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This presentation’s objective

◮ Reformulate and extend general results on (crisp & fuzzy)

FOT unification and generalization (“anti-unification”) seen

as lattice operations using (crisp & fuzzy) constraints

◮ Give declarative rulesets for operational constraint-driven

deductive and inductive fuzzy inference over FOTs when

some signature symbols may be similar

OK. . . And why is this interesting?. . .

◮ This provides a formally clean and practically efficient way

to enable approximate reasoning (deduction and learning)

with a very popular data structure used in logic-based data

and knowledge processing systems
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Some quick but important remarks about this presentation

We apologize in advance for the “symbol soup” in this talk ...

... but please do bear with us, as this presentation is:

◮ only meant to give you an idea. . . of what’s in the paper

with more examples and all proofs available here

◮ necessary. . . since we purport to be formal

◮ not that complicated. . . at least not for this audience —

we assume familiarity with Prolog’s basic data structure and

Fuzzy Logic notions

◮ really always the same. . . once we get the basic gist

http://hassan-ait-kaci.net/pdf/fuzfotlats-lopstr2017.pdf
http://hassan-ait-kaci.net/pdf/fuzfotlat-preprint.pdf
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Presentation outline

◮ First-Order Terms — syntax of FOTs

◮ Subsumption — pre-order relation on FOTs

◮ Unification — glb operation on FOTs

◮ Generalization — lub operation on FOTs

◮ Weak unification — fuzzy glb of aligned FOTs

◮ Weak generalization — fuzzy lub of aligned FOTs

◮ Full fuzzy unification — fuzzy glb of misaligned FOTs

◮ Full fuzzy generalization — fuzzy lub of misaligned FOTs

◮ Conclusion — recapitulation and future work
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The lattice of FOTs

data structures that can be approximated
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FOTs on a signature of data constructors Σ
def

=
⋃

n≥0Σn

TΣ,V
def

= V

∪ { f (t1, · · · , tn) | f ∈ Σn, n ≥ 0,

ti ∈ T Σ,V , 1 ≤ i ≤ n }
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FOT subsumption pre-order relation

t1 � t2

iff

∃σ : V → TΣ,V

s.t.

t1 = t2σ
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FOT subsumption lattice operations

t = lub(t1, t2)

t1 = tσ1 t2 = tσ2

t = glb(t1, t2) =

{

t1σ = t2σ
tσ1σ = tσ2σ

}

σ1 σ2

σ σ
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Declarative lattice operations on FOTs. . .

using constraints
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Unification a bit of history

◮ 1930 – Jacques Herbrand gives normalization rules for sets

of term equalities in his PhD thesis (Chap. 5, Sec. 2.4, pp. 95

– 96) but does not call this “unification”

◮ 1960 – Dag Prawitz expresses this as reduction rules as part

of proof normalization procedure for Natural Deduction in F.O.

Logic ( Gentzen , 1934)

◮ 1965 – J. Alan Robinson gives a procedural algorithm and

uses it to lift the resolution principle from Propositional Logic

to F.O. Logic — calling it “unification”

◮ 1967 – Jean van Heijenoort translates Chap. 5 of Herbrand’s

thesis into English

◮ 1971 – Warren Goldfarb translates Herbrand’s full thesis into

English

http://archive.numdam.org/article/THESE_1930__110__1_0.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1755-2567.1960.tb00558.x/full
https://en.wikipedia.org/wiki/Natural_deduction#First_and_higher-order_extensions
https://www.academia.edu/3240410/A_Machine-Oriented_Logic_Based_on_the_Resolution_Principle
https://academic.oup.com/philmat/article-abstract/10/3/349/1573264/Books-of-Essays
http://www.springer.com/us/book/9789027701763
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Unification a bit of history (ctd.)

◮ 1976 – Gérard Huet dates the first FOT unification algorithm

to initial equation normalization in Herbrand’s 1930 PhD thesis

(also in Chap. 5 in Huet’s thesis!)

