as no

surprise since even in the crisp case only marginal attention has been paid to generalization (a.k.a.

anti-unification) as compared to unification.

21Quasi-linear; i.e., linear with a log . . . log coefficient [2].
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The Reynolds-Plotkin characterization of FOT subsumption as a lattice ordering relies on

formalizing this ordering as FOT instantiation. Namely, t1 � t2 iff there exists a variable substi-

tution σ such that t1 = t2σ. Then, unification and generalization are respectively the glb and lub

operations for this ordering and are specified in terms of variable substitutions.

It is clear however, as overviewed in the previous section, that there are several ways one can

propose to fuzzify FOT unification. As a consequence of this, for each specific fuzzification

of FOT unification, and therefore of associated specific fuzzy subsumption ordering on FOT s,

there should also correspond a dual operation of fuzzy generalization of FOT s.

In what follows, we first elaborate some lattice-theoretic consequences for Maria Sessa’s

“weak unification” fuzzy operation on FOT s presented in [157]. In particular, we derive its

corresponding fuzzy dual lattice operation that we shall dub “weak FOT generalization.” We

then extend this lattice to signatures admitting similar functors with differing arity or argument

order.

Fuzzy functor-weak generalization

Let t1 and t2 be two FOT s in T to generalize. We shall use the following notation for a fuzzy

generalization judgment:

(

σ1
σ2

)

α

⊢

(

t1
t2

)

t

(

θ1
θ2

)

β

(3.21)

given:

• σi ∈ SUBST
T

(i = 1, 2): two prior substitutions with prior similarity degree α,

• ti (i = 1, 2): two prior FOT s,

• t: a posterior FOT ,

• θi ∈ SUBST
T

(i = 1, 2): two posterior substitutions with similarity degree β.

DEFINITION 3.11 (FUZZY FOT GENERALIZATION JUDGMENT VALIDITY) A fuzzyFOT gen-

eralization judgment such as (3.21) is valid whenever, for i = 1, 2:

1. β ∈ (0, α];

2. tiσi ≈β tθi;

3. ∃ δi ∈ SUBST
T

s.t. ti ≈α tδi and θi ≈β δiσi (i.e., ti �α tσi and θi �β σi).

Figure 3.12 shows an illustration of a valid fuzzy generalization judgment constraint as a

commutative diagram.

DEFINITION 3.12 (FUZZY GENERALIZATION RULE CORRECTNESS) A fuzzy generalization

rule is correct iff, whenever the side condition holds, if all the fuzzy generalization judgments

making up its antecedent are valid, then necessarily the fuzzy generalization judgment in its con-

sequent is valid.
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t

t1 ≈α tδ1 tδ2 ≈α t2

tθ1 ≈β t1σ1 t2σ2 ≈β tθ2

(

σ1
σ2

)

α

⊢

(

t1
t2

)

t

(

θ1
θ2

)

β

β ∈ (0, α]

δ1 δ2

σ1 σ2

δ 1
σ 1
≈ β
θ 1

θ
2 ≈

β δ
2 σ

2

Figure 3.12: Fuzzy generalization judgment validity as a constraint

In Figure 3.13, we give a fuzzy version of the generalization rules of Figure 3.5. As was the

case in Sessa’s weak unification, we assume as well for now that we are given a similarity relation

∼: Σ×Σ → [0.0, 1.0] on the signature Σ = ∪n≥0Σn such that for all m ≥ 0 and n ≥ 0, m 6= n
implies f 6∼ g. In other words, functors of different arities may not be similar.

Rule SIMILAR FUNCTORS uses a “fuzzy unapply” operation (‘↑
α
’) on a pair of terms (t1, t2)

given a pair of substitutions (σ1, σ2) and a similarity degree α. It is the result of “unapplying” σi
from ti, for i = 1, 2, into a common variable X , if any such exists such that the terms Xσi are

respectively similar to ti with similarity degrees αi. It returns a fuzzy pair of terms and a similarity

degree in (0, α] defined as:

(

t1
t2

)

↑
α

(

σ1
σ2

)

def
=























(

X
X

)

α∧α1∧α2

if ∃X ∈ V, ti ∼αi
Xσi

for some αi ∈ (0.0, 1.0], i = 1, 2;

(

t1
t2

)

α

otherwise.

(3.22)

The condition in Equation (3.22) is: “∃X ∈ V, ti ∼αi
Xσi, for some αi ∈ (0.0, 1.0] (i =

1, 2).” But could there be two such variables? Namely, is it ever possible that:

∃X ∈ V, ∃Y ∈ V, X 6= Y, s.t. ti ∼αi
Xσi and ti ∼βi

Y σi (3.23)

for some αi ∈ (0.0, 1.0] and βi ∈ (0.0, 1.0], i = 1, 2? Note that a new variable is introduced in the

generalizing pair of substitutions only in Axiom FUZZY VARIABLE-TERM and Axiom DISSIMI-

LAR FUNCTORS. Then, each axiom binds the new variable in the two substitutions to two terms

that are dissimilar at any similarity degree (as required by their side conditions). However, by

Lemma 3.4 on Page 39, Condition (3.23) would imply that:

ti ∼αi∧βi
Xσi ∼αi∧βi

Y σi

Copyright c© 2020 by the Authors All Rights Reserved
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FUZZY EQUAL VARIABLES

(

σ1
σ2

)

α

⊢

(

X
X

)

X

(

σ1
σ2

)

α

FUZZY VARIABLE-TERM

[t1 ∈ V or t2 ∈ V ; t1 6= t2; X is new]

(

σ1
σ2

)

α

⊢

(

t1
t2

)

X

(

σ1{ t1/X }
σ2{ t2/X }

)

α

DISSIMILAR FUNCTORS

[f 6∼ g; m ≥ 0, n ≥ 0; X is new]

(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

X

(

σ1{ f(s1, . . . , sm)/X }
σ2{ g(t1, . . . , tn)/X }

)

α

SIMILAR FUNCTORS

[

f ∼β g; β > 0; n ≥ 0; α0
def
= α ∧ β

]

(

σ1
σ2

)

α0

⊢

(

s1
t1

)

↑
α0

(

σ1
σ2

)

u1

(

σ1
1

σ1
2

)

α1

. . .

(

σn−1
1

σn−1
2

)

αn−1

⊢

(

sn
tn

)

↑
αn−1

(

σn−1
1

σn−1
2

)

un

(

σn
1

σn
2

)

αn
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sn)
g(t1, . . . , tn)

)

f(u1, . . . , un)

(

σn
1

σn
2

)

αn

Figure 3.13: Functor-weak generalization axioms and rule
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with αi ∧ βi ∈ (0.0, 1.0], for i = 1, 2. This would mean that X or Y would have been intro-

duced while the side condition of neither Axiom FUZZY VARIABLE-TERM nor Axiom DISSIM-

ILAR FUNCTORS was satisfied; which is impossible. Thus, there can be at most only one such

variable.

As importantly, note also that fuzzy unapplication defined by Equation (3.22) returns a pair

of terms and a possibly lesser or equal approximation degree, unlike crisp unapplication defined

by Equation (3.7) which returns only a pair of terms. Because of this, when we write a fuzzy

judgment such as:

(

σ
σ′

)

α

⊢

(

t
t′

)

↑
α

(

σ
σ′

)

u

(

θ
θ′

)

β

(3.24)

as we do in the premiss of Rule SIMILAR FUNCTORS, this is shorthand to indicate that the pos-

terior similarity degree β is at most the one returned by the fuzzy unapplication

(

t
t′

)

↑
α

(

σ
σ′

)

.

Formally, the notation of the fuzzy judgment (3.24) is equivalent to:

(

s
s′

)

β′

def
=

(

t
t′

)

↑
α

(

σ
σ′

)

and

(

σ
σ′

)

β′

⊢

(

s
s′

)

u

(

θ
θ′

)

β

(3.25)

for some β ′ such that β ≤ β ′ ≤ α. This is because a fuzzy unapplication invoked while proving the

validity of a fuzzy judgment may require, by Expression (3.22), lowering the prior approximation

degree of the judgment.

Finally, note that Rule “SIMILAR FUNCTORS” is defined for n ≥ 0. For n = 0, it becomes the

following fuzzy judgment:

(

σ1
σ2

)

α

⊢

(

c
c

)

c

(

σ1
σ2

)

α

(3.26)

which can be verified to be an axiom since it is valid at any approximation degree α in [0.0, 1.0],
for any constant c in Σ0, and any substitutions σ1 and σ2 in SUBST

T
, thanks to the reflexivity of

the similarity∼α on T .

Referring to the axioms (seen as rules with no antecedent) and the rule of Figure 3.13, we

establish the following fact corresponding to Lemma 3.2 on Page 30 (taking σ0
i

def
= σi, for

i = 1, 2), where the fuzzy ordering on substitutions is defined in Definition 3.7 on Page 39.

LEMMA 3.5 In Rule SIMILAR FUNCTORS of Figure 3.13, taking σ0
i

def

= σi, for i = 1, 2, the

approximation degrees α0
i , . . . , α

n
i are such that αk

i ≤ αk−1
i , and the substitutions σ0

i , . . . , σ
n
i are

such that σk
i �αk

i
σk−1
i , for all k, 1 ≤ k ≤ n (i = 1, 2).

PROOF We proceed by induction on the depth d of the terms; i.e., we consider only terms

of depth less than or equal to d.

1. d = 0: This limits terms to constants and variables. The inequality between prior

and posterior substitutions is satisfied for the first three axioms of Figure 3.13: each

Copyright c© 2020 by the Authors All Rights Reserved
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preserves the prior approximation degree and the posterior substitutions are all either

equal to the corresponding prior substitutions or of the form θ = σ{t/X} where X
is a new variable and σ is the corresponding prior substitution. As well, when lim-

ited to terms of 0 depth, Rule SIMILAR FUNCTORS becomes the Axiom (3.26), which

preserves both the approximation degree and the substitutions.

2. d > 0: Let us assume now that this is true for all terms of depth less than d. That

is, we consider two terms to generalize, at least one of which is of depth d. The

same argument given above for when d = 0 for the first three axioms of Figure 3.5

justifies concluding that θ � σ, since this is true in these cases for terms of any depth.

As for Rule EQUAL FUNCTORS, there are two possible cases for the two terms in its

consequent (the “denominator”):

(a) n = 0: then, the conclusion follows true by Axiom (3.26);

(b) n ≥ 0: since the fuzzy unapply operation (3.22) yields either a pair of terms hav-

ing the same depth as the corresponding terms it is applied to, or 0 (because it

can only be a new variable), we can say that all the terms resulting from fuzzy-

unapplied pairs of arguments in the judgments of the rule’s antecedent (the “nu-

merator”) are of depth at most d − 1. Therefore, this fact, together with our

induction hypothesis being satisfied for depths less than d and the expression of a

fuzzy judgment (3.25) involving only terms of such depths, we can conclude that

all the judgments in the rule’s antecedent can only reduce their prior approxima-

tion degree. Therefore, αk
i ≤ αk−1

i and σk
i �αk

i
σk−1
i , for all k = 1, . . . , n. Then,

by Corollary 3.3 and transitivity of the “more general” ordering on substitutions

�α at fixed α, the conclusion follows.

Hence, this establishes that, for both i = 1, 2, the approximation degree αk
i is monotonically

decreasing and the substitution σk
i is monotonically refined from more general to less, as k

increases from 1 to n; which concludes our proof. �

And the corresponding corollary also follows.

COROLLARY 3.4 In Rule SIMILAR FUNCTORS of Figure 3.13, for all k, 1 ≤ k ≤ n:

• the approximation degrees αk
i are such that αn

i ≤ αn−1
i ≤ . . . α1

i ≤ α0
i , and

• the substitutions σk
i are such that σn

i �αn
i
σn−1
i �αn−1

i
. . . σ1

i �α1
i
σ0
i ,

for i = 1, 2.

THEOREM 3.5 (FUNCTOR-WEAK GENERALIZATION CORRECTNESS) The fuzzy generaliza-

tion rules of Figure 3.13 are correct.

PROOF We must show that they satisfy the conditions of Definition 3.12 on page 54.

For each of the three axioms of Figure 3.13, this means that they must be valid as fuzzy

judgments, satisfying the three conditions of Definition 3.11, which are:

Copyright c© 2020 by the Authors All Rights Reserved
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– Condition 1 : β ∈ (0, α],

– Condition 2 : tiσi ∼β tθi,

– Condition 3 : ti �α t and θi �β σi,

for i = 1, 2, for a fuzzy FOT generalization judgment such as (3.21). These conditions for

the axioms and the rule of Figure 3.13 translate as the following.

Condition 1. All three axioms satisfy this condition because they preserve the approximation

degree.

Condition 2. This condition becomes the following for each of the three axioms (for i =
1, 2):

– FUZZY EQUAL VARIABLES: Condition 2 becomes the similarity Xσi ∼α Xσi, which

is true by reflexivity of ∼α for all X , σi, and α;

– FUZZY VARIABLE-TERM: it becomes the similarity tiσi ∼α tiσi, which is true also by

reflexivity of ∼α, for all ti, σi, and α;

– DISSIMILAR FUNCTORS: Condition 2 becomes:

f(s1, . . . , sm)σ1∼αXσ1{ f(s1, . . . , sm)/X }
g(t1, . . . , tn)σ2∼αXσ2{ g(t1, . . . , tn)/X }

which, because X is a new variable that does not occurs in either σ1 or σ2, simplify

respectively to the similarities:

f(s1, . . . , sm) ∼α f(s1, . . . , sm)
g(t1, . . . , tn) ∼α g(t1, . . . , tn)

which hold by reflexivity of ∼α at any approximation degree α.

Condition 3. The three axioms satisfy the following at all approximation degrees α and β
(for i = 1, 2):

– FUZZY EQUAL VARIABLES: X �α X and σi �β σi;

– FUZZY VARIABLE-TERM: ti �α X and σi{ti/X} �β σi;

– DISSIMILAR FUNCTORS:

f(s1, . . . , sm) �α X and σ1{ f(s1, . . . , sm)/X } �β σ1,
g(t1, . . . , tn) �α X and σ2{ g(t1, . . . , tn)/X } �β σ2.

As for Rule SIMILAR FUNCTORS, as required by Definition 3.12, we must show that if all

the fuzzy judgments in the numerator are valid, then the fuzzy judgment in the denominator

is valid too. For all three conditions, let us proceed by induction on the arity n:

Condition 1. For n = 0, the conclusion follows also because Axiom (3.26) applies and it

also preserves the approximation degree; for n > 0, if we assume that 0 ≤ αk ≤ αk−1 ≤ 1
for all k = 1, . . . , n, by transitivity of ≤ on [0.0, 1.0], it follows that 0 ≤ αn ≤ α0 ≤ 1,

which satisfies the definition.
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Condition 2. For n = 0, this rule becomes Axiom (3.26). Since it preserves the approx-

imation degree, Condition 1 is satisfied. Also, this fuzzy judgment is trivially valid at all

approximation degrees: the conditions of Definition 3.11 become the reflexive similarity

c ∼α c, and the conjunction of reflexive fuzzy inequality c �α c and reflexive substitu-

tion fuzzy inequalities σi �α σi, for i = 1, 2. Thus, this verifies both Condition 2 and

Condition 3 for n = 0.

For n > 0, for each argument-position k = 1, . . . , n, a fuzzy judgment in the rule’s an-

tecedent is of the form:
(

σk−1
1

σk−1
2

)

αk−1

⊢

(

sk
tk

)

↑
αk−1

(

σk−1
1

σk−1
2

)

uk

(

σk
1

σk
2

)

αk

;

that is, the form of Expression (3.24), whose formal meaning is given as Expression (3.25),

which in the above case is equivalent to:
(

vk1
vk2

)

βk

def
=

(

sk
tk

)

↑αk−1

(

σk−1
1

σk−1
2

)

and

(

σk−1
1

σk−1
2

)

βk

⊢

(

vk1
vk2

)

uk

(

σk
1

σk
2

)

αk

for some βk s.t. αk−1 ≤ βk ≤ αk. Let us now assume that all the fuzzy judgment in the

rule’s antecedent are valid. That is, for k = 1, . . . , n (defining α0
def
= α ∧ β), for i = 1, 2:

ukσ
k
i ∼αk

vki σ
k−1
i (3.27)

and (defining σ0
i

def
= σi):

vki �α uk and σk
i �β σ

k−1
i . (3.28)

By Equation (3.22), this means:

(

vk1
vk2

)

αk

def
=



























(

X
X

)

αk−1∧β
k
1∧β

k
2

if ∃X ∈ V s.t. sk ∼βk
1
Xσk−1

1 and tk ∼βk
2
Xσk−1

2 ;

(

sk
tk

)

αk−1

otherwise.

for some βk
1 and βk

2 in (0.0, 1.0]. In other words, for each k = 1, . . . , n, there are two cases:

1. sk ∼βk
1
Xσk−1

1 and tk ∼βk
2
Xσk−1

2 for some variable X; then, by Axiom FUZZY

EQUAL VARIABLES, we must have αk = αk−1 ∧ βk
1 ∧ β

k
2 , uk = X , and σk

i = σk−1
i for

i = 1, 2; thus, αk ≤ αk−1 and Similarity (3.27) becomes ukσ
k
i ∼αk

Xσk−1
i So that:

skσ
k−1
1 ∼αk

Xσk−1
1 σk−1

1 = Xσk−1
1 = Xσk

1 ∼αk
ukσ

k
1 ,

tkσ
k−1
2 ∼αk

Xσk−1
2 σk−1

2 = Xσk−1
2 = Xσk

2 ∼αk
ukσ

k
2 .

2. There is no such variableX; in which case, αk = αk−1 and Similarity (3.27) becomes:

skσ
k−1
1 ∼αk

ukσ
k
1 ,

tkσ
k−1
2 ∼αk

ukσ
k
2 .
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Thus, by the only non-identical transformation relating prior and posteriors substitutions in

the axioms, for any argument position k, 1 ≤ k ≤ n, we have:

σk
i ∼αk

σ0
i { τ1/X1 } . . . { τℓ/Xℓ }

where each of the variables X1 . . .Xℓ, with 0 ≤ ℓ, is a variable possibly introduced in

proving the validity of the fuzzy judgment corresponding to some argument position k.

Therefore, since for any argument position k, 1 ≤ k ≤ n:

1. σk
i affects only a new variable introduced in one of the axioms satisfying the validity

of the subterm at argument position k; and,

2. such a newly introduced variable now occurring in uk is always instantiated by the

same term;

it comes that, at approximation degree αk:

skσ
0
1 ∼αk

skσ
1
1 ∼αk

. . .∼αk
skσ

k−1
1

tkσ
0
2 ∼αk

tkσ
1
2 ∼αk

. . .∼αk
tkσ

k−1
2

as well as, at approximation degree αn:

ukσ
k
1 ∼αn

ukσ
k+1
1 ∼αn

. . .∼αn
ukσ

n
1

ukσ
k
2 ∼αn

ukσ
k+1
2 ∼αn

. . .∼αn
ukσ

n
2

which shows that in both cases we have, for all k = 1, . . . , n:

skσ
0
1 ∼αk

ukσ
n
1

tkσ
0
2 ∼αk

ukσ
n
2 .

Therefore, for k = n:

f(s1, . . . , sn)σ
0
1 ∼αn

f(u1, . . . , un)σ
n
1

f(t1, . . . , tn)σ
0
2 ∼αn

f(u1, . . . , un)σ
n
2

which completes the proof of Condition 2.

Condition 3. This condition becomes, for all k = 1, . . . , n:

f(s1, . . . , sn) �αk−1
f(u1, . . . , un) and σk

1 �αk
σk−1
1

g(t1, . . . , tn) �αk−1
g(u1, . . . , un) and σk

2 �αk
σk−1
2

from which, since αk ≤ αk−1 for all k = 1, . . . , n, it follows that:

f(s1, . . . , sn) �αn
f(u1, . . . , un) and σn

1 �αn
σ0
1

g(t1, . . . , tn) �αn
g(u1, . . . , un) and σn

2 �αn
σ0
2

or indifferently, using the same similarity class representative in both cases since f ∼αn
g

(because f ∼β g and αn ≤ β):

g(t1, . . . , tn) �αn
f(u1, . . . , un) and σn

2 �αn
σ0
2

which completes the proof of Condition 3, and the proof of Theorem 3.5. �
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Example 3.11 Fuzzy generalization with similar functors of same arities — Consider the

signature Σ containing Σ0 = {a, b, c, d}, and Σ2 = {f, g}, and the closure ∼ of the similar pairs a ∼.7 b,
c ∼.6 d, and f ∼.8 g. Let us apply the functor-weak generalization axioms and rule Figure 3.13 to

t1
def
= g(c, d), and t2

def
= f(a, b); that is, let us find term t, substitutions σi ∈ SUBST

T
(i = 1, 2), and

similarity degree α in [0.0, 1.0] such that tσ1 ∼α g(c, d) and tσ2 ∼α f(a, b). This is expressed as the

following fuzzy judgment:
(

∅
∅

)

1

⊢

(

g(c, d)
f(a, b)

)

t

(

σ1
σ2

)

α

.

By Rule SIMILARITY FUNCTORS, we infer that t = g(u1, u2):
22

(

∅
∅

)

1

⊢

(

g(c, d)
f(a, b)

)

g(u1, u2)

(

σ1
σ2

)

α

which, replaced by the antecedents of Rule SIMILARITY FUNCTORS, becomes (since g ∼.8 f ):
(

∅
∅

)

.8

⊢

(

c
a

)

↑.8

(

∅
∅

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

d
b

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

Since the prior substitutions of the first judgment are empty, evaluating its fuzzy unapplication (using Ex-

pression (3.25) in which β′ = α) yields the sequence:
(

∅
∅

)

.8

⊢

(

c
a

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

d
b

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By Axiom DISSIMILAR FUNCTORS, it comes that u1 = X1, a new variable, and the sequence becomes:
(

∅
∅

)

.8

⊢

(

c
a

)

X1

(

{ c/X1 }
{ a/X1 }

)

.8

,

(

{ c/X1 }
{ a/X1 }

)

.8

⊢

(

d
b

)

↑.8

(

{ c/X1 }
{ a/X1 }

)

u2

(

σ1
σ2

)

α

.

The validity of the first fuzzy judgment is thereby established. We proceed with the remaining fuzzy judg-

ment evaluating its fuzzy unapplication using Equation (3.22). Since X1 is such that d ∼.6 X1{c/X1} = c
and a ∼.7 X1{b/X1} = b, it satisfies the first of the conditions of Equation (3.22). Therefore, the new

approximation degree of the judgment is .8 ∧ .6 ∧ .7 = .6, and u2 = X1 so that, by Equation (3.22):
(

d
b

)

↑
.8

(

c/X1

a/X1

)

=

(

X1

X1

)

.6

so the second judgment in the sequence becomes:
(

{ c/X1 }
{ a/X1 }

)

.6

⊢

(

X1

X1

)

X1

(

{ c/X1 }
{ a/X1 }

)

.6

.

This validates the last judgment completing the fuzzy generalization whereby t = g(X1,X1) is the least

fuzzy generalizer of t1 = g(c, d), and t2 = f(a, b) at approximation degree .6 with σ1 = { c/X1 } so that

tσ1 = g(c, c) ∼.6 t1; and, σ2 = { a/X1 } so that tσ2 = g(a, a) ∼.6 t2.

22This is a non-deterministic choice of a functor’s similarity-class representative. We shall always take the left (or

upper, in this notation) term’s functor. This, of course, will also result in a non-deterministic choice of representative

for any term elaborated in generalization modulo functor similarity. The lower the approximation degree, the larger

the similarity class.
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FUNCTOR/ARITY SIMILARITY LEFT

[

f ≈p
β g; β > 0; 0 ≤ m ≤ n; α0

def
= α ∧ β

]

(

σ1
σ2

)

α0

⊢

(

s1
tp(1)

)

↑α0

(

σ1
σ2

)

u1

(

σ11
σ12

)

α1

. . .

(

σm−1
1

σm−1
2

)

αm−1

⊢

(

sm
tp(m)

)

↑αm−1

(

σm−1
1

σm−1
2

)

um

(

σm1
σm2

)

αm
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

f(u1, . . . , um)

(

σm1
σm2

)

αm

FUNCTOR/ARITY SIMILARITY RIGHT

[

g ≈p
β f ; β > 0; 0 ≤ n ≤ m; α0

def
= α ∧ β

]

(

σ1
σ2

)

α0

⊢

(

sp(1)
t1

)

↑α0

(

σ1
σ2

)

u1

(

σ11
σ12

)

α1

. . .

(

σn−1
1

σn−1
2

)

αn−1

⊢

(

sp(n)
tn

)

↑αn−1

(

σn−1
1

σn−1
2

)

un

(

σn1
σn2

)

αn
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

g(u1, . . . , un)

(

σn1
σn2

)

αn

Figure 3.14: Functor/arity-weak generalization rules

Fuzzy functor/arity-weak generalization

In Figure 3.14, we give a fuzzy version of the generalization rules taking into account mismatches

not only in functors, but also in arities; i.e., number and/or order of arguments. We now assume

that we are not only given a similarity relation ∼: Σ×Σ → [0.0, 1.0] on the signature Σ =
∪n≥0Σn, but also that functors of different arities may be similar with some non-zero similarity

degree as specified by a one-to-one argument-position mapping for each pair of so-similar functors

associating each argument position of the functor of least arity with a distinct argument position

of the functor of larger arity. The only rule among those of Figure 3.13 that differs is the last

one (SIMILAR FUNCTORS) which is now a pair of rules called FUNCTOR/ARITY SIMILARITY

LEFT and FUNCTOR/ARITY SIMILARITY RIGHT as they account for non-identical correspondence

among similar functors’s argument positions whether in the left or in the right of the pair of terms

to generalize, depending on which side has less arguments. If the arities are the same, the two rules

are equivalent (each and all the arguments of the two terms are paired in bijection by a position

permutation).

THEOREM 3.6 (FUNCTOR/ARITY-WEAK GENERALIZATION CORRECTNESS) The fuzzy gen-

eralization rules of Figure 3.13 where Rule “SIMILAR FUNCTORS” is replaced with the rules

in Figure 3.14 are correct.

PROOF The argument in this proof has exactly the same structure as the argument for the
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proof of Rule SIMILAR FUNCTORS of Figure 3.13. The only difference is that structural

induction on a pair of terms with similar functors to generalize is always limited to the

largest possible set of pairs of corresponding argument positions as specified by a one-to-

one argument map from all the argument positions of the functor of lesser arity to those

of the functor of larger arity, rather than the identity on equal cardinality sets of argument

positions. Thus, in the following, parts of the proof that are omitted are identical to their

corresponding parts in the proof of Rule SIMILAR FUNCTORS. Also, for reason of obvious

symmetry, we need only provide the detailed proof of correctness of Rule FUNCTOR/ARITY

SIMILARITY LEFT. The proof of correctness of Rule FUNCTOR/ARITY SIMILARITY RIGHT

is the pointwise similar dual argument in the other direction.

Considering Rule FUNCTOR/ARITY SIMILARITY LEFT, as required by Definition 3.12, we

must show that if all the fuzzy judgments in the numerator are valid, then the fuzzy judgment

in the denominator is valid too. Since the proofs of Condition 1 and Condition 3 are the

same for equal-arity functor similarity, we need only provide a proof of Condition 2 of

Definition 3.12. Let us proceed by induction on the argument-position number k, for k =
1, . . . , m, where m is the arity of f (the first of the two terms’ functor, with the same or a

smaller arity as required by the side condition).

For m = 0, this rule becomes Axiom (3.26). This fuzzy judgment is trivially valid at

all approximation degrees: Condition 2 of Definition 3.11 becomes the reflexive similarity

c ≈α c and Condition 3 becomes the conjunction c �α c and σi �α σi, for i = 1, 2. Thus,

this satisfies both Condition 2 and Condition 3 for m = 0.

For m > 0, for each argument-position k = 1, . . . , m, a fuzzy judgment in the rule’s

antecedent is of the form:

(

σk−1
1

σk−1
2

)

αk−1

⊢

(

sk
tp(k)

)

↑
αk−1

(

σk−1
1

σk−1
2

)

uk

(

σk
1

σk
2

)

αk

;

that is, the form of Expression (3.24), whose formal meaning is given as Expression (3.25),

which in the above case is equivalent to:

(

vk1
vk2

)

βk

def
=

(

sk
tp(k)

)

↑αk−1

(

σk−1
1

σk−1
2

)

and

(

σk−1
1

σk−1
2

)

βk

⊢

(

vk1
vk2

)

uk

(

σk
1

σk
2

)

αk

for some βk s.t. αk−1 ≤ βk ≤ αk. Let us now assume that all the fuzzy judgment in the

rule’s antecedent are valid. That is, for k = 1, . . . , m (defining α0
def
= α ∧ β), for i = 1, 2:

ukσ
k
i ≈αk

vki σ
k−1
i (3.29)

and (defining σ0
i

def
= σi):

vki �α uk and σk
i �β σ

k−1
i . (3.30)
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By Equation (3.22), this means that for all k = 1, . . . , m, vk1 , vk2 , and αk are defined by:

(

vk1
vk2

)

αk

def
=



























(

X
X

)

αk−1∧β
k
1∧β

k
2

if ∃X ∈ V s.t.

(

sk ≈βk
1
Xσk−1

1

tp(k) ≈βk
2
Xσk−1

2

)

;

(

sk
tp(k)

)

αk−1

otherwise.

for some βk
1 and βk

2 in (0.0, 1.0]. In other words, for each k = 1, . . . , m, there are two cases:

1. sk ≈βk
1
Xσk−1

1 and tp(k) ≈βk
2
Xσk−1

2 for some variable X; then, by Axiom FUZZY

EQUAL VARIABLES, we must have αk = αk−1 ∧ βk
1 ∧ β

k
2 , uk = X , and σk

i = σk−1
i for

i = 1, 2; thus, αk ≤ αk−1 and Similarity (3.29) becomes ukσ
k
i ≈αk

Xσk−1
i So that:

skσ
k−1
1 ≈αk

Xσk−1
1 σk−1

1 = Xσk−1
1 = Xσk

1 ≈αk
ukσ

k
1 ,

tp(k)σ
k−1
2 ≈αk

Xσk−1
2 σk−1

2 = Xσk−1
2 = Xσk

2 ≈αk
ukσ

k
2 .

2. There is no such variableX; in which case, αk = αk−1 and Similarity (3.29) becomes:

skσ
k−1
1 ≈αk

ukσ
k
1 ,

tp(k)σ
k−1
2 ≈αk

ukσ
k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in

the axioms, for any argument position k, 1 ≤ k ≤ m, we have:

σk
i ≈αk

σ0
i { τ1/X1 } . . . { τℓ/Xℓ }

where each of the variables X1 . . .Xℓ, with 0 ≤ ℓ, is a variable possibly introduced in prov-

ing the validity of the fuzzy judgment corresponding to some argument position preceding

k. Therefore, since for any argument position k, 1 ≤ k ≤ m:

1. σk
i affects only a new variable introduced in one of the axioms verifying the validity

of the subterm at argument position k; and,

2. such a newly introduced variable now occurring in uk is always instantiated by the

same term;

it comes that, at approximation degree αk:

skσ
0
1 ≈αk

skσ
1
1 ≈αk

. . .≈αk
skσ

k−1
1

tp(k)σ
0
2 ≈αk

tp(k)σ
1
2 ≈αk

. . .≈αk
tp(k)σ

k−1
2

as well as, at approximation degree αm:

ukσ
k
1 ≈αm

ukσ
k+1
1 ≈αm

. . .≈αm
ukσ

m
1

ukσ
k
2 ≈αm

ukσ
k+1
2 ≈αm

. . .≈αm
ukσ

m
2
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This means that in both cases we have, for all k = 1, . . . , m:

skσ
0
1 ≈αm

ukσ
m
1

tp(k)σ
0
2 ≈αm

ukσ
m
2 .

Therefore, for k = m:

f(s1, . . . , sm)σ
0
1 ≈αm

f(u1, . . . , um)σ
m
1

f(tp(1), . . . , tp(m))σ
0
2 ≈αm

f(u1, . . . , um)σ
m
2

which completes the proof of Condition 2 of Theorem 3.6, and that of the theorem because

of the facts stated at the outset regarding all other cases each of whose proof is identical to

when arities are equal. �

Example 3.12 Fuzzy generalization with similar functors of different arities — Let us take

again the functor signature of Example 3.9 where { a, b, c, d } ⊆ Σ0, { f, g, ℓ } ⊆ Σ2, and {h } ⊆ Σ3,

with similarity defined as the reflexive symmetric transitive closure of the following pairs, along with their

argument alignment maps: a ≈.7 b, c ≈.6 d, f ≈
{ 17→2,27→1 }
.9 g and g ≈

{ 17→2,27→1 }
.9 f , and ℓ ≈

{ 17→2,27→3 }
.8 h

(and equal similarity degree for symmetric entries). With this signature and similarity, let us try to find the

fuzzy generalization of t1
def
= h(X, g(Y, b), f(Y, c)), and t2

def
= ℓ(f(a, Z), g(d, c)).

Thus we need to us find the most general term t ∈ T along with two most general substitutions σi :∈
SUBST T (i = 1, 2), and the maximal similarity degree α ∈ [0.0, 1.0], such that tσ1 ≈

T
α h(X, g(Y, b), f(Y, c))

and tσ2 ≈
T
α ℓ(f(a, Z), g(d, c)); that is, solve the following fuzzy generalization constraint problem:

(

∅
∅

)

1

⊢

(

h(X, g(Y, b), f(Y, c))
ℓ(f(a, Z), g(d, c))

)

t

(

σ1
σ2

)

α

.

Rule FUNCTOR/ARITY SIMILARITY RIGHT entails t = ℓ(u1, u2), and because ℓ ≈
{ 17→2,27→3 }
.8 h:

• u1 is the fuzzy generalization of

(

g(Y, b)
g(d, c)

)

↑
.8

(

∅
∅

)

; that is, of g(Y, b) and g(d, c), such that:

(

∅
∅

)

.8

⊢

(

g(Y, b)
g(d, c)

)

u1

(

σ11
σ12

)

α1

;

i.e., u1 = g(v1, v2) by Rule FUNCTOR/ARITY SIMILARITY LEFT with g ≈
{ 17→1,27→2 }
1 g, s.t.:23

– v1 = U since by Rule FUZZY VARIABLE-TERM:

(

∅
∅

)

.8

⊢

(

Y
d

)

U

(

{Y/U }
{ d/U }

)

.8

;

23Note that, for two terms of equal arity, using either FUNCTOR/ARITY SIMILARITY LEFT or FUNC-
TOR/ARITY SIMILARITY RIGHT is always equivalent. As explained in Figure 3.9, similar functors of equal

arity have a pair of mutually inverse bijections map corresponding argument positions in each term with the other’s.