◮ 1982 – Alberto Martelli & Ugo Montanari give unification rules

(with no mention of Herbrand’s thesis, although Huet’s thesis

is cited)

Interestingly, Martelli & Montanari use a preprocessing method

that uses generalization implicitly (to compute “common parts” in

preprocessing equations into congruence classes of equations

called “multi-equations”) — but do not point out that it is dual to

unification

https://www.researchgate.net/publication/213879499_Resolution_d'equations_dans_les_langages_d'ordre_1_2_omega
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
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FOT unification as a constraint

t1
?
= t2

t1σ = t2σ

σ σ
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Declarative unification rule

A unification rule rewrites a prior set of equations E into a

posterior set of equations E′ whenever an optional meta-

condition holds:

RULE NAME:

Prior set of equations E

Posterior set of equations E′
[Optional meta-condition]
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Herbrand – Martelli-Montanari FOT unification rules

TERM DECOMPOSITION:

E ∪ { f (s1, · · · , sn)
.
= f (t1, · · · , tn) }

E ∪ { s1
.
= t1, · · · , sn

.
= tn }

[n ≥ 0]

VARIABLE ELIMINATION:

E ∪ { X
.
= t }

E[X←t] ∪ { X
.
= t }

[

X 6∈ Var(t)
X occurs in E

]

http://archive.numdam.org/article/THESE_1930__110__1_0.pdf
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf


14

Herbrand – Martelli-Montanari FOT unification rules (ctd.)

EQUATION ORIENTATION:

E ∪ { t
.
= X }

E ∪ { X
.
= t }

[t 6∈ V ]

VARIABLE ERASURE:

E ∪ { X
.
= X }

E

http://archive.numdam.org/article/THESE_1930__110__1_0.pdf
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
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Moving on to. . .

declarative constraint-based generalization
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Generalization a bit of history

◮ The lattice-theoretic properties of FOTs as data structures

pre-ordered by subsumption were exposed independently and

simultaneously by Reynolds and Plotkin in 1970

◮ Both gave a formal definition of FOT generalization and each

proved correct a procedural specification for computing it

◮ However, . . . so far, a declarative formal specification was

lacking — which we provide here

◮ Why should we care?... Well, because:

– syntax-driven rules give an operational semantics as constraint

solving needing no control specification (use any rule that applies

in any order)

– each rule’s correctness is independent of that of the others (they

share no global context)

– eases the formal specification of more expressive approximation
over the same data structure (such as fuzzy constraints on FOTs)

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/transysalg.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
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FOT generalization judgment

Statement of the form:

(

σ1

σ2

)

⊢

(

t1

t2

)

t

(

θ1

θ2

)

where (for i = 1, 2):

• t ∈ T and ti ∈ T are FOTs

• σi : V → T and θi : V → T are substitutions
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FOT generalization judgment validity

A generalization judgment:

(

σ1

σ2

)

⊢

(

t1

t2

)

t

(

θ1

θ2

)

is deemed valid whenever:

tiσi = tθi

with ti � t and θi � σi (i.e., ∃δi s.t. ti = tδi and θi = δiσi)
for i = 1, 2
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FOT generalization judgment validity as a constraint

t

t1 t2

t1σ1 t2σ2

(

σ1

σ2

)

⊢

(

t1

t2

)

t

(

θ1

θ2

)

= tδ1 tδ2 =

= tθ1 tθ2 =

δ1 δ2

σ1 σ2

δ 1
σ 1

=
θ 1

θ
2
=
δ
2 σ
2
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Declarative generalization axiom

Statement of the form:

AXIOM NAME:

[Optional meta-condition]

Judgment J

which reads:

“whenever the optional meta-condition holds, judgement J
is always valid”
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FOT generalization axioms

EQUAL VARIABLES :
(

σ1

σ2

)

⊢

(

X

X

)

X

(

σ1

σ2

)

VARIABLE-TERM :
[t1 ∈ V or t2 ∈ V ; t1 6= t2; X is new]
(

σ1

σ2

)

⊢

(

t1

t2

)

X

(

σ1{ t1/X }

σ2{ t2/X }

)

UNEQUAL FUNCTORS :
[m ≥ 0, n ≥ 0; m 6= n or f 6= g; X is new]
(

σ1

σ2

)

⊢

(

f (s1, · · · , sm)

g(t1, · · · , tn)

)

X

(

σ1{ f(s1, · · · , sm)/X }

σ2{ g(t1, · · · , tn)/X }

)
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Declarative generalization inference rule

Conditional Horn rule of generalization judgments of the form:

RULE NAME:

[Optional Meta-Condition]

Prior Judgment J1 · · · Prior Judgment Jn
Posterior Judgment J

(for n ≥ 0) — which reads:

“whenever the optional meta-condition holds, if all the n
prior judgements Jn are valid, then the posterior judgement

J is also valid”
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Declarative FOT generalization rule for equal functors

EQUAL FUNCTORS :
[n ≥ 0]
(

σ01

σ02

)

⊢

(

s′1

t′1

)

u1

(

σ11

σ12

)

· · ·

(

σn−11

σn−12

)

⊢

(

s′n

t′n

)

un

(

σn1

σn2

)

(

σ01

σ02

)

⊢

(

f (s1, · · · , sn)

f (t1, · · · , tn)

)

f (u1, · · · , un)

(

σn1

σn2

)

where

(

s′i

t′i

)

def

=

(

si

ti

)

↑

(

σi−11

σi−12

)

for i = 1, . . . , n.
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“Unapplying” a pair of substitutions on a pair of FOTs

Rule “EQUAL FUNCTORS” uses operation “unapply” ‘↑ ’ on a pair

of terms t1, t2 given a pair of substitutions σ1, σ2:

(

t1

t2

)

↑

(

σ1

σ2

)

def

=







































(

X

X

)

if ti = Xσi, for i = 1, 2

(

t1

t2

)

otherwise
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Declarative FOT generalization rule for n = 0

NB: for n = 0, the rule EQUAL FUNCTORS becomes an axiom;

viz., for any constant c:

(

σ1

σ2

)

⊢

(

c

c

)

c

(

σ1

σ2

)

for any pair σ1, σ2



26

FOT generalization example

Consider the terms f(a, a, a) and f(b, c, c) to generalize; i.e.:

• Find term t and substitutions σ1 and σ2 such that tσ1 = f(a, a, a) and tσ2 = f(b, c, c):
(

∅

∅

)

⊢

(

f(a, a, a)

f(b, c, c)

)

t

(

σ1

σ2

)

• By Rule EQUAL FUNCTORS, we must have t = f(u1, u2, u3) since:
(

∅

∅

)

⊢

(

f(a, a, a)

f(b, c, c)

)

f(u1, u2, u3)

(

σ1

σ2

)

where:

– u1 is the generalization of

(

a

b

)

↑

(

∅

∅

)

; that is, of a and b

and by Axiom UNEQUAL FUNCTORS:
(

∅

∅

)

⊢

(

a

b

)

X

(

{a/X}

{b/X}

)

therefore u1 = X
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FOT generalization example (ctd.)

– u2 is the generalization of

(

a

c

)

↑

(

{a/X}

{b/X}

)

; that is, of a and c;

and by Axiom UNEQUAL FUNCTORS:
(

{a/X}

{b/X}

)

⊢

(

a

c

)

Y

(

{a/X, a/Y }

{b/X, c/Y }

)

therefore u2 = Y

– u3 is the generalization of

(

a

c

)

↑

(

{a/X, a/Y }

{b/X, c/Y }

)

; that is, of Y and Y ;

and by Axiom EQUAL VARIABLES:
(

{a/X, a/Y }

{b/X, c/Y }

)

⊢

(

Y

Y

)

Y

(

{a/X, a/Y }

{b/X, c/Y }

)

therefore u3 = Y

• therefore, the overall constraint is thus solved proving the overall judgment valid as:
(

∅

∅

)

⊢

(

f(a, a, a)

f(b, c, c)

)

f(X, Y, Y )