Therefore, choosing any of the two functors for the generalized term yields a term in the same similarity class. This

is true a fortiori when the two functors are equal, as in this case, when the similarity degree is 1 and the argument

map is the identity.
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– v2 = V since with b 6≈ c and by DISSIMILAR FUNCTORS:

(

{Y/U }
{ d/U }

)

.8

⊢

(

b
c

)

V

(

{Y/U, b/V }
{ d/U, c/V }

)

.8

;

and so σ11 = {Y/U, b/V }, σ12 = { d/U, c/V }, and α1 = .8; that is:

(

∅
∅

)

.8

⊢

(

g(Y, b)
g(d, c)

)

g(U, V )

(

{Y/U, b/V }
{ d/U, c/V }

)

.8

;

• u2 is the fuzzy generalization of

(

f(Y, c)
f(a, Z)

)

↑
.8

(

{Y/U, b/V }
{ d/U, c/V }

)

; that is, of f(Y, c) and f(a, Z), s.t.

u2 = f(w1, w2) by Rule FUNCTOR/ARITY SIMILARITY LEFT with f ≈
{ 17→1,27→2 }
1 f (or Rule

FUNCTOR/ARITY SIMILARITY RIGHT):
(

{Y/U, b/V }
{ d/U, c/V }

)

.8

⊢

(

f(Y, c)
f(a, Z)

)

f(w1, w2)

(

σ21
σ22

)

α2

;

where:

– by Rule FUZZY VARIABLE-TERM:

(

{Y/U, b/V }
{ d/U, c/V }

)

.8

⊢

(

Y
a

)

W

(

{Y/U, b/V, Y/W }
{ d/U, c/V, a/W }

)

.8

;

so w1 =W ; and,

– by Rule FUZZY VARIABLE-TERM:

(

{Y/U, b/V, Y/W }
{ d/U, c/V, a/W }

)

.8

⊢

(

c
Z

)

C

(

{Y/U, b/V, Y/W, c/C }
{ d/U, c/V, a/W,Z/C }

)

.8

;

so w2 = C;

thus σ21 = {Y/U, b/V, Y/W, c/C }, σ22 = { d/U, c/V, a/W,Z/C }, and α2 = .8.

Therefore,
(

∅
∅

)

1

⊢

(

h(X, g(Y, b), f(Y, c))
ℓ(f(a, Z), g(d, c))

)

ℓ(f(W,C), g(U, V ))

(

{Y/U, b/V, Y/W, c/C }
{ d/U, c/V, a/W,Z/C }

)

.8

;

that is, t = ℓ(f(W,C), g(U, V )), with:

σ1 = {Y/U, b/V, Y/W, c/C } and σ2 = { d/U, c/V, a/W,Z/C }

and α = .8, since:

t1 = tσ1 = ℓ(f(Y, c), g(Y, b)) ≈T
.8 h(X, g(Y, b), f(Y, c)) and t2 = tσ2 = ℓ(f(a, Z), g(d, c)).

Example 3.13 Example 3.12 with more expressive symbols — Let us again, as we did in Exam-

ple 3.10 (gift-shop Prolog database), give more expressive names to functors of Example 3.12:

Copyright c© 2020 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 68 Version of April 10, 2020

• a/0
def
= violet, b/0

def
= lilac, c/0

def
= chocolate, d/0

def
= candy,

• f/2
def
= pair, g/2

def
= couple,

• ℓ/2
def
= small-gift-bag, h/3

def
= small-gift-box,

with the following similarity degrees and argument maps,:

• violet ≈.7 lilac,

• chocolate ≈.6 candy,

• pair ≈
{ 17→2,27→1 }
.9 couple and couple ≈

{ 17→2,27→1 }
.9 pair,

• small-gift-bag≈
{ 17→2,27→3 }
.8 small-gift-box.

With these functors symbols, the generalization problem of Example 3.9 appears now with the terms:

t1
def
= small-gift-box ( X

, couple(Y,lilac)
, pair(Y,chocolate)
)

t2
def
= small-gift-bag ( pair(violet, Z)

, couple(candy,chocolate)
)

which are the results of applying the substitutions:

σ1 = { Y/U,lilac/V, Y/W,chocolate/C }

and

σ2 = { candy/U,chocolate/V,violet/W,Z/C }

to the least fuzzy generalization:

t
def
= small-gift-bag ( pair(W,C)

, couple(U, V )
)

obtained after normalization with a similarity degree .8.

Example 3.14 Fuzzy generalization with similar functors of different arities — 2nd example

— Consider the signature Σ containing Σ0 = {a, b, c, d}, Σ2 = {f, g, l}, and Σ3 = {h}, and the closure

∼ of the similar pairs a ∼.7, c ∼.6 d, f ∼.8 g, and l ∼.9 h. Let us take all argument-position mappings

as the default (identity on least-arity set). Let us apply the fuzzy generalization axioms of Figure 3.13

and the rule of Figure 3.14 to t1
def
= h(g(b, Y ), f(Y, c), V ), and t2

def
= l(f(a, Z), g(c, d)); that is, let

us find term t, substitutions σi ∈ SUBST
T

(i = 1, 2), and similarity degree α in [0.0, 1.0], such that
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tσ1 ∼α h(g(b, Y ), f(Y, c), V ) and tσ2 ∼α l(f(a, Z), g(c, d)). This is expressed as the following fuzzy

judgment:

(

∅
∅

)

1

⊢

(

h(g(b, Y ), f(Y, c), V )
l(f(a, Z), g(c, d))

)

t

(

σ1
σ2

)

α

.

By Rule FUNCTOR/ARITY SIMILARITY RIGHT, we can infer that t = l(u1, u2):

(

∅
∅

)

1

⊢

(

h(g(b, Y ), f(Y, c), V )
l(f(a, Z), g(c, d))

)

l(u1, u2)

(

σ1
σ2

)

α

which, when replaced by the rule’s antecedents, since h ∼.9 l and 1 ∧ .9 = .9, becomes the sequence:

(

∅
∅

)

.9

⊢

(

g(b, Y )
f(a, Z)

)

↑.9

(

∅
∅

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By evaluating the fuzzy unapplication in its first judgment, this sequence becomes:

(

∅
∅

)

.9

⊢

(

g(b, Y )
f(a, Z)

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By Rule FUNCTOR/ARITY SIMILARITY LEFT,24 it comes that u1 = g(u3, u4) and, since g ∼.8 f and

.9 ∧ .8 = .8, the sequence becomes:

(

∅
∅

)

.8

⊢

(

b
a

)

↑
.8

(

∅
∅

)

u3

(

σ′′1
σ′′2

)

α′′

,

(

σ′′1
σ′′2

)

α′′

⊢

(

Y
Z

)

↑
α′′

(

σ′′1
σ′′2

)

u4

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By evaluating the fuzzy unapplication in the first judgment, and using Rule FUNCTOR/ARITY SIMILAR-

ITY LEFT in the 0-arity case as Axiom (3.26), since b ∼.7 a and .8 ∧ .7 = .7, we have u3 = b, and the

sequence becomes:

(

∅
∅

)

.7

⊢

(

b
a

)

b

(

∅
∅

)

.7

,

(

∅
∅

)

.7

⊢

(

Y
Z

)

↑.7

(

∅
∅

)

u4

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

The validity of the first fuzzy judgment is thereby established. We proceed with the remaining sequence of

fuzzy judgments evaluating the fuzzy unapplication in the first of its judgments, which sets α′ = .7:

(

∅
∅

)

.7

⊢

(

Y
Z

)

u4

(

σ′1
σ′2

)

.7

,

(

σ′1
σ′2

)

.7

⊢

(

f(Y, c)
g(c, d)

)

↑
.7

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

24Since f and g have equal arities, we could also use Rule FUNCTOR/ARITY SIMILARITY RIGHT. This

would end in an equivalent final result, modulo functor similarities at the final approximation degree. In the remainder

of this example, we shall omit making this remark, and choose the left rule over the right for equal-arity functors.
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By Axiom FUZZY VARIABLE-TERM, we infer from this that u4 = X1, a new variable, and the judgments

become:
(

∅
∅

)

.7

⊢

(

Y
Z

)

X1

(

{ Y/X1 }
{ Z/X1 }

)

.7

,

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

f(Y, c)
g(c, d)

)

↑
.7

(

{ Y/X1 }
{ Z/X1 }

)

u2

(

σ1
σ2

)

α

.

The validity of the first fuzzy judgment of the above sequence is thereby established. We proceed with the

remainder evaluating the fuzzy unapplication in the first of its judgments, which returns the same pair of

terms with the similarity degree kept at .7:
(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

f(Y, c)
g(c, d)

)

u2

(

σ1
σ2

)

α

.

and by Rule FUNCTOR/ARITY SIMILARITY LEFT with u2 = f(u5, u6), this becomes:

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

↑
.7

(

{ Y/X1 }
{ Z/X1 }

)

u5

(

θ1
θ2

)

β

,

(

θ1
θ2

)

β

⊢

(

c
d

)

↑
β

(

θ1
θ2

)

u6

(

σ1
σ2

)

α

.

Evaluating the fuzzy unapplication gives β = .7:
(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

u5

(

θ1
θ2

)

.7

,

(

θ1
θ2

)

.7

⊢

(

c
d

)

↑
.7

(

θ1
θ2

)

u6

(

σ1
σ2

)

α

.

and by Axiom FUZZY VARIABLE-TERM, we infer from this that u5 = X2, a new variable, which yields:
(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

X2

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.7

,

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.7

⊢

(

c
d

)

↑
.7

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

u6

(

σ1
σ2

)

α

,

and establishes the penultimate judgment. The last remaining judgment, after evaluating its fuzzy unappli-

cation, since c ∼.6 d and .7 ∧ .6 = .6, is:
(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

⊢

(

c
d

)

u6

(

σ1
σ2

)

α

,

for which Axiom FUZZY VARIABLE-TERM allows us to infer that u6 = c and α = .6:
(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

⊢

(

c
d

)

c

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

.

This validates the last judgment and completes the fuzzy generalization whereby t = l(g(b,X1), f(X2, c))
is the least fuzzy generalizer of t1 = h(g(b, Y ), f(Y, c), V ) and t2 = l(f(a, Z), g(c, d)) at approximation

degree .6, with:

• σ1 = { Y/X1, Y/X2 } so that tσ1 = l(g(b, Y ), f(Y, c)) ∼.6 t1; and,

• σ2 = { Z/X1, c/X2 } so that tσ2 = l(g(b, Z), f(c, c)) ∼.6 t2.
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3.8 Relation to Other Works

There have been other works dealing with the larger issue of integrating general equational theo-

ries into logical reasoning, not just the specific theory of fuzzy equivalence among terms. Among

the most formally and operationally complete approach, pioneered by Goguen et al. in the seven-

ties, is the set of works based on initial algebras [84].25 We define an operator algebra as initial

iff there exists a homomorphism from it to all other algebras that are semantic models of first-

order terms freely built with these operators and variables [82]. Namely, initiality is the property

that guarantees that the formal meaning of syntactic terms defined for FOT s modulo congruence

classes defined by equations is preserved for all interpretations. This result was later extended

from equational systems to implicational systems by Mahr and Makowsky [119]. In this latter

paper, it was also shown that Horn Logic (i.e., an implicational system consitituting the formal

basis of the Prolog language), is the largest class of logic that admits an initial algebra semantics.

While the initial algebra approach has shown its general applicability for term unification and

generalization, including more recently with the work of Alpuente et al. over order-sorted signa-

tures [30] and with equational theories [31], its specific application to fuzzy congruences has yet

to be done. While it could conceivably be specified by instantiating the general scheme of initial

semantics, this must be at the expense of both formal and operational simplicity when compared

with our approach which can be expressed as a direct extension of conventional operations of uni-

fication and generalization of first-order terms. This is because it is specifically adapted to a fuzzy

equivalence of terms rather than general-purpose reasoning modulo equational theories. In the

latter more general approach, equations can be used as terminating rewrite rules and unification

modulo this theory is made operational using the general equation-solving technique known as

“narrowing” [77], [76]. However, for this to work, one must have a terminating and confluent set

of rewrite rules. Such may be derived in some cases based on undecidable procedures such as

Knuth-Bendix completion [109], or unterminating term rewriting [73]. Rather, we limit ourselves

to the obviously decidable theory generated homomorphically onFOT s from a fuzzy equivalence

relation (a similarity) on a finite signature. This follows the intuition behind Maria Sessa’s formal

work on fuzzy FOT unification as well [157]. Also, we support arity and argument position mis-

match for similar operators.26 Be that as it may, one could envisage studying how E-unification

for common equational theories such as associativity or commutativity could be extended to uni-

fication of terms with similar functors. However, this is another issue and we do not do so in this

book’s setting.

There have been also works in logic-based databases such as using a similarity degree while

comparing syntactically unequal terms; for example, Francesca Arcelli et al.’s LIKELOG database

logic programming language [37], [35]. These works, however, concern only ground terms (i.e.,

with no variables), not first-order terms (i.e., possibly having variables). Arcelli et al.’s notion of

similarity distance between terms was later extended from ground terms to first-order terms by

Shroeder and Gilbert in the fuzzy logic programming language FURY [81], [154], [155]. They

use the same concept as Arcelli et al.’s fuzzy equivalence but derived from dynamically evaluat-

25An initial algebra is also called free algebra, or syntactic algebra, or tree algebra, or term algebra — because

its elements are the syntactic term structures one can define recursively by nesting terms as arguments of other terms

(i.e., the model taking as interpretation homomorphism the identity function on terms).
26See Section 3.7.1.
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ing so-called “edit distance” between strings on ground terms as well as first-order terms.27 Thus,

their objective is to derive dynamically an estimate of an “edit distance” between terms. The same

comments also apply to work by Kutsia et al. [112], [113], where the objective is to check all

the possibilities of dynamically matching FOT s with equal function symbols having unspecified

number of arguments (i.e., the same sort of search objective pursued in FURY, where this is done

for unequal symbols as well). This objective is not ours in that we are not trying to infer dy-

namically distances between terms. Rather, we assume given a matrix of similarity degrees for

such a static similarity relation on term constructors and use this information exactly in the same

manner as done by Maria Sessa in [157]. In Sessa’s context (and ours), this information is given

statically, not inferred dynamically. Finally, the main advantage of working from a given static

matrix of similarity degrees rather than estimating syntactic edit distances (whether dynamically

or statically) is that similarity may be semantic among syntactically unrelated but semantically

close strings. The context of dynamic syntactic distance estimation is typically for applications of

purely lexical variants such as estimating gene similarity in biology [81]. Ours concerns deriving

approximate solutions to fuzzy equations given similarity among term constructors.

Our last reference to other work related to unification and generalization of graph data and

type structures, is the set of work due to Aı̈t-Kaci et al. (i.e., [23] and [26]). In this context,

nodes denote sorts (that are organized in a lattice) and arrows denote features (functional attributes

between sort nodes); variables denote equations among (possibly cyclic) feature paths. Just as

such subsumption and its lattice operations on FOT s can be fuzzified, so can indeed the lattice

of Order-Sorted Feature terms. We address this topic in Chapter 4. This is further extended in

Chapter 5 to fuzzy lattice operations ofOSF terms over similar sorts modulo feature alignment.28

This is also relevant to non-aligned knowledge bases [114].

3.9 Recapitulation

In this chapter, we have developed a formal derivation of fuzzy lattice operations for the data

structure known as first-order term. This is achieved by means of syntax-driven constraint nor-

malization rules for both unification and generalization. These operations are then extended to

enable arbitrary mismatch between similar terms whether functor-based, arity-based (number and

order), or combinations. In Chapter 5, we shall see how to extend these operations to consistent

partial mappings of argument positions between similar functors.29

This last lattice of FOT s permits Fuzzy Logic Programming over arbitrary misaligned-data

bases, or more generally Approximate Information Retrieval (using fuzzy unification) and Ap-

proximate Knowledge Acquisition (using fuzzy generalization) over heterogeneous but similar

data models, whereby approximating modulo constructor similarity is consistently conjugated

with approximating with less structure details.

For what concerns implementation, the prospects are many and discussed in Chapter 6.30 The

most immediate concerns implementation of such operations in the form of public libraries to

27See [153] this email discussion on the issue.
28Section 5.2.
29Section 5.1.
30Section 6.4.
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complement extant tools for first-order terms and substitutions [99].

As for what perspectives this work may open, there are several avenues to explore. There are

several other disciplines where this technology has potential for fuzzifying applications wherever

FOT s are used for their lattice-theoretic properties such as linguistics and learning. Finally, most

promising is using this work’s approach to more generic and more expressive knowledge structures

for applications such as Information Retrieval (e.g., in the line of [43]), or Data and Knowledge

Base Management, Ontology Alignment, etc., . . .
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Order-Sorted Feature Terms

In the previous chapter, it may have come many times to the reader’s mind that a FOT is just

syntax for a tree where node labels are functors except possibly for some leaf nodes that are

replaced with variables, and functor-labeled nodes have position-numbered arrows pointing to the

root of the subterm tree at each argument position. It is so indeed. In fact, when the leaf nodes

that have the same variable are joined, it is a rooted directed acyclic graph (or “dag”).1 As such,

it is a special case of a more general kind of labeled rooted (possibly cyclic) graph — called

a rooted order-sorted feature (OSF ) graph. Sort symbols are node labels. Sorts are partially

ordered to reflect subsumption and form a lattice. Feature symbols labeling arrows represent

functional attributes. These graphs are so ordered by endomorphic structure-preserving (sort,

feature, and feature path equations) subsumption. Lattice-theoretic operations for these more

general rooted graphs, labeled with partially-ordered sorts and with features, can be shown to

extend those on more restricted kinds of rooted graphs such as FOT s, labeled with functors,

positions, and variables.

In this chapter, we elaborate on these notions. In Section 4.1, we start with an informal in-

troduction to the OSF formalism (Section 4.1.1), then continue with a formal presentation (Sec-

tion 4.1.2), leading to expressingOSF graph lattice operations declaratively as constraint normal-

ization. In Section 4.1.3, we characterize these operations in terms of solving constraints where

solutions are functional mappings between reference tags. These mappings generalize to OSF
graphs the notion of FOT substitution.2 In Section 4.2, we turn to fuzzifying OSF graph sub-

sumption and its lattice operations: in Section 4.2.2 we explicate fuzzy OSF graph unification,

and in Section 4.2.3 fuzzy OSF graph generalization.

4.1 OSF Formalism

The OSF formalism extends to typed attributed data structures the representation, syntax, and

operations enjoyed by FOT s as used in Logic Programming. It was developed to express rigor-

ously the meaning and properties of graph structures used in the experimental language LIFE to

1A rooted (directed) graph is one with a distinguished node, called its root, from which all other nodes can be

reached.
2For implementation issues, see [10], and [16].
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represent data and knowledge as, respectively, elements and types [7], [17].

A formal semantics for OSF structures can be precisely expressed using each of these three

mathematical frameworks — (1) algebraic (as terms), (2) logical (as clauses), and (3) operational

(as graphs). In [23], the mathematical equivalence of these three formal semantics was estab-

lished with explicit cross-interpretations. In this part, we shall rely on this result by (1) defining

lattice-theoretic operations on the algebra of OSF terms, (2) defining corresponding constraint

normalization rules for these operations on the logic ofOSF clauses, and (3) deriving an implicit

operational semantics from these declarative rules on OSF graph structures.

Next, we start with a brief informal description of the kind of labeled graphs that OSF struc-

tures are, and how they may be expressed syntactically in a manner that naturally extends the

syntax of algebraic FOT s. This term syntax is further transformed into a clausal language upon

which unification can be rendered as constraint normalization. We then delve into more details

defining this syntax formally as well as OSF term subsumption, unification, and generalization.

4.1.1 Informal background

Let us take an example (taken from [10]). Let us assume that we wish to describe a 30-year-old

person with an id consisting of a name, itself made of two parts: a first name and a last name, both

represented as strings. Let us also say that we wish to indicate that such a person has a spouse that

is a person sharing his or her id’s last name, and such that this latter person’s spouse is the first

person in question. We propose to represent this information as the graph in Figure 4.1.

P string

name

person S

30 string

person name

id

a
g
es
p
o
u
s
e

fi
rs
t

l
a
s
t

s
p
o
u
s
e

id

l
a
s
t

Figure 4.1: Example of OSF graph

This graph consists of a set of nodes and arcs between some nodes. This graph, however, is

a labeled graph. There are two kinds of label symbols: one kind is for the nodes (e.g., person,

name, etc.), and the other is for the arcs. We call the symbols labeling nodes “sorts,” and the
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symbols labeling arcs “features” (e.g., spouse, age, etc.). Intuitively, sort symbols denote sets,

and feature symbols denote functions between these sets. We will identify value-denoting symbols

such as 30 as sorts as well since they can be thought of as singleton sets — i.e., in this case the

set {30} containing the single integer 30. We will also assume that sort symbols are partially

ordered with a “subsort” relation “is-a” denoting set inclusion on the sets denoted by the sorts.

This justifies calling such a graph an “order-sorted feature” graph; or, OSF graph for short.

In fact, an OSF graph can be defined as a rooted sorted commutative diagram of function

compositions of the same nature as those used in mathematics. In other words, all feature-

composition paths between two sort nodes commute.

The other labels such as P and S in the graph of Figure 4.1 are used as reference pointers

to designate specific nodes — in this case the root node (e.g., P) — or indicate an equational

constraint among feature paths (e.g., P and S). we shall call them reference tags. Formally, these

will be assimilated to logical variables, i.e., lexical references that could be consistently renamed

in their context, without altering the meaning of theOSF graphs, terms, and constraints, in which

they appear.

The above informal description of anOSF graph should make intuitive sense to anyone famil-

iar with the kind of data structure used in object-oriented programming to represent typed object

records. This is indeed a good way to think about it. It is this pragmatic understanding that we

wish the reader to keep in mind. Our intention, however, is to go beyond merely representing and

using structured types and objects: we not only want these to be convenient for computing, we

also want them to be convenient for reasoning — while never losing this simple intuition. Thus,

we follow a simple syntax to represent these graphs that will enable us to do so. For example, we

represent the graph shown in Figure 4.1 using the syntax shown in Figure 4.2.

P : person (id → name (first → string,
last → S : string ) ,

age → 30,
spouse → person (id → name (last → S ) ,

spouse → P ) ) .

Figure 4.2: OSF term syntax for the OSF graph of Figure 4.1

The reader with some knowledge of Logic Programming will have noted that this syntax gen-

eralizes that of Prolog terms — i.e., of FOT s. Indeed, a Prolog term can be seen as a restricted

kind of OSF term, where sort symbols are data constructors; feature symbols are (implicit) sub-

term positions; and, reference tags are so-called “logical variables,” and can only occur as leaves.

It is to stress this fact that we call an expression like the one in Figure 4.2 an “OSF term.” Note

that, unlike a Prolog term where subterms are written following an implicit position order, an

OSF term may be written up to permutation of its subterms since explicit feature labels allow

specifying subterms in any order while still representing the same OSF graph. For example, the

OSF term in Figure 4.3 could as well be used to represent the same OSF graph in Figure 4.1.
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P : person (age → 30,
spouse → person (spouse → P,

id → name (last → S : string ) ) ,
id → name (last → S,

first → string ) ) .

Figure 4.3: EquivalentOSF term syntax for theOSF graph of Figure 4.1

4.1.2 Formal background

In this section, we give a brief formal account of the notions illustrated in the foregoing informal

description. The reader is referred to [23], [24], and [25] for all technical details such as mathe-

matical proofs, and to [10] and [16] for more operational details such as implementation, as well

as all further relevant references in them.

§ OSF SIGNATURE

An OSF signature is a quadruple 〈S,�,f,F〉 where:

• S is a set of sorts containing at least the two distinguished sorts ⊤ and ⊥;

• � is a decidable partial order on S for which ⊥ is unique least element and ⊤ is unique

greatest element;

• 〈S,�,f〉 is a lower semi-lattice (sf s′ is called the greatest common subsort of s and s′);

• F is a set of feature symbols.

Referring to the example in Figure 4.2, the set of sorts S contains set-denoting symbols such

as person, name, and string. The set of features F contains function-denoting symbols (on

the left of→), such as id, age, spouse, first, last, etc., . . . The ordering on the sorts S
denotes set inclusion and the infimum operation f denotes set intersection. Therefore, ⊤ denotes

the all-inclusive sort (the set of all things), and ⊥ denotes the all-exclusive sort (the set of no

things). This is formalized next.

§ OSF ALGEBRAS

Given anOSF signature 〈S,�,f,F〉, anOSF algebra A is a mathematical structure consisting

of a triplet:

A
def
= 〈DA, (sA)s∈S , (f

A)f∈F〉 (4.1)

where:

• DA is a non-empty set, called the domain of A;

• for each sort symbol s in S, sA is a subset of the domain; in particular, ⊤A = DA and

⊥A = ∅;
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• (s1 f s2)
A = sA1 ∩ s

A
2 for two sorts s1 and s2 in S;

• for each feature f in F , fA is a total unary function from the domain into the domain; i.e.,

fA : DA 7→ DA.3

§ OSF HOMOMORPHISMS

In algebra, a homomorphism between two algebraic structures is a structure-preserving mapping.

The essence of a structure-preserving mapping between OSF algebras is that it should preserve

sort inclusion and feature application. Thus, an OSF homomorphism γ : A 7→ B between two

OSF algebras A and B is a function γ : DA 7→ DB such that:

• ∀s ∈ S, γ(sA) ⊆ sB; and,

• ∀f ∈ F , ∀d ∈ DA, γ(fA(d)) = fB(γ(d)).

§ OSF ENDOMORPHISMS

The notion of interest for inheritance is that of OSF endomorphism. That is, when an OSF
homomorphism γ is internal to anOSF algebra (i.e.,A = B), it is called anOSF endomorphism

of A. This means:

• ∀s ∈ S, γ(sA) ⊆ sA; and,

• ∀f ∈ F , ∀d ∈ DA, γ(fA(d)) = fA(γ(d)).

Such an endomorphism defines a natural pre-order � on the domain DA of any OSF algebra

A whereby t1 � t2 iff ∃γ : DA → DA such that t1 = γ(t2). This is as pictured in Figure 4.4.

As can be seen in this figure, interpreting a concept’s attribute as a functional feature captures

formally and precisely inheritance of attributes as used, e.g., in object-oriented classes, semantic

networks, and formal ontological logics defining concept hierarchies. Namely, a concept C1 (the

subconcept) inherits the attributes of a concept C2 (its superconcept) if and only if there exists an

OSF endormorphism (γ) taking the set s denoted by the superconcept C2 to the set γ(s) denoted

by the subconcept C1. Thus, for γ to be an OSF endomorphism means that, for any attribute f ,

the image concept C1.f is a subconcept of the image concept C2.f . Formally, this translates as the

equality γ(f(s)) = f(γ(s)). In other words, feature application and sort refinement commute:

doing first the former and then the latter or vice versa always yields the same result.

Note the contravariance of the “is a” arrows on concepts (subsets of denotations) vs. the

endomorphic maps between the OSF graphs denoting them. The latter go from the tag set (i.e.,

the set of nodes) of the more general OSF graph to that of the less general graph.4 This is

understandable since the more general OSF graph has always at least as many feature arcs as the

less general graph. It is then said that such an endomorphic mapping γ realizes the inheritance

between the two OSF graphs corresponding to the less general graph’s feature domains and

ranges.

3See Appendix Section B.1 for partial features, and other extensions.
4In other words, the more constrained the graphs, the lesser the extent of their denotations. This duality phe-

nomenon between constraints and solutions is well-known and can be paraphrased as, “the more there are constraints,

the less there are solutions.”
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Class Inheritance OSF Endomorphism

C2 C2.f

C1 C1.f

s f(s)

γ(s) γ(f(s)) = f(γ(s))

is a is a

f

f

γ γ

f

f

Figure 4.4: Subclass functional-attribute inheritance as OSF endomorphism

§ SYNTAX OF OSF TERMS

DEFINITION 4.1 (OSF TERM SYNTAX) An OSF term t is an expression taking one of the

three possible syntactic forms:

1. an unsorted variable X; or,

2. a simply sorted variable X : s; or,

3. an attributed sorted variable X : s(f1 → t1, . . . , fn → tn);

where X is an element in a countably infinite set of variables V , s is a sort in S and, f1, . . . , fn
are features in F and t1, . . . , tn are OSF terms, for any n ≥ 1.

Examples of thisOSF term syntax definition are those displayed in Figure 4.2 and Figure 4.3.

For such an OSF term t, the variable X is called the root tag of t, and is referred to as ROOT(t).
In what follows, we shall consider “(logical) variable” and “(OSF ) tag” to be synonymous: a

logical variable points to the root of an OSF term as a reference tag to an OSF graph data

structure. The set of all tags occurring in an OSF term t is defined as Tags(t)
def
= { ROOT(t) } ∪

⋃n
i=1 Tags(ti). As justified by the following semantics given to this syntax, we shall consider the

first form for an unsorted variable X that occurs nowhere else in its context as a sorted variable,

as a shorthand for X : ⊤.

§ SEMANTICS OF OSF TERMS

Given that OSF term syntax uses variables from a countably infinite set of variables V , we must

define the meaning of a term for all possible values these variables may take in the intended

semantic domain.
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In the remainder, we assume given an OSF signature 〈S,�,f,F〉, and by OSF algebra A,

we shall mean an OSF algebra A = 〈DA, (sA)s∈S , (f
A)f∈F〉 on this reference signature.

For such an OSF algebraA and a specificA-valuation υ : V 7→ DA, theA-denotation [[t]]A,υ

of an OSF term t such as above is given by:

[[t]]A,υ def
= { υ(X) } ∩ sA ∩

⋂

1≤i≤n

(fA
i )−1([[ti]]

A,υ). (4.2)

Hence, for a fixedA-valuation υ, [[t]]A,υ is either the empty set or the singleton set { υ(ROOT(t)) }.
In fact, it is not the empty set if and only if the value υ(ROOT(t)) lies in the denotation of the sort

s, as well as every inverse image by (fA
i )−1 (the reciprocal of the denotation fA

i of each feature

fi) of the denotation of the corresponding subterm [[ti]]
A,υ under the same A-valuation υ. Thus,

the denotation of an OSF term t for all possible valuations of the variables is given by the set:

[[t]]A
def
=

⋃

υ:V7→DA

[[t]]A,υ. (4.3)

§ OSF TERM SUBSUMPTION

Since we have both a formal syntax and its formal semantics, there are two ways we can define

OSF term subsumption between two OSF terms t and t′.

DEFINITION 4.2 (SYNTACTIC OSF TERM SUBSUMPTION) An OSF term t is syntactically

subsumed by anOSF term t′ (written: t � t′) if, and only if, there exists anOSF endomorphism

γ such that t = γ(t′).

DEFINITION 4.3 (SEMANTIC OSF TERM SUBSUMPTION) AnOSF term t is semantically sub-

sumed by anOSF term t′ (written: t[[�]]t′) if, and only if, [[t]]A ⊆ [[t′]]A in any interpretationOSF
algebraA.

The following theorem was established in [23] and states that the two definitions coincide.

THEOREM 4.1 (OSF TERM SUBSUMPTION) For anyOSF terms t and t′,

t � t′ iff t[[�]]t′.

§ OSF TERM NORMAL FORM

An OSF term t = X : s(f1 → t1, . . . , fn → tn) is said to be “in normal form” whenever all

the following properties hold:

• s ∈ S \ {⊥} (i.e., s is a non-bottom sort in S);

• f1, . . . , fn are pairwise distinct features in F , for all n ≥ 2;

• t1, . . . , tn are all OSF terms in normal form, for all n ≥ 1; and,

• no variable in Tags(t) is sorted more than once by a non-top sort.5

5That is, if X ∈ Tags(t) occurs in t both as X : s and X : s′, then s = ⊤ or s′ = ⊤.
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With these criteria, we note hence that all the examples of OSF terms shown in the previous

section are, formally speaking, in normal form. Such a normal form ensures that it is devoid

of actual or potential inconsistencies. We shall call an OSF term in normal form a “ψ-term,”

and designate as Ψ the set of all ψ-terms.6 How to normalize an OSF term into a semantically

equivalent ψ-term is explained next.

§ FROM OSF TERMS TO OSF CONSTRAINTS

A logical reading of an OSF term is immediate as its information content can be characterized

by a simple formula. For this purpose, we need a simple clausal language as follows.

An atomic OSF constraint is one of (1) X : s, (2) X
.
= X ′, or (3) X.f

.
= X ′, where X and

X ′ are variables in V , s is a sort in S, and f is a feature in F . A (conjunctive)OSF constraint is

a conjunction (i.e., a set) of atomic OSF constraints φ1 & . . . & φn. Given an OSF algebra

A, we say that an OSF constraint φ is satisfiable in A with a valuation υ : V 7→ DA (and we

write this as “A, υ |= φ”) whenever:

A, υ |= X : s iff υ(X) ∈ sA;

A, υ |= X
.
= Y iff υ(X) = υ(Y );

A, υ |= X.f
.
= Y iff fA(υ(X)) = υ(Y );

A, υ |= φ & φ′ iff A, υ |= φ and A, υ |= φ′.

(4.4)

Given an OSF term t = X : s(f1 → t1, . . . , fn → tn), we can always associate to it a

specific corresponding OSF constraint ϕ(t) as follows:

ϕ(t)
def
= X : s & X.f1

.
= ROOT(t1) & . . . & X.fn

.
= ROOT(tn)

& ϕ(t1) & . . . & ϕ(tn)
(4.5)

for any n ≥ 0. We say that ϕ(t) is obtained from the OSF term t by dissolving it into its clausal

form. The following theorem, also established in [23], states that the algebraic denotation of an

OSF term as a set and the logical semantics of its dissolved form obtained by Expression (4.5)

coincide exactly.

THEOREM 4.2 (COINCIDING ALGEBRAIC AND LOGICAL SEMANTICS OF OSF TERMS)

[[t]]A = { υ(ROOT(t)) | υ : V → DA and A, υ |= ϕ(t) }.

4.1.3 OSF -term lattice structure

As seen in the two previous sections, the FOT can be extended and made more expressive as a

knowledge structure into a rooted OSF graph written as an OSF term. It is more expressive as

a model of typed data and their types, as well as approximations thereof as generic set-denoting

6The expression “ψ-term” was introduced originally by the first author in his PhD thesis [4] as a shorthand for

“Property Structure Inheritance Term,” as a formalization of some parts of Ron Brachman’s “Structured Inheritance

Networks” (or “SI-Nets”) defined informally in his PhD thesis [53].
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concepts ordered by set inclusion. Formally, it is a representation scheme that is a conservative

extension of, yet more generic than, the one offered byFOT s and their lattice-theoretic properties

exposed in 1970 simultaneously, though independently, by Reynolds in [141] and Plotkin in [134]

and [135]. A more general term lattice was first defined in [3]; then, in [4] and [6], it was further

extended toOSF structures, which express order-sorted functional commutative diagrams among

sets as used in mathematics to express equational constraints on functional feature compositions.

These are just a special case of ψ-terms and theirOSF lattice operations as made explicit in [8].7

These operations (viz., unification and generalization) can thus be extended from FOT s to OSF
terms, obtaining improved expressivity while keeping the same complexity,8 to provide a simple

and intuitive semantics for knowledge and data structures of partial descriptions.

The subsumption ordering defined on ψ-terms is an extension of the subsumption ordering on

FOT s. Specifically, for an OSF term t to subsume an OSF term t′ (i.e., t′ � t), there must be a

mapping γ from the tags of t to the tags of t′ — i.e., γ : Tags(t) 7→ Tags(t′) — that respects sorting

and preserves feature applications. Such a mapping is called a sort-consistent feature-preserving

endomorphic mapping and is the formal notion extending the concept of FOT substitution to

ψ-terms. To emphasize the existence of this mapping γ whenever t′ � t, we shall also write

t′ = γ(t).
More precisely, OSF endomorphic maps define a partial order on OSF terms “up to tag

renaming” just as FOT s are partially ordered by variable instantiation “up to variable renaming.”