(

{a/X, a/Y }

{b/X, c/Y }

)

i.e., t = f(X, Y, Y ), with σ1= {a/X, a/Y }

and σ2= {b/X, c/Y }

s.t. tσ1= f(a, a, a),

and tσ2= f(b, c, c)
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Going from crisp to fuzzy. . .

extending the foregoing to fuzzy lattice operations as fuzzy

constraints
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Similarity relation (fuzzy fact recall)

Fuzzy equivalence relation on a (crisp) set (fuzzy set of pairs)

When S is a finite discrete set {x1, . . . , xn}, since a similarity

relation∼ on S is a fuzzy subset of S × S, the three conditions

of an equivalence can be visualized on a square n× n matrix

∼∈ [0, 1]× [0, 1] as follows; ∀ i, j, k = 1, . . . , n:

◮ reflexivity : ∼ii= 1 entries on the diagonal are equal to 1

◮ symmetry : ∼ij =∼ji symmetric entries on either side of

the diagonal are equal

◮ transitivity : ∼ik ∧ ∼kj ≤ ∼ij going via an intermediate

will always result in a smaller or equal truth value than going

directly

N.B.: if xi ∼α xj for some α ∈ (0, 1], then xi ∼β xj for all β ∈ (0, α]
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Similar functors and terms Sessa, TCS 2002

Given a similarity relation ∼ on signature Σ Sessa extends it

homomorphically to FOTs as follows:

◮ for all X ∈ V : X ∼1 X

◮ for all X ∈ V and t ∈ T s.t. t 6= X: X ∼0 t and t ∼0 X

◮ for f ∈ Σn and g ∈ Σn s.t. f ∼α g and si ∼αi ti :

f (s1, · · · , sn) ∼α∧
∧n
i=1 αi

g(t1, · · · , tn)

α ∈ [0, 1], αi ∈ [0, 1] (i = 1, . . . , n)

Unification degree of pair of terms (0 for dissimilar pairs)

NB: (1) for Sessa’s “weak” similarity on Σ: n 6= m→ (∼ ∩Σm×Σn = ∅), for all m,n ≥ 0

and (2) operation ∧ is min — but other interpretations are possible

http://www.sciencedirect.com/science/article/pii/S0304397501001888
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Fuzzy subsumption

α ∈ (0, 1]

t1 �α t2

iff

∃σ : V → TΣ,V

s.t.

t1 ∼α t2σ
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Fuzzy unification as a constraint

t1
?
∼α t2

t1σ ∼α t2σ

α ∈ (0, 1]

σ σ
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Fuzzy unification rule

A fuzzy unification rule rewrites Eα, a prior set of equations E
with truth value α ∈ (0, 1], into E′

α′
, a posterior set of equations

E′ with truth value α′ ∈ [0, α], when an optional meta-condition

holds:

RULE NAME:

Prior set of equations Eα

Posterior set of equations E′
α′

[Optional meta-condition]
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Sessa ’s “weak” fuzzy unification

VARIABLE ELIMINATION:

(E ∪ { X
.
= t })α

(E[X← t] ∪ { X
.
= t })α

[

X 6∈ Var(t)
X occurs in E

]

CRISP VERSION IS HMM’S:

E ∪ { X
.
= t }

E[X←t] ∪ { X
.
= t }

[

X 6∈ Var(t)
X occurs in E

]

VARIABLE ERASURE:

(E ∪ { X
.
= X })α

Eα

CRISP VERSION IS HMM’S:

E ∪ { X
.
= X }

E

EQUATION ORIENTATION:

(E ∪ { t
.
= X })α

(E ∪ { X
.
= t })α

[t 6∈ V ]

CRISP VERSION IS HMM’S:

E ∪ { t
.
= X }

E ∪ { X
.
= t }

[t 6∈ V ]

http://www.sciencedirect.com/science/article/pii/S0304397501001888
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Sessa ’s “weak” fuzzy unification (ctd.)