It is easy to verify that it is a partial order on OSF terms modulo tag renaming. Indeed, it is

reflexive (since the identity on Tags(t) is a tag map for any OSF term t); it is transitive (by

composition of tag maps); and is symmetric since t � t′ and t′ � t is by definition the same as

∃γ : Tags(t) → Tags(t′) s.t. γ(t) = t′ and ∃γ′ : Tags(t′) → Tags(t) s.t. γ′(t′) = t where γ and

γ′ are inverse bijections on V; that is, inverse tag renamings. Therefore, this is equality on the

equivalence class of OSF terms modulo tag renaming. Given two OSF terms t and t′ such that

t � t′ with the endomorphic map γ : Tags(t) 7→ Tags(t′), the application of an endomorphic map

to OSF clauses is defined inductively as follows:

γ(X : s)
def
= γ(X) : s

γ(X.f
.
= Y )

def
= γ(X).f

.
= γ(Y )

γ(X
.
= Y )

def
= γ(X)

.
= γ(Y )

γ(φ1 & φ2)
def
= γ(φ1) & γ(φ2)



















(4.6)

In practice, using this definition, such a mapping γ associates each tag symbol occurring in a

ψ-term t to a tag symbol occurring in a ψ-term t′ = γ(t) in such as way that, whenever:

{X : d,X.f
.
= Y, Y : r } ⊆ ϕ(t),

then necessarily, for some sorts d′ and r′ s.t. d′ � d and r′ � r:

{ γ(X) : d′, γ(X).f
.
= γ(Y ), γ(Y ) : r′ } ⊆ ϕ(t′) = ϕ(γ(t)) = γ(ϕ(t)).

This, as pictured in the diagram in Figure 4.4 shown above, captures formally attribute inheritance

as used in object-oriented programming and knowledge representation, with the added bonus of

7Op. cit., Pages 47–60, Section 3.1 on order-sorted feature constraints.
8In fact, sorting focuses, and thus optimizes, reasoning [19].
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providing an effective operational method for performing conjunctive deduction (viz., unification)

and disjunctive induction (viz., generalization) using such structures. Indeed, as shown in Fig-

ure 4.5, endomorphic mappings define lattice operations on ψ-terms whose sets of tags have been

consistently renamed apart in exactly the same way as “renaming substitutions” do for FOT s.9

t = lub(t1, t2)

t1 = γ1(t) t2 = γ2(t)

t =

{

γ(t1) = γ(t2)
γ(γ1(t)) = γ(γ2(t))

}

= glb(t1, t2)

γ1 γ2

γ γ

Figure 4.5: OSF subsumption lattice operations

Just like FOT s with substitutions, whenever two ψ-terms t and t′ are such that ∃γ s.t. t′ =
γ(t) and ∃γ′ s.t. t = γ′(t′), they are said to be identical “up to tag renaming.” This is because

necessarily γ′ = γ−1 and γ = γ′−1 make up a pair of mutually inverse “one-to-one onto” tag

mappings (bijections). How to compute these endomorphic mappings by OSF constraint nor-

malization is shown next.

§ OSF UNIFICATION: DEDUCTION BY CONSTRAINT NORMALIZATION

DEFINITION 4.4 (SOLVED OSF CONSTRAINT) An OSF constraint φ is said to be in solved

form if for every variable X , φ contains:

• at most one sort constraint X : s and s 6= ⊥, for any X that occurs in φ;

• at most one feature constraint X.f
.
= Y , for any X.f that occurs in φ;

and whenever X
.
= Y ∈ φ, then X does not appear anywhere else in φ.

As explained in [23], given an OSF constraint φ, non-deterministically applying any appli-

cable rule among the rules shown in Figure 4.6 until none applies always terminates either in the

inconsistent constraint false or in a solved OSF constraint. The notation φ[X/Y ] in Rule TAG

ELIMINATION stands for the constraint φ in which all occurrences of the tag Y have been replaced

with the tag X . As a result of applying this rule, the tag being eliminated (Y ) will occur nowhere

else in the normal form except as the right-hand side of constraint X
.
= Y . In [23], it is formally

established that the rules in Figure 4.6 are:

9See Figure 3.1 in Section 3.4.
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SORT INTERSECTION

φ & X : s & X : s′

φ & X : sfs′

FEATURE FUNCTIONALITY

φ & X.f
.
= Y & X.f

.
= Y ′

φ & X.f
.
= Y & Y

.
= Y ′

INCONSISTENT SORT

φ & X : ⊥

false

TAG ELIMINATION

[Y ∈ Tags(φ)]

φ & X
.
= Y

φ[X/Y ] & X
.
= Y

Figure 4.6: Constraint normalization rules for OSF unification

1. solution-preserving — for each rule, the set of solutions of the posterior constraint is equal

to the set of solutions of the prior constraint;

2. finitely terminating — normalizing with these rules always terminates after a finite number

of formula transformations;

3. confluent — they always end up with the same constraint up to consistent tag renaming.

Furthermore, they always result in a normal form that is either the inconsistent constraint false or

a consistentOSF constraint in solved form. These rules are all we need to perform the unification

of two ψ-terms. Namely, two ψ-terms t1 and t2 are unifiable if and only if the normal form of the

OSF constraint ROOT(t1)
.
= ROOT(t2) & ϕ(t1) & ϕ(t2) is not false.

Example 4.1 OSF signature and terms — Let us consider the sort signature:

⊤

u

s t

v

⊥

and the two ψ-terms:

ψ1
def
= X : s (a → X1 : s, b → X1, c → X1, d → X2 )

and:
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ψ2
def
= Y : t (a → Y1 : t, b → Y2 : t, c → Y2, e → Y3 )

corresponding to the following two OSF graphs:

X : s Y : t

X1 : s X2 : ⊤ Y1 : t Y2 : t Y3 : ⊤

a

b c

d
a

b

c

e

and corresponding dissolved forms:

ϕ(ψ1) = X : s & X . a
.
= X1 & X1 : s

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

ϕ(ψ2) = Y : t & Y . a
.
= Y1 & Y1 : t

& Y . b
.
= Y2 & Y2 : t

& Y . c
.
= Y2

& Y . e
.
= Y3 & Y3 : ⊤.

Example 4.2 OSF term unification — Using the dissolved forms of the terms ψ1 and ψ2 defined in

Example 4.1, let us normalize the clause formed as:

ROOT(ψ1)
.
= ROOT(ψ2) & ϕ(ψ1) & ϕ(ψ2);

namely,

X
.
= Y & X : s & X . a

.
= X1 & X1 : s

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& Y : t & Y . a
.
= Y1 & Y1 : t

& Y . b
.
= Y2 & Y2 : t

& Y . c
.
= Y2

& Y . e
.
= Y3 & Y3 : ⊤

with any applicable rule in Figure 4.6:

1. apply Rule TAG ELIMINATION:10

X
.
= Y & X : s & X . a

.
= X1 & X1 : s

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& Y : t & Y . a
.
= Y1 & Y1 : t

& Y . b
.
= Y2 & Y2 : t

& Y . c
.
= Y2

& Y . e
.
= Y3 & Y3 : ⊤

10We underline the pattern being normalized in the conjunction of constraints. Since normalizing the conjuncts

in any order will terminate in the same normal form modulo tag renaming, we shall proceed in a left-to-right order.

We shall also move all eliminated-tag renamings to the end of the constraint as they are de facto in normal form and

eventually provide the substitution resolving the original constraint to normalize.
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2. apply Rule SORT INTERSECTION:

X : s & X . a
.
= X1 & X1 : s

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y

& X : t & X . a
.
= Y1 & Y1 : t

& X . b
.
= Y2 & Y2 : t

& X . c
.
= Y2

& X . e
.
= Y3 & Y3 : ⊤

3. apply Rule FEATURE FUNCTIONALITY:

X : v & X . a
.
= X1 & X1 : s

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y

& X . a
.
= Y1 & Y1 : t

& X . b
.
= Y2 & Y2 : t

& X . c
.
= Y2

& X . e
.
= Y3 & Y3 : ⊤

4. apply Rule TAG ELIMINATION:

X : v & X . a
.
= X1 & X1 : s

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y

& X1
.
= Y1 & Y1 : t

& X . b
.
= Y2 & Y2 : t

& X . c
.
= Y2

& X . e
.
= Y3 & Y3 : ⊤

5. apply Rule SORT INTERSECTION:

X : v & X . a
.
= X1 & X1 : s

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y & X1

.
= Y1

& X1 : t
& X . b

.
= Y2 & Y2 : t

& X . c
.
= Y2

& X . e
.
= Y3 & Y3 : ⊤

6. apply Rule FEATURE FUNCTIONALITY:

X : v & X . a
.
= X1 & X1 : v

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y & X1

.
= Y1

& X . b
.
= Y2 & Y2 : t

& X . c
.
= Y2

& X . e
.
= Y3 & Y3 : ⊤

7. apply Rule TAG ELIMINATION:

X : v & X . a
.
= X1 & X1 : v

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y & X1

.
= Y1

& X1
.
= Y2 & Y2 : t

& X . c
.
= Y2

& X . e
.
= Y3 & Y3 : ⊤
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8. apply Rule SORT INTERSECTION:

X : v & X . a
.
= X1 & X1 : v

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y & X1

.
= Y1

& X1 : t
& X . c

.
= X1

& X . e
.
= Y3 & Y3 : ⊤

& X1
.
= Y2

9. apply Rule FEATURE FUNCTIONALITY:11

X : v & X . a
.
= X1 & X1 : v

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y & X1

.
= Y1

& X . c
.
= X1

& X . e
.
= Y3 & Y3 : ⊤

& X1
.
= Y2

10. and the normalization terminates, resulting in the following simplified normal form:12

X : v & X . a
.
= X1 & X1 : v

& X . b
.
= X1

& X . c
.
= X1

& X . d
.
= X2 & X2 : ⊤

& X
.
= Y & X1

.
= Y1

& X . e
.
= Y3 & Y3 : ⊤

& X1
.
= Y2

This normal form corresponds to the ψ-term:

ψ1 ∧ ψ2
def
= X : v (a → X1 : v, b → X1, c → X1, d → X2, e → Y3 ) (4.7)

that is the OSF-graph:

X : v

X1 : v X2 : ⊤ Y3 : ⊤

a

b c

d
e

(4.8)

resulting from eliminating tags with the tag substitutions: X/Y, X1/Y1, and X1/Y2 corresponding to the

tag-renaming constraints left by Rule TAG ELIMINATION that remain in the normal form; viz., X
.
=

Y & X1
.
= Y1 & X1

.
= Y2.

11Note that instead of using Rule FEATURE FUNCTIONALITY as done here, this step could simply be logical

simplification (using idempotence of logical conjunction: φ & φ→ φ for any formula φ, taking X . c
.
= X1 for φ

in this case). Of course, confluence of normalization garantees that both are correct and lead to termination.
12Using logical simplification, whereby T

.
= T → true for any tag T (in this case X1

.
= X1 → true); and,

φ & true→ φ, for any formula φ.
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Well-scoped OSF term unification In order to respect the specific scope of a given ψ-term,

we shall always assume each argument of the glb and lub lattice operations on two given ψ-

terms to have distinct independent tag scopes before dissolution into their respectiveOSF -clause

forms. This is equivalent to “renaming apart” in FOT -term lattice operations. This enables

specifying these operations with tag mappings between two distinct tag sets for their domain and

range, introducing new variables in the glb and lub as OSF -clause unification or generalization

proceeds.

Note that the constraint normalization rules of Figure 4.6 on Page 85 compute a tag binding

(as specified by Rule TAG ELIMINATION) that replaces any tag by its class representative. This

corresponds to computing the glb over ψ-terms shown in Figure 4.5 on Page 84 up to consistent

tag renaming, whereby the lattice is in fact the quotient set of ψ-terms modulo consistent tag

renaming. Thus, it is assumed that the ψ-term resulting from the OSF unification operation is

obtained using a scoped endomorphism γ; i.e., from scoped ψ-terms ψ1 and ψ2 to scoped ψ-term

ψ1 ∧ ψ2 such that γ : Tags(ψ1) ∪ Tags(ψ2)→ Tags(ψ1 ∧ ψ2).
13

Producing a well-scoped tag endomorphism from the normal form obtained by normalizing

the OSF constraint:

ROOT(t)
.
= ROOT(t′) & ϕ(t) & ϕ(t′) (4.9)

where t and t′ are two ψ-terms such that Tags(t) ∩ Tags(t′) = ∅ (i.e., whose respective tags have

been renamed apart), is done as follows:

1. let Π
def
= {T1, . . . , Tm}, 0 ≤ m ≤ n, n

def
= |Tags(t) ∪ Tags(t′)|, be the resulting

partition of Tags(t) ∪ Tags(t′); that is:

• for each i = 1, . . . , m, Ti ⊆ Tags(t) ∪ Tags(t′);

• for all i, j s.t. 1 ≤ i < j ≤ m, Ti ∩ Tj = ∅; and,

•
⋃m

i=1 Ti = Tags(t) ∪ Tags(t′);

2. let {V1, . . . ,Vm} be a set of m mutually distinct new variable names and, for

each i = 1, . . . , m, associate the unique name Vi with one of the set of tags Ti
in the partition;

3. replace each tag name X ∈ Tags(t)∪Tags(t′) in the normal form with the unique

new tag name associated with its congruence class in the partition Π.

This eventual renaming of the normal form always results in a well-scoped tag endomorphism

from Tags(t) ∪ Tags(t′) to Tags(t∧t′)
def
= {V1, . . . ,Vm}.

Example 4.3 ScopedOSF term unification — Consider the terms ψ1 and ψ2 defined in Example 4.1

and the normal form corresponding to the ψ-term (4.7). Now, since:

Tags(ψ1) = {X, X1, X2 }

13The tag set of an OSF term X : s(f1 → t1, . . . , fn → tn), n ≥ 0, is defined as Tags(X : s(f1 → t1, . . . , fn →

tn))
def
= {X} ∪

⋃n

i=1 Tags(ti). Note that this recursive definition is well-founded since, we have Tags(X : s)
def
=

{X} in the case n = 0.
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and:

Tags(ψ2) = {Y, Y1, Y2, Y3 }

the final congruence classes for each tag form the following partition of Tags(ψ1) ∪ Tags(ψ2):

{X, Y }, {X1, Y1, Y2 }, {X2 }, {Y3 }.

Hence, we can define the following new tag names, one per congruence class:

V
def
= {X, Y },

V1
def
= {X1, Y1, Y2 },

V2
def
= {X2 },

V3
def
= {Y3 }

and replace each tag name in the ψ-term normal form Expression (4.7) and the graph it corresponds to in

Expression (4.8) with its congruence class’ new tag name:

V : v (a → V1 : v, b → V1, c → V1, d → V2, e → V3 ) (4.10)

that is the OSF-graph:

V : v

V1 : v V2 : ⊤ V3 : ⊤

a

b c

d
e

(4.11)

i.e., the well-scoped ψ-term:

ψ1 ∧ ψ2 = V : v (a → V1 : v, b → V1, c → V1, d → V2, e → V3 )

that is the glb of ψ1 and ψ2 with the tag mapping γ defined formally as mapping each original tag in

Tags(ψ1) ∪ Tags(ψ1) to its new tag representative. Namely, in this example’s case:

γ(X) = V, γ(Y) = V,
γ(X1) = V1, γ(Y1) = V1,
γ(X2) = V2, γ(Y2) = V1,

γ(V3) = Y3

as shown in Figure 4.7 (which realizes the lower part of Figure 4.5).

§ OSF GENERALIZATION: INDUCTION BY CONSTRAINT NORMALIZATION

Just likeFOT s, ψ-terms also possess an operation of generalization that is dual to unification ([4],

[26]). The operation is very similar, with the additional taking into account of common symbolic
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X : s Y : t

X1 : s X2 : ⊤ Y1 : t Y2 : t Y3 : ⊤

V : v

V1 : v V2 : ⊤ V3 : ⊤

a

b c

d
a

b
c

e

a

b c

d e

γ

γ γ

γ

γ

γ

γ

Figure 4.7: OSF graph endomorphism realizing scoped OSF unification
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features rather then all contiguous positions, as well as partially ordered sorts denoting sets and

the sort ordering denoting set inclusion.

What follows is a formal specification of theOSF generalization operation. This formulation

is different than the one used in [26]. It is equivalent to it, however, expressed with this now

familiar notation we used for FOT generalization in Section 3.6, extended to OSF terms. That

is,

(

γ1
γ2

)

⊢

(

ψ1

ψ2

)

ψ

(

γ′1
γ′2

)

where ψ is the ψ-term generalizing the ψ-terms ψ1 and ψ2, and (γ1, γ2) and (γ′1, γ
′
2) are, re-

spectively, the judgement’s pairs of prior and posterior tag maps.14 In order to do this, all the

generalization constraint normalization rules must be reformulated into syntax-directed judgment

axioms and rules directly on the syntactic form of ψ-terms (i.e., OSF terms in normal form) de-

fined in Equation (4.1), rather than on dissolved OSF constraints as done in [26]. The dissolved

form is more convenient for unification while traditional term syntax is more convenient for our

formulation of generalization, as for that of FOT s (and the fuzzification of the corresponding

lattice operation).

Since our definition of the generalizing operation’s definition will assume that its arguments

are ψ-terms (i.e., OSF terms in normal form), each tag symbol occurring in either term will

always be the root tag of a unique ψ-term. This property is easily verified to be preserved by the

axiom and the rule of Figure 4.8. Thus, a sortless occurrence of a tag always refers to (i.e., is the

root tag of) this unique ψ-term. If none of a tag symbol’s occurrences is sorted, then this tag is the

root of a common occurrence of the most general sort: ⊤ (i.e., “anything”).

Axiom EQUAL TAGS in Figure 4.8 simply states that generalizing a pair made of the same

ψ-term results in this ψ-term and the posterior tag maps are the same as the prior ones.

Rule UNEQUAL TAGS in Figure 4.8 uses an “unapply” operation ‘↑’ that is defined as follows:

(

ψ1

ψ2

)

↑

(

γ1
γ2

)

def
=























(

X : . . .
X : . . .

)

if ∃X s.t. γi(X) = ROOT(ψi), for i = 1, 2;

(

ψ1

ψ2

)

otherwise.

(4.12)

This has the same purpose as the unapply operation used inFOT generalization judgments: iden-

tify in the prior pair of tag maps (γ1, γ2) whether or not they already map a common variable (X)

to the roots of the pair of ψ-terms to be generalized (ψ1, ψ2). If so, the result of the unapplication

is the pair made of the same ψ-term rooted in X (X : . . ., X : . . .); if not, it is the original pair of

ψ-terms (ψ1, ψ2).

Rule UNEQUAL TAGS of Figure 4.8 states that generalizing two ψ-terms ψ1
def
= X : s (fi →

ψi)
m
i=0 and ψ2

def
= Y : t (gj → ξj)

n
j=0 results in the ψ-term ψ1 ∨ ψ2

def
= Z : s∨t (hk → χk)

p
k=0,

where the set of features of the resulting ψ-term is the intersection of the sets of features of ψ1

and ψ2 (i.e., the features they have in common), and Z is a new tag name, when each subterm is

the result of generalizing each of the corresponding pairs of subterms under all common features.

14A tag map is a tag-to-tag substitution.
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EQUAL TAGS

(

γ1
γ2

)

⊢

(

ψ
ψ

)

ψ

(

γ1
γ2

)

UNEQUAL TAGS







X 6= Y ;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {f1, . . . , fm} ∩ {g1, . . . , gn} s.t. hk

def
= fk = gk for all k = 1, . . . , p ;

γ01
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new tag name







(

γ01
γ02

)

⊢

(

ψ1

ξ1

)

↑

(

γ01
γ02

)

χ1

(

γ11
γ12

)

. . .

(

γp−1
1

γp−1
2

)

⊢

(

ψp

ξp

)

↑

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

(

γ1
γ2

)

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

Figure 4.8: Judgment-based OSF generalization axiom and rule

Note that in this rule’s condition, hk
def
= fk = gk for all k = 1, . . . , p imposes that the pair of

ψ-term being generalized have their features ordered so that their common features fk and gk (if

there are any — i.e., if p > 0) have the same index k ∈ {1, . . . , p}. This can always be done since

ψ-term’s features can be specified in any order. Note also that this rule’s numerator’s sequence

of judgements can be in any order of the p common features, as long as each subterm judgment

is validated with its pair of prior tag maps equal to the preceding judgment’s pair of posterior tag

maps. Finally, note also that when the set of common features is empty (i.e., p = 0), its numerator

reduces to true and Rule UNEQUAL TAGS reduces to the following conditional single-judgment

axiom:

UNEQUAL TAGS W/ NO COMMON FEATURE





X 6= Y ;
m,n ≥ 0 and {f1, . . . , fm} ∩ {g1, . . . , gn} = ∅

γ01
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new tag name





(

γ1
γ2

)

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t
(

γ01
γ02

)

i.e., it is a fully proven single judgment with the corresponding endomorphic mapping extended

with a newly introduced tag (Z) mapped to the respective root tags (X and Y ). As seen in Ex-

ample 4.4, this axiom together with Axiom EQUAL TAGS of Figure 4.8 provide the fully proven

judgments that constitute the leaves of an OSF -generalization proof tree.
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Example 4.4 OSF term generalization — Let us consider the same sort signature and partial order,

together with the same ψ-terms ψ1 and ψ2 of Example 4.2. Let us take the following OSF generalization

judgment constraint to resolve:

(

∅
∅

)

⊢

(

ψ1

ψ2

)

ψ1 ∨ ψ2

(

γ1
γ2

)

in which the ψ-term ψ1 ∨ ψ2 and the generalizing endomorphic tag maps γ1 and γ2 are to be determined

by normalizing this judgment according to the axiom and rule of Figure 4.8.

We start with the judgment:

(

∅
∅

)

⊢

(

X : s (a → X1 : s, b → X1, c → X1, d → X2 )
Y : t (a → Y1 : t, b → Y2 : t, c → Y2, e → Y3 )

)

ψ1 ∨ ψ2

(

γ1
γ2

)

.

Applying Rule UNEQUAL TAGS, since s ∨ t = u, keeping only common features and introducing a new

tag U, this yields ψ1 ∨ ψ2 = U : u(a → ψ′, b → ψ′′, c → ψ′′′) and this judgment becomes the

following sequence of three judgments:

(

{X/U }
{Y/U }

)

⊢

(

X1 : s
Y1 : t

)

↑

(

{X/U }
{Y/U }

)

ψ′
(

γ′1
γ′2

)

,

(

γ′1
γ′2

)

⊢

(

X1 : s
Y2 : t

)

↑

(

γ′1
γ′2

)

ψ′′
(

γ′′1
γ′′2

)

,

(

γ′′1
γ′′2

)

⊢

(

X1 : s
Y2 : t

)

↑

(

γ′′1
γ′′2

)

ψ′′′
(

γ1
γ2

)

.

Evaluating the unapplication in the first of these judgments, it becomes:

(

{X/U }
{Y/U }

)

⊢

(

X1 : s
Y1 : t

)

ψ′
(

γ′1
γ′2

)

,

to which we can apply again Rule UNEQUAL TAGS, since s ∨ t = u, introducing a new tag U1, this first

judgment becomes:

(

{X/U }
{Y/U }

)

⊢

(

X1 : s
Y1 : t

)

U1 : u

(

{X/U,X1/U1 }
{Y/U,Y1/U1 }

)

.

This, in turn, makes the second judgment in the sequence become:

(

{X/U,X1/U1 }
{Y/U,Y1/U1 }

)

⊢

(

X1 : s
Y2 : t

)

↑

(

{X/U,X1/U1 }
{Y/U,Y1/U1 }

)

ψ′′
(

γ′′1
γ′′2

)

,

and after evaluating the unapplication, it becomes:

(

{X/U,X1/U1 }
{Y/U,Y1/U1 }

)

⊢

(

X1 : s
Y2 : t

)

ψ′′
(

γ′′1
γ′′2

)

,

to which we can apply again Rule UNEQUAL TAGS, since s∨t = u, introducing a new tag U2 this second

judgment becomes:

(

{X/U,X1/U1 }
{Y/U,Y1/U1 }

)

⊢

(

X1 : s
Y2 : t

)

U2 : u

(

{X/U,X1/U1,X1/U2 }
{Y/U,Y1/U1,Y2/U2 }

)

.
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This then makes the third judgment in the initial sequence become:

(

{X/U,X1/U1,X1/U2 }
{Y/U,Y1/U1,Y2/U2 }

)

⊢

(

X1 : s
Y2 : t

)

↑

(

{X/U,X1/U1,X1/U2 }
{Y/U,Y1/U1,Y2/U2 }

)

ψ′′′
(

γ1
γ2

)

.

But now, because both X1/U2 and Y2/U2 are in the two respective prior tag maps, the unapplication in this

judgment comes to:

(

X1 : s
Y2 : t

)

↑

(

{X/U,X1/U1,X1/U2 }
{Y/U,Y1/U1,Y2/U2 }

)

=

(

U2 : u
U2 : u

)

which makes the third judgment become:

(

{X/U,X1/U1,X1/U2 }
{Y/U,Y1/U1,Y2/U2 }

)

⊢

(

U2 : u
U2 : u

)

ψ′′′
(

γ1
γ2

)

;

and using Axiom EQUAL TAGS, this third judgment becomes:

(

{X/U,X1/U1,X1/U2 }
{Y/U,Y1/U1,Y2/U2 }

)

⊢

(

U2 : u
U2 : u

)

U2 : u

(

{X/U,X1/U1,X1/U2 }
{Y/U,Y1/U1,Y2/U2 }

)

.

and terminates the proof.

This results in the ψ-term ψ1 ∨ ψ2 that is the generalization of ψ1 and ψ2:

ψ1 ∨ ψ2 = U : u(a → U1 : u, b → U2 : u, c → U2)

with the corresponding tag maps γ1 and γ2:15

γ1(U) = X, γ2(U) = Y,
γ1(U1) = X1, γ2(U1) = Y1,
γ1(U2) = X1, γ2(U2) = Y2

as pictured in Figure 4.9.

Putting Figure 4.9 together with Figure 4.7, as we do in Figure 4.10, shows the lattice structure of the

OSF graphs together with the three endomorphic tag maps γ, γ1, and γ2 that realize it as required by the

lattice diagram show in Figure 4.5.16

15Or, γ1 = {X/U, X1/U1, X1/U2 } and γ2 = {Y/U, Y1/U1, Y2/U2 }, when writing an endomorphism as a tag

substitution.
16For a detailed example with more realistic sort signature and feature names showing the result of applying these

normalization rules compute the glb and the lub of two ψ-terms with meaningful symbols, see Example B.2 in

Appendix B.2.

Copyright c© 2020 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 96 Version of April 10, 2020

U : u

U1 : u U2 : u

X : s Y : t

X1 : s X2 : ⊤ Y1 : t Y2 : t Y3 : ⊤

a

b

c

a

b c

d
a

b

c

e

γ1

γ1

γ1

γ2

γ2 γ2

Figure 4.9: Pair of OSF graph endomorphisms realizing OSF generalization
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U : u

U1 : u U2 : u

X : s Y : t

X1 : s X2 : ⊤ Y1 : t Y2 : t Y3 : ⊤

V : v

V1 : v V2 : ⊤ V3 : ⊤

a

b

c

a

b c

d
a

b
c

e

a

b c

d e

γ1

γ1

γ1

γ2

γ2

γ2

γ

γ γ

γ

γ

γ

γ

Figure 4.10: Scoped OSF -graph inheritance-lattice endomorphisms
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4.2 FuzzifyingOSF-Term Subsumption

We are now ready to develop the same scheme of fuzzy declensions on OSF terms that we

performed on the FOT s in Chapter 3, Section 3.7, however dealing with (and taking advantage

of) the more general lattice-theoretic semantics we have defined for our syntax ofOSF terms and

its derived operational calculus on OSF constraints in Section 4.1. We shall proceed as we did

for FOT s, up to partially ordered sort and unconstrained symbol feature arities. So let us start

by making some important observations regarding some advantages in our approach to fuzzifying

FOT unification and generalization.

1. The term structure itself (its syntax) is not fuzzified. For unification, only a conjunctive set

E of equations (pairs of first-order terms — including substitutions) is given a similarity

degree α. This is denoted as the fuzzy-weighted set Eα. For generalization, only a pair of

tag substitutions in a judgment is given such a similarity degree α.

2. In unification rules the similarity degree of a conjunctive set of equations, and in general-

ization rule and axioms of a pair of tag mappings, can never increase from prior to posterior

forms.

3. There is a similarity relation ∼ on functors f and g (as a half-matrix of similarity degrees

in [0.0, 0.1]).17

4. For each pair of functors f/m and g/n with f 6= g and 0 ≤ m ≤ n, whenever f ∼α g
with α ∈ (0.0, 1.0] there is a one-to-one mapping p : {1, . . . , m} → {1, . . . , n} associating

each argument position of f to a unique distinct argument position of g. This mapping is

the identity on {1, . . . , m} by default; it is undefined for dissimilar functors. In axioms

and rules, when terms with similar functors with possible arity mismatch are equated, this

argument-position mapping realigns misaligned subterms; subterms in the higher-arity term

that are in excess are ignored.

Then, fuzzifying lattice operations for FOT s consisted in adapting their crisp normalization rules

to carry a similarity degree according to the above observations when normalizing a FOT equa-

tion set or proving a FOT generalization judgment.

When consideringOSF terms, we can proceed similarly, but instead of FOT unification, let

us consider what this means for the ruleset Figure 4.6 and 5.5, and instead of FOT generaliza-

tion, what this means for the axioms and rule in Figure 4.8, which enforce constraint consistency

when subsumption is realized by endomorphic tag mappings, which are sets of variable/variable

equations — i.e., X
.
= Y — respecting sorts and feature application. These rules and axioms

operate taking into account the following observations.

1. The OSF term itself is not fuzzified. For OSF unification, only a conjunctive set φ of

atomic constraints (each of either of the forms X : s, X.f
.
= Y , and X

.
= Y ) is given a

global similarity degree α as the fuzzy formula φα. For OSF generalization, only a pair of

tag substitutions in a judgment is given such a similarity degree α.

17Only one direction is needed; the other is equal by symmetry — see Chapter 2, Section 2.2.2.
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2. In unification rules the similarity degree of a conjunctive set of atomic OSF constraints,

and in generalization rule and axioms of a pair of OSF tag mappings, can never increase

from prior to posterior forms.

3. There is a similarity relating pairs of sorts s and s′ as a half-matrix of similarity degrees in

[0.0, 0.1].

So this looks pretty much the same as for FOT s, except for one important detail: in the case

of OSF terms, a similarity relation on a signature of partially ordered featured sorts must be also

consistent with the ordering � on sorts. This means that, for all sorts s, s′, t, t′ in S, the following

fuzzy sort-lattice consistency conditions must hold for lubs and glbs when they exist:

if s ∼α s
′ and t ∼β t

′ then (sf t) ∼α∧β (s′ f t′),

if s ∼α s
′ and t ∼β t

′ then (sg t) ∼α∧β (s′ g t′);











(4.13)

Note that the similarity degree in both foregoing fuzzy sort-lattice consistency conditions on

the lattice operations on sorts, uses fuzzy conjunction (∧) of approximation degrees. While this

may be expected for f, it could appear odd for g. However, it is correct to use ∧ in both cases

as we do because the homomorphic constraints expressed by Condition (4.13) apply to the logical

conjunction “and” in the statement combining their premisses. In fact, the following (incorrect)

constraint:

if s ∼α s
′ and t ∼β t

′ then (sg t) ∼α∨β (s′ g t′)

could make the fuzzy degree of an expression resulting from the fuzzy conjunction of two fuzzy

expressions be greater than the degree of each — which is, again, incoherent since conjoining

more fuzzy information can only decrease the resulting overall fuzzy degree.

In particular, a consequence of the fuzzy sort-lattice consistency conditions (4.13) is the fol-

lowing fuzzy sort-order consistency condition for any sorts s, t, s′, t′ ∈ S such that s � t and

s′ � t′:

if s ∼α s
′ and t ∼β t

′ then s ∼α∧β s
′. (4.14)

This is illustrated generically in Figure 4.11 with abstract sorts and similarity weights, and with

possible specific sorts and similarity weights defining an instance case pictured as Figure 4.12.

For example, given a similarity on sorts such that:

employee ∼.8 assistant

student ∼.9 apprentice

and an ordering on sorts such that:

helper
def
= assistant g apprentice

intern
def
= assistant f apprentice
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sg t

s t

sf t

s′ g t′

s′ t′

s′ f t′

∼α ∼β

∼α∧β∼α∧β

∼α∧β∼α∧β

Figure 4.11: Order-inconsistent sort similarity

staff

employee student

working-student

helper

assistant apprentice

intern

∼.8 ∼.9

∼.8∼.8

∼.8∼.8

Figure 4.12: Order-inconsistent sort similarity example
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and

staff
def
= employee g student

working-student
def
= employee f student

then, necessarily for a consistent set of sorts, it must be that:

staff ∼.8 helper.

But then, since student is a subsort of staff and since apprentice is a subsort of helper,

order-consistency entails that the∼.8 similarity is inherited by all their respective subsorts. In par-

ticular, this implies student ∼.8∧.9 apprentice; namely, student ∼.8 apprentice.

Similarly, order-consistency mandates that:

working-student ∼.8 intern.

Therefore, in order to ensure that a sort similarity ∼ is always consistent with the subsort

ordering for all degree α ∈ DEGREES
∼, this necessitates that after declaring a few pairs of sorts

to be similar at a given approximation degree, all their respective subsorts must also undergo an

order-consistency closure. This closure consists in propagating similarities of all pairs of sorts to

their subsorts as mandated by Condition (4.14). This is made formally precise next, while related

considerations regarding how to compute and implement the fuzzy transitive closure of pairs of

sorts that are declared similar in a fuzzy taxonomy are discussed in Section 4.2.4.

4.2.1 Fuzzy vs. subsort approximation

Before we proceed into further technicalities concerning fuzzy OSF term-lattice operations as

fuzzy-constraint solving, let us discuss important implications of what a fuzzy ordering on sorts

means. Then, using what we understand this to mean formally, let us make some specific remarks

that will be helpful in understanding and justifying the correctness of the constraint-solving rules

and axioms we shall propose.18

A fuzzy ordering� on the set of sorts S means by definition that it is a fuzzy relation on S that

is reflexive, anti-symmetric, and transitive. This implicitly defines the following fuzzy relations

on S:

• a similarity∼ on S defined, for any α ∈ [0.0, 0.1], as:

∼α
def
= �α ∧ �α (4.15)

where �α is the fuzzy relation on S defined as: �α
def
= �−1

α ;

• a fuzzy partial order � on S: a fuzzy set Π∼ def
= {Π∼

α | α ∈ DEGREES
∼ } of partitions of

S with partial orders �α on each partition Π∼
α of S generated by ∼ (i.e., Zadeh’s “partition

tree”), and defined at approximation degree α ∈ [0.0, 01] as:

[s]∼α �α [t]∼α iff ∃ s′ ∈ S, ∃ t′ ∈ S s.t. s ∼α s
′ and s′ �α t′ and t′ ∼α t. (4.16)

18The reader is also invited to refer to Chapter 2, Section 2.2.1 for a quick reminder of important facts this section

relies on.
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This last condition may look harder to read than what it actually means, and can be understood

more easily as the following color-highlighted diagram:

[s]∼α �α [t]∼α
def

iff ∃ s′ ∈ S, ∃ t′ ∈ S s.t. :















t′ ∼α t

�α

s ∼α s′

where a subsort is below its supersort and similar sorts are on the same level.