WEAK TERM DECOMPOSITION:

(E ∪ { f(s1, · · · , sn)
.
= g(t1, · · · , tn) })α

(E ∪ { s1
.
= t1, · · · , sn

.
= tn })α∧β

[

f ∼β g
n ≥ 0

]

NB: only unification rule among HMM’s that constrains the

overall unification degree upon equating similar terms with

different constructors

CRISP VERSION IS ALSO HMM’S:

E ∪ { f (s1, · · · , sn)
.
= f (t1, · · · , tn) }

E ∪ { s1
.
= t1, · · · , sn

.
= tn }

[n ≥ 0]

http://www.sciencedirect.com/science/article/pii/S0304397501001888
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Fuzzy unification example

Let {a, b, c, d} ⊆ Σ0, {f, g} ⊆ Σ2, {h} ⊆ Σ3; with a ∼.7 b, c ∼.6 d, f ∼.9 g.

• Fuzzy equational constraint to normalize:

{h(f(a,X1), g(X1, b), f(Y1, Y1))
.
= h(X2, X2, g(c, d)) }1

• apply Rule WEAK TERM DECOMPOSITION with α = 1 and β = 1:

{ f(a,X1)
.
= X2, g(X1, b)

.
= X2, f(Y1, Y1)

.
= g(c, d) }1

• apply Rule EQUATION ORIENTATION to f(a,X1)
.
= X2 with α = 1:

{X2
.
= f(a,X1), g(X1, b)

.
= X2, f(Y1, Y1)

.
= g(c, d) }1

• apply Rule VARIABLE ELIMINATION to X2
.
= f(a,X1) with α = 1:

{X2
.
= f(a,X1), g(X1, b)

.
= f (a,X1), f(Y1, Y1)

.
= g(c, d) }1

• apply Rule WEAK TERM DECOMPOSITION to g(X1, b)
.
= f(a,X1)withα = 1 and β = .9:

{X2
.
= f(a,X1), X1

.
= a, b

.
= X1, f(Y1, Y1)

.
= g(c, d) }.9
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Fuzzy unification example (ctd.)

• apply Rule VARIABLE ELIMINATION to X1
.
= a with α = .9:

{X2
.
= f(a, a), X1

.
= a, b

.
= a, f(Y1, Y1)

.
= g(c, d) }.9

• apply Rule WEAK TERM DECOMPOSITION to b
.
= a with α = .9 and β = .7:

{X2
.
= f(a, a), X1

.
= a, f (Y1, Y1)

.
= g(c, d) }.7

• apply Rule WEAK TERM DECOMPOSITION to f (Y1, Y1)
.
= g(c, d) withα = .7 and β = .9:

{X2
.
= f(a, a), X1

.
= a, Y1

.
= c, Y1

.
= d }.7

• apply Rule VARIABLE ELIMINATION to Y1
.
= c with α = .7:

{X2
.
= f(a, a), X1

.
= a, Y1

.
= c, c

.
= d }.7

• apply Rule WEAK TERM DECOMPOSITION to c
.
= d with α = .7 and β = .6:

{X2
.
= f(a, a), X1

.
= a, Y1

.
= c }.6

This is in normal form, yielding substitution σ:

σ = {X1 = a, Y1 = c, X2 = f(a, a) }

with truth value .6 so that:

t1σ = h(f(a, a), g(a, b), f(c, c)) ∼.6 t2σ = h(f(a, a), f(a, a), g(c, d))
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Moving on to. . .

fuzzy generalization
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Fuzzy generalization judgment

Statement of the form:

(

σ1

σ2

)

α

⊢

(

t1

t2

)

t

(

θ1

θ2

)

β

where (for i = 1, 2):

• t ∈ T and ti ∈ T are FOTs

• σi : V → T are substitutions and α ∈ [0, 1]

• θi : V → T are substitutions and β ∈ [0, 1]
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Fuzzy generalization judgment validity

A fuzzy generalization judgment:

(

σ1

σ2

)

α

⊢

(

t1

t2

)

t

(

θ1

θ2

)