The two following lemmas are also a direct consequence of the above properties.

LEMMA 4.1 (SORT-SUBSUMPTION FUZZY SYMMETRY) For any sorts s and t in S, and any

approximation degrees α and β in [0.0, 1.0], if s �α t and t �β s , then s ∼α∧β t.

PROOF

[To be completed later. . . ] �

LEMMA 4.2 (SORT-SUBSUMPTION FUZZY TRANSITIVITY) For any sorts s, t, and u in S, and

any approximation degrees α and β in [0.0, 1.0], if s �α t and t �β u , then s ∼α∧β u.

PROOF

[To be completed later. . . ] �

An important consequence is that, when considering a similarity on a sort signature S that

is partially ordered by a defined sort subsumption, this must necessarily obey some consistency

conditions for the similarity and the sort ordering. In particular, as the approximation degree

α decreases from 1.0 to 0.0, the set of sorts [s]∼α (denoting the similarity class of a sort s at

approximation degree α) may only increase in size. Indeed, as α decreases, similarity classes of

sorts may only coalesce, forming coarser and coarser similarity partitions.19 It is not difficult to

establish that the following properties are always true for any order-consistent similarity ∼ on a

set of partially ordered sorts S,�.

PROPOSITION 4.1 (FUZZY SORT SUBSUMPTION CONTRAVARIANCE) For all sort s in S, and

all approximation degrees α and β in [0.0, 0.1]:

α ≤ β iff [s]∼β ⊆ [s]∼α . (4.17)

PROOF

[To be completed later. . . ] �

19This is the set of partitions Π∼

α , α ∈ DEGREES
∼ defined in Chapter 2, Section 2.2.2 and Section 2.2.3. This is

also what Zadeh calls the similarity’s “partition tree” [177]. See also [74], Chapter II, Section 3 on Fuzzy Relations

(Page 77).
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In words, the contravariance in Condition (4.17) of Proposition 4.1 states that the smaller the

approximation degree, the larger the similarity class.

As a consequence, Corollary 4.1 states that all sorts are indistinguishable at approximation

degree 0.0, since then all sort classes coalesce into a single similarity class equal to the whole set

of sorts — which is what Condition (4.18) expresses.

COROLLARY 4.1 (FULLY SIMILAR SORTS) For any sort s ∈ S:

[s]∼0.0 = S . (4.18)

Order-consistency between the fuzzy partial order on sorts� and inclusion⊆ on sort-similarity

classes is established in the next proposition as a monotonic order isomorphism.

PROPOSITION 4.2 (SORT SUBSUMPTION MONOTONICITY) For all sorts s and t in S and all

approximation degree α in [0.0, 0.1] :

s �α t iff [s]∼α ⊆ [t]∼α . (4.19)

PROOF This follows from Theorem 4.1 (Page 81). �

On the other hand, as indicated by Condition (4.19) in Proposition 4.2, the approximation

degree is covariant with the subsort ordering. When in addition the partially ordered sort signature

is also a lattice S,�,f,g, this is equivalent to the validity of the following two propositions.

PROPOSITION 4.3 (FUZZY SORT-CONGRUENCE APPROXIMATION) For all sort s in S, and all

approximation degrees α and β in [0.0, 0.1]:

[s]∼α∨β = [s]∼α ∩ [s]∼β ,

[s]∼α∧β = [s]∼α ∪ [s]∼β .
(4.20)

PROOF

[To be completed later. . . ] �

Example 4.5 Fuzzy sort-congruence approximation — Let us take s
def
= person, α = .6, and

β = .4, with ∨
def
= max and ∧

def
= min. Then, fuzzy sort subsumption contravariance (Proposition 4.1) is

clearly satisfied since:

[person]∼.6 ∩ [person]∼.4 = [person]∼.6 ,

[person]∼.6 ∪ [person]∼.4 = [person]∼.4 .
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PROPOSITION 4.4 (FUZZY SORT-CONGRUENCE LATTICE) For all sorts s and t in S and all

approximation degree α in [0.0, 0.1]:

[s g t]∼α = [s]∼α ∪ [t]∼α ,

[s f t]∼α = [s]∼α ∩ [t]∼α .
(4.21)

PROOF

[To be completed later. . . ] �

Example 4.6 Fuzzy sort-congruence lattice — Referring to the sorts in Figure 4.12, let us take

s
def
= employee, t

def
= student in Proposition 4.4. It is then obvious that, as stated by Proposition 4.4,

for any α ∈ [0.0, 0.1]:

[staff]∼α = [employee]∼α ∪ [student]∼α ,

[working-student]∼α = [employee]∼α ∩ [student]∼α .

Figure 4.13 and Figure 4.14 illustrate graphically how fuzzy subset approximation varies for

three possible sorts a, b, and c as the approximation degree decreases from fully crisp (i.e., 1.0 —

when no distinct sorts in S are similar), to fully fuzzy (i.e., 0.0 — when all non-empty sorts in S
are similar). Figure 4.13, shows a typical possible example of fuzzy subsorting. Each row varies

from fully crisp (degree 1.0) at the top, to fully fuzzy (degree 0.0) at the bottom as indicated in

the leftmost column, while each of the other columns on the right indicates the fuzzy denotation

of (from left to right) the sort ⊤ (which denotes the whole set of sorts S) and sorts a, b, and c. As

the approximation degree varies from crisp 1.0 to lower values, first to β, then to fuzzier α ≤ β,

and ultimately to 0.0, each column shows a conceivable consistent variation of the denotation any

sort s ∈ S (e.g., in our example, s = a, s = b, and s = c):

0.0 ≤ α ≤ β ≤ 1.1 =⇒















⊤1.0 ⊆ ⊤β ⊆ ⊤α ⊆ ⊤0.0 ,

s1.0 ⊆ sβ ⊆ sα ⊆ s0.0 ,

⊥1.0 ⊆ ⊥β ⊆ ⊥α ⊆ ⊥0.0 .

Since it is always true that [[⊤α]] = S at any approximation level α ∈ [0.0, 0.1],20 the column

of fuzzy top denotations on the left in Figure 4.13 is always the full set S. So are all the sort

denotations in the bottom row when all sorts are similar, since [[s0.0]] = S for any sort s ∈ S. This

means that whenever α ≤ β for some α ∈ [0.0, 1.0] and β ∈ [0.0, 1.0], then necessarily sβ � sα
(i.e., equivalently, [[sβ ]] ⊆ [[sα]] by definition), for any sort s in S.

This combined consistent approximation effect of conjugating both fuzzy approximation and

subsort approximation on sort denotations, together with coalescing sort-similarity classes, is il-

lustrated in Figure 4.14, showing the sort-similarity lattice orderings of these classes for each

20This is a consequence of Condition (4.32) on Page 111 in Section 4.2.4, and Condition (2.24) defining a similarity

class in Chapter 2, Section 2.2.
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degree ⊤ a b c

Figure 4.13: Fuzzy subset approximations

fuzzy level going from crisp at the top to fully fuzzy at the bottom. A good intuitive way to

construe this effect is as that of a zooming lens or a magnifying-glass: approximation level 0.0
is farthest and most myopic (i.e., “seeing the forest for the trees”), while level 1.0 is closest and

sharpest (i.e., “seeing the trees for the forest”).

4.2.2 Fuzzy OSF -term unification

We are, finally, ready to provide the constraint normalization rules for fuzzyOSF -term unification

and generalization. We first define formally what it means for two ψ-terms to be similar, modulo

a subsort ordering and an order-consistent similarity (fuzzy equivalence) relation on the sorts.

§ SIMILARITY OF ψ-TERMS

Let two ψ-terms ψ and ψ′ defined as:

ψ
def
= X : s(f1 → ψ1, . . . , fn → ψn)

ψ′ def
= X ′ : s′(f ′

1 → ψ′
1, . . . , f

′
n′ → ψ′

n′)

(n, n′ ≥ 0).

DEFINITION 4.5 For α ∈ [0.0, 0.1], and two ψ-terms ψ and ψ′ of the form above, we define

recursively the fuzzy binary relation∼α on Ψ as ψ ∼α ψ
′ iff α

def

= β ∧
∧n

i=0 βi where:

s ∼β s
′ (4.22)
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degree subsets

sort

similarity

classes

sort

similarity

lattices

⊤

a b c

⊥

⊤

aβ bβ g cβ

⊥

⊤

aα g bα g cα

⊥

⊤

⊥

Figure 4.14: Fuzzy subset approximation lattice

for some β ∈ (0.0, 1.0], and:

ψi ∼βi
ψ′
i′ [X/X

′] (4.23)

where βi ∈ (0.0, 1.0], for any i ∈ {1, . . . , n} such that fi ∈ {f ′
1, . . . , f

′
n′}.

The fuzzy OSF unification rules are shown in Figure 4.15.

THEOREM 4.3 (SIMILARITY OF ψ-TERMS) The fuzzy binary relation ∼α defined by Defini-

tion 4.5 is a similarity on the set of ψ-terms Ψ.

PROOF Reflexivity: This follows because for any sort s, s ∼1.0 s, and because ψi ∼1.0

ψi[X/X ] reduces to the tautology ψi ∼1.0 ψi, for any fi in F , and any X ∈ V , and thus also

in particular for all i = 1, . . . , n for any n ≥ 0.

Symmetry:

[To be completed later. . . ] �

Because of Theorem 4.3, we shall say that ψ and ψ′ are α-similar iff ψ ∼α ψ
′.
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SIMILAR SORT INTERSECTION

[s ∼β t, 0 ≤ β ≤ 1]

(φ & X : s & X : t)α

(φ & X : sf t)α∧β

FEATURE FUNCTIONALITY

(φ & X.f
.
= X ′ & X.f

.
= X ′′)α

(φ & X.f
.
= X ′ & X ′ .= X ′′)α

INCONSISTENT SORT

(φ & X
.
= ⊥)α

false0

TAG ELIMINATION

[Y ∈ Tags(φ)]

(φ & X
.
= Y )α

(φ[X/Y ] & X
.
= Y )α

NULL SIMILARITY DEGREE

φ0

false0

Figure 4.15: Constraint normalization rules for fuzzy OSF unification

THEOREM 4.4 (CORRECTNESS OF FUZZY OSF UNIFICATION) Given a fuzzyOSF constraint

φα with α ∈ [0.0, 0.1], the process of non-deterministically applying to it any applicable rule

shown in Figure 4.15 as long as one applies, always terminates in a fuzzy OSF constraint φ′
α′

such that either φ′ = false and α′ = 0; or, 0 < α′ ≤ α and φ ∼α′ φ′.

PROOF

[To be completed later. . . ] �

4.2.3 Fuzzy OSF -term generalization

Axiom FUZZY EQUAL TAGS in Figure 4.16 states that generalizing a pair made of the same ψ-term

results in this ψ-term and the posterior tag maps and approximation degree are the same as the

prior ones.

Note that, Rule FUZZY UNEQUAL TAGS in Figure 4.16 uses a “fuzzy unapply” operation ‘↑α’

that takes a pair of ψ-terms with unequal root tags and an approximation degree α and returns a

pair of (possibly identical) ψ-terms and a possibly lesser approximation degree. It is defined as
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FUZZY EQUAL TAGS

(

γ1
γ2

)

α

⊢

(

ψ
ψ

)

ψ

(

γ1
γ2

)

α

FUZZY UNEQUAL TAGS











X 6= Y ; s ∼β t; α0
def
= α ∧ β;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {f1, . . . , fm} ∩ {g1, . . . , gn}

s.t. hk
def
= fk = gk for all k = 1, . . . , p ;

γ01
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new tag name











(

γ01
γ02

)

α0

⊢

(

ψ1

ξ1

)

↑
α0

(

γ01
γ02

)

χ1

(

γ11
γ12

)

α1

. . .

(

γp−1
1

γp−1
2

)

αp−1

⊢

(

ψp

ξp

)

↑
αp−1

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

αp
(

γ1
γ2

)

α

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

αp

Figure 4.16: Fuzzy OSF generalization axiom and rule

follows:

(

ψ1

ψ2

)

↑α

(

γ1
γ2

)

def
=























(

X : . . .
X : . . .

)

α∧α1∧α2

if ∃X s.t. ROOT(ψi) = γi(X) for i = 1, 2;

(

ψ1

ψ2

)

α

otherwise.

(4.24)

This has the same purpose as the fuzzy unapplication operation used in fuzzyFOT generalization

judgments: identify in the prior pair of tag maps (γ1, γ2) whether or not they already map a

common tag (X) to the roots of the pair of ψ-terms to be generalized (ψ1, ψ2) each at, respectively,

approximation α1 and α2. If so, the result of the unapplication is the pair made of the same ψ-term

rooted in X (X : . . .) at a posterior approximation degree equal to the conjoined value of the prior

approximation degree α and those; i.e., α∧α1∧α2; if not, it is the original pair of ψ-terms (ψ1, ψ2)

at the unchanged prior approximation degree.

This rule basically states that generalizing two ψ-terms ψ1
def
= X : s (fi → ψi)

m
i=0 and ψ2

def
=

Y : t (gj → ξj)
n
j=0 results in the ψ-term ψ1 ∨ ψ2

def
= Z : s∨t (hk → χk)

p
k=0, where the set of

features of the resulting ψ-term is the intersection of the corresponding sets of features of ψ1 and

ψ2 (i.e., the corresponding features they have in common), and Z is a new tag name.

As was the case for FOT s, note that fuzzy OSF unapplication defined by Equation (4.24)

returns a pair of terms and a (possibly lesser) approximation degree, unlike crisp unapplication
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defined by Equation (4.12) that returns only a pair of terms. Because of this, when we write a

fuzzy OSF generalization judgment such as:

(

γ1
γ2

)

α

⊢

(

ψ1

ψ2

)

↑
α

(

γ1
γ2

)

ψ

(

γ′1
γ′2

)

β

(4.25)

as we do in Rule FUZZY UNEQUAL TAGS, this is shorthand to indicate that the posterior similarity

degree β is at most the one returned by the fuzzy OSF unapplication

(

ψ1

ψ2

)

↑
α

(

γ1
γ2

)

. Formally,

the notation of the fuzzy OSF generalization judgment (4.25) is equivalent to:

(

ψ′
1

ψ′
2

)

β′

def
=

(

ψ1

ψ2

)

↑
α

(

γ1
γ2

)

and

(

γ1
γ2

)

β′

⊢

(

ψ′
1

ψ′
2

)

ψ

(

γ′1
γ′2

)

β

(4.26)

for some β ′ such that β ≤ β ′ ≤ α. This is because a fuzzyOSF term unapplication invoked while

proving the validity of a fuzzy OSF generalization judgment may require, by Expression (4.24),

lowering the prior approximation degree of the judgment. This is therefore applicable to pairs of

subterms having some features in common. It consists in generalizing each of the corresponding

pairs of subterms under all common features. Note that this can be done in any order, as long as

each subterm judgment is validated with its pair of prior tag maps equal to its pair of posterior tag

maps.

THEOREM 4.5 (CORRECTNESS OF FUZZY OSF GENERALIZATION) The process of using any

applicable constrained Horn clause shown in Figure 4.16 as long as one applies starting with the

fuzzyOSF judgment to establish:

(

∅
∅

)

1.0

⊢

(

ψ1

ψ2

)

ψ

(

γ1
γ2

)

α

to prove this judgment’s validity always terminates with ψ = ψ1 ∧α ψ2, together with γ1 :
Tags(ψ)→ Tags(ψ1) and γ2 : Tags(ψ)→ Tags(ψ2) such that ψ1 = γ1(ψ) and ψ2 = γ2(ψ).

PROOF Correctness of Rule FUZZY UNEQUAL TAGS is established inductively. That is, we

must prove that if we assume that all the prior fuzzy judgments of this rule are valid under

all the rule’s side conditions, then its posterior fuzzy judgment is valid.

[To be completed later. . . ] �

4.2.4 Implementation

An OSF constraint φ in solved form is always satisfiable in a canonical interpretation structure;

viz., the OSF graph algebra Ψ [23]. As a consequence, the OSF constraint normalization rules

yield a decision procedure for the satisfiability of OSF constraints. This decision procedure is

also operationally efficient [16]. One important reason for its efficiency is that computing sort
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intersection as specified by Rule SORT INTERSECTION can be done in constant time by encoding

sorts as binary vectors as shown in [15]. This results in tremendous speed performance when

compared to encoding a class taxonomy’s partial order using First-Order Logic monadic implica-

tion, even when resorting to proof “memoing” as done, for example, in [107], since this requires

dynamically memorizing arbitrary proofs, thereby facing a hefty overhead price both in space and

time. Indeed, resorting to bitvector-encoded ordered sorts rather than monadic implications is

the key providing immediate deductive response thanks to static transitive closure on the “is-a”

ordering and static consistent typing propagation of features to subtypes (see [14] and [33]).

However, isn’t this valuable implementation trick lost with fuzzy, rather than binary, truth

values? Some is, clearly, though not totally as we discuss next; and the gain fortunately outweighs

the loss.

§ CLOSURE OF DECLARED FUZZY TAXONOMIES

In the crisp case, declaring an ordering on sorts defines a set of pairs. The complete ordering itself

is then generated as the reflexive-transitive closure of this declared set of pairs (“s1� s2”) when

these are consistent (e.g., when there is no cycle) or cycles are detected and reported [14]. This

is taken to great advantage to compile it statically for the efficient computation of Boolean lattice

operations on sorts when each sort is represented as a bit vector of as many bits as there are sorts,

and carries a bit for each index of a sort it subsumes. Thus, the time and space complexity of all

three Boolean lattice operations is quasi-constant on the size of the taxonomy, since this amounts

to compiling each sort into a native binary word of size equal to the total number of sorts [15].

For a fuzzy subsumption ordering on sorts, the same kind of reflexive-transitive closure may

be statically computed. However, the information carried by each pair of the fuzzy relation is

no longer {0, 1}-valued but [0.0, 1.0]-valued (the value of the similarity degree α in declaring

“s1�αs2”), and may no longer be represented as a bit. Now, instead of a bit vector, it is a fuzzy-

bit vector; i.e., a vector of real values in the closed interval [0.0, 1.0] representing the fuzzy set

{α/s | α ∈ [0.0, 1.0] for all s ∈ S }. The bitwise Boolean operations on bit-vectors are now

fuzzified into ∧, ∨, and α → (1.0 − α) on fuzzy set elements’ fuzzy weights.21 Each of these

operations works on fuzzy sets to yield the fuzzy set of sorts obtained from applying the operation

to the corresponding truth values of each sort. Namely:

X ∧ Y
def
= { (α ∧ β)/s | α/s ∈ X and β/s ∈ Y, for all s ∈ S } (4.27)

X ∨ Y
def
= { (α ∨ β)/s | α/s ∈ X and β/s ∈ Y, for all s ∈ S } (4.28)

X
def
= { (1.0− α)/s | α/s ∈ X, for all s ∈ S } (4.29)

for all X and Y fuzzy sets over a reference set of sorts S. This is also the case with a similarity

degree α and a fuzzy set X over S:

α ∧X
def
= { (α ∧ β)/s | β/s ∈ X, for all s ∈ S } (4.30)

21We use the notation “x → e” to denote a nameless function associating the expression e to the argument x; i.e.,

what the adepts of Functional Programming write as λx.e (here, λα.(1.0 − α)) and call a functional abstraction or

λ-expression.
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and:

α ∨X
def
= { (α ∨ β)/s | β/s ∈ X, for all s ∈ S }. (4.31)

Note that we seldom need to represent explicitly a 0.0-similarity degree fuzzy element (i.e., of

the form 0.0/s) and neither do we need to store it explicitly in a fuzzy set representation. In partic-

ular, in all the foregoing definitions given as Equation (4.27)–Equation (4.31), by “ for all s ∈ S”

it is assumed that whenever /s 6∈ X , for some sort s ∈ S and fuzzy set X on S, this is formally

equivalent to 0.0/s ∈ X .

It will always be assumed that a top sort (“⊤”) and a bottom sort (“⊥”) are implicitly declared

such that:

s �1.0 ⊤ (4.32)

and,

s 6= ⊤ ⇒ ⊤ �0.0 s (4.33)

as well as:

⊥ �1.0 s (4.34)

and,

s 6= ⊥ ⇒ s �0.0 ⊥ (4.35)

for all sorts s ∈ S, in order to express respectively that there is no fuzziness in the sort ordering

of ⊤ as the greatest (and all-encompassing) sort, and ⊥ as the least (and all-excluding sort).

In [15] and [14], the encoding of crisp-ordered sorts as bit vectors is given in pseudo-code as

a reflexive-transitive closure of the set of pairs of sort declarations of the form “si � sj .” As ex-

pected, the process of propagating the similarity degrees declared in the fuzzy partial order of sorts

is also a reflexive-transitive closure procedure. One will easily see that it is a direct homomorphic

adaptation of the bit-vector procedure reviewed in [14] obtained by transforming the Boolean bit-

vector representation and operations into their homomorphic fuzzy-set generalizations. It is given

as the pseudocode procedure CLOSEFUZZYTAXONOMY expressed as Algorithm 1.

The class Sort is the type representing partially-ordered symbols making up a concept tax-

onomy. We will also assume that known sorts are stored in a global (static) hash table, called

taxonomy, associating strings (sort names) to Sort objects. A global (static) method getSort

(String) will return a sort given its name.

The class Sort has a field called “children” of type Set〈Sort,double〉 containing, for

any sort, the sets of sorts that are its immediate children in the taxonomy, each paired with a non-

zero similarity degree. Thus, for every sort object, this set is filled with sorts by processing fuzzy

“�” expressions of the form s1 �α s2 used to declare that sort s1 is subsumed by (or is a subsort

of) sort s2 with similarity degree α ∈ (0.0, 1.0]; namely, (s1, α) ∈ s2.children. The class

Sort has another field called “parents” of type Set〈Sort〉 containing, for any sort, the sets

of sorts that are its immediate parents in the taxonomy. There is no need to record the similarity

degrees as well in the parents sets because the similarity degrees will only be accessed through

the children sets while closing a fuzzy taxonomy.

In addition, the class Sort has:
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1 procedure CLOSEFUZZYTAXONOMY ()

2 Set〈Sort〉 layer ← ⊥.parents;
3 while layer 6= ∅ do

4 foreach Sort s ∈ layer do

5 s.fuzzyset ← { 1.0/s } ∨
∨

α/u∈s.children

(

α ∧ u.fuzzyset
)

;

6 s.closed ← true;

7 end

8 layer ←
⋃

s∈ layers.parents;

9 foreach s ∈ layer do

10 if ∃ /u ∈ s.children such that ¬u.closed then

11 layer.remove(s);

12 end

13 end

14 end

15 end

Algorithm 1: Encoding of a fuzzy sort taxonomy as fuzzy-set codes

• an integer field called “index” that is a sort’s unique characteristic rank in the array

taxonomy containing all the sorts;

• a field called “fuzzyset” of type Set〈Sort,double〉 initialized to the empty fuzzy

set (i.e., equivalent to all pairs of distinct declared sorts having 0.0 similarity degree); this

represents the fuzzy set computed by reflexive-transitive closure. Upon completion of the

closure, it ends up containing, for each sort si ∈ taxonomy, the similarity degree αij ∈
(0.0, 1.0] of its � relationship with all sort sj ∈ taxonomy (i.e., such that si �αij

sj);

• a Boolean field called “closed” indicating whether this sort has been closed or not (so

it is initially set to false).

§ OPTIMIZING CLOSURE AND LATTICE OPERATIONS

There is an immediate issue that we should keep in mind with using the foregoing “sort-as-fuzzy-

set” representation and the closing procedure on these fuzzy sets. Namely, while Algorithm 1

is clearly formally correct as a lattice-homomorphic image of the crisp case, the motivation for

casting sorts into the Boolean lattice of bit-vector codes seems compromised in the new repre-

sentation of sorts as fuzzy sets exposed in [15], and used in [14] and in [10]. After closing it, a

sort’s bit-vector represents the set of its lower bounds. Indeed, this enabled optimizing set-lattice

operations on ordered set-denoting sorts (very fast operations on bit vectors), with a minimal sort

representation (a bit vector being essentially a non-negative integer), which can be further com-

pacted using a given declared is-a ordering’s specific topology [15]. With a fuzzy partial-order,

however, a sort is no longer identified with a bit vector but with a (0.0, 1.0]-fuzzy set. Therefore, a
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compact fuzzy-set representation upon which an efficient intersection operation may be computed

must be provided in order to minimize impairing the efficient-implementation motivation.

We discuss here a sensible data-structure representation for the fuzzy set encoding a fuzzy-

ordered sort in a finite set of a declared fuzzy taxonomy, supporting a better-than-naı̈ve imple-

mentation of its lattice operations.

We shall call “reference base” the set of minimal upper bounds of ⊥; namely, the set of sorts

in ⊥.parents, the first layer in Algorithm 1. We may also refer to the reference base as the

set of instances (i.e., each instance identifies a singleton-denoting sort).

Note that in Algorithm 1, the class Sort’s field fuzzyset is actually a fuzzy set where

the fuzzy elements are pairs α/s where s may be any sort in taxonomy, not just a sort in the

reference base. However, each sort formally denotes a fuzzy distribution on this reference base.

So we may also find it useful to identify the reference base as a global array called base of

N non-negative integers. This number N is the number of elements in the reference base; viz.,

N
def
= |⊥.parents|. Each value base[i], i = 1, . . . , N is the index of a sort in the

static hash table taxonomy that is minimal (i.e., in ⊥.parents). Hence, rather than a field

fuzzyset, the class Sort is given a field called fuzzybase to represent this fuzzy set as an

array of N ≤ taxonomy.size() of [0.0, 1.0]-values for each index in base. In other words,

for a sort s, s.fuzzybase is an array of N similarity degrees and s.fuzzybase[i] is the

similarity degree of base[i].

For any sort s, the array s.fuzzybase is approximated by the binary vector we shall define

as a new field of type BitCode for the class Sort called crispvalue, a bit vector such that:22

s.crispvalue[i]
def
=

{

1 if s.fuzzybase[i] > 0;
0 otherwise.

This information is therefore straightforward for any closed fuzzy sort taxonomy and can be used

in the abstract interpretation of the three fuzzy Boolean lattice operations on sorts to restrict enu-

meration of a fuzzy set’s elements only to non-zero indices using the bit-vector operations defined

in [15] and [14].

4.3 Recapitulation

In this chapter, we reviewed the OSF constraint formalism and proposed fuzzy OSF constraint

normalization systems for unification and generalization of OSF graphs that take into account

declared similarity of meanings among sort symbols.

Since an OSF term is just linear syntax for representing a rooted sorted graph, and since this

representation was shown to be equivalent to expressing such a graph as a logicalOSF constraint,

fuzzy interpretation of OSF term lattice operations (viz., unification and generalization) can be

formulated as fuzzyOSF -constraint solving. Solving these constraints computes the most general

tag substitutions and the most general fuzzy approximation degree where these constraints admit

solutions. Different kinds of sort similarities (with or without aligned features) can thus be used

22This is representable, for example, as a Java class such as hlt.osf.util.BitCode, which extends the

standard Java class java.util.BitSet.
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effectively for approximation in applications that typically rely on identifying data and knowledge

structures as labeled feature graphs.
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Version of April 10, 2020

Constructor Similarity Modulo Schema

Alignment

In the previous two chapters, we considered two possible ways the mutually corresponding struc-

ture of two terms operated on (either FOT s or OSF terms) is identified for similar constructors.

In the case of FOT s, we considered the case when argument positions are to be aligned thanks

to an injective mapping from the argument-position set of the functor of lesser arity to the one

of greater arity. However, when only partial argument-position mappings are defined between

similar functors, the rules presented there do not apply without necessary consistency conditions

defining what it means to be “partially similar.” Regarding OSF terms, we only considered the

case when features of similar sorts are identical. For non-aligned similar sorts (i.e., for similar

sorts where similiraty of OSF structure identifies features by different names), the rules we gave

there do not apply. This, however, is a major requirement when comparing structures obeying

different feature schemas.

In Section 5.1, we propose a solution for the issue of partial-argument constructor similarity.

In Section 5.2, we show how this solution also resolves the issue of differing feature schemas for

similar sorts.

5.1 FOT Argument Alignment

In Chapter 3, we gave declarative presentations for three lattice structures over FOT s (one crisp

and two fuzzy) in the form of axioms and rules. These axioms and rules specify the six correspond-

ing dual lattice operations as constraints in these algebraic structures. An executable semantics

for each operation is thus obtained for free as constraint solving. The latter may be summarized

as follows, for each of the three FOT lattice structures:1

1. for conventional signatures (no operator similarity besides identity):

— we presented the declarative FOT unification rules due to Herbrand and to Martelli

& Montanari;

1We use the “✓” check symbol to indicate what items are contribution of this work.
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✓ we provided a declarative constraint-based version of generalization equivalent to the

original procedural methods due to Reynolds and Plotkin;

2. for signatures with “weak” similarity (all pairs of similar operators have the same number

and order of arguments):

— we presented “weak” fuzzy unification as constraint normalization using declarative

rules due to Maria Sessa;

✓ we provided a “weak” fuzzy generalization as a constraint solving using a declarative

specification for the dual operation of Sessa’s “weak” unification;

3. for signatures with possibly misaligned similarity (similar operators possibly with differ-

ent number or order of arguments):

✓ we extended the above constraint-driven declarative “weak” fuzzy unification toFOT
s with possible different/mixed arities;

✓ we extended the above constraint-driven declarative “weak” fuzzy generalization of

FOT s with possible different/mixed arities.

This last pair of lattice operations on FOT modulo a similarity involving operators with mis-

aligned or unordered arguments extends the previous pair of “weak” operations given argument

maps specified for similar operators. That is, a similar pair of functors has a similarity degree

as well as an injective argument-realigning map for each pair of operators in the signature. If

unspecified, this map is the identity from the term with less arguments to the one with more argu-

ments. In effect, this third lattice ofFOT s is closer to permit Fuzzy-Logic Programming querying

with misaligned databases, or more generally Information Retrieval (using fuzzy unification) and

Approximate Knowledge Acquisition (using fuzzy generalization) over heterogeneous but similar

data models. In the remainder of this section, we will develop yet another lattice of FOT s which

is even closer to such models in that it allows an even more expressive similarity between functors

than the ones we presented above, all of which are again special cases of this more generic FOT
similarity.

The third FOT lattice above, being the most expressive of the three, tolerates similarity pairs

of functors with different arities and assumes given a similarity matrix ≈ indexed by the functor

signature Σ and for each pair of functors f/m and g/n such that 0 ≤ m ≤ n, an injective map

µfg : {1, . . . , m} → {1, . . . , n} satisfying consistency conditions (3.16), (3.17), and (3.18) on

page 44. However, this lattice, although less constraining than the former, still requires that µfg

be a total function map associating to each argument position in {1, . . . , m} a unique argument

position in {1, . . . , n}. This constraint, as we see next, may be relaxed to accommodate similar

functors with partial argument alignments.

Example 5.1 Partial-map non-aligned similar functors — Consider two functors foo ∈ Σ5 and

bar ∈ Σ4, and a non-zero approximation degree α ∈ (0.0, 1.0], where this similarity may be homomor-

phically extended from these functors to terms they construct only when, at this approximation degree α,

foo’s 3rd argument is similar to bar’s 4th argument, and when foo’s 4th argument is similar to bar’s

Copyright c© 2020 by the Authors All Rights Reserved
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2nd argument. This means that there are two mutually inverse partial bijective maps between the argu-

ment positions of functors foo and bar specifying which argument position of one corresponds to which

unique argument position of the other; viz., µαfoo,bar : {3, 4} → {1, 2, 3, 4} = {3 7→ 4, 4 7→ 2} and

µαbar,foo : {2, 4} → {1, 2, 3, 4, 5} = {2 7→ 4, 4 7→ 3}. We shall denote such a partial non-aligned functor

similarity with the symmetric pairs foo∼∼∼
µα
foo,bar

α bar and bar∼∼∼
µα
bar,foo

α foo as in the FOT similarity

Expression (5.1).

foo ( s1, s2, s3, s4, s5) ∼∼∼T
α bar ( t1, t2, t3, t4 )

µfoo,bar /µbar,foo

µfoo,bar /µbar,foo

(5.1)

The formalism we have developed in the previous sections cannot apply for such non-aligned

similar functors with only partial argument-position maps because the assumptions we made for

the unification rules of Figure 3.11 to be correct do not hold. Indeed, these rules work because

whenever an equation between two constructed terms has a term of lesser arity on the right, Rule

FUZZY EQUATION ORIENTATION swaps its sides into an equation with the lesser-arity term on

the left. And, for a such an equation as the latter, Rule FUZZY NON-ALIGNED-ARGUMENT TERM

DECOMPOSITION replaces this equation only by equations between subterms at corresponding

positions, taking all arguments of the lesser-arity from position 1, and all the way up to its full

arity. This is no longer possible with partial maps between two similar functors’ non-aligned

argument positions. Indeed, a lesser arity functor’s partial argument maps may not be defined for

argument position 1, nor for consecutive positions, nor up to the functor’s arity. For the same

reason, the fuzzy generalization rules of Figure 3.14 will not apply either. Indeed, both Rule

FUNCTOR/ARITY SIMILARITY LEFT and FUNCTOR/ARITY SIMILARITY RIGHT specify the least

generalizer to be constructed using the least-arity functor and the generalizers of all its arguments;

this, clearly, is no longer possible with partial argument-position maps between the subterms of

non-aligned similar functors.

However, in some specific situations, it may be possible to come back to the previously studied

FOT lattice — which requires that in any equation between two constructed terms one of the two

terms always be a lesser-arity functor’s with a total injective map from the set of all its argument

positions to a subset of the larger-arity functor’s term’s set of argument positions. Indeed, the jus-

tification for the need of reorienting some equations using Rule FUZZY EQUATION ORIENTATION

of Figure 3.11 is that Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION may then

easily choose a term’s functor’s similarity class representative as the one of least arity; viz., the

one on the left-hand side. However, these assumptions do not hold in general in our new situation.

Indeed, this is possible only if each functor similarity class at approximation degree α happens

to have a least-arity functor term representative with total argument-position maps to all other

members of the similarity class at this approximation degree.