β

is deemed valid whenever (i = 1, 2):

tiσi ∼β tθi

with 0 ≤ β ≤ α ≤ 1, ti �α t, and θi �β σi
(i.e., ∃δi s.t. ti ∼α tδi and θi ∼β δiσi)
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Fuzzy generalization judgment validity as a constraint

t

t1 ∼α tδ1 tδ2 ∼α t2

tθ1 ∼β t1σ1 t2σ2 ∼β tθ2

(

σ1

σ2

)

α

⊢

(

t1

t2

)

t

(

θ1

θ2

)

β

β ≤ α

δ1 δ2

σ1 σ2

δ 1
σ 1
∼
β
θ 1

θ
2
∼
β
δ
2 σ
2
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Fuzzy generalization axioms

FUZZY EQUAL VARIABLES :
(

σ1

σ2

)

α

⊢

(

X

X

)

X

(

σ1

σ2

)

α

FUZZY VARIABLE-TERM :
[t1 ∈ V or t2 ∈ V ; t1 6= t2; X is new]
(

σ1

σ2

)

α

⊢

(

t1

t2

)

X

(

σ1{ t1/X }

σ2{ t2/X }

)

α

DISSIMILAR FUNCTORS :
[f 6∼ g; m ≥ 0, n ≥ 0; X is new]
(

σ1

σ2

)

α

⊢

(

f(s1, · · · , sm)

g(t1, · · · , tn)

)

X

(

σ1{ f (s1, · · · , sm)/X }

σ2{ g(t1, · · · , tn)/X }

)

α
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Fuzzy generalization rule for similar functors

SIMILAR FUNCTORS :
[

f ∼β g; n ≥ 0; α0
def

= α ∧ β
]

(

σ01

σ02

)

α0

⊢

(

s′1

t′1

)

u1

(

σ11

σ12

)

α1

· · ·

(

σn−11

σn−12

)

αn−1

⊢

(

s′n

t′n

)

un

(

σn1

σn2

)

αn
(

σ01

σ02

)

α

⊢

(

f (s1, · · · , sn)

g(t1, · · · , tn)

)

f (u1, · · · , un)

(

σn1

σn2

)

αn

where, for i = 1, . . . , n:
(

s′i

t′i

)

βi

def

=

(

si

ti

)

↑αi−1

(

σi−11

σi−12

)

and

(

σi−11

σi−12

)

βi

⊢

(

s′i

t′i

)

ui

(

σi1

σi2

)

αi
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Fuzzy “unapplication” of a pair of substitutions on a pair of FOTs

Rule “SIMILAR FUNCTORS” uses operation “fuzzy unapply” ‘↑α’
on a pair of terms t1, t2 given a pair of substitutions σ1, σ2 and

truth valueα ∈ [0, 1], and returns a pair of terms and truth value,

defined as:

(

t1

t2

)

↑α

(

σ1

σ2

)

def

=











































(

X

X

)

α∧α1∧α2

if ti ∼αi Xσi, i = 1, 2

(

t1

t2

)

α

otherwise
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Fuzzy generalization example

Again, let {a, b, c, d} ⊆ Σ0, {f, g} ⊆ Σ2, {h} ⊆ Σ3; with a ∼.7 b, c ∼.6 d, f ∼.9 g.

• Terms to generalize:
(

∅

∅

)

1

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))

h(X2, X2, g(c, d))

)

t

(

σ1

σ2

)

α

• By Rule SIMILAR FUNCTORS, we must have t = h(u1, u2, u3) since:
(

∅

∅

)

1

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))

h(X2, X2, g(c, d))

)

h(u1, u2, u3)

(

σ1

σ2

)

α

where:

– u1 is the fuzzy generalization of

(

f(a,X1)

X2

)

↑
1

(

∅

∅

)

; that is, of f(a,X1) and X2;

by Axiom FUZZY VARIABLE-TERM:
(

∅

∅

)

1

⊢

(

f(a,X1)

X2

)

X

(

{f(a,X1)/X}

{X2/X}

)

1

so u1 = X
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Fuzzy generalization example (ctd.)