Example 5.2 Composing partial non-aligned argument-position map for similar functors

— Let us elaborate on Example 5.1: in addition to the similar functors “foo/5” and “bar/4” at a given

approximation degree α ∈ (0.0, 1.0] with partial argument maps µαfoo,bar : { 3, 4 } → { 2, 4 } = { 3 7→
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4, 4 7→ 2 } and µαbar,foo : { 2, 4 } 7→ { 3, 4 } = { 2 7→ 4, 4 7→ 3 } so that µαfoo,bar = (µα
,bar,foo)

−1,

and µαbar,foo = (µαfoo,bar)
−1), there also exists a functor “fuz/2” that is similar at this approximation

degree α to both foo/5 and bar/4 with total argument maps µαfuz,foo : {1, 2} → {1, 2, 3, 4, 5} = { 1 7→
3, 2 7→ 4 } and µαfuz,bar : {1, 2} → {1, 2, 3, 4} = { 1 7→ 4, 2 7→ 2 }, in such a way that µαfuz,foo =
µαbar,foo ◦ µ

α
fuz,bar and µαfuz,bar = µαfoo,bar ◦ µ

α
fuz,foo. This, of course, requires that ran(µαfuz,foo) =

dom(µαfoo,bar) and also that ran(µαfuz,bar) = dom(µαbar,foo), as well as ran(µαfuz,foo) = ran(µαbar,foo)
and ran(µαfuz,bar) = ran(µαfoo,bar), as in the term similarity Expressions (5.2).

foo ( s1, s2, s3, s4, s5 ) ∼∼∼T
α bar ( t1, t2, t3, t4 )

∼∼∼T
α

∼∼∼T
α

fuz ( u1, u2 )

µfoo,bar /µbar,foo

µ
fuz,foo µfuz

,ba
r

(5.2)

We show next how this can be accommodated in our formalization. In the following, the set

denoted as {1, . . . , n} with n = 0 is always equal to the empty set ∅. In other words, for any

n ∈ N, {1, . . . , n} = ∅ if and only if n = 0.

DEFINITION 5.1 (PARTIAL-MAP NON-ALIGNED SIMILAR FUNCTORS) Letm≥ 0, n≥ 0; two

functors f ∈ Σm and g ∈ Σn are said to be partial-map non-aligned similar functors at approxi-

mation degree α ∈ [0.0, 1.0] whenever:

1. there is a set Dα
fg ⊆ {1, . . . , m} of argument positions of f and a set Dα

gf ⊆ {1, . . . , n} of

argument positions of g such that |Dα
fg| = |D

α
gf|; and,

2. there exist a pair of mutually inverse bijections µα
fg : Dα

fg → {1, . . . , n} and µα
gf : D

α
gf →

{1, . . . , m} such that ran(µα
fg) = D

α
gf = dom(µα

gf) and ran(µα
gf) = D

α
fg = dom(µα

fg).

Note that it is possible in the above definition that dom(µα
fg) = ∅ or ran(µα

fg) = ∅. The former

means that no argument of f need be similar to any argument of g, and the latter means that no

argument of g need be similar to any argument of f . That is, in both cases, the similarity of terms

they construct reduces to that of the functors, regardless of any subterms.

We shall always require, for any approximation degree α ∈ [0.0, 1.0] and any functor f , that

Dα
ff = {1, . . . , arity(f)}, |Dα

ff | = arity(f), and µα
ff = 11{1, ..., arity(f)}. This means that pairs of the

form 〈f, f〉 (i.e., the diagonal) always have as argument-position map the total identity on all the

argument positions of f at any approximation degree.

The case where at least one of any two similar functors has a total injective map of its argument

positions into the other functor’s is a special case of this. When this is so, argument-position maps

are composable because all the positions in the range of a map are always in the domain of any
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map from this functor to another (of greater arity). With partial maps however, this may no longer

be possible.

Example 5.3 Non-composable inconsistent partial-map non-aligned functors — In addition

to the functors foo/5 and bar/4 of Example 5.2 where µαfoo,bar = { 3 7→ 4, 4 7→ 2 } (and µαbar,foo =
{ 2 7→ 4, 4 7→ 3 }), consider the functor biz/4 and the map µαbar,biz : {1 7→, 2, 3 7→ 4}. These maps will

not be composable simply because ran(µαfoo,bar) = {2, 4} and dom(µαbar,biz) = {1, 3} have no elements

in common. That is, ran(µαfoo,bar) ∩ dom(µαbar,biz) = ∅.
And even if they had compatible domain and range, say if µαbar,biz : { 1 7→ 2, 2 7→ 4 }, but µαfoo,biz :

{ 3 7→ 3, 4 7→ 4 }, this would mean that the composition µαbar,biz ◦ µ
α
foo,bar and the map µαfoo,biz also

disagree as we have, on one hand:

µαfoo,biz = { 3 7→ 3, 4 7→ 4}

and on the other hand:

µαbar,biz ◦ µ
α
foo,bar = { 3 7→ µαbar,biz(µ

α
foo,bar(3)), 4 7→ µαbar,biz(µ

α
foo,bar(4)) }

= { 3 7→ µαbar,biz(4), 4 7→ µαbar,biz(2) }

= { 3 7→?, 4 7→ 4 }

which is compositionally inconsistent, and thus µαbar,biz ◦ µ
α
foo,bar 6= µαfoo,biz.

And this is inconsistent also in the other direction as well, since µαbar,foo = { 2 7→ 4, 4 7→ 3 },
µαbar,biz : { 1 7→ 2, 2 7→ 4 }, and µαfoo,biz : { 3 7→ 3, 4 7→ 4 }, entail that the composition µαfoo,biz ◦
µαbar,foo and the map µαbar,biz would also disagree. We have, on one hand:

µαbar,biz = { 1 7→ 2, 2 7→ 4}

and on the other hand:

µαfoo,biz ◦ µ
α
bar,foo = { 2 7→ µαfoo,biz(µ

α
bar,foo(2)), 4 7→ µαfoo,biz(µ

α
bar,foo(4)) }

= { 2 7→ µαfoo,biz(4), 4 7→ µαfoo,biz(3) }

= { 1 7→?, 2 7→ 4, 4 7→ 3 }

which, again, entails µαfoo,biz ◦ µ
α
bar,foo 6= µαbar,biz, and thus is compositionally inconsistent as well.

We next define formally the conditions for similar functor partial-alignment consistency of

a signature to make argument-position maps always be composable at any given approximation

degree.

DEFINITION 5.2 (CONSISTENT PARTIAL SIMILARITY OF NON-ALIGNED SIGNATURE) Let Σ
def

=
∪k≥0Σk be a functor signature, and let ∼∼∼ : Σ×Σ→ [0.0, 1.0] be a similarity on Σ. It is said that

signature Σ is non-aligned admitting ∼∼∼ as a consistent partial similarity whenever all the follow-

ing statements hold:

1. all argument-position mappings conditions (3.15)–(3.18) are satisfied;2

2See Page 43.
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{1, . . . , m}

Dβ
fg

Dα
fg 0 < α ≤ β ≤ 1

{1, . . . , n}

Dβ
gf

Dα
gf

Dβ
hf = D

β
hg

Dα
hf = D

α
hg

µα
fg = (µα

gf)
−1

µα
gf = (µα

fg)
−1

µ α
hf µ

α
hg

µβ
fg = (µβ

gf)
−1

µβ
gf = (µβ

fg)
−1

µ β
hf µ

β
hg

Figure 5.1: Partial-map non-aligned similar functors argument-map consistency diagram

2. all pairs 〈f, g〉 ∈ Σm×Σn of similar functors — i.e., when f∼∼∼αg with α ∈ [0.0, 1.0] —

are partial-map non-aligned similar functors at approximation degree α as specified by

Definition 5.1;

3. for any functors f ∈ Σ and g ∈ Σ, and approximation degrees α ∈ [0.0, 1.0] and β ∈
[0.0, 1.0] :

α ≤ β ⇒ Dα
fg ⊆ D

β
fg ; (5.3)

4. for all f ∈ Σm, g ∈ Σn, h ∈ Σℓ, m ≥ 0, n ≥ 0, and ℓ ≥ 0 :

{

ran(µα
fg) = dom(µα

gh) (= Dα
gh)

ran(µα
fh) = ran(µα

gh) ;
(5.4)

and:
{

µα
hf = µα

gf ◦ µ
α
hg

µα
hg = µα

fg ◦ µ
α
hf .

(5.5)

These conditions are concisely summarized as the commutative functional diagram of Figure 5.1.

COROLLARY 5.1 (COMPOSABILITY OF ARGUMENT-POSITION MAPS) A non-aligned signa-

ture Σ with a consistent partial similarity ∼∼∼ satisfying all the conditions of Definition 5.2 are

always consistently composable at any given approximation degree α ∈ [0.0, 1.0].

Copyright c© 2020 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 121 Version of April 10, 2020

PROOF We need to verify that, for any functors f , g, h and any α ∈ [0.0, 1.0]:

ran(µα
fg) ⊆ dom(µα

gh)

and,

dom(µα
fh) = dom(µα

fg) and ran(µα
fh) = ran(µα

gh)

and that, for all positions i ∈ dom(µα
fg):

µα
fh(i) = µα

gh(µ
α
fg(i)).

All three properties can be verified to be immediate consequences of the conditions of Def-

inition 5.2. �

The following is also a corollary of Definition 5.2 and Definition 5.1.

COROLLARY 5.2 (STABILITY OF PARTIAL SIMILARITY DOMAINS AND CLASSES) Given any

two functors f and g such that f∼∼∼αg at approximation degree α ∈ [0.0, 1.0], the size |Dα
fg| of the

set Dα
fg is constant for fixed α; that is, |[f ]α∼∼∼| = |D

α
fg| = |D

α
gf| = |[g]

α
∼∼∼|.

PROOF This follows since, at any fixed approximation degree, all maps between functors

in a similarity class are bijective and the fact that they all satisfy the properties specified in

Definition 5.2 and Definition 5.1. �

DEFINITION 5.3 The fuzzy relation ∼∼∼T on TΣ,V is defined inductively as:

1. ∀X ∈ V, X ∼∼∼T
1 X;

2. ∀X ∈ V, ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X;

3. for m ∈ N, n ∈ N, f∼∼∼αg with µα
fg : D

α
fg → D

α
gf and si∼∼∼T

αi
tµα

fg
(i) for all i ∈ Dα

fg, then:

f(s1, . . . , sm) ∼∼∼
T
(α∧

∧
i∈Dα

fg
αi)

g(t1, . . . , tn). (5.6)

With this definition and the following theorem, we shall now have all the necessary formal

tools to proceed as we did for the two previous FOT lattice structure constructions in the case

where non-aligned Σ admits ∼∼∼ as a consistent partial similarity.

THEOREM 5.1 The relation ∼∼∼T defined by Definition 5.3 is a similarity relation on T the set of

FOT s.
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PARTIAL NON-ALIGNED SIMILAR TERM DECOMPOSITION

[

f ∼∼∼
µβ

fg

β g; 0 ≤ |Dα∧β
fg | = p, p ≤ min(m,n); Dα∧β

fg = {d1, . . . dp}

]

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) } )α

(E ∪ { sd1
.
= tµα∧β

fg
(d1)

, . . . , sdp
.
= tµα∧β

fg
(dm) } )α∧β

Figure 5.2: Partial non-aligned similar FOT similar term decomposition rule

PARTIAL NON-ALIGNED FUNCTOR SIMILARITY

[

f/m∼∼∼β g/n; α0
def
= α ∧ β; h/p ∈ [f/m, g/n]α0 ; |D

α0
hf | = |D

α0
hg | = p

]

(

σ1
σ2

)

α0

⊢

(

s′1
t′1

)

u1

(

σ11
σ12

)

α1

. . .

(

σp−1
1

σp−1
2

)

αp−1

⊢

(

s′p
t′p

)

up

(

σp1
σp2

)

αp
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

h(u1, . . . , up)

(

σp1
σp2

)

αp

Figure 5.3: Partial non-aligned similar FOT generalization rule

From this, in the same manner as we did before, we shall derive a weaker subsumption preorder

on FOT s as well as adapt our previous sets of rules to specify the corresponding unification and

generalization lattice operations for this preorder. This is what we present next.

The rules for unification of similar partial-map non-aligned FOT s are those of Maria Sessa’s

weak unification (see Figure 3.7) where Rule WEAK TERM DECOMPOSITION is replaced with

Rule PARTIAL NON-ALIGNED TERM DECOMPOSITION given in Figure 5.2. N.B.: there is no need

to re-orient a term equation as for total maps (see Figure 3.11). Why?

The rules for generalization of partial-map non-aligned similar FOT s are those given in Fig-

ure 3.13 where Rule SIMILAR FUNCTORS is replaced with Rule PARTIAL NON-ALIGNED FUNC-

TOR SIMILARITY given in Figure 5.3, where, for i = 1, . . . , p:
(

s′i
t′i

)

βi

def
=

(

sµαi−1
hf

(i)

tµαi−1
hg

(i)

)

↑
αi−1

(

σi−1
1

σi−1
2

)

and

(

σi−1
1

σi−1
2

)

βi

⊢

(

s′i
t′i

)

ui

(

σi
1

σi
2

)

αi

.

N.B.: there is no differentiating left/right rules as for total maps (see Figure 3.14); only a single

rule is needed. Why?

Automated signature completion Note that the unification and generalization rules above will

work with non-aligned similar functors with partial argument-position maps as long as the con-

ditions on the signature, the functor similarity, as well as all the corresponding partial argument

alignment, satisfy the signature consistency conditions given in Definition 5.2 and illustrated in
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Figure 5.1. These conditions are necessary to ensure composability of all partial argument maps

at any approximation level α ∈ [0.0, 1.0]. Indeed, it is composability of similar functor argument

maps that ensures consistent transitivity of the functor similarity.

However, one may object to requiring signatures and their similarities to possess complete

consistent partial maps as rather demanding. We now see how the process of verifying this to be

true for a given signature and similarity can be automated. In fact, there are two questions that

must be addressed:

1. Can a given signature with specified similarity and partial alignment maps automatically be

either verified to meet these requirements, or proven inconsistent?

2. Can a consistent but incomplete signature be completed to a minimal consistent one con-

taining it while respecting all its similaririties and argument alignment maps?

The good news is that the answer to both questions is “yes.”

1. There is a finite procedure to verify that for all pairs of transitive pairs of functors 〈f, g〉 and

〈g, h〉, all specified argument maps abide by necessary consistency conditions or to point

out where this is violated, and why.

2. Should a signature be detected to be incomplete at a given approximation levelα ∈ [0.0, 1.0]
in the sense that some functor similarity class does not possess a least-arity representative

with complete and consistent argument maps to all other functors in its class at level α, then

either the signature can be completed with a new functor with this property with appropriate

least (in terms of inclusion of sets of pairs) argument maps to all functors in its class, or an

explicit counter-example can be given that shows why there is no consistent signature can

complete this signature while respecting all argument maps.

This procedure may be performed at all approximation degrees α ∈ DEGREES
∼∼∼. Pseudocode

specifying this completion procedure is given in Figure 5.4. It automatically completes an in-

complete signature and a specified base set of similar functor pairs, together with some partial

argument-position maps using a completion procedure on the signature and the similarity so that

the signature may either be proven inconsistent, or completed with a similarity such that each

similarity class at any approximation degree α ∈ DEGREES
∼∼∼ contains at least one representative

functor with consistently aligned total argument-position maps to all members of the class.

Example 5.4 Non-aligned signature partial similarity completion — Consider a signature Σ in

which the only pair of non-identical similar functors at a given similarity degree α are f/4 and g/3 such that

f ∼∼∼
µα

fg
α g and g∼∼∼

µα
gf

α f with mutually inverse injective partial argument-position maps µαfg = {〈2, 1〉, 〈4, 3〉}

and µαgf = {〈1, 2〉, 〈3, 4〉}, so that Dα
fg

def
= {2, 4} and Dα

fg

def
= {1, 3}.

The similarity class c = {f, g} does not have a least-arity functor class representative with total

argument-position maps to all members of c. So, since {|Dα
fg| | f ∈ c, g ∈ c} = 2, the mini-

mum value in this set is 2. So we add a new functor h/2 to Σ2 with the total argument maps: µαhf =
{〈1, µαgf(1)〉, 〈2, µ

α
gf(3)〉} and µαhg = {〈1, µαfg(2)〉, 〈2, µ

α
fg(4)〉}; that is, µαhf = {〈1, 2〉, 〈2, 4〉} and µαhg =

{〈1, 1〉, 〈2, 3〉}.

And this is consistent by construction since µαhg = µαfg ◦ µ
α
hf and µαhf = µαgf ◦ µ

α
hg (as can be easily

verified). So h/2 can be added to class c.
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forall α ∈ DEGREES
∼∼∼ and similarity class c ∈ Π∼∼∼α do

if ∄ a least-arity similarity class representative in c with total
argument-position maps to all members of c

then • add a new functor h/m to signature Σm such that:

m = min{|Dα
fg| | f ∈ c, g ∈ c},

with least total consistent injective maps:

µα
hf : {1, . . . , m} → {1, . . . , n}

for all f/n ∈ c; if not possible, Σ is inconsistent;

• add functor h/m to similarity class c;

Figure 5.4: Automated completion of partial-maps for non-aligned signature similarity

5.2 OSF Term Argument Alignment

The system we proposed in Chapter 4 fuzzified OSF subsumption and related fuzzy lattice oper-

ations onOSF terms always assume that similar sorts share indentically named features. We now

consider the situation when this is not necessarily the case; i.e., when sorts may also be similar

modulo aligning the features of each pair of similar sorts.

§ FEATURE ARITY

We will assume that each sort s ∈ S has a “feature arity” arity(s) ∈ 2
F that associates to the sort s

a finite set of features. However, this must be consistent with feature inheritance. This is expressed

formally by defining the mapping arity : S → 2
F as the following lattice homomorphism from

〈S,�,f,g〉 to 〈2F ,⊇,∪,∩〉:

arity(sf t) = arity(s) ∪ arity(t) (5.7)

arity(sg t) = arity(s) ∩ arity(t) (5.8)

for all sorts s and t in S. Note that the anti-monotonicity of sort subsumption and feature set

inheritance, since Equation (5.7) and Equation (5.8) imply necessarily that:

s � t⇒ arity(t) ⊆ arity(s); (5.9)

i.e., the more specific the sort, the larger its feature-arity set.

Again, note that the arity of a sort symbol is not a natural number as is the case of a FOT ’s

functor where it stands for its number of arguments. The arity of a sort is a set of features that
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denote the admissible field names of structure components rooted in a node of this sort. It is a set

of symbols rather than a single natural number as in the case of FOT s because order of a sort’s

features does not matter, and not all of them need occur attached to each occurrence of this sort. It

may also be empty. Seeing a FOT as anOSF term, and thus seeing a function symbol f/n ∈ Σn

as a sort, arity(f/n)
def
= {1, . . . , n}, and the arity of a constant is the empty set.

§ FEATURE-ALIGNMENT MAPPINGS

In the same manner as when comparing FOT s using similar functors with misaligned argument

positions, similar sorts may as well disagree on their feature sets as long as these correspond to

one another’s reciprocal feature mappings between the two sorts. By default (and up to now),

when comparing two sorts s and t, every feature name is mapped to itself — i.e., feature mapping

from one sort to another is always the identity on F by default. But now, extending the same idea

as for function symbols in FOT∫ , for any pair of sorts s and t in S, we can assume defined a

feature mapping πst : F → F that satisfies the following properties.

• πst is injective (i.e., one-to-one); i.e., for any pair of sorts s and t in S:

f 6= f ′ → πst(f) 6= πst(f
′) (5.10)

for all features f and f ′ in F ;3

• πst is the identity almost everywhere on F except on a finite (possibly empty) subset of

features in arity(s) and the non-identical image of this set is a (possibly empty) subset of

features in arity(t);

• it is self-consistent ; i.e.,

πss = 11F (5.11)

for all sorts s in S;

• it is inverse-consistent ; i.e.,

πst = π−1
ts (5.12)

for all sorts s and t in S;

• it is composition-consistent ; i.e.,

πtu ◦ πst = πsu (5.13)

for all sorts s, t, u in S — that is, πtu(πst(f)) = πsu(f), for all feature symbols f ∈ F ;

3Or, equivalently: πst(f) = πst(f
′)→ f = f ′.
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• it is order-consistent ; i.e., if any sorts s, s′, t, and t′ in S are such that s � s′ and t � t′,
then this necessarily implies that,

π 6=
s′t′ ⊆ π 6=

st (5.14)

where π 6=
st

def
= {〈f, πst(f)〉 | πst(f) 6= f}. This ensures that the same feature is always

mapped to the same feature along a sort-order chain.

Authors’ comment: The algebraically-minded reader will probably flinch. In particular,

isn’t this π mapping the “missing link” [!] needed in order to complete a formal con-

nection between our OSF formalism and Category Theory? We, the authors, agree that

this does look like a functor of categories — or more generally any structure-preserving

commutative diagram represented as order-sorted feature graph structures. Namely, sorted

nodes can be seen as objects and their features can then be seen semantically as categorical

arrows between objects when we close features by composition. This is because they denote

functions that are composable — the feature of a feature is also a function (denoting the se-

mantic composition of the features’s denotations) — and all feature compositions out of a

node that converge to a common node (by sharing a tag at the end) must commute (i.e., sat-

isfy a feature-path equation). Then, the feature correspondence mappings π from one sort to

another (subject to the coherence constraints above) can indeed be seen as a fuzzy categorical

endofunctor for the (strict monoidal) category 〈S,2F 7→ 2
F 〉.

It might be worthwhile trying to make this connection formally more explicit in the style

of [133] and [82], for example. However, we shall abstain here for fear of losing some read-

ership despite our best efforts. For our present purposes, we will specify next this feature

mapping more operationally by substituting the features yielding a sort t out of a tag X of

sort s that occurs in an OSF constraint set using the fmapπst

X construct we define below as

Expression (5.15).

§ OSF UNIFICATION MODULO FEATURE ALIGNMENT

In Rule SORT INTERSECTION MODULO FEATURE ALIGNMENT of Figure 5.5, the function fmap

is parameterized by (1) a variable X , and (2) a one-to-one feature mapping πst associating to each

feature f in F a unique feature πst(f) in F . When sort s is compared with sort t, any feature

SORT INTERSECTION MODULO FEATURE ALIGNMENT

φ & X : s & X : t

fmap
πst

X (φ) & X : sft

Figure 5.5: Sort intersection rule for OSF unification modulo feature alignment

f for tag X of sort s is made to correspond with feature πst(f) of sort t. So parameterized,

fmap
πst

X transforms a conjunctive OSF constraint φ into another conjunctive OSF constraint
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fmap
πst

X (φ) obtained from φ by replacing each constraint of the form X.f
.
= Y by the constraint

X.πst(f)
.
= Y . Formally,























fmap
πst

X

(

φ
)

def
= φ

[

if X.f
.
= Y is not part of φ

for any f ∈ F and any Y ∈ V

]

;

fmap
πst

X

(

φ & X.f
.
= Y

)

def
= fmap

πst

X

(

φ
)

& X.πst(f)
.
= Y [otherwise] .

(5.15)

A feature map fmapπst

X that applies to an OSF constraint transforming it into another OSF
constraint is naturally extended to apply as well to a ψ-term to transform it into another ψ-term as

follows:

fmap
πst

X (ψ)
def
= ϕ−1(fmapπst

X (ϕ(ψ))); (5.16)

that is, it is defined as the ψ-term whose dissolved form is the result of applying that same feature

map to the dissolved form of the original ψ-term.4

When πst is the identity for a pair of sorts s and t, Rule SORT INTERSECTION MODULO

FEATURE ALIGNMENT of Figure 5.5 becomes the conventional rule SORT INTERSECTION of Fig-

ure 4.6 ofOSF term unification. In practice, it is more likely to be the case for most similar pairs

of sorts.

§ OSF GENERALIZATION MODULO FEATURE ALIGNMENT

The same observation can be made for OSF generalization modulo feature mapping as shown

by Rule UNEQUAL TAGS MODULO FEATURE MAPPING of Figure 5.6. Note that, unlike Rule UN-

EQUAL TAGS of Figure 4.16 which identifies features in the same order having the same index,

this rule identifies which feature to use for the left ψ-term’s subterm depending on the index

of the corresponding right ψ-term’s feature given by πst. This feature is identified as fi, and

so index(fi) = i for i = 1, . . . , m. But by (5.12), inverse-consistency of the feature map πst,
this means that fi = πts(gk), for some k ∈ {1, . . . , p}. From this, it comes that, for any index

k ∈ {1, . . . , p}, there is a unique index i ∈ {1, . . . , m} such that i = index(πts(gk)).
Note that this rule could equivalently be replaced by its symmetric form; namely, Rule SYM-

METRIC FUZZY UNEQUAL TAGS of Figure 5.7.

4See Equation 4.5 for the definition of ψ-term dissolution into an OSF constraint.
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UNEQUAL TAGS MODULO FEATURE ALIGNMENT















X 6= Y ;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {πst(f1), . . . , πst(fm)} ∩ {g1, . . . , gn}

s.t. hk
def
= πst(fk) = gk for all k = 1, . . . , p ;

ψ′

k

def
= ψindex(πts(gk)) for k = 1, . . . , p;

γ01
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new tag name















(

γ01
γ02

)

⊢

(

ψ′

1

ξ1

)

↑

(

γ01
γ02

)

χ1

(

γ11
γ12

)

. . .

(

γp−1
1

γp−1
2

)

⊢

(

ψ′

p

ξp

)

↑

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

(

γ1
γ2

)

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

U : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

Figure 5.6: OSF generalization modulo feature alignment

SYMMETRIC UNEQUAL TAGS MODULO FEATURE ALIGNMENT















X 6= Y ;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {f1, . . . , fm} ∩ {πts(g1), . . . , πts(gn)}

s.t. hk
def
= fk = πts(gk) for all k = 1, . . . , p ;

ξ′k
def
= ξindex(πst(fk)) for k = 1, . . . , p;

γ01
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new tag name















(

γ01
γ02

)

⊢

(

ψ1

ξ′1

)

↑

(

γ01
γ02

)

χ1

(

γ11
γ12

)

. . .

(

γp−1
1

γp−1
2

)

⊢

(

ψp

ξ′p

)

↑

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

(

γ1
γ2

)

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

Figure 5.7: Equivalent symmetricOSF generalization modulo feature alignment
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Discussion

This chapter is a set of sections summarizing topics that we learned about in the course of doing

our research trying to situate it with respect to others, as well as make it pragmatically usable

for others. Section 6.1 reviews related work. Section 6.2 indicates further avenues to explore

with this work. Section 6.3 reviews a few systems implementing some notion of fuzzy unifica-

tion. Section 6.4 discusses the design of public libraries for fuzzy lattice operations on FOT s

and OSF terms. Section 6.5 looks at some potential applications and uses of fuzzy lattice opera-

tions on graph structures, especially how it may help enable approximate language understanding.

Section 6.6 discusses a use case for fuzzy OSF lattice operations in Approximate Information

Retrieval combining fuzzy and Bayesian reasoning.

6.1 Related work

This is non-exhaustive review and discussion of work dealing with other work in related topics.

Section 6.1.1 reviews other work on fuzzy unification; Section 6.1.2 reviews graph-similarity

measures; Section 6.1.3 reviews some known fuzzy data models (such as fuzzy object-oriented)

and subtyping; Section 6.1.4 discusses other models of fuzzy knowledge representation; and,

Section 6.1.5 looks at how our work could benefit soft-constraint solving;

6.1.1 Other fuzzy unification work

In the course of this work, we searched the literature for “fuzzy unification” and “fuzzy logic

programming,” and variations thereof. Our first observation in pursuing this interest has been that,

unlike existing Prolog languages (and other technology that relies on standard FOT unification),

not all the fuzzy LP languages that have been proposed and/or implemented (even if only as

prototypes) agree on the same fuzzy FOT unification operation. We have looked at some of

the most prominent among those existing in an attempt to characterize their fuzzy unification

operations. We next summarize some essential points that we understood of these variations on

fuzzy unification from our perspective. We will proceed succintly, as it would be presumptuous

of us to give an exhaustive recap of research in Fuzzy LP . Again, our perspective is not so much
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Fuzzy LP as it is that of understanding its fuzzification of the lattice-theoretic operations onFOT
s such as FOT unification, which is an essential part on any LP system.

Before we focused on M. Sessa’s fuzzy FOT unification algorithm, which we present in

Chapter 3,1 we looked at other work which we review here. We also discuss our reasons for our

choice to follow Sessa’s approach as opposed to fuzzy Datalog or edit-distance FOT matching

we describe next.

§ FUZZY DATALOG UNIFICATION

Among earlier frequently cited works related to fuzzy FOT unification is [37], where the ti-

tle leads one to expect a fuzzy term unification in a fuzzy LP language. It is not quite that,

however, as it restricts solving similarity equations over word symbols tolerating some imprecise

matches (i.e., a kind of fuzzy Datalog).2 Such mismatches could come from (possibly accidental)

syntactic proximity (e.g., typos, misspellings).3 The authors propose to accumulate mismatched

symbols into what they dub “clouds,” which represent in effect similarity classes of constant sym-

bols (nullary functors). These clouds are given a measure of “similarity” computed as the meet of

those of the components — which they propose to conceive as a “cost” of how much it deviates

from a perfect match (which itself has zero cost, since perfect).

Note that when the only non-variable terms defined are constants, the rules of Figure 3.3

accumulate all constant mismatches as unresolved equations. Thus, what constitutes Arcelli et

al.’s “clouds” are the sets of constants making up the equivalence classes of the reflexive-transitive

closure of the relation containing these equations.

While this could be useful as a particular fuzzy extension of Datalog, it does not address

issues concerning fuzzy database representation and evaluation issues such as expounded in [58]

for (crisp) Datalog. In fact, such fuzzy extensions of Datalog had already been proposed, with a

straightforward fix-point semantics extending that of classical Datalog (e.g., [1]). Since it limits

itself to fuzzification of a Datalog-like LP , the semantics of Arcelli et al.’s fuzzy LP language

only considers approximate equations between constant symbols, whose mutual fuzzy proximity

is specified as fuzzy “proximity matrices”. This early form of fuzzy unification was put to use in

the fuzzy LP language Likelog [35], [36], [38], [39].

§ EDIT-DISTANCE FUZZY UNIFICATION

Arcelli et al.’s fuzzy constant unification was later elaborated to work on full FOT s as first ex-

posed in [37] and used in [81], and then again in [154] and [155]. The authors use the same

kind of fuzzy unification on constants (i.e., names formalized as symbol strings), but instead of

names deemed similar (i.e., in a same “cloud” or similarity class), the more classical notion of

edit distance is used to evaluate the similarity degree of a fuzzy name match (normalized over

the symbol lengths). Edit distance between two strings is the minimal number of elementary edit

actions (deleting a character, inserting a character, or replacing a character for another), in either

1Section 3.7.1.
2It is only acknowledged in the very last sentence of the paper, that the authors were yet “aiming at extending this

algorithm to the full-fledged algebra of first-order terms” as future work.
3Or presumably, although they only mention it as a potential further work in their conclusion, from semantic

proximity (such as could be specified as fuzzy knowledge in the form of fuzzy similarity matrices).
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or both strings necessary to obtain a perfect match [116].4 This fuzzy unification was put to use

in biological genetics analysis with the fuzzy LP language FURY [81], [155].

In what follows, we use our own formal notation to summarize the essence of FURY-style

fuzzy FOT unification [81], [154], [155]. We represent the empty string as ε, and a non-empty

string as a dot-separated sequence of characters ending with the empty string (e.g., "this" is

represented as t.h.i.s.ε). Given a non-empty string h.t, we shall call its first character h
its “head” and the substring t following it, its “tail.” The length of a string s is its number of

characters denoted |s|. That is, the monoid homomorphism:

|ε|
def
= 0

|h.t|
def
= 1 + |t|.

Thus, the edit distance δ(s1, s2) between two strings s1 and s2 is derived as:5

δ(ε, s)
def
= |s|

δ(s, ε)
def
= |s|

δ(h.t1, h.t2)
def
= δ(t1, t2)

δ(h1.t1, h2.t2)
def
= 1 + min{ δ(t1, h2.t2), δ(h1.t1, t2), δ(t1, t2) }, if h1 6= h2.



































(6.1)

These four defining equations express that the edit distance: (1) from any string to the empty

string is the length of this string; (2) between two strings with equal first character, it is the

distance between the remaining substrings; (3) otherwise, it is one plus the minimum of the three

edit distances between one of the strings and the other string’s rest, and between the two strings’

rests. The latter is known as the “Levenshtein distance” between two strings.6

Because edit distance will increase with the lengths of strings, it is convenient to calibrate it

over the size of the strings involved; hence the notion of “normalized edit distance” δN as in:

δN(s1, s2)
def
=

δ(s1, s2)

max(|s1|, |s2|)
. (6.2)

In [81], this notion of (normalized) edit distance between constant symbol strings (including

the empty string ε) is extended to an edit distance between FOT trees. It maps two terms t1 and

t2 to a non-negative number δ(t1, t2)
def
= mσ

n ∈ N, which denotes the minimal total number m of

mismatches (edit actions necessary to go from one to the other), along with two collateral pieces

of information:

4It is used most crucially in Internet search keyword matches and DNA sequence alignment and matching.
5From which one can easily check that expected properties of a distance are satisfied by δ such as δ(s, s) = 0,

δ(s1, s2) = δ(s2, s1), and δ(s1, s2) ≤ δ(s1, s) + δ(s, s2), for any strings s, s1, and s2.
6The Levenshtein distance between two strings has the advantage to apply to strings of differring as well as of

equal lengths. This is unlike the Hamming distance which is restricted to strings of equal lengths, and defined as

the number of disagreeing character positions. This entails, in particular, that the Levenshtein distance between two

equal-length strings is always less than or equal to their Hamming distance.
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• σ — a most general variable substitution that may be necessary to resolve matches upon en-

countering variables in the process of computing this minimal edit distance between the two

terms when assimilated to strings which are sequences of the non-punctuation characters

that compose their their syntax; and,

• n — a normalization factor computed as the sum of the lengths of the longest of each of

pair of symbols from each term as they are matched.

The normalization factor n is a function of the lengths of the terms when a term is seen as the

string concatenation in the order they appear of the non-variable and non-punctuation symbols in

it. In other words, parentheses, commas, variables, and ε are considered of length 0. Namely,

|t|
def
=

{

0 if t is a variable

|f |+ Σn
i=1|ti| if t = f(t1, . . . , tn), n ≥ 0.

Compounding two FOT edit distances mσ
n and pθq consists in adding them up while composing

their substitutions and adding their normalization factors:

mσ
n + pθq

def
= (m+ p)θσn+q. (6.3)

In other words, as it sums the numbers of symbol mismatches, it also composes their associated

variable substitutions and sums their normalization factors (which depend on the sizes of all the

involved symbols). Note that this operation, while commutative in its numerical arguments (which

are added), is not commutative in its substitution arguments (which are composed). It could also

be defined by composing the substitutions in the other order if wished; but this is simpler.7

Given two FOT s s and t, the edit distance between them δ(s, t) is defined as follows. If the

first argument is the empty string, then:

δ(ε, t)
def
= |t|∅|t| (6.4)

meaning that the edit distance is the length of the second argument, which is also this distance’s

maximum known normalization factor, and the resulting substitution is the empty substitution

(i.e., the identity). If the first argument is a variable, then:8

δ(X, t)
def
= 0

{t/X}
0 (6.5)

meaning that it is zero, while binding its first argument to its second argument, with a zero nor-

malization factor. If the second argument is a variable, then:

δ(t, X)
def
= δ(X, t) (6.6)

7The authors of [81] compose their substitutions the other way, which is why they need to write their recursive

‘et’ rule (the last one) with the first subterms as second arguments when collecting those of the subterms.
8In our (meta-)notation, in order to stress the syntactic nature of arguments that must be variables, we use Prolog’s

convention of identifying variables with symbols starting with a capital letter.
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by symmetry, which then uses the previous case. Otherwise (neither argument is a variable), let

s = g(s1, . . . , sm) and t = f(t1, . . . , tn) for some m,n ≥ 0; then:

δ(s, t)
def
= δ(f, g)∅max(|f |,|g|)

+ min { δ(ε, s1) + δ(ε(s2, . . . , sm), ε(t1, . . . , tn))

, δ(ε, t1) + δ(ε(s1, . . . , sm), ε(t2, . . . , tn))

, δ(s1, t1) + δ(ε(s2, . . . , sm)σ,ε(t2, . . . , tn)σ) }

if δ(s1, t1) = pσq for some p, q ≥ 0 and substitution σ











































(6.7)

which defines a Levenshtein distance extended from strings to terms. It is equal to the edit distance

between the functors plus the minimum of the three possible ways of aligning the respective

sequences of subterms, composing substitutions and adding normalization factors, each set to the

maximum functor length, while incrementally instantiating subterms remaining in the tails with

the accumulated substitutions resulting from computing the heads’ edit distance at each recursive

calls.

The above rules given as Equations (6.4)–(6.7), with our own — and simpler — notation, are

adapted from Definition 5 of the Gilbert-Schroeder paper [81]. However, while they agree on

the first three rules, they do not on the last one. On that last one, they only agree on the first

two cases of the three recursive patterns, they differ on the last: our own rule — Equation (6.7) —

propagates to the rest of the arguments the substitution resulting from computing the edit distances

between the first arguments of both terms. The two other cases need not do so as either term’s

first argument is only paired with the empty string ε, which simply returns the identity substitution

∅ — by Equation (6.4). Because this propagation is not done in their definition of the term edit

distance ‘et’ (Definition 5), this makes it incorrect. Take for instance the two terms f(a, b) and

g(X,X). According to that definition, their term edit distance is 1
{a/X}
3 . However, taking that

substitution into account, it should be 2
{a/X}
3 (since there are 2 mismatches between f(a, b) and

either g(a, a) or g(b, b): f 6= g and a 6= b). Indeed, the definition given in [81] means that the two

occurrences of X are seen as two independent variables which then get independently bound (one

time to a and the other time to b), then composing the substitutions will keep only the first one

({a/X}) and not account for the argument mismatch a 6= b. Whereas, propagating the substitution

as done in Equation (6.7) makes it possible to account for the mismatch (since a will be have been

substituted for X), therefore correctly returning 2
{a/X}
3 .

It could have been a typo or misprint in Definition 5 in [81], perhaps. But in other later

papers using this unification (such as [154] and [155]), the same definition is again given. At

any rate, to propagate substitutions from one matching argument to matching the rest is a simple

option. Not doing it, although not optimal, does not invalidate their approach when the substitution

propagation is done correctly (as done in Equation (6.7)); it just catches less mismatches in general

than ought to be reported (since it has for effect to ignore potential mismatches that may come

from any multiple-occurrence variable which are already bound to different symbols).

In this manner, this accounts for the fact it may be necessary to perform variable substitutions

while establishing the normalized edit distance between two terms t1 and t2 such that the following
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fuzzy equation holds whenever δ(t1, t2) = mσ
n:

t1σ ∼ t2σ
[

n−m
n

]

. (6.8)

Indeed, having m character mismatches over a maximum total length of n characters means that

the rate of mismatch is m
n
∈ [0.0, 1.0]; or, equivalently, that the rate of correctly matched char-

acters is 1 − m
n

; i.e., n−m
n

. It can then be used as a similarity degree fuzzifying the equation

t1σ = t2σ. Indeed, if all the characters are mismatched, then m = n and therefore the similarity

degree of this equation is zero; whereas, if no characters are mismatched, then m = 0, and the

truth value is one. As expected, the higher the number of mismatches, the fuzzier the solution.

This is a very interesting trick: “stringifying” the syntax of a FOT and then using fuzzy

symbol matching while counting how many mismatches over how long symbols and substituting

terms for variables as needed to resolve discrepancies in term structure. Thus, calculating the

normalized edit distance between two terms with Equations (6.4)–(6.7) operates an implicit uni-

fication procedure (which we shall call Gilbert-Schroeder fuzzy unification). It has, in fact, the

same recursive pattern as Robinson’s procedural unification algorithm, relaxed to tolerate functor

and arity inequalities [142].9

There are some important observations to be made at this point regarding Gilbert-Schroeder

fuzzy FOT unification.

• It applies to conventional (crisp) Prolog terms: there is no need for “fuzzy FOT s” whatever

such may be (it is the unification that is fuzzy, not the terms).

• It is a purely lexical process: it relates strings as character sequences regardless of word

meaning and/or context.

• It can always derive a minimal edit distance between two terms, however unrelated they may

be — the more lexically unrelated, the larger this distance will be, although it will always

be finite as it is bounded by a function of the size of the terms,10 as well as the lengths of the

functor symbols in them and the number of variable re-occurrences at leaves. Normalizing

with respect to the length of concatenation of the longest of each pairs of symbols appearing

in corresponding subterms gives a bounded measure in [0.0, 1.0] of the character mismatch

rate, therefrom a fuzzy matching measure may be derived.

• When fuzzy-unifying two non-variable non-ε terms, their arities (number of subterms) may

differ as each subterm of one is unified with each subterm of the other, keeping only the

minimal total number of mismatches (and collateral substitution and normalization factor)

— which raises efficiency concerns. Such concerns have been addressed for tree edit dis-

tances in more recent works such as, e.g., [71], although not for FOT s which are rooted

directed acyclic graphs (variables are shared nodes). Although the number of arguments

of two fuzzy matching terms may differ, it must be noted that in computing edit-distance

between two FOT s, the order of argument-position is always preserved.

9Op. cit., Section 5.8, Page 32.
10The number of functor nodes.
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• It is not difficult to understand from Equations (6.1) and (6.7), that the complexity of a naı̈ve

implementation of this recursive scheme becomes quickly prohibitive for pragmatics. Thus,

optimization methods, implementation techniques such as Dynamic Programming including

specific-domain heuristics, have been the center of attention [44], [171], [168].11

• More worrisome is that computing this term edit distance is not only expensive, it is also

non-deterministic. Indeed, there may be equal minimal number of mismatches with dif-

ferent and incomparable variable substitutions. For example, the minimal term edit dis-

tance between f(X,X,a) and g(b,Y,Y) is 2 with either substitutions {b/X,b/Y} or

{a/X,a/Y}, which are both most general although mutually incomparable (i.e., they are

not alphabetical variants “up to variable renaming” of one another).

6.1.2 Feature-graph similarity measures

Work using our OSF formalism has also elaborated a general lattice-theoretic approach to mea-

suring similarity overOSF graphs [126]. We now review this work and discuss how our approach

and theirs are in fact quite compatible, the latter providing a way to derive from the structure of

OSF graphs a similarity distance which can be used as the fuzzy information presumed available

by the former.

6.1.3 Fuzzy data models

Fuzzy object-oriented data model [52].

Fuzzy subtyping: [54].

6.1.4 Fuzzy ontologies

They were earlier attempts at fuzzifying Description Logic (DL) (e.g., [175, 159, 161]. This

was done by attaching a similarity degree toDL assertions and interpreting constraints with fuzzy

connectives: infimum (∧) is min, supremum (∨) is max, and complement (φ→ φ) isw → (1−w).
Specifying minimal and/or maximal values is used to disregard all assertions and constraints with

similarity degree outside a specified interval. In this regard (setting minimal/maximal bounds),

the latter is similar to such fuzzy logics as [32].

There have been many others since then. Here is very short chronological list of the many,

many, variations on more recent work on how to fuzzify DL ontologies.

• [2011] Fuzzy ontology representation using OWL 2 [49]

• [2014] LiFR: A Lightweight Fuzzy DL Reasoner [164]

• [2015] The fuzzy ontology reasoner fuzzyDL [50]

• [2017] Fuzzy ontology representation using OWL 2 [51]

• [2018] Dealing with uncertainty: Fuzzy (Description) Logics and Fuzzy Ontologies [143]

11See Section 6.2.3.
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As one can see in this list, the quasi-totality of existing work in fuzzy knowldedge represen-

tation use DL as the medium for knowldedge representation and reasoning.12 One of the main

contributors is Umberto Fraccia, starting with his PhD work in the late 90s ([159], [160]). His

more recent work is listed above along with other work using DL as the knowldedge representa-

tion formalism to fuzzify.

In summary, all the above work implicitly assumes that knowledge is represented as DL, and

specifically in one of its official OWL dialects. This makes fuzzy reasoning rely on fuzzify-

ing DL-kinds of rules. However, as explained in [9], reasoning in DL and OSF Logic is quite

different. Therefore, how our approach compares formally with the above work in terms of ex-

pressiveness and implementation performance begs further study.

6.1.5 Soft constraints

There has been considerable work dealing with fuzzy Constraint Solving Problems (Fuzzy CSP).

One of the most thorough and comprehensive is that of Bistarelli et al. [48]. It solves Fuzzy CSPs

by combining Abstract Interpretation of constraints [67] with CSP [144].13 Their approach to soft

CSP extends to temporal constraints as well.

The kind of constraints we deal with in this book concerns similarity (a semantic-distance mea-

sure between words) among symbols in two major operations used in theorem proving (whether

resolution-based, equational, temporal, or combinations). But CSP has been used with great suc-

cess in boosting the performance of general-purpose theorem-proving by relieving the burden of

search on specific patterns. This is possible because a constraint’s semantics is that of a relation

satisfied by its arguments and therefore inherits all the logical semantics for free while, opera-

tionally, a special-purpose algorithm can efficiently compute its solutions.

Therefore, it is conceivable to use our work in the same context as it provides a means of

approximating term-based reasoning on a quotient set of terms rather than a set of terms. This

begs for further study.

6.2 Further Work

This speculates on a few (and certainly non-exhaustive) possible avenues for further work. Sec-

tion 6.2.1 indicates how our approach may be extended with the tools developed for the opti-

mization of constraint-solving implementation by Abstract Interpretation in general; Section 6.2.2

makes a link with fuzzy automata for fuzzy string matching; Section 6.2.3 speculates about fuzzy

dynamic programming; Section 6.2.4 tries to situate our work in the contextt of Fuzzy Quantum

Logic; Section 6.2.5 looks a fuzzy Formal Concept Analysis; Section 6.2.6 considers fuzzifying

the Generalized Distributive Law.

12See [9], [33], and [11] on howOSF Logic and DL are formaly and operationally related. See also this.
13A popular introduction to CSP is Chap. 6 [127] of [128] (was Chap. 5 in previous editions).
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6.2.1 Fuzzy abstract interpretation

As shown in Section 6.1.5, Abstract Interpretation offers as mathematically elegant and opera-

tionally efficient formal analysis of computation, whatever the computational model may be [65].

When the latter is constraint solving, it applies as well ([66], [67], [64]).

In Chapter 3 and Chapter 4, we covered the lattice-theoretic properties of fuzzy operations

on FOT s OSF graphs. Such fuzzy operations may be put to use in Automated Reasoning and

Knowledge Representation to perform approximate deduction and induction over composite ob-

jects and concepts in the same manner as Abstract Interpretation. In the specific case where

information is represented as consistent FOT s or OSF graphs and abstraction is provided by

fuzzy lattice-theoretic approximation thereon — whether for consistent approximate deduction

(by fuzzy unification), or for consistent approximate induction (by fuzzy generalization).

6.2.2 Fuzzy automata

An interesting avenue that neeed to be explored is the consequence of our results regarding a

very close notion of labeled graphs; viz., Finite-State Automata (FSA) — whether deterministic

(DFA) non-deterministic (NFA). Indeed, as initially explained in [4] and [6], OSF terms were

formalized as labeling of what is essentially a FSA: the alphabet is the set of features, the states

are the sort nodes, the initial state is the root node.

A state is an equivalence class among words that are feature paths. There in only one reject

state labeling the ⊥ sort. The notion of accepting state is generalized to a sort-labeled state where

subsorting in interpreted as compatibility (accept all feature paths ending in this state with most

general compatible sort); a feature transition leading to no existing compatible sort, ends in the

reject state (⊥).

Unification of two FSAs computes the most general FSA (smallest in number of states) that

is consistent with the two given FSAs — the intersection of the regular feature-path languages of

both FSAs. Generalization of two FSAs computes the most general FSA (smallest in number

of states) that is consistent with either of the given FSAs — the union of the two regular feature-

path languages of each FSA. A formal clarification of this connection can thus lead to a formal

understanding of how our fuzzy OSF lattices can be also interpreted as fuzzy FSA lattices —

and conversely.

It is easy to see that, by abstracting the algebraic operations it uses, Dijsktra’s shortest path

algorithm14 is only one instance of a larger family of algorithms in an inf/sup lattice known as

Warshall’s algorithm working on any such algebraic structures [172].15 This is of great benefit for

software development: it is sufficient to encode only one algorithm with abstract inf and sup

operations and vary the effect according to any specific instantiations of these operations. Many

closing algorithms in dual algebras such as (semi-) rings, (semi-) lattices, etc., are of this type

(see, e.g., Algorithm 1).

Formalization of fuzzy NFAs:

• [55]

14https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
15http://www.cse.chalmers.se/∼coquand/AUTOMATA/over7.pdf
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• [117]

General references and links on fuzzy regular expressions (to connect with OSF unification

extended to regular path expressions [42]):

• Fuzzy Regular Expressions

• Fuzzy Regular Expression Matching software

Approximate string matching: [105].

More readings on fuzzy automata:

• fuzzy automata [40]

• fuzzy and non-deterministic automata [124]

• Myhill-Nerode theory for fuzzy languages and automata [98]

• Lattice-ordered monoids and automata [162, 163]

6.2.3 Fuzzy dynamic programming

Bellman’s Dynamic Programming [44] is a problem-solving paradigm first defined formally by

Bellman for recursive optimization. Informally, it can be described as a technique that remembers

previously established goals that can then be reused without being having to be re-established.

It has been extended to several fuzzy dynamic programming type models in which various ele-

ments have been fuzzified, notably the goals and constraints, state and control, state transitions,

termination time, etc., . . . [106].

Dynamic Programming techniques have been shown to be of great benefit in the implementa-

tion of Logic Programming along the lines of [104] and XSB Prolog. Hence, considering Fuzzy

LP with similar techniques while using fuzzy unification as we define it is a potential avenue to

explore.

6.2.4 Fuzzy quantum logic

Also to read the intriguing interesting connections of Fuzzy Logic with Quantum Logic. To cite

just a few: [47],16 [138], [139], [68], [152]. [89]. See also: this and this. In [89], a nice algebraic

summary is given as:

Logic
Property

Classical
Logic

Birkhoff – Von
Neumann Logic

Zadeh
Fuzzy Logic

Giles – Łucasiewicz
Fuzzy Logic

Binary yes yes no no

Commutative yes no yes yes

Distributive yes no yes no

Excluded Middle yes yes no yes

Non-Contradiction yes yes no yes

16This is generally credited to be the pioneering paper.
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Attributed conceptual information is the space of observations (an infinite-dimensional (quasi-

Hilbert) space), and the phase space comprises functions of probable neighbor states of points in

the observation space according to the axioms of Quantum Logic QL, which is a weakening of

FL.

Reasoning with Vectors: A Continuous Model for Fast Robust Inference.

6.2.5 Fuzzy formal concept analysis (FCA)

See essentially Radim Bělohlávek’s work and references in there.

6.2.6 Fuzzy generalized distributive law (GDL)

Fuzzifying the Generalized Distributive Law (GDL) [27, 28] (i.e., lifting it to any fuzzy lattice

structure).

Authors’ comment: Need to read and comment the state of the art, and infuse whether this

can connect productiveley (in either directions) withOSF graphs seen as order-sorted FSAs,

whether deterministic (DFA) or non-deterministic (NFA), on regular languages of feature

composition words (see, e.g., [42]).

Review part of the material in [6] that defines lattices on an algebra of (ψ, ǫ, complemented)

(OSF) terms as automata on access-path languages [86, 87], and clarify the link with the

lattices of fuzzy OSF terms elaborated in Section 4.2.

6.3 Fuzzy Implementations

A few fuzzy LP systems have been proposed and implemented using some of the fuzzy unifi-

cation operations defined by the state of the art that we overviewed in Section 3.7.1, or variants

thereof. The following are just some among the many one can look up, some of which may be

downloadable.

• 1995 — Fuzzy extension of Datalog [1];17

• 1997 — Likelog (a fuzzy datalog) [35];18

• 2002 — LP with context-dependent fuzzy unification [32];19

• 2002 — Fuzzy Prolog using CLP(R); not a fuzzy CLP(R) programming language, but

using CLP(R) to implement fuzzy operations on union of intervals of real numbers [167];20

• 2010 — Bousi∼Prolog a fuzzy Prolog using a weak version of fuzzy unification [100];21

17http://people.inf.elte.hu/kiss/14abea/Achs 1995 ActaCybernetica.pdf
18http://www.programmazionelogica.it/[...]/uploads/1997/06/319 Fontana1.pdf
19http://repositori.udl.cat/bitstream/handle/10459.1/57984/001858.pdf
20https://cliplab.org/papers/fuzzy-lpar02 bitmap.pdf
21http://www.sciencedirect.com/science/article/pii/S1571066109002874
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• 2015: Fasill [102];22

• 2018: Bousi∼Prolog using Aı̈t-Kaci/Pasi unification [63].23

6.4 Proposed Proofs of Concept

The most important consequence of this work, it is hoped, is that it can provide several pragmatic

operational improvements on inference and learning methods from purely declarative structure-

oriented constraint specifications. This is meant to ease efficient implementation and the provision

of software tools. In what follows we discuss a minimal set of necessary software development

efforts needed to enable the expressive potential of fuzzy lattice operations on FOT s and OSF
graphs.

§ INTERFACES (JAVA PACKAGES AND LIBRARIES) FOR FOT S AND OSF TERMS

We have started an implementation in Java of the operational semantics derived from the axioms

and rules that we presented and proven correct in Chapter 3, which has allowed us to confirm our

results on concrete examples [12].24 This was eased by the fact that the fuzzy lattice operations

do not require altering these conventional first-order structures.

6.5 Applications

Example of applications and uses of fuzzy lattice operations on terms and order-sorted attributed

graphs in knowledge and data processing (deduction and learning), linguistics (fuzzy order-sorted

fuzzy HPSGs).25

Authors’ comment: Take a look later at applications:

• Zadeh’s fuzzy interpretation of linguistic hedges [178]

• Common Fuzzy Distributions for linguistic hedges [59]

• Other sorts of application (fuzzy control in particular) [180].

22https://arxiv.org/pdf/1501.02034.pdf
23https://[...]Towards a Full Fuzzy Unification in the Bousi Prolog system
24See also [63], a recent extension of the Bousi-Prolog system based on our similarity-based unification tolerating

functors of differing arities.
25Op. cit., Section 3, pp. 387 ff. See HPSG. This is linguistics research that was developed independently of, but

contemporaneously with, research on the more general OSF formalism ([18], [7], [17]). But it can be seen as an

instance of OSF calculus for a specific purpose (making sense of written or spoken language in diverse contexts),

only using its own jargon and biased toward linguistic analysis. So everything we formalize on fuzzy OSF could

easily carry over to fuzzy HPSG with appropriate rewording using their specific jargon — although fuzzily.
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6.6 Use Case — User-Fit Product Recommendation

As a realistic practical example using fuzzy OSF lattice operations, we discuss an application

that could be part of a “smart” Information Retrieval system managing the interaction with a user

for suggesting sets of available products fitting an interested user through a typical Internet recom-

mandation service (e.g., for videos, books, equipment, technical articles, etc.). Our objective with

such an example is to illustrate how adding fuzzy information processing capabilities based on the

formalism we have presented enables “smoother” control over the adequacy of the retrieved infor-

mation enabling better user satisfaction with the proposed data and more flexible exploration of

novel topics and areas less prone to inherent biases that constitute the principal pitfall of so-called

Naı̈ve Bayes models;26 see Section 6.6.2. The same model would work for arbitrary categories of

sorts of objects and users. It assumes that an ontology model of sorts of all objects in the form of

a sort taxonomy typing structured objects according to contents along specific preference dimen-

sions has been defined with attributes and values types and/or ranges. This is the crisp base to be

fuzzified.

Although the crisp base system this extends is a generic model, the latter is probably close

to the main idea underlying actual existing recommendation systems, and so our fuzzy OSF
operations could be envisaged by such or similar systems to improve user satisfaction by learn-

ing to suggest more adequate recommendations. It can work as well when interacting with an

unregistered user, in which case the accumulation of interaction data can be associated to an id

with known attributes such as the connected agent’s Internet address, local server location (city,

country), language used, etc., . . .

6.6.1 Basic model

The interaction scenario that our system is meant to improve is to suggest a set of specific products

to a user “lambda” (referred to as “User You Sir”), based on one’s past history. The represen-

tation formalism of data and knowledge in our model will be OSF graphs represented with a

straightforwardRDF notation, so it can be implemented using HO•O•T , a language for expressing

and querying hierarchical ontologies, objects, and types [10].

It is based on the following assumptions.

• A partially ordered taxonomy of the product sorts and all other concepts used is given,

defining the model’s OSF signature S. A (sub)sort denotes a (sub)category of products,

or sets of other data objects, and the partial order on sorts is set inclusion (⊆) for the sets

they denote. This taxonomy always contains two specific sorts: a greatest sort ⊤ denoting

everything, the set of all objects, and a least sort⊥ denoting nothing, the empty set of object.

• To each defined sort in the signature, an order-consistent set of feature symbol is associated

defining the sort’s arity. Requiring order-consistent sort arities, which are sets of features,

means that they are also partially ordered as sets, but by set containment (⊇); i.e., the set

ordering dual to set inclusion. This means in particular that the more specific a sort, the

larger its arity. In particular, arity(⊤) = ∅ and arity(⊥) = F (the set of all features).

26https://en.wikipedia.org/wiki/Naive Bayes classifier
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• A subset of the sort signature O ⊆ S, we shall refer to as the object data base, contains

specific atoms that are minimal sorts; i.e., some of the least sorts that are supersorts of ⊥,

the sort denoting the empty set .

• An object is represented as a ψ-term, an attributed instance of a concept represented in the

knowledge base. An object’s attribute is necessarily part of this object’s feature set inherited

from all its supersorts, but also must point to a data object in O; i.e., an object whose root

sort is minimal and all of whose attributes refer also to minimal data objects in O.

6.6.2 Naı̈ve Bayes biases

Being based on observed user’s accumulated choice history (which is statistical in nature), a rec-

ommendation system using Bayes Law and assuming all choices are independent (as does Naı̈ve

Bayes) will be subject to bias. We found the following statement to give a good explanation of

statistical bias from a frequentist perspective.

Suppose there is a model for the data Y that depends on a parameter θ and, for a particular

experiment, there is a true value of the parameter, θ0. You develop an estimator θ̂ = θ̂(Y ),
i.e., the estimator is a function of the data Y . Then the bias is:

bias(θ̂) = EY |θ0 [θ̂(Y )− θ0]

where the expectation is taken with respect to the randomness of the data Y for the given true

value of the parameter θ0 (and the subscript on the expectation attempts to make this explicit).

As we are talking about an expectation over possible realizations of data, this is a frequentist

concept.

In the description above, I have not mentioned how the estimator arises. This estimator could

be a method of moments, maximum likelihood, Bayes, or something else estimator. Thus,

the concept of bias of an estimator is frequentist, but the estimator itself could arise from a

Bayesian analysis.

jaradniemi

Answer to “Is bias a frequentist concept or a Bayesian concept?”

May 14, 2017 at 16:04

The method used by Bayesian-based learning methods is called naı̈ve because is makes the

assumption that all the attributes of the probabilistic objects are mutually independent. This is far

from being the case in most actual situations, and the source of a lot of prediction inaccuracy. A

good illustration of the influence of Bayes Law on accuracy of predictions is available in [158].

A Naı̈ve Bayes method inevitably creates some biases in the choices offered to a user. These

biases are inherited from the assumption that because some specific products were accessed, rec-

ommendations that are “naı̈vely” similar will be given higher preference. Which explains the

increasingly selective choice of recommendations User You Sir will be receiving, this selectivity

applying to object categories populated with objects, each of which is an instance representing a

specific product’s Uniform Resource Identifier (URI).27

27https://en.wikipedia.org/wiki/Uniform Resource Identifier
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While most such biases may be appreciated by User You Sir (automatic determination of one’s

tastes in music, humor, politics, etc., . . . ), it also prevents one’s access to an immense potential of

other targets that might be of high interest to this user.

Using fuzziness to model semantic proximity of OSF concepts and data objects, and com-

bining that to classical Bayesian probability evaluation system, gives an “intelligent” way to re-

balance undue biases, while keeping some semantic correlations among concepts and subjects of

interest to a user [126].

6.6.3 Fuzzy Bayesian reasoning

• Fuzzy Probabilities [91];

• Fuzzy Probability Theory [91];

• Fuzzification of crisp probabilistic domains [80];

• Bayesian Inference With Adaptive Fuzzy Priors and Likelihoods [131], Fuzzy Bayesian

Inference [169];

• Bayesian Decisions and Fuzzy Logic [85];
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Conclusion

We conclude this monograph with three synthetic statements. Section 7.1 summarizes the es-

sential contribution of the work we presented. Section 7.2 makes a point concerning common

misconceptions about the nature and utility of fuzzy concepts and reasoning. Section 7.3 explains

on what task we need to focus our next effort.

7.1 What Have We Done?

We overviewed several ways to fuzzify OSF constraint logic. We hope to have provided enough

evidence that what we describe in this book is to benefit Information Retrieval as well as Ma-

chine Learning when fuzzy-OSF can provide a precious initial focusing step prior to exploiting

number-analytical techniques used in Inductive Logic Programming [147] or Bayesian Nets [92].

Authors’ comment: This last point should perhaps be detailed somewhat talking about Yu-

taka Sasaki’s work: [150], [148], [147], [149], [26]. (Or perhaps just mention and cite his work

here, and then elaborate in a separate paper on fuzzy OSF learning with him as co-author?)

We also discussed several fuzzy versions of related topics, from (Lattice) Algebra, to Automata

Theory, to (Order-Sorted Feature) Logics, to Object-Oriented Graph Data Structures, to fuzzy

approximation thereof.

7.2 Our Fuzzy Word for the Wise?

This is a short point-of-view section addressing the question:

“Why should any measure in the [0.0, 1.0] real interval be interpreted exclusively as

probability?”

It summarizes the mind-opening set-as-points geometric arguments presented by USC’s Bart Kosko

is this mathematically immaculate article, published thirty-year ago [!], and entitled “Fuzziness

vs. Probability” [110].

https://www.researchgate.net/publication/220814962
https://pdfs.semanticscholar.org/ec8e/e66e6a1125b48a580d01ce0d7719eca180f6.pdf
https://www.researchgate.net/publication/221112632
http://sipi.usc.edu/~kosko/
http://sipi.usc.edu/~kosko/Fuzziness_Vs_Probability.pdf
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7.3 Where Do We Go from Here?

The most immediate avenue of research that the issues we discussed open up is the design (spec-

ification and implementation) of a CLP language that would be the “least upper bound” of

LOGIN [19] (and later LIFE [7, 17]) with a fuzzy Logic Programming language; e.g., [102]

or [63]. Such a language, with access to distributed databases, would facilitate efficient approxi-

mate reasoning for query resolution as well as learning by approximate knowledge acquisition as

fuzzy order-sorted feature structures. All the applications enabled by Fuzzy Logic Programming

on one side and OSF Logic Programming on the other could then each benefit as each would

thereby gain even more expressiveness and flexibility for the processing of approximate struc-

tured knowledge on massive data. While fuzzy OSF unification (the conjunctive connective)

is the key to deduction (as used in logical or function rule invocation), fuzzy OSF generaliza-

tion (the disjunctive connective) is the key to induction (as used in learning by abstraction when

extrapolating knowledge from data).

The next step, of course, is the development of fuzzified applications: from Information Re-

trieval, to Natural Language, to Knowledge Processing. The potential is immense.

Concomittantly are all the pragmatic issues: efficient implementation (preprocessing, abstract

machine compiling, interfacing to constraint-solving and fuzzy-set libraries, etc.).

Finally, as one can easily gather from the material reviewed in Chapter 6, the possibilities of

extending and applying techniques we exposed in this book are legion.
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Background Material

This appendix is a summary of general formal notions, terminology, and notation we use or refer

to in this monograph. Section A.1 gives a definitional ontology of monadic and dyadic algebraic

structures in the form of conceptual “is-a” taxonomies. It may be useful to refer to as a termi-

nological guide map giving a global picture of how the varied structures involved relate to one

another. Section A.2 reviews basic definitions and properties of FOT substitutions represented,

as in this work, as finitely non-identical variable-to-term mappings. Section A.3 contains the pro-

cedural FOT generalization algorithms as formulated in 1970, one by John Reynolds and the

other by Gordon Plotkin.

A.1 A Definitional Ontology of Algebraic Structures

We shall be concerned with algebraic structures derived on a set with one internal binary opera-

tion (monadic structures) and those derived on a set with two internal binary operations (dyadic

structures) defned on them.

A.1.1 Monadic structures

Figure A.1 shows an “is-a” taxonomy for the monadic algebraic structures that are defined below.

This taxonomy means that each monadic structure (a node in this graph) inherits the characteristic

algebraic properties of all its super-structures (i.e., any node following the “is-a” arc paths).

DEFINITION A.1 (MONADIC STRUCTURE) A monadic structure 〈D, ⋆〉 consists of a set D of

elements — the domain — with an internal binary operation:

⋆ : D ×D → D. (A.1)

In a monadic structure, the operation ⋆ has an associated prefix relation defined for all x, y ∈ D
as:

x ≺⋆ y iff ∃z ∈ D, x ⋆ z = y. (A.2)
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Monadic Structure

Semigroup Abelian Structure

Monoid Abelian Semigroup Partially Ordered Set

Group Abelian Monoid Semilattice

Abelian Group Semilattice with Bottom

Figure A.1: Taxonomy of monadic algebraic structures

DEFINITION A.2 (SEMIGROUP) A semigroup 〈D, ⋆〉 is a monadic structure with domain D
whose operation ⋆ (A.1) is associative. That is, for all x, y, z ∈ D:

x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z. (A.3)

Note that in a semigroup 〈D, ⋆〉, the prefix relation ≺⋆ is always transitive (by virtue of asso-

ciativity of ⋆). However, but it is not necessarily reflexive.

DEFINITION A.3 (MONOID) A monoid 〈D, ⋆, ǫ〉 is a semigroup 〈D, ⋆〉 with a special element

ǫ ∈ D, called a unit, such that, for all x ∈ D:

x ⋆ ǫ = ǫ ⋆ x = x. (A.4)

Note that in a monoid 〈D, ⋆, ǫ〉, the prefix relation ≺⋆ is also reflexive (by virtue of the unit

element). Therefore, it is a preorder, and is sometimes called the monoid’s prefix approximation.

DEFINITION A.4 (GROUP) A group 〈D, ⋆, ǫ〉 is a monoid such that any element x has an inverse.

That is, for any x ∈ D, there exists a (necessarily unique) x−1 ∈ D such that:

x ⋆ x−1 = x−1 ⋆ x = ǫ. (A.5)

DEFINITION A.5 (ABELIAN STRUCTURE) An Abelian structure is any of the foregoing monadic

structures whose operation ⋆ (A.1) is commutative. That is, for all x, y ∈ D:

x ⋆ y = y ⋆ x. (A.6)
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Thus, we speak of an Abelian operation, an Abelian semigroup, an Abelian monoid, an

Abelian group, etc., . . . Alternatively, the more suggestive adjective “commutative” is sometimes

preferred to “Abelian.”

DEFINITION A.6 (SEMILATTICE) A semilattice 〈D, ⋆〉 is a commutative semigroup such that ⋆
is idempotent; i.e., for all x ∈ D:

x ⋆ x = x. (A.7)

A natural partner to the ⋆ operation is the relation defined as ≤⋆ on D by:

∀x, y ∈ D, x ≤⋆ y iff x ⋆ y = y. (A.8)

The relation≤⋆ is called the semilattice ordering and indeed defines a partial order onD. Namely,

≤⋆ is reflexive (by idempotence of ⋆), anti-symmetric (by commutativity of ⋆) and transitive (by

associativity of ⋆).

In a semilattice 〈D, ⋆〉, the prefix relation ≺⋆ is also an ordering and furthermore it coincides

with the semilattice ordering. Namely:

THEOREM A.1 (ALGEBRAIC APPROXIMATION ORDERING) ∀x, y ∈ D, x ≺⋆ y iff x ≤⋆ y.

PROOF Assume that x ≤⋆ y. By definition, this means that x ⋆ y = y. Thus, it is clear that

∃z, x ⋆ z = y (taking z = y). Therefore, x ≺⋆ y.

Now assume that x ≺⋆ y. Then, by definition, x ⋆ zxy = y for some zxy ∈ D. Hence,

x ⋆ y = x ⋆ (x ⋆ zxy) (replacing y by its value)

= (x ⋆ x) ⋆ zxy (associativity)

= x ⋆ zxy (idempotence)

= y

and so, x ≤⋆ y. �

Note that ⋆ is automatically a supremum operation for its semilattice ordering; namely:

THEOREM A.2 (ALGEBRAIC APPROXIMATION SUPREMUM) For all x, y, z ∈ D:

if y ≤⋆ x and z ≤⋆ x then y ⋆ z ≤⋆ x. (A.9)

PROOF Assume that y ≤⋆ x and z ≤⋆ x; then,

y ⋆ x = x by (A.8) (a)
z ⋆ x = x by (A.8) (b)
(y ⋆ x) ⋆ (z ⋆ x) = x ⋆ x by (a) and (b)
(y ⋆ x) ⋆ (z ⋆ x) = x by (A.7)

(y ⋆ z) ⋆ (x ⋆ x) = x by (A.3) and (A.6)

(y ⋆ z) ⋆ x = x by (A.7)

y ⋆ z ≤⋆ x by (A.8).

�
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Dyadic Structure

Distributive Dyadic Structure Associative Dyadic Structure

Semiring

Abelian Semiring Ring Path Algebra

Abelian Ring Distributive Lattice Boolean Ring

Boolean Lattice

Figure A.2: Taxonomy of dyadic algebraic structures

Finally, note that if a semilattice 〈D, ⋆〉 is also a monoid 〈D, ⋆, ǫ〉, Equation (A.8) entails that

ǫ is the (necessarily unique) least element of D for ≤⋆. Then, it is sometimes written as ⊥ (and

called bottom). Thus, a semilattice with bottom can also be described as an idempotent Abelian

monoid.

A.1.2 Dyadic structures

The dyadic algebraic structures shown in Figure A.2 are defined below. As for monadic algebras,

this taxonomy means that each dyadic structure inherits the characteristic algebraic properties of

its super-structure.

DEFINITION A.7 (DYADIC STRUCTURE) A dyadic structure 〈D, ⋆, ∗〉 is a pair of monadic struc-

tures 〈D, ⋆〉 and 〈D, ∗〉 sharing the same domain D.