– u2 is the fuzzy generalization of

(

g(X1, b)

X2

)

↑
1

(

{f(a,X1)/X}

{X2/X}

)

; i.e., g(X1, b) and X2

by Axiom FUZZY VARIABLE-TERM:
(

{f(a,X1)/X}

{X2/X}

)

1

⊢

(

g(X1, b)

X2

)

Y

(

{ · · · , g(X1, b)/Y }

{ · · · , X2/Y }

)

1

so u2 = Y

– u3 = f(v1, v2) is the fuzzy generalization of

(

f(Y1, Y1)

g(c, d)

)

↑
.9

(

{f(a,X1)/X, g(X1, b)/Y }

{X2/X,X2/Y }

)

;

that is, of f(Y1, Y1) and g(c, d)with truth value .9, because of Rule SIMILAR FUNCTORS

and f ∼.9 g, where:

∗ v1 is the fuzzy generalization of

(

Y1

c

)

↑
.9

(

{f(a,X1)/X, g(X1, b)/Y }

{X2/X,X2/Y }

)

; i.e., Y1 and c

by Axiom FUZZY VARIABLE-TERM:
(

{f(a,X1)/X, g(X1, b)/Y }

{X2/X,X2/Y }

)

.9

⊢

(

Y1

c

)

Z

(

{ · · · , Y1/Z}

{ · · · , c/Z}

)

.9

so v1 = Z
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Fuzzy generalization example (ctd.)

∗ v2 is the fuzzy generalization of

(

Y1

d

)

↑
.9

(

{f(a,X1)/X, g(X1, b)/Y, Y1/Z}

{X2/X,X2/Y, c/Z}

)

; i.e.,

since c ∼.6 d, of Z and Z ; so by Axiom FUZZY EQUAL VARIABLES:
(

{f(a,X1)/X, g(X1, b)/Y, Y1/Z}

{X2/X,X2/Y, c/Z}

)

.9

⊢

(

Z

Z

)

Z

(

{ · · · }

{ · · · }

)

.6

so, v2 = Z

in other words, u3 = f(Z,Z) since:
(

{f(a,X1)/X, g(X1, b)/Y }

{X2/X,X2/Y }

)

1

⊢

(

f(Y1, Y1)

g(c, d)

)

f(Z,Z)

(

{ · · · , Y1/Z}

{ · · · , c/Z}

)

.6

Therefore:
(

∅

∅

)

1

⊢

(

t1

t2

)

h(X, Y, f(Z,Z))

(

{f(a,X1)/X, g(X1, b)/Y, Y1/Z}

{X2/X,X2/Y, c/Z}

)

.6

whereby

tσ1 = h(f(a,X1), g(X1, b), f(Y1, Y1)) = t1,

tσ2 = h(X2, X2, f(c, c)) ∼.6 h(X2, X2, g(c, d)) = t2
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So we now have fuzzy lattice operations on FOT . . .

but, aren’t we missing something?
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Hey! . . . but what about similar functors with different arities?

. . . or equal arities but different order of arguments?

◮ Disallowed in Sessa’s weak unification, even though this would

be of great convenience; e.g., in approximate data retrieval

and mining in non-aligned databases

For example:

person(Name,SSN ,Address)
∼α

individual(Name,DoB,SSN ,Address)

for α ∈ (0, 1] would allow fuzzy matching of non-aligned

similar records
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Similar terms with different argument number or order

Given∼ : Σ2 → [0, 1] similarity on Σ
def

=
⋃

n≥0Σn, s.t.:

•∼ ∩ Σm × Σn 6= ∅ for some m ≥ 0, n ≥ 0, with m 6= n

• for f ∈ Σm, g ∈ Σn, 0 ≤ m ≤ n, whenever f ∼α g there

is an injective mapping p : {1, . . . ,m} → {1, . . . , n} that

is denoted as f ∼p
α g; e.g.:

person(Name,SSN ,Address)

∼
{1→1,2→3,3→4}
.9

individual(Name,DoB,SSN ,Address)

N.B.: m and n are such that 0 ≤ m ≤ n; so the one-to-one argument-position mapping

goes from the lesser set to the larger set
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Unifying similar functors w/ different arg. number/order