In the notation used for an abstract structure, the particular symbols that denote the operation

and unit element (if it is a monoid), are, of course, generic. Thus, in our definitions so far, we have

used ⋆ for the operation, and ǫ for the unit element. Clearly, however, other symbols could be used

instead — what matters is that the chosen symbols substituted for ⋆ and ǫ obey the appropriate

equations. This being said, the familiar arithmetic operation symbols + and×, with associated unit

symbols ∅ and 1, respectively, are sometimes used as generic symbols, despite their conventional

Copyright c© 2020 by the Authors All Rights Reserved
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arithmetic meaning. Generally, this is to suggest that the structure at hand will behave as, or

mostly as, in familiar arithmetic. The adjective additive (resp., multiplicative) is then used to

designate properties of a structure whose operation is written + (resp.,×).

Many common dyadic structures combine they additive and multiplicative operations using

distributivity of the multiplication over the addition — this is a characteristic of semirings.

DEFINITION A.8 (SEMIRING) A semiring 〈D,+, ∅,×, 1〉 is a dyadic (additive and multiplica-

tive) structure on a single set D such that:

• 〈D,+, ∅〉 is a commutative monoid;

• 〈D,×, 1〉 is a monoid;

• ×is distributive over +; that is, for all x, y, z ∈ D:

x×(y + z) = (x×y) + (x×z) (A.10)

and

(x+ y)×z = (x×z) + (y×z). (A.11)

To distinguish between the two operations’s unit elements in a semiring, the additive unit ∅ is

referred to as the zero element, and the multiplicative unit 1 as the unit element.

A semiring is an Abelian (or commutative) semiring if its multiplicative operation× is com-

mutative (i.e., if 〈D,×, 1〉 is a commutative monoid).

A path algebra is the appropriate algebraic structure to handle path problems in graphs and

networks [57].

DEFINITION A.9 (PATH ALGEBRA) A path algebra 〈D,+, ∅,×, 1〉 is a semiring such that:

• + is idempotent; i.e., for all x ∈ D:

x+ x = x; (A.12)

• ∅ is absorptive for×; i.e., for all x ∈ D:

x×∅ = ∅×x = ∅; (A.13)

In other words, a path algebra is a semiring that is also an additive semilattice as well as a

∅-absorptive multiplicative semigroup.

We define a (possibly empty) path of a graph G = (V,A), where V is a finite set of vertices

and A ⊆ V × V is a set of arcs, as a (possibly empty) ordered sequence of n arcs (n ≥ 0)

〈v1, v2〉, . . . , 〈vn, vn+1〉, such that ∀i ∈ {2, . . . , n − 1}, vi = vi+1. A cycle is such a path where

v1 = vn+1. A simple path has no arc occurring more than once. Hence, if a path is not simple then

it must contain a cycle. An elementary path has no vertex occurring more than twice. Therefore,

any elementary path is a simple path that contains no cycle.
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Path Algebra

Path Problem Name Domain Sum Zero Product One

Determination of accessible sets P1 {0, 1} max(x, y) 0 min(x, y) 1

Determination of shortest paths P2 R min(x, y) +∞ x+ y 0.0

Critical (longest) paths P3 R max(x, y) −∞ x+ y 0.0

Most reliable paths P4 [0.0, 1.0] max(x, y) 0.0 x× y 1.0

Paths with greatest capacity P5 R+ max(x, y) 0.0 min(x, y) +∞

Listing of all paths P6 P(Σ∗) X ∪ Y ∅ X · Y {ǫ}

Listing of simple paths P7 P(S(Σ∗)) X ∪ Y ∅ X · Y {ǫ}

Listing of elementary paths P8 B b
¯
(X ∪ Y ) ∅ X · Y {ǫ}

Table A.1: Some network path problems formulated as equation-solving in specific path algebras

A path algebra is so-named because, as listed in Table A.1, many graph-theoretic path prob-

lems in networks consisting of (arc-)labeled graphs with labels coming from a set having a path-

algebra structure can be formulated as solving systems of simultaneous fix-point linear equations

where the unknowns are the vertices and the coefficients are the labels on the arcs.1

In Table A.1, [0.0, 1.0] denotes the closed unit interval in R; R denotes the set of real numbers,

including both ±∞; and, R+ denotes the set of non negative elements of R. The powerset P(S)
of a set S is the set of all the subsets of S. For a set S of strings on a finite alphabet Σ, the

notation S(S) denotes the set of all the simple strings of S; i.e., in which no symbol of Σ occurs

more than once. The set-concatenation of two sets of strings S1 and S2, is the set of strings

S1 ·S2
def
= { s1 · s2 | s1 ∈ S1 and s2 ∈ S2 }; i.e., the set of all strings that are the concatenation of

a string in S1 and a string in S2. Given a languageB ⊆ Σ∗, a string s ∈ Σ∗ is basic forB iffB does

not contain any substring of s (including ǫ). Given any set of strings S, we use the expression b
¯
(S)

to denote the subset of S of strings that are basic for S; viz., b
¯
(S)

def
= { s ∈ S | s is basic for S }.

In other words, b
¯
(S) is the subset of S obtained from S after removing any string that is a substring

of another string in S (including ǫ). Note in particular that both the empty language ∅ and the one-

element language {ǫ } are elements of any basic language B.

Therefore, all the graph-path problems in Table A.1 can be formulated as solving a system

of fix-point linear equations in a path algebra. This is computationally possible in a path algebra

because quasi-inverses exist and may be computed since all iterated self-composition involved in

the computation of a ∗-closure converges to a stable limit in a finite number of iterations [13].

1This table is adapted from [57] (op. cit., Table 3.1, Page 86).

Copyright c© 2020 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 153 Version of April 10, 2020

DEFINITION A.10 (RING) A ring is a special case of a semiring. In fact, a ring structure is to a

group what a semiring structure is to a monoid. Indeed, a ring 〈D,+, ∅,×, 1〉 is a dyadic (additive

and multiplicative) structure on a set D such that:

• 〈D,+, ∅〉 is a commutative group;

• 〈D,×, 1〉 is a group;

• the multiplicative operation× is distributive over the additive operation +; that is, Equa-

tions (A.10) and (A.11) hold for all x, y, z ∈ D.

A ring is an Abelian (or commutative) ring if its multiplicative operation× is commutative

(i.e., if 〈D,×, 1〉 is a commutative group).

DEFINITION A.11 (LATTICE) A lattice 〈D,+,×〉 is a dyadic structure such that:

• 〈D,+〉 is a semilattice (called its additive semilattice);

• 〈D,×〉 is a semilattice (called its multiplicative semilattice);

• its two operations are mutually absorptive; i.e., for all x, y ∈ D:

x+ (x×y) = x = x×(x+ y). (A.14)

Thus, the structure of a lattice is symmetric with respect to its two operations in the sense that

〈D,+,×〉 is a lattice iff 〈D,×,+〉 is a lattice. This important property is called duality. It makes a

valid statement equally valid when changing every additive part into its multiplicative counterpart,

and vice versa.

Note that a lattice is partially ordered both as an additive semilattice and as a mutiplicative

semilattice. In fact, it is easy to see that the two partial orders are mutual inverses. That is,

≤+ = ≤−1
× , (A.15)

and thus also, by duality:

≤× = ≤−1
+ . (A.16)

By convention, because the additive and multiplicative orderings of a lattice are mutual in-

verses, we write simply ≤ for ≤+ and ≥ for ≤×. Thus, if a lattice is an additive (resp., multi-

plicative) monoid, ∅ is the least (resp., 1 is the greatest) element for ≤ and is often referred to as

“bottom” (resp., “top”) and sometimes written “⊥” (resp., “⊤”).

Note also that if a lattice 〈D,+,×〉 is an additive monoid 〈D,+, ∅〉, then ∅ is necessarily

absorptive for×; i.e., Equation (A.13) holds for all x ∈ D. Dually, if a lattice 〈D,+,×〉 is a

multiplicative monoid 〈D,×, 1〉, then 1 is necessarily absorptive for +; i.e., Equation (A.17) holds

for all x ∈ D:

x+ 1 = 1+ x = 1. (A.17)

It is important to realize that a lattice is neither an instance of, nor is it more general than, a

semiring (it lacks distributivity). However, it is easy to show that the following “sub-distributive”

inequality holds in a lattice:
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THEOREM A.3 (SUBDISTRIBUTIVITY) Let L = 〈D,+,×〉 be a lattice. Then, for all x, y and z
in D:

x×(y + z) ≥ (x×y) + (x×z) (A.18)

and, dually:

x+ (y×z) ≤ (x+ y)×(x+ z). (A.19)

PROOF We need only establish Inequality (A.19); the proof of Inequality (A.18) is the

same up to duality.

Let x, y, and z be arbitrary elements of a lattice 〈D,+,×〉. Clearly, we have:

x ≤ x+ y (A.20)

(since x+ (x+ y) = x+ y). Similarly,

x ≤ x+ z. (A.21)

Since×is an infimum operation for ≤, it follows from Inequalities (A.20) and (A.21) that:

x ≤ (x+ y)×(x+ z). (A.22)

On the other hand, we also have:

y×z ≤ y ≤ x+ y (A.23)

and

y×z ≤ z ≤ x+ z. (A.24)

Again, because×is an infimum operation for ≤, Inequalities (A.23) and (A.24) imply that:

y×z ≤ (x+ y)×(x+ z). (A.25)

Finally, because + is a supremum operation for ≤, Inequalities (A.22) and (A.25) imply

Inequality (A.19). �

A distributive lattice is a lattice in which equality, rather than ≤, holds in (A.18) for all x, y
and z (or equivalently, by duality, if equality, rather than ≥, holds in Inequality (A.19)). Thus,

a distributive lattice with top and bottom is both an additive and a multiplicative commutative

semiring. That is, Equation (A.10) holds for all x, y, z ∈ D (and so does (A.11), by commutativity

of×).2

Finally, note that a distributive lattice with top and bottom is simultaneously an additive and a

multiplicative path algebra.

2This is equivalent, by duality, to the additive operation + being also distributive over the multiplicative operation

×; that is:

x+ (y×z) = (x+ y)×(x+ z) (A.26)

or, by commutativity of +:

(x×y) + z = (x+ z)×(y + z). (A.27)
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DEFINITION A.12 (BOOLEAN RING) A boolean ring is a ring in which any element admits a

(necessarily unique) complement with respect to the additive and multiplicative operations. That

is, for any x ∈ D, there exists a unique x̄ ∈ D such that:

x+ x̄ = x̄+ x = 1, (A.28)

and

x×x̄ = x̄×x = ∅. (A.29)

A.2 First-Order Term Substitutions

This section gives basic terminology and properties ofFOT substitutions as defined in Chapter 3,

Section 3.3, where the set-theoretic definition of substitutions as finitely non-identical variable-to-

term mappings is given as Expression (3.2);3 that is:

σθ
def
=

(

{ tθ/X | t/X ∈ σ } \ {X/X | X ∈ dom(σ) }
)

∪
(

θ \ { u/Y | Y ∈ dom(σ) }
)

.

LEMMA A.1 Given two substitutions σ and θ in SUBST
T

, the operation defined by Expres-

sion (3.2) always results in a substitution in SUBST
T

.

PROOF It must be verified that, given σ and θ two finitely non-identical mappings from

V to T , the notation σθ defined in set-theoretic terms from the set structure of σ and θ by

Expression (3.2) always results in a finitely non-identical mapping from V to T . This is an

elementary exercise from the very set-theoretic definition of substitution composition given

as Expression (3.2). �

LEMMA A.2 For any term t in T and any substitutions σ and θ in SUBST
T

, the expression σθ
defined by Expression (3.2) is a substitution that has the same effect as first applying σ to t, and

then applying θ to the result; that is, ∀ t ∈ T , ∀ σ ∈ SUBST
T
, ∀ θ ∈ SUBST

T
, t(σθ) = (tσ)θ.

PROOF Expression (3.2) consists of two parts of a (disjoint) set union. The first part of this

union consists in the set of pairs t/X in σ transformed into the set of pairs tθ/X for each

each pair t/X in σ. This has for effect to “capture” any potential variables in var(tσ) ∩
dom(θ) by mapping directly to tσθ any variable mapped to t by σ. This corresponds to

precomputing the necessary “shortcut” of instantiating X directly into to tσθ for all such

concerned variables in dom(θ). Note that since this may possibly introduce identical pairs

X/X , which must then be eliminated.

3See Page 22.
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The second part of the union in Expression (3.2) simply completes the resulting substitution

with pairs t/Y in θ concerning those variables Y which are not affected by σ (i.e., all

Y ∈ dom(θ) such that Y 6∈ dom(σ)). Indeed, these variables are taken care of in the first

part in the terms mapping the variables in dom(X) by further instantiating by θ as need be.

These two cases clearly cover the only possibilties for variable mapping by σ and θ, and by

construction in each case, this results in a finite set of term/variable pairs, thus completely

specified by Expression (3.2) on all V , when applied to any term t, has the same effect of

first applying σ to t and then applying θ to the result. �

COROLLARY A.1 Substitution composition as defined by Expression (3.2) is an associative op-

eration; i.e., for all σ, θ, and δ in SUBST
T

, σ(θδ) = (σθ)δ.

PROOF Let t be any term in T , and σ, θ, and δ be three substitutions in SUBST
T

. Applying

Lemma A.2 successively, we have t(σ(θδ)) = (tσ)(θδ) = ((tσ)θ)δ = (t(σθ))δ = t((σθ)δ).
Since both sides applied to any term are equal, this means that σ(θδ) = (σθ)δ. �

Note that, as a set of term/variable pairs, the substitution which is the identity everywhere on

V is the empty set of pairs — which is why it is called the empty substitution and denoted as the

empty set ∅. It is easy to verify that this empty substitution is also the unique identity element on

SUBST
T

. Namely, for all substitution σ ∈ SUBST
T

, σ∅ = ∅σ = σ and if σθ = θσ = σ for some

θ ∈ SUBST
T

, then θ = ∅. Therefore, SUBST
T

with composition and ∅ is a monoid. Note finally

that substitution composition is not commutative since in general σθ 6= θσ.4 Therefore, the set

SUBST
T

with substitution composition is a non-commutative monoid.

Like all monoids, the set SUBST
T

of substitutions inherits a relation � defined as follows.

DEFINITION A.13 σ � θ iff ∃ δ ∈ SUBST
T

s.t. σ = θδ.

The expression “σ � θ” is read “σ refines θ” or “θ is more general than σ.”

LEMMA A.3 The relation � is a preorder on the set of first-order term substitutions SUBST
T

.

PROOF We must show that� is reflexive and transitive. Reflexivity: For any σ ∈ SUBST
T

,

there exists δ = ∅ such that σ = σδ, which means by definition of � that σ � σ. Transitiv-

ity: Assume σ1 � σ2 and σ2 � σ3; this means that there exist δ1 and δ2 such that σ1 = σ2δ1
and σ2 = σ3δ2. Replacing σ2 by its value in the expression of σ1, it comes as a result that

σ1 = σ3δ2δ1. And so, there exists δ3 = δ2δ1 such that σ1 = σ3δ3; which means that σ1 � σ3.

�

Note that � is not an order relation because it is not anti-symmetric. Indeed, if we have both

σ � θ and θ � σ, this does not necessarily imply that σ = θ. However, this defines an equivalence

relation on substitutions.

4Take for example σ = { a/X } and θ = { b/X }, for which σθ = { a/X} and θσ = { b/X}.
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LEMMA A.4 The relation ≃
def

= � ∩ �−1 is an equivalence on the set of substitutions SUBST
T

.

PROOF Let us verify that ≃ has three properties of an equivalence. Reflexivity: Clearly,

for any σ ∈ SUBST
T

, σ ≃ σ since this is equivalent to σ � σ and σ � σ, which is always

true since � is reflexive because it is a preorder. Symmetry: Also, for any σ ∈ SUBST
T

and θ ∈ SUBST
T

, if σ ≃ θ, this is equivalent by definition to σ � θ and θ � σ; which is

also equivalent to θ ≃ σ. Therefore, ≃ is symmetric. Transitivity: Let us now assume that

(1) σ ≃ θ and (2) θ ≃ δ. This implies in particular, by definition of ≃ and ≃: (1) (σ � θ
and θ � δ), which by transitivity of � implies σ � δ; and (2) (δ � θ and θ � σ); which by

transitivity of � implies δ � σ. Hence, we have both σ � δ and δ � σ, which is equivalent

to σ ≃ δ. Therefore, ≃ is transitive. �

DEFINITION A.14 A variable renaming ρ is a substitution in SUBST
T
∩ (V → V) that is injec-

tive. That is,

• ρ = {X ′
i/Xi}ni=1 with Xi ∈ V and X ′

i ∈ V; and,

• if Xi 6= Xj then X ′
i 6= X ′

j , for any i, j = 1, . . . , n such that i 6= j.

COROLLARY A.2 If both σ � θ and θ � σ, this entails that σ and θ are equal up to a renaming

of their variables. Namely, ∃ ρ : V → V bijective such that θ = ρσ and σ = ρ−1θ.

PROOF If σ � θ and θ � σ then, by definition, there exist two substitutions ρ and ρ′ such

that σ = θρ and θ = σρ′. In other words:

{

σ= σ ρ ρ′,
θ = θ ρ′ρ ;

which is equivalent to:

{

ρ ρ′ = ∅,
ρ′ρ = ∅;

and therefore to:

{

ρ = ρ′−1,
ρ′ = ρ −1.

Note also that since ρ and ρ′ are mutual inverses on V , it must be that ρ and ρ′ are injective.

This follows from the axiom of functionality for ρ and ρ′, which states that for every pair of

variablesX and X ′ in V , ifX = X ′ then necessarily Xρ = X ′ρ and Xρ′ = X ′ρ′. But since

ρ are mutual inverses on V , this means that whenever Y ρ′ = Y ′ρ′ for any pair of variables

Y and Y ′ in V , then necessarily Y ρ′ρ = Y ′ρ′ρ; i.e., Y ∅ = Y ′∅, and thus Y = Y ′, which

means that ρ′ must be injective. The same reasoning in the other direction will entail that

ρ must be injective as well. Note finally that ρ is also surjective on V , since any variable

X ∈ V is such that Xρ′ρ = X , therefore there exists Y = Xρ′ such that Y ρ = X . The

same applies to ρ′ in the other direction. Therefore, ρ and ρ′ are bijective inverses. �
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A.3 Reynolds-Plotkin FOT Generalization

The two essentially identical algorithms (up to notation) for the generalization of twoFOT s given

by Reynolds [141] and Plotkin [135] in the same volume are reproduced verbatim in Figure A.3

and Figure A.4. As can be seen in these figures, each describes a procedural method computing

the most specific FOT subsuming two given FOT s in finitely many steps by comparing them

simultaneously, and generating a pair of generalizing substitutions from a fresh variable wherever

they disagree being scanned from left to right, each time replacing the disagreeing terms by the

new variable everywhere they both occur in each term.

Figure A.3: Reynolds’s FOT “anti-unification” algorithm ([141], pages 138–139)
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Figure A.4: Plotkin’s FOT “least generalization” algorithm ([135], page 155)
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Version of April 10, 2020

OSF Extensions and Examples

• Appendix B.1 gives three useful additional decidable OSF constraints: partial features,

extensional (i.e., element-denoting) sort symbols, and aggregation. The first and second of

these constraints convey implicit additional axioms that FOT s verify as OSF terms.

• Appendix B.2 gives detailed examples of OSF lattice operations.

B.1 Other Decidable OSF Constraints

The set of OSF -constraints normalization rules presented thus far may be extended with useful

additional axioms that enable other constraints commonly enforced in object/class-based systems;

viz.., partial features, element constructors, and aggregation. We next describe additional rules

that enforce such additional axioms.

§ PARTIAL FEATURES

Let dom : F 7→ 2S associate to a feature f its domain dom(f), the set of maximal sorts in S for

which f is defined. A feature f is said to be:

• total when dom(f) = {⊤};

• undefined when dom(f) = {⊥};

• partial when it is neither undefined nor total.

Given a feature f ∈ F , for each sort s ∈ dom(f), the range of f over s, denoted as rans(f) ∈ S,

is the set of all maximal sorts of the possible values that feature f can take on sort s.1 A possible

OSF -constraint normalization rule correctly enforcing such partial features is shown as Rule

PARTIAL FEATURE in Figure B.1.

Note however that Rule PARTIAL FEATURE is non-deterministic, since there may be several

incomparable maximal sorts making up the domain (or, for a sort in its domain, several ranges)

1Computational linguists, who have borrowed heavily from the OSF formalism to express HPSG grammars for

natural-language processing, call this category of axioms “feature appropriateness” axioms (see, e.g. [56]).
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PARTIAL FEATURE

[s ∈ dom(f); s′ ∈ rans(f)]

φ & X.f
.
= X ′

φ & X.f
.
= X ′ & X : s & X ′ : s′

Figure B.1: Partial feature

for a partial feature when it has multiple domains and corresponding ranges (even for a single

domain sort). One way to ease this issue is to introduce a new supersort (or use one if there is

one) of all the domain sorts of a feature, and a new supersort (or use one if there is one) for all its

range sorts. However, note that, semantically, this is not equivalent since there may be a loss of

information since f :
∨

k≥2 dk →
∨

k≥2 rk is algebraically coarser than f :
∨

k≥2(dk → rk).
2 This

way of enforcing, even if only partially, known or declared domains and ranges for features is to

generate constraints to that effect systematically when dissolving an OSF -term. Indeed, we can

also redefine the OSF -dissolution function ϕ defined by Equation (4.5) on Page 82, with:

ϕ(t)
def
= X : s & X.f1

.
= X1 & . . . & X.fn

.
= Xn

& X : s1 & . . . & X : sn
& X1 : s

′
1 & . . . & Xn : s′n

& ϕ(t1) & . . . & ϕ(tn)

(B.1)

where si
def
=

∨

dom(fi) (i.e., the lub of all the known or declared maximal domains of fi),

and s′i
def
=
∨

si
ransi(fi) (i.e., the lub of all the known or declared ranges of fi on domain si),

for i = 1, . . . , n.3 This will include explicitly the most general feature domain/range constraints.

Then, normalizing with the rules of Figure B.2 PARTIAL FEATURE DOMAIN NARROWING and

PARTIAL FEATURE RANGE NARROWING will “finish the job,” as each rule uses sort information

on a feature’s domain (resp., range) to further constrain its range (resp., domain) whenever this

information is available. Importantly, the third side condition of each rule is to ensure finite

termination of normalization by preventing repeated introductions of useless sort constraints, as

is the case for example for Rule PARTIAL FEATURE — which, while being correct, is also non-

deterministic as well as non-terminating!

All this special handling of partial features in the OSF machinery is done perhaps with the

necessity of introducing many new symbols for missing unique lubs, but it can be done automati-

cally and incurs no penalty for execution nor space in sort ordering checking nor lattice operations

thanks to bit-encoding techniques [15]. On the other hand, in practice, this narrows features to

their appropriate domain and range sorts, including eliminating spurious feature applications, even

trivial ones such as, e.g., typos.

2Can you see why? (Hint: a range sort depends on its feature’s domain — try for k = 2.)
3Again, if an actual sort symbol does not exist in S for either lub expressions, a new one is introduced for si or s′i.
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PARTIAL FEATURE DOMAIN NARROWING

[dom(f) = {s}; rans(f) = {s
′}; X : s′′ 6∈ φ with s′′ � s]

φ & X.f
.
= X ′ & X ′ : s′

φ & X : s & X.f
.
= X ′ & X ′ : s′

PARTIAL FEATURE RANGE NARROWING

[dom(f) = {s}; rans(f) = {s
′}; X ′ : s′′ 6∈ φ with s′′ � s′]

φ & X : s & X.f
.
= X ′

φ & X : s & X.f
.
= X ′ & X ′ : s′

Figure B.2: Partial-feature narrowing

§ ELEMENT CONSTRUCTORS

A sort denotes a set of values of the domain of interpretation. When this set is a singleton, the sort

is assimilated to the value contained in the denoted singleton (e.g., a number, a string, etc.). How-

ever, such data may also have structure; then, it is assimilated to a data constructor. Such a struc-

ture denotes an individual element only when all its subterms under a set of specific features do

as well. For example, a pair constructor “pair” with features “left” and “right” will denote

a single individual pair object only when both subterms under these two features denote each a

single individual; otherwise, it denotes a set. Thus, the ψ-term pair(left → 1,right → 2)
denotes the individual object 〈1, 2〉, whereas if the sort nat denotes the set of natural numbers N,

then the term pair(left → nat,right → nat) denotes the set of all pairs whose left and

right subterms are natural numbers (viz., { 〈m,n〉 | m ∈ N, n ∈ N }). For such sorts, we must

then ensure that only individual-denoting terms are uniquely represented. Let E (for “element,” or

“extensional,” sorts) be the set of sorts in S that are element constructors. Define the arity arity(e)
of such an element sort e giving its feature arity as a set of features — i.e., arity : E 7→ 2F . The

set arity(e) is the set of features that completely determine the unique element of sort e. In other

words, whenever all features of arity(e) denote singletons, then so does e. All such values ought

to be uniquely identified. Note in passing that all atomic constants in E always have empty arity.

For example, for any number n, arity(n) = ∅. The OSF -constraint normalization rule that en-

forces this uniqueness axiom on element sorts is called Rule WEAK EXTENSIONALITY as shown

in Figure B.3.

With this rule, for example, if S = {⊤,⊥,nil,cons,list,nat, 0, 1, 2, . . .} such that

nil < list, cons < list, n < nat for n ∈ N (where < is the subsort ordering). Let

E = {nil,cons, n}, (n ∈ N), such that arity(nil) = ∅, arity(cons) = {head,tail}, and

arity(n) = ∅ for n ∈ N. Then, the ψ-term:

X : cons(head → 1,tail → nil) & Y : cons(head → 1,tail → nil)

Copyright c© 2020 by the Authors All Rights Reserved
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WEAK EXTENSIONALITY

[s ∈ E ; ∀f ∈ arity(s), {X.f
.
= Y,X ′.f

.
= Y } ⊆ φ]

φ & X : s & X ′ : s

φ & X : s & X
.
= X ′

Figure B.3: Weak extensionality

is normalized into:

X : cons(head → 1,tail → nil) & X
.
= Y

This rule is called “weak” because it can only enforce uniqueness of acyclic elements. Rules with

a stronger condition working for cyclic terms are given next.

§ STRONG EXTENSIONALITY

Basically, the reason why Rule WEAK EXTENSIONALITY of Figure B.3 does not recognize single-

tons that are cyclic terms is that it works inductively. Doing so, it is well-founded only because

it proceeds from leaves to their roots. However, for cyclic terms, there may be no leaf to pro-

ceed from. Consider, for example, an extensional sort s ∈ E such that arity(s) = {f}, and the

conjunction of cyclic terms:

X : s(f → X) & X ′ : s(f → X ′) (B.2)

or, even better, that of the mutually cyclic terms:

X : s(f → X ′) & X ′ : s(f → X). (B.3)

Now, arity(s) = {f} means that “s denotes a singleton sort whenever its f feature denotes one

as well.” Semantically, in both examples, variables X and X ′ denote therefore the same element

(due to all the features in arity(s) being consistently sorted as singletons). However, the Rule

WEAK EXTENSIONALITY does not transform either term (B.2) or term (B.3) into one where X
and X ′ are equal as they should be as per the semantics of arity and extensionality. Therefore,

this inductive manner of proceeding will not work for cyclic extensional terms such as these. The

alternative is to proceed coinductively, from roots to leaves or previously processed nodes, while

keeping a record of which extensional sorts appear with which variables, since such sorts denote

single element. This is done by carrying an occurrence context as a set Γ of elements of the form

s : {X1, . . . , Xn}, where Xi ∈ V , for i = 1, . . . , n, (n ≥ 0), where s ∈ E is extensional, and such

that each such s may not occur more than once in any such occurrence context Γ. A contexted

rule is one of the form:

(Rule Number) RULE NAME :

Prior Context ⊢ Prior Form

Posterior Context ⊢ Posterior Form

[

Condition
]

Copyright c© 2020 by the Authors All Rights Reserved
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Appropriate extensional sort occurrences record-keeping is thus achieved using contexted Rule

Extensional Variable of Figure B.4. The “real” work is then done by contexted Rule STRONG

EXTENSIONALITY. Using these two rules on weak normal forms will work as expected; viz., it

will merge any remaining potential cyclic extensional elements that denote the same individual.

EXTENSIONAL VARIABLE

[

X 6∈ V ; s ∈ E; s′ ∈ E;
∀f ∈ arity(s), {X.f

.
= X′,X′ : s′} ⊆ φ

]

Γ ⊎ {s : V, . . . , } ⊢ φ & X : s

Γ ⊎ {s : V ∪ {X}, . . .} ⊢ φ & X : s

STRONG EXTENSIONALITY

[s ∈ E ]

Γ ⊎ {s : {X,X ′, . . .} ⊢ φ

Γ ⊎ {s : {X, . . .} ⊢ φ & X
.
= X ′

Figure B.4: Strong extensionality

§ RELATIONAL FEATURES AND AGGREGATION

The OSF formalism deals with functional features. However, relational features may also come

handy. A relational feature is a binary relation or, equivalently, a set-valued function. In other

words, a multi-valued functional attribute may be aggregated into a set. Indeed, combining Rule

SORT INTERSECTION with Rule FEATURE FUNCTIONALITY of Figure 4.6 enforces that a vari-

able’s sort, and hence value, may only be computed by intersection of consistent sorts. On the

other hand, a relational feature denotes a set-valued function, and normalization must thus provide

a means for aggregating mutually distinct values of a sort. This semantics can be accommodated

with the following value aggregation rule, which generalizes Rule SORT INTERSECTION. The no-

tation for the atomic constraint “X : s” is generalized to carry an optional value e ∈ E (i.e., e is an

extensional sort): “X = e : s” means “X has value e of sort s,” where X ∈ V , e ∈ E , s ∈ S. The

shorthand “X = e” means “X = e : ⊤.” When the sort s ∈ S is a commutative monoid 〈⋆, 1⋆〉,
the shorthand “X : s” means “X = 1⋆ : s.” The conditions (4.4) are then extended with:

A, α |= X = e : s iff eA ∈ sA and α(X) = eA. (B.4)

Thus, element values of a sort that denotes a commutative monoid M = 〈⋆, 1⋆〉 may be com-

posed using this monoid’s operation. In particular, such a monoid operation may be that of a set

constructor; i.e., one that is associative, commutative, and idempotent. This is what Rule VALUE

AGGREGATION of Figure B.5 accommodates.
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VALUE AGGREGATION

[s, s′ both subsorts of commutative monoid 〈⋆, 1⋆〉]

φ & X = e : s & X = e′ : s′

φ & X = e ⋆ e′ : s ∧ s′

Figure B.5: Aggregation

Note that Rule VALUE AGGREGATION is more general than need be for just accommodating

aggregating a set (i.e., a commutative idempotent free monoid) or a multiset (commutative but

non-idempotent free monoid). Indeed, it also accommodates any other commutative monoids

using aggregation operations such as min, max, sum, product, etc., . . . Thus, one may use this

rule by using AGGREGATE(f, s,m, ⋆, 1⋆) to declare the fact that when feature f is applied on

(domain) sort s, it takes values in (range) sort m denoting a specific commutative monoid 〈⋆, 1⋆〉
(i.e., s ∈ dom(f) and rans(f) = m). In other words,

X : s & X.f
.
= Y & Y = 1⋆ : m. (B.5)

Then, the rules PARTIAL FEATURE DOMAIN/RANGE NARROWING used in conjunction with Rule

VALUE AGGREGATION of Figure B.5 will use such a declaration to proceed with the correct ag-

gregation for so-declared features. For example, declaring:

AGGREGATE(activities,person,activity,∪, ∅)

would ensure that whenever applied on sort person feature activities aggregates values

of sort activity using set union (∪). The default value is the empty set (∅). If the feature

activities of a person object is an individual element a of sort activity, it is assim-

ilated to the singleton set {a}. Note however that we require a commutative monoid to ensure

confluence of this rule with the other OSF -constraint normalization rules in a non-deterministic

normalization setting. In other words, the order in which the rules are applied does not matter on

the outcome of the aggregation only when the monoid operation is commutative. This rule can

also be used on non-commutative collection structures such as lists (free monoid), although the

order of application may then result in different structures. Decidability results concerning the

differences between attributive concepts using functional features vs. relation roles are reviewed

in [151]. Aggregation has also been considered in the same setting in [41] with similar decidabil-

ity results. This last work offers intriguing potential connections with the paradigm of declarative

aggregation as described in [79] or [90] where a versatile computable algebraic theory of monoid

comprehensions is defined in terms of monoid homomorphisms effective declarative aggregates

where the aggregation can be any associative binary operation. As defined in [78], a Monoid

Comprehension Calculus can be defined as a conservative extension of the λ-calculus with ag-

gregates to specify an object-relational model enjoying algebraic properties that greatly facilitate

query optimization.
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person

student employee

staff faculty

intern

nassim jayd elies ali hanaan javier eta hak hussein fatima
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Figure B.6: “School example” concept taxonomy

B.2 Examples of OSF-Term Lattice Operations

In what follows, we give detailed examples illustratingOSF unification and generalization using

the sort taxonomy in Figure B.6, which corresponds to one using meaningful symbols as opposed

to those used in Example 4.2 and Example 4.4 given in Chapter 4, and more complex term struc-

ture.

B.2.1 The taxonomy

The following could be used as a possible description of a partial school population with the

following subconcept and instance declarations — the one pictured in Figure B.6.

• signature of set-denoting concepts:

– a student is a person
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– an employee is a person

– a staff is an employee
– a faculty is an employee

– an intern is a student
– an intern is a staff

• individual-denoting subconcepts:

– nassim is a student
– jayd is a student
– elies is a student

– ali is an intern
– hanaan is an intern

– javier is a staff
– eta is a staff

– hak is a faculty
– hussein is a faculty
– fatima is a faculty

B.2.2 The ψ-terms

Example B.1 OSF lattice operations — Consider for example the ψ-term t1:

t1 = X:student

( roommate → person(rep → E:employee)
, advisor → hak(secretary → E))

corresponding to the OSF-graph:4

X student

person Q1

employee E

D1 hak

roommate

a
d
v
i
s
o
r

rep

secr
etar

y

and the ψ-term t2:

4In this and all similar examples, we shall generate new unique tag names that do not occur in the ψ-terms

equivalent to OSF -graphs for root nodes of tagless subterms — e.g., Q1 and D1 in this example.
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t2 = Y:employee

( advisor → hak(assistant → A)
, roommate → S:student(rep → S)
, helper → ali(spouse → A))

corresponding to the OSF-graph:

Y employee

S student

D2 hak

H2 ali person A

roommate

a
d
v
i
s
o
r

h
e
l
p
e
r

assistant

spouse

r
e
p

in the context of the sort partial order (“concept taxonomy”) shown in Figure B.6.

Endomorphic mappings γ, γ1, and γ2, can be computed to exhibit the lattice structure of ψ-terms.

Given the two terms t1 and t2 shown above, their greatest lower bound is the ψ-term t:

t = Z:intern

( advisor → hak(assistant → B,
secretary → I)

, helper → ali(spouse → B)
, roommate → I:intern(rep → I))

corresponding to the graph:

intern Z

I intern

D3 hak

H3 ali person B

roommate

advisor

r
e
p

sec
ret

ary

h
e
l
p
e
r

assistant

spouse

given by their OSF unification realized by the endomorphic mapping γ such that:

γ(t1) = γ(t2) = t.
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It corresponds to the tag mapping:

γ(X) = Z,
γ(Q1) = I,
γ(E) = I,
γ(D1) = D3,

γ(Y) = Z,
γ(S) = I,
γ(D2) = D3,
γ(H2) = H3,
γ(A) = B.

(B.6)

Dually, their least upper bound is the ψ-term t:

t = P:person

( roommate → person(rep → person)
, advisor → hak)

corresponding to the OSF-graph:

P person

Q person

R person

D hak

roommate

a
d
v
i
s
o
r

rep

given by their OSF generalization realized by the two endomorphic mappings 〈γ1, γ2〉 whereby:

γ1(t) = t1,
γ2(t) = t2.

They correspond to the tag mappings γ1 and γ2 defined as:

γ1(P) = X,
γ1(Q) = Q1,
γ1(R) = E,
γ1(D) = D1;

γ2(P) = Y,
γ2(Q) = S,
γ2(R) = S,
γ2(D) = D2.

We next give the detailed rule application traces for unification (Section B.2.3, Example B.2)

and generalization (Section B.2.4, Example B.3) of ψ-terms.

B.2.3 OSF unification

Here is a step-by-step trace of constraint normalization computing the unification glb(t1, t2) of the

ψ-terms t1 and t2 defined in Example B.1.

Example B.2 OSF unification — The ψ-term t = glb(t1, t2) together with the endomorphism γ :
Tags(t1) ∪ Tags(t2) 7→ Tags(t) are computed using the OSF unification rules of Figure 4.6.

We start by dissolving t1 and t2:
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• ϕ(t1) = X : student & X . roommate
.
= Q1 & X . advisor

.
= D1 & Q1 :

person & Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

• ϕ(t2) = Y : employee & Y . roommate
.
= S & Y . advisor

.
= D2 & Y . helper

.
=

H2 & S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 :

ali & H2 . spouse
.
= A & A : person

Then, we keep applying any applicable OSF unification rule of Figure 4.6 in any order until none

applies starting with the initial constraint X
.
= Y & ϕ(t1) & ϕ(t2).

5

1. Start with:

X
.
= Y

&
X : student & X . roommate

.
= Q1 & X . advisor

.
= D1 & Q1 : person

& Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

&
Y : employee & Y . roommate

.
= S & Y . advisor

.
= D2 & Y . helper

.
=

H2 & S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 :

ali & H2 . spouse
.
= A & A : person

2. apply Rule TAG ELIMINATION (X/Y):

X : student & X . roommate
.
= Q1 & X . advisor

.
= D1 & Q1 : person

& Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

&
X : employee & X . roommate

.
= S & X . advisor

.
= D2 & X . helper

.
=

H2 & S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 :

ali & H2 . spouse
.
= A & A : person

&
X

.
= Y

3. apply Rule SORT INTERSECTION (X : student ∧ employee):

X : intern
&
X . roommate

.
= Q1 & X . advisor

.
= D1 & Q1 : person & Q1 . rep

.
=

E & D1 : hak & D1 . secretary
.
= E & E : employee

&
X . roommate

.
= S & X . advisor

.
= D2 & X . helper

.
= H2 & S : student

& S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 :

ali & H2 . spouse
.
= A & A : person

&
X

.
= Y

4. apply Rule FEATURE FUNCTIONALITY (X.roommate):

5We shall underline the parts of a constraint matching a unification rule prior constraint pattern, which rule is then

applied next in the application trace.

Copyright c© 2020 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 172 Version of April 10, 2020

X : intern
&
X . roommate

.
= Q1 & X . advisor

.
= D1 & Q1 : person & Q1 . rep

.
=

E & D1 : hak & D1 . secretary
.
= E & E : employee

&
Q1

.
= S & X . advisor

.
= D2 & X . helper

.
= H2 & S : student & S . rep

.
=

S & D2 : hak & D2 . assistant
.
= A & H2 : ali & H2 . spouse

.
= A & A :

person

&
X

.
= Y

5. apply Rule TAG ELIMINATION (Q1/S):

X : intern
&
X . roommate

.
= Q1 & X . advisor

.
= D1 & Q1 : person & Q1 . rep

.
=

E & D1 : hak & D1 . secretary
.
= E & E : employee

&
X . advisor

.
= D2 & X . helper

.
= H2 & Q1 : student & Q1 . rep

.
=

Q1 & D2 : hak & D2 . assistant
.
= A & H2 : ali & H2 . spouse

.
= A & A :

person

&
X

.
= Y & Q1

.
= S

6. apply Rule FEATURE FUNCTIONALITY (X.advisor):

X : intern
&
X . roommate

.
= Q1 & X . advisor

.
= D1 & Q1 : person & Q1 . rep

.
=

E & D1 : hak & D1 . secretary
.
= E & E : employee

&
D1

.
= D2 & X . helper

.
= H2 & Q1 : student & Q1 . rep

.
= Q1 & D2 :

hak & D2 . assistant
.
= A & H2 : ali & H2 . spouse

.
= A & A : person

&
X

.
= Y & Q1

.
= S

7. apply Rule TAG ELIMINATION (D1/D2) and use logical simplification φ & φ → φ with

φ = D1 : hak:

X : intern
&
X . roommate

.
= Q1 & X . advisor

.
= D1 & D1 : hak & Q1 : person & Q1 . rep

.
=

E & D1 . secretary
.
= E & E : employee

&
X . helper

.
= H2 & Q1 : student & Q1 . rep

.
= Q1 & D1 . assistant

.
=

A & H2 : ali & H2 . spouse
.
= A & A : person

&
X

.
= Y & Q1

.
= S & D1

.
= D2
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8. apply Rule SORT INTERSECTION (Q1 : person ∧ student):

X : intern
&
& X . roommate

.
= Q1 & X . advisor

.
= D1 & D1 : hak & Q1 : student

& Q1 . rep
.
= E & D1 . secretary

.
= E & E : employee

&
X . helper

.
= H2 & Q1 . rep

.
= Q1 & D1 . assistant

.
= A & H2 : ali

& H2 . spouse
.
= A & A : person

&
X

.
= Y & Q1

.
= S & D1

.
= D2

9. apply Rule FEATURE FUNCTIONALITY (Q1.rep):

X : intern
&
X . roommate

.
= Q1 & X . advisor

.
= D1 & D1 : hak & Q1 :

student & Q1 . rep
.
= E & D1 . secretary

.
= E & E : employee

&
X . helper

.
= H2 & E

.
= Q1 & D1 . assistant

.
= A & H2 : ali & H2 . spouse

.
=

A & A : person
&
X

.
= Y & Q1

.
= S & D1

.
= D2

10. apply Rule TAG ELIMINATION (E/Q1):

X : intern
&
X . roommate

.
= E & X . advisor

.
= D1 & D1 : hak & E : student & E . rep

.
=

E & D1 . secretary
.
= E & E : employee

&
X . helper

.
= H2 & D1 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A & A :

person

&
X

.
= Y & Q1

.
= S & D1

.
= D2 & E

.
= Q1

11. apply Rule SORT INTERSECTION (E : student ∧ employee):

X : intern
&
X . roommate

.
= E & X . advisor

.
= D1 & D1 : hak & E : intern & E . rep

.
=

E & D1 . secretary
.
= E

&
X . helper

.
= H2 & H2 . spouse

.
= A & A : person

&
X

.
= Y & Q1

.
= S & D1

.
= D2 & E

.
= Q1

12. normal form (after commutative reordering of conjuncts):

X : intern
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&
X . roommate

.
= E & E : intern & E . rep

.
= E

&
X . advisor

.
= D1 & D1 : hak

&
D1 . secretary

.
= E

&
D1 . assistant

.
= A & A : person

&
X . helper

.
= H2 & H2 . spouse

.
= A & H2 : ali

&
X

.
= Y & Q1

.
= S & D1

.
= D2 & E

.
= Q1.

A scoped endomorphism γ : Tags(t1) ∪ Tags(t2) → Tags(t) is obtained from this normal form

as follows. Since Tags(t1) = {X,D1,Q1,E } and Tags(t2) = {Y,H2,D2,A,S }, the set Tags(t) =
{X,D1,Q1,E,Y,H2,D2,A,S } is partitioned into the following tag coreference classes corresponding to

least tag equivalence (i.e., reflexive, symmetric, and transitive) closure of the final tag renaming constraints

remaining in the normal form; viz., X
.
= Y & Q1

.
= S & D1

.
= D2 & E

.
= Q1:

{X,Y }{Q1,E,S }{D1,D2 }{H2 }{A }

which we can rename with a new unique tag name per tag-coreference class as a new tag representative to

ensure a well-scoped tag endomorphism as follows:

Z
def
= {X,Y },

I
def
= {Q1,S,E },

D3
def
= {D1,D2 },

H3
def
= {H2 },

B
def
= {A }.

The renamed normal form is that of t = glb(t1, t2) shown in Figure B.7, with the corresponding

endomorphic mapping γ in Equation (B.6) such that t = γ(t1) = γ(t2).

B.2.4 OSF generalization

Here is a step-by-step trace of constraint normalization computing the generalization lub(t1, t2) of

the ψ-terms t1 and t2 defined in Example B.1. It computes their lub, along with the corresponding

endomorphic mappings γi : Tags(t) 7→ Tags(ti), for i = 1, 2, using theOSF generalization rules

of Figure 4.8 as follows.

Example B.3 OSF generalization — Let start with the following OSF generalization judgment
constraint to resolve:

(

∅
∅

)

⊢

(

t1
t2

)

t1 ∨ t2

(

γ1
γ2

)

in which the ψ-term t1 ∨ t2 and the tag maps γ1 and γ2 are to be determined by normalizing this judgment

according to the axiom and rule of Figure 4.8.
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Since the ψ-terms t1 and t2 defined in Example B.1 are such that ROOT(t1) = X and ROOT(t2) = Y,

we note that:

• since X 6= Y,
• because student∨ employee = person,
• if ψ1 and ψ2 are two subterms to be determined, and
• introducing a new tag name P,

it becomes evident that initial Judgment (B.7) corresponds to the denominator of Rule UNEQUAL TAGS:

(

∅
∅

)

⊢

(

t1
t2

)

P : person(roommate→ ψ1,advisor→ ψ2)

(

γ1
γ2

)

(B.7)

and it becomes the following sequence of two judgments indicated by the rule’s numerator defining the two

endomorphic mappings γ01(P)
def
= X and γ02(P)

def
= Y:

(

{X/P}
{Y/P}

)

⊢

(

Q1 : person(rep→ E : employee)
S : student(rep→ S)

)

↑

(

{X/P}
{Y/P}

)

ψ1

(

γ11
γ12

)

(B.8)

(

γ11
γ12

)

⊢

(

D1 : hak(secretary→ E)
D2 : hak(assistant→ A)

)

↑

(

γ11
γ12

)

ψ2

(

γ1
γ2

)

(B.9)

and then evaluating the unapplication in Judgment (B.8), it becomes:

(

{X/P}
{Y/P}

)

⊢

(

Q1 : person(rep→ E : employee)
S : student(rep→ S)

)

ψ1

(

γ11
γ12

)

(B.10)

then, by Rule UNEQUAL TAGS:

• because Q1 6= S,
• since person ∨ student = person,
• defining ψ1

def
= Q : person(rep→ ψ′

1),
• where Q is a new tag name,
• ψ′

1 is a subterm to determine,

Judgment (B.10) becomes:

(

{X/P,Q1/Q}
{Y/P,S/Q}

)

⊢

(

Q1 : person(rep→ E : employee)
S : student(rep→ S)

)

Q : person(rep→ ψ′

1)

(

γ11
γ12

)

(B.11)

then, Judgment (B.11) corresponds again to the pattern in the denominator of Rule UNEQUAL TAGS

and since the two terms to generalize in this judgment have only one common feature (viz., rep), Judg-
ment (B.11) begets the following single-subterm judgment:

(

{X/P,Q1/Q}
{Y/P,S/Q}

)

⊢

(

E : employee
S : student(rep→ S)

)

↑

(

{X/P,Q1/Q}
{Y/P,S/Q}

)

ψ′

1

(

γ11
γ12

)

(B.12)

which after evaluating the unapplication becomes:

(

{X/P,Q1/Q}
{Y/P,S/Q}

)

⊢

(

E : employee
S : student(rep→ S)

)

ψ′

1

(

γ11
γ12

)

(B.13)

and:
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• since the two terms in Judgment (B.13) have no common feature,
• because employee∨ student = person,
• using a new tag name R,

• defining ψ′
1

def
= R : person,

this becomes:
(

{X/P,Q1/Q,E/R}
{Y/P,S/Q,S/R}

)

⊢

(

E : employee
S : student(rep→ S)

)

R : person

(

{X/P,Q1/Q,E/R}
{Y/P,S/Q,S/R}

)

(B.14)

and terminates the proof of Judgment (B.8) with γ11 = {X/P,Q1/Q,E/R} and γ12 = {Y/P,S/Q,S/R}.
We may now proceed to proving remaining Judgment (B.9) which becomes:

(

{X/P,Q1/Q,E/R}
{Y/P,S/Q,S/R}

)

⊢

(

D1 : hak(secretary→ E)
D2 : hak(assistant→ A)

)

↑

(

{X/P,Q1/Q,E/R}
{Y/P,S/Q,S/R}

)

ψ2

(

γ1
γ2

)

(B.15)

and after evaluating the unapplication, this becomes:

(

{X/P,Q1/Q,E/R}
{Y/P,S/Q,S/R}

)

⊢

(

D1 : hak(secretary→ E)
D2 : hak(assistant→ A)

)

ψ2

(

γ1
γ2

)

(B.16)

and:

• because hak ∨ hak = hak,
• defining ψ2

def
= D : hak,

• where D is a new tag name,

this terminates the complete proof of Judgment (B.7) with the following final judgment:

(

{X/P,Q1/Q,E/R,D1/D}
{Y/P,S/Q,S/R,D2/D}

)

⊢

(

D1 : hak(secretary→ E)
D2 : hak(assistant→ A)

)

D : hak

(

{X/P,Q1/Q,E/R,D1/D}
{Y/P,S/Q,S/R,D2/D}

)

(B.17)

i.e., with the final tag endomorphisms γ1 = {X/P,Q1/Q,E/R,D1/D} and γ2 = {Y/P,S/Q,S/R,D2/D}
and least upper bound:

t1 ∨ t2 = P : person(roommate→ Q : person(rep→ R : person),advisor→ D : hak).

The result of all the above together with the result of the trace of theOSF unification operation

on the same terms t1 and t2 in Section B.2.3 can be summarized as illustrated by the lattice diagram

shown in Figure B.7.
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Version of April 10, 2020

Probabilistic Background

In this appendix chapter, we give a quick tutorial on Aji and McEliece’s Generalized Distributive

Law (GDL) [28] aiming at simplifying the task of implementing a generic GDL library (such

as [146], [145]) for use in constraint-based probabilistic reasoning [70]. The GDL’s essence is

that it factors multiplications out of additions in algebraic expressions using commutative distribu-

tive sum/product operations. Doing so, it optimizes this class of computation using a Dynamic-

Programming “memo-ing” technique [44].1 Thus, providing a GDL library toolset makes sense

for supporting practical, generic, efficient, and versatile tools for analysis, inference, and learning

with Bayesian probabilities, in a wide family of algebraic structures in many diverse contexts.

C.1 Bayesian Nets

DEFINITION C.1 (INDEPENDENT EVENTS) Two events A and B are said to be independent

whenever p(A,B) = p(A)×p(B).

DEFINITION C.2 (CONDITIONAL PROBABILITY) If A and B are events, we write “p(A|B)” to

denote the conditional probability of A knowing that B has occurred. It is defined as:

p(A|B)
def

=
p(A,B)

p(B)

whenever p(B) 6= 0.

This definition makes intuitive sense since it the probability that both A and B occur, tempered

by the probability that B occurs at all (whether A does or not). Then, clearly, two events A and B
are independent iff p(A|B) = p(A), as well as iff p(B|A) = p(B).

Bayes Law is a universal property that constrains the mutual conditional probabilities of two

events A and B always to obey the following symmetrical equation:

p(A|B)×p(B) = P (B|A)×p(A) (C.1)

1I recommend https://cs.uwaterloo.ca/∼gweddell/cs234/lect-Dynamic.pdf for a clear,

short, and simple lecture on this concept and why it often works very well in the situations where it applies —

as is the case for the GDL.

https://cs.uwaterloo.ca/~gweddell/cs234/lect-Dynamic.pdf
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since in this case, both sides are equal to p(A,B) by commutativity of conjunction. In words, the

probability of A knowing B times the probability of B must always be equal to the probability of

B knowing A times the probability of A. This property is quite useful since, as illustrated below,

it means we can use what we have observed to narrow possibilities to derive the probability of

what we have not.

A Bayesian Net is a graph-theoretic encoding of observed causality among events [132, 70].

As as example, let consider the four following event: (1) cloudy weather; (2) rainy weather; (3) the

garden sprinkler is on; and, (4) the grass is wet. Our experience has gathered data that has made us

observe four possible causality relations among these four events. Namely, that: (1) the sprinkler

is on when the weather is cloudy; (2) weather is rainy when it also is cloudy; (3) the grass is wet

when the sprinkler is on; and, (4) the grass is wet when the weather is rainy. These observed

relationships are what make up a Bayesian Net as a causal graph, as illustrated in Figure C.1 for

the given example.

Cloudy

Sprinkler Rainy

WetGrass

Figure C.1: Example of Bayesian net

Such a causal graph expresses implicit information concerning the observable conditional in-

dependence of the events represented as nodes. This graph tells us that (1) R and S are indepen-

dent given C, and (2) W and C are independent given R and S. Figure C.2 shows an example of

causal conditional probability tables for the Bayesian Net of Figure C.1.

C.2 Inference in Bayesian Nets

Bayes rule allows computing a joint probability as a product of dependent probabilities. This is

made usable for more than just two events, for any set of n ≥ 2 events {E1, . . . , En} since for

any permutation π of the set {1, . . . , n}, Equation (C.1) implies:

p(Eπ(1), . . . , Eπ(n)) = p(Eπ(1))×p(Eπ(2)|Eπ(1))×. . .×p(Eπ(n)|Eπ(1), . . . , Eπ(n−1)). (C.2)

For example, using C for Cloudy, S for Sprinkler, R for Rainy, and W for WetGrass, this

allows stating that:

p(C, S,R,W ) = p(C)×p(S|C)×p(R|C, S)×p(W |R,C, S).

Copyright c© 2020 by the Authors All Rights Reserved
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p(C) p(C)
0.5 0.5

X p(S|X) p(S|X)
C 0.1 0.9
C 0.5 0.5

Cloudy

X p(R|X) p(R|X)
C 0.8 0.2
C 0.2 0.8

Sprinkler Rainy

WetGrass

X Y p(W |X, Y ) p(W |X, Y )
S R 0.99 0.01
S R 0.9 0.1

S R 0.9 0.1
S R 0.0 1.0

Figure C.2: Example of a Bayesian net’s causal conditional probabilities

Using the independence inferred from the net topology, this simplifies to:

p(C, S,R,W ) = p(C)×p(S|C)×p(R|C)×p(W |R, S).

Probability “marginalization” is readjusting the probability of still unknown events taking into

account known events. For example, the probability that the sprinkler is on knowing that the grass

is wet is given by the ratio obtained from Bayes Law on the two concerned events; that is:

p(S|W ) =
p(S,W )

p(W )
=

∑

c,r p(C = c, S, R = r,W )
∑

c,s,r p(C = c, S = s, R = r,W )
=

0.2781

0.6471
= 0.4298,

and the probability that it is rainy knowing that the grass is wet is:

p(R|W ) =
p(R,W )

p(W )
=

∑

c,s p(C = c, S = s, R,W )
∑

c,s,r p(C = c, S = s, R = r,W )
=

0.4581

0.6471
= 0.7079.

Markov Blanket

As can be seen from our “wet grass” example, intuition may be easily fooled trying to determine
what is independent of what given what—even in such a trivial causal graph! Fortunately, the
wealth of formal research on the subject has made it possible to reduce this analysis to a very
simple criterion. Indeed, conditional independence can be easily determined from the connectivity
of a causal graph by computing each node’s so-called Markov blanket. The Markov blanket of a
node is defined as the set of nodes comprising the node’s parents, its children, and its children’s

Copyright c© 2020 by the Authors All Rights Reserved
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A B C

D E F G

H I J K L

M N O

P Q

Figure C.3: Example of a Markov blanket

other parents.2 That is, given a node X , its Markov blanket is defined as the set:

∂X
def
= PARENTS(X) ∪ CHILDREN(X) ∪ PARENTS(CHILDREN(X)) \ {X}.

For example, referring to the causal graph of the example in Figure C.3, we obtain:

PARENTS(I) = {E,F},

CHILDREN(I) = {M ,N},

and:

PARENTS(CHILDREN(I)) \ {I} = {H ,K ,L}.

Hence, the Markov blanket of the node I is:

∂I = {E,F ,H ,K ,L,M ,N}.

The Markov blanket splits each node X in the set N of nodes of a Bayesian network’s

causal graph partition N into three mutually exclusive components; namely, N = ∂X ⊎ {X}
⊎ ∂ c

X . The key result is that any node is independent of nodes outside its Markov blanket:

X ⊥ ∂ c
X | ∂X [132, 93]. Using Bayes’s rule, this allows the following simplification by

conditional independence: p(X | ∂X , ∂ c
X) = p(X | ∂X).

2http://en.wikipedia.org/wiki/Markov blanket
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Belief revision One of the most powerful capabilities offered by a Bayesian network is that it

can adapt its knowledge according to accumulated evidence. This is known as “explaining away”

since it is a form if plausible reasoning such that whenever several events are plausible causes of

another one, say X , posterior evidence changes the likelihood of explanations for X . To see that

with our example, let us suppose that it is observed that (W ) the grass is wet and that (R) it is

raining. Then, this indicates that the posterior likelihood that (S) the sprinkler is on goes down as

follows:

p(S |W,R) =
p(S,W,R)

p(W,R)
=

∑

c p(C = c, S,W,R)
∑

c,s p(C = c, S = s,W,R)
= 0.1945.

Causal learning Yet another benefit of Bayesian networks is that they can be learned from data,

thus circumventing the “expert belief assessment” problem [45]. Indeed, recent research in Data

Mining has made great progress for learning Bayesian network (parameters and structure) from

data [125].3,4

As illustrated in [28], several important algorithms that were independently conceived, such as

Judea’s Pearl Belief Propagation [132], the Expectation-Maximization algorithm [122], Viterbi’s

algorithm [170], and many others, can all be cast as specific instances of the GDL algorithm.

The Expectation-Maximization algorithm was introduced in 1977 in a paper by Dempster,

Laird, and Rubin [72]. This algorithm is used to find the maximum-likelihood parameters of a

statistical model when the equation of the model itself cannot be solved directly. This algorithm

is often used in computational biology applications since it allows drawing conclusions with in-

complete sets of data. The Expectation-Maximization algorithm is indeed quite useful in domains

where there is no guarantee that the data collection will produce complete sets of data. The al-

gorithm is quite complex but it is possible to expose a commutative semiring underpinning the

operations performed by the algorithm. Therefore, it becomes possible to use the GDL to solve

this kind of problem.

Viterbi’s algorithm is a Dynamic-Programming algorithm for finding the most likely sequence

of hidden states in a Hidden Markov Model. It is broadly used for decoding convolutional codes—

such as, for example, using Viterbi’s Algorithm in order to decode bit-stream [170]. These algo-

rithms are well-known in probabilistic deduction. They are widely used in causal learning [125],

Sequential Data Analysis [140, 181, 115, 129], belief revision [108, 132], probabilistic-logic pro-

gramming [69], and many more application areas [136], etc., . . .

Dynamic Bayesian Networks Bayesian networks also appear in particular specific instances

(e.g., Hidden Markov Models, Linear Dynamic Systems) that are very successful for pattern recog-

nition of sequential data (e.g., speech recognition [181], time series data [115]). Figure C.4 shows

examples Hidden Markov Models (HMM), a particular instance of a dynamic Bayesian network

where the Si’s are time-indexed “hidden” (i.e., unobservable) states of a Markov process, and each

Yi is an observable random function of the corresponding hidden state Si.

3http://www.cs.cmu.edu/˜awm/10701/slides/Param Struct Learning05v1.pdf
4http://www.autonlab.org/tutorials/
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S1 S2 · · · Sn

Y1 Y2 · · · Yn

Examples Mobile robots Speech recognition Biological sequencing

Sn location phonemes protein structure

Yn sensor input acoustic signal amino acids

Figure C.4: Example ofHMM’s hidden states and their observations

Hidden Markov Models A Hidden Markov Model (HMM) is a particular instance of a Bayesian

Net where Si is a “hidden” (i.e., unobservable) state of a Markov process [93]; and, Yi is an ob-

servable random function of Si.

In addition,HMMs can be “trained” on data in the manner of neural networks to enable fore-

casting. They have been used extensively and applied with great success in diverse fields such as

signal decoding [118], speech recognition [181], geological exploration [136], stock trading [129],

and genome analysis.5

C.3 The Generalized Distributive Law

Inference and learning using Bayesian Nets has proved effective as several notable graph algo-

rithms such as Judea Pearl’s belief propagation algorithm [132], Expectation maximization algo-

rithm [140], Baum-Welch “forward-backward” algorithm [140], Viterbi algorithm [170], Discrete

Kalman filtering [28], to cite a few, are all instances of the GDL algorithm in specific domains

of objects comprising the domain of a commutative semiring structure with specific addition and

multiplication operations, and zero and unity — see, e.g., [28] for more details. All of these (and

many other such) algorithms being instances a single generic algorithm it makes sens to make this

a tool for deriving other similar applications of the GDL. The GDL is an algebraic algorithm (a

method) that computes sums of products:

1≤i≤m
∑

xi∈Si

1≤j≤n
∏

yj∈Tj

ϕ(x1, . . . , xm, y1, . . . , yn)

where
∑

and
∏

correspond to additive and multiplicative laws of a commutative semiring.

5http://genomics10.bu.edu/bioinformatics/kasif/bayes-net.html
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Commutative Semiring Algebraic structure 〈K,+, 0,×, 1〉 s.t. + : K×K → K, 0 ∈ K,

× : K×K → K, 1 ∈ K, where 〈K,+, 0〉 and 〈K,×, 1〉 are commutative monoids and×distributes

over +. Figure C.5 shows examples of commutative semirings.

K + 0 × 1

(1) R + 0 × 1

(2) R[x] + 0 × 1

(3) R[x, y, . . .] + 0 × 1

(4) [0,+∞) + 0 × 1

(5) (0,+∞] min +∞ × 1

(6) [0,+∞) max 0 × 1

K + 0 × 1

(7) (−∞,+∞] min +∞ + 0

(8) [−∞,+∞) max −∞ + 0

(9) {false, true} or false and true

(10) 2
S ∪ ∅ ∩ S

(11) L ∧ ⊥ ∨ ⊤

(12) L ∨ ⊤ ∧ ⊥

R: arbitrary commutative ring; R[x]: polynomials with variable x with coefficients

in R; R[x, y, . . .]: multinomials with variables x, y, . . . , with coefficients in R; S:

arbitrary set; L: arbitrary complete distributive lattice.

Figure C.5: Examples of commutative semirings

As clearly illustrated by the several distinct instances listed above, various algorithms have

been independently designed in domains such as Information Theory, Digital Communications,

Statistics, Artificial Intelligence, etc.., with specific domains and commutative semiring opera-

tions.

There are a few notions and notations used by the algorithm that need defining. We summarize

them next. For more details, examples, and computation methods, the reader is referred to [146].6

• Domains: given finite discrete sets Di, i =, 1, . . . , n.

• Variables: finite set {x1, . . . , xn}, where each variable xi takes values in domain Di.

• Local Indices: I
def
= {I1, . . . , Im}, m subsets of the set of the n first natural number; i.e.,

Ij ⊆ {1, . . . , n}, for j = 1, . . . , m.

• Local Domain: given the local index I = {i1, . . . , ir}, its local domain xI ∈ DI where

DI
def
= Di1×. . .×Dir .

• Local Kernel: αi : DIi → K (K commutative semiring)

• Global Kernel: β : D1×. . .×Dn → K defined by β(x1, . . . , xn)
def
=
∏m

i=1 αi(xIi).

6Op. cit., Section 3: The Generalized Distributive Law Algorithm.
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• Marginalization Ii-marginalisation of βi : DIi→ K:

βi(xIi)
def
=
∑

xIc
i
∈DIc

i

β(x1, . . . , xn)

also called “(i-th) local objective function”.

• Junction Tree tree whose nodes are the local indices such that, ∀I, J,K, if K is on the path

from I to J , then I ∩ J ⊆ K. Figure C.6 shows an example of a junction tree over four

variables.

{1}

{1, 2} {1, 3}

{2} {2, 4}

Figure C.6: Example of junction tree

The GDL algorithm consists in a variable elimination algorithm for computing local objective

functions given local kernels on local domains.7

• Basic idea: “push sums in” as far and as much as possible, using distributivity:
∑

i(aib)→
(
∑

i ai)b.

• Basic technique: Dynamic Programming on a “junction tree.”

The GDL as a forward-backward message-passing algorithm: The GDL can be expressed

as a message-passing algorithm [118] in Figure C.7. The updated “messages” are the elements

of the µi,j table. They are passed from node Ii to node Ij — each node “sends a message” to a

neighbor when it has received one from all its other neighbors (first “upward” then “downward”).

Figure C.8 shows an example of the effect of the GDL message-passing algorithm of Figure C.7

using the junction tree of Figure C.6.

The GDL’s (sequential) complexity is O
(
∑

I∈I |N(I)||DI |
)

. See [28] for a detailed analysis,

depending on whether one wishes to compute marginalization for a single vertex or for all vertices.

Remarkably, computing marginalization for the complete set of vertices (rather than for just one

vertex in the set) is only 4 times more expensive, no matter how many vertices in the set.

7The expression bucket elimination has been used to denote the basic junction tree technique [69, 70]. This is

because it maximizes the number of eliminated variables per “pivot step.”

Copyright c© 2020 by the Authors All Rights Reserved
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Given a junction tree, the GDL algorithm iteratively updates a table

µi,j : DIi∩Ij → K for each node Ii, for all Ij ∈ N(Ii), where N(I)
is the set of all neighbors of I , proceeding as follows:

0. for each node Ii, for each node Ij ∈ N(Ii): µi,j ← 1

1. for each node Ii, for each node Ij ∈ N(Ij):

µi,j(xIi∩Ij)←
∑

xIi−Ij
∈DIi−Ij

αi(xIi)
∏

Ik∈N(Ii)

k 6=j

µk,i(xIk∩Ii)

2. for each node Ii: βi(xIi)← αi(xIi)
∏

Ik∈N(Ii)

µk,i(xIk∩Ii)

Figure C.7: The GDL message-passing algorithm

I1 ={1}

I2 ={1, 2} I3 ={1, 3}

I4 ={2} I5 ={2, 4}

i, j µi,j(xIi∩Ij)

1 3, 1 µ3,1(x1) =
∑

x3
α3(x1, x3)

2 4, 2 µ4,2(x2) = α4(x2)
3 5, 2 µ5,2(x2) =

∑

x4
α5(x2, x4)

4 2, 1 µ2,1(x1) =
∑

x2
α2(x1, x2)µ4,2(x2)µ5,2(x2)

5 1, 2 µ1,2(x1) = α1(x1)µ3,1(x1)
6 1, 3 µ1,3(x1) = α1(x1)µ2,1(x1)
7 2, 4 µ2,4(x2) =

∑

x1
α2(x1, x2)µ1,2(x1)µ5,2(x2)

8 2, 5 µ2,5(x2) =
∑

x1
α2(x1, x2)µ1,2(x1)µ4,2(x2)

Figure C.8: Example of the effect of the GDL message-passing algorithm

Copyright c© 2020 by the Authors All Rights Reserved
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The key information it relies on is the existence of a junction tree. Testing for existence of a

junction tree is simple. If one exists it is easy to build one: any maximum weight tree of the Local

Domain Graph, whose vertices are the local indices Ii and weights wi,j = |Ii ∩ Ij |.8 Otherwise,

one can be built from the graph of all cliques of the triangulated moral graph, whose vertices are

the variables xi, and there is an edge between xi and xj iff {i, j} ⊆ I ∈ I, for some local index

I . This is an NP-hard problem, so information specific to an instance (such as properties of the

domain, the data, or the operations) must be exploited.

8N.B.: wmax =
∑m

i=1(|Ii| − n).
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319–332. UTET Università, 1997. [Available online].

[36] Francesca Arcelli and Ferrante Formato. Likelog: A logic programming language for flexible data

retrieval. In Hisham Al Haddad, editor, Proceedings of the 1999 ACM Symposium on Applied Com-

puting, pages 260–267, San Antonio, TX (USA), February 28–March 2, 1999. Association for Com-

puting Machinery, ACM. [Available online].

[37] Francesca Arcelli, Ferrante Formato, and Giangiacomo Gerla. Extending unification through sim-

ilarity relations. Bulletin pour les Sous Ensembles Flous et leurs Applications (BUSEFAL), pages

3–12, 1997. [Available online].

[38] Francesca Arcelli-Fontana. Likelog for flexible query answering. Soft Computing, 7(2):107–114,

December 2002.

[39] Francesca Arcelli-Fontana and Ferrante Formato. A similarity-based resolution rule. International

Journal of Intelligent Systems, 17:853–872, 2002. [Available online].

[40] Peter R.J. Asveld. Algebraic aspects of families of fuzzy languages. Theoretical Computer Science,

293(2):417–445, February 2003. [Available online].

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/221112632
http://thesis.library.caltech.edu/1340/
http://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
https://www.researchgate.net/publication/319059502
https://www.ideals.illinois.edu/bitstream/handle/2142/25871/journal.pdf
https://pdfs.semanticscholar.org/049a/6d3eed8d5cc3cd02a4aa0ef5283a0a368952.pdf
http://repositori.udl.cat/bitstream/handle/10459.1/57984/001858.pdf
https://www.researchgate.net/publication/309348217
http://www.programmazionelogica.it/wp-content/uploads/1997/06/319_Fontana1.pdf
http://doi.acm.org/10.1145/298151.298348
http://int.polytech.univ-smb.fr/fileadmin/polytech_autres_sites/sites/listic/busefal/Papers/70.zip/70_01.pdf
https://pdfs.semanticscholar.org/0995/f2c03c9f6f19606777dafad313e3be0fa34a.pdf
http://www.sciencedirect.com/science/article/pii/S0304397501003541


D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 192 Version of April 10, 2020

[41] Franz Baader and Ulrike Sattler. Description logics with aggregates and concrete domains. In

Proceedings of the International Workshop on Description Logics, Gif sur Yvette, France, 1997.

[Available online].

[42] Rolf Backofen. Regular path expressions in feature logic. In Claude Kirchner, editor, Proceedings

of the 5th International Conference on Rewriting Techniques and Applications (RTA’93), pages 121–

135, Montreal, QC (Canada), June 16–8, 1993. Springer. LNCS 690, [Available online].

[43] Mustapha Baziz, Mohand Boughanem, Gabriella Pasi, and Henri Prade. A fuzzy set approach to

concept-based information retrieval. In E. Montseny and P. Sobrevilla, editors, Proceedings of the

Joint 4th Conference of the European Society for Fuzzy Logic and Technology and the 11èmes Ren-
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