GENERIC WEAK TERM DECOMPOSITION :
[

f ∼p
β g; 0 ≤ m ≤ n

]

(E ∪ {f (s1, · · · , sm)
.
= g(t1, · · · , tn)})α

(

E ∪ {s1
.
= tp(1), · · · , sm

.
= tp(m)}

)

α∧β

FUZZY EQUATION REORIENTATION :
[0 ≤ n < m]

(E ∪ {f (s1, · · · , sm)
.
= g(t1, · · · , tn)})α

(E ∪ {g(t1, · · · , tn)
.
= f (s1, · · · , sm)})α
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Generalizing similar functors w/ different arg. number/order

FUNCTOR/ARITY SIMILARITY LEFT :
[

f ∼p
β g; 0 ≤ m ≤ n; α0

def

= α ∧ β
]

(

σ01

σ02

)

α0

⊢

(

s′1

t′1

)

u1

(

σ11

σ12

)

α1

· · ·

(

σm−11

σm−12

)

αm−1

⊢

(

s′m

t′m

)

um

(

σm1

σm2

)

αm
(

σ01

σ02

)

α

⊢

(

f (s1, . . . , sm)

g(t1, . . . , tn)

)

f (u1, . . . , um)

(

σm1

σm2

)

αm

where, for i = 1, . . . ,m:
(

s′i

t′i

)

βi

def

=

(

si

tp(i)

)

↑αi−1

(

σi−11

σi−12

)

and

(

σi−11

σi−12

)

βi

⊢

(

s′i

t′i

)

ui

(

σi1

σi2

)

αi
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Generalizing similar functors w/ different arg. number/order (ctd.)

FUNCTOR/ARITY SIMILARITY RIGHT :
[

g ∼p
β f ; 0 ≤ n ≤ m; α0

def

= α ∧ β
]

(

σ01

σ02

)

α0

⊢

(

s′1

t′1

)

u1

(

σ11

σ12

)

α1

· · ·

(

σn−11

σn−12

)

αn−1

⊢

(

s′n

t′n

)

un

(

σn1

σn2

)

αn
(

σ01

σ02

)

α

⊢

(

f (s1, . . . , sm)

g(t1, . . . , tn)

)

g(u1, . . . , un)

(

σn1

σn2

)

αn

where, for i = 1, . . . , n:
(

s′i

t′i

)

βi

def

=

(

sp(i)

ti

)

↑αi−1

(

σi−11

σi−12

)

and

(

σi−11

σi−12

)

βi

⊢

(

s′i

t′i

)

ui

(

σi1

σi2

)

αi
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OK — we’ve had enough for now!. . .

let us recap and conclude
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Recapitulation

We overviewed 3 lattice structures over FOTs (1 crisp and 2

fuzzy), gave declarative axioms and rules, and expressed the 6

corresponding dual lattice operations as constraints

(✔ indicates original contribution):

◮ Conventional signature

• Unification (Herbrand–Martelli&Montanari’s)

✔ Generalization (declarative version of Reynolds–Plotkin’s)

◮ Signature with aligned similarity

• “Weak” fuzzy unification (Sessa’s)

✔ “Weak” fuzzy generalization (dual to Sessa’s)

◮ Signature with misaligned similarity

✔ Full fuzzy unification (different/mixed arities)

✔ Full fuzzy generalization (different/mixed arities)
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Future Work?

◮ Implement!

☞ Java/Scala Libraries

☞ Extend Bousi∼Prolog ?

☞ Applications!

☞ Etc., . . .

◮ OK... But can all this be made more expressive somehow?

Yes! — Extend these results to the lattice of Order-Sorted

Feature terms (fuzzy OSF constraints ?)

We’re working on it. . .

Coming soon to a /////////////theat. . . er conference near you!. . .,

https://www.researchgate.net/publication/221582279_A_Similarity-Based_WAM_for_BousiProlog
http://hassan-ait-kaci.net/pdf/ecml01.pdf
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