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Abstract

Unification and generalization are operations on two terms computing respectively their greatest lower bound and least upper 
bound when the terms are quasi-ordered by subsumption up to variable renaming (i.e., t1 � t2 iff t1 = t2σ for some variable 
substitution σ ). When term signatures are such that distinct functor symbols may be related with a fuzzy equivalence (called a 
similarity), these operations can be formally extended to tolerate mismatches on functor names and/or arity or argument order. We 
reformulate and extend previous work with a declarative approach defining unification and generalization as sets of axioms and rules 
forming a complete constraint-normalization proof system. These include the Reynolds-Plotkin term-generalization procedures, 
Maria Sessa’s “weak” unification with partially fuzzy signatures and its corresponding generalization, as well as novel extensions of 
such operations to signatures with weaker functor similarities (i.e., with possibly different arities). One advantage of this approach is 
that it requires no modification of the conventional data structures for terms and substitutions. This and the fact that these declarative 
specifications are efficiently executable conditional Horn-clauses offers great practical potential for fuzzy information-handling 
applications.
© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

We are motivated by the versatile use of the First-Order Term (FOT ) as a data structure in Logic Programming 
thanks to the unification operation ([1] and [2]) and Inductive Logic Programming thanks to the generalization (or 
“anti-unification”) operation ([3] and [4]). We extend the formal characterization of the set of FOTs modulo variable 
renaming as a lattice due to Reynolds ([5]) and Plotkin ([6]) to such an algebraic structure where similarities among 
distinct constructors may exist that tolerate fuzzy FOT approximation. We study how these notions may be formalized 
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while abiding by a fully declarative approach based on constraint processing in the same way as crisp unification is 
presented in [1] and [2], as opposed to a procedural control-conscious algorithm such as Robinson’s [7].

Origins of unification and generalization
Unification. The earliest printed account of the FOT unification operation, although not under this name, appears 
in 1930 in Jacques Herbrand’s PhD thesis [1].1 Later, in 1960, Dag Prawitz uses this as part of his Natural Deduction 
proof procedure for First-Order Logic [8]. Chap. 5 of Herbrand’s thesis is first translated into English in 1967 by 
Jean van Heijenoort [9], and his full thesis is translated into English in 1971 by Warren Goldfarb [10].2 In his thesis, 
although he does not call it “unification,” Herbrand describes a declarative specification for FOT equation normaliza-
tion more than 30 years before J. Alan Robinson actually gives the familiar name to an equivalent procedural method 
and dubbing it “unification” in order to extend his resolution principle from Proposition Logic to First-Order Logic [7]. 
This fact is already explicitly pointed out in 1976 by Gérard Huet in his French thèse d’état [11]. These rules are later 
used explicitly by Martelli and Montanari in 1982 (20 years after Robinson’s paper, and 55 years after Herbrand’s 
1930 PhD thesis) in their method seeking to optimize Robinsons’s algorithm [2]. They do not cite Herbrand’s thesis, 
although it is explicitly cited in Huet’s 1976 thesis which they cite. Probably because its name first appears in his 
paper on proof by resolution in First-Order Logic in [7] and this name has been used in Logic Programming, most 
current venues attribute the paternity of FOT unification to Robinson.3 While the name was indeed his coinage, the 
operation however was not new.

Generalization. In 1970, John Reynolds and Gordon Plotkin publish each an article, in the same volume, each giv-
ing a different but equivalent procedure for the generalization of two FOTs. The former calls it “anti-unification” 
([5], page 138), and the latter calls it “least generalization” ([6], page 155). Each describes a method for computing 
the most specific FOT subsuming two given FOTs in finitely many steps. The method consists in scanning them 
simultaneously from left to right as long as they agree, and where they disagree generating a pair of minimal gener-
alizing substitutions by introducing a fresh variable, each time replacing the disagreeing terms with this new variable 
wherever they occur again simultaneously in each term.

Interestingly, in their 1982 ACM ToPLaS article on unification [2], Martelli and Montanari use a method that com-
putes generalization of two terms implicitly (so-called “common parts”) in preprocessing equations into congruence 
classes of terms (called “multi-equations”). This is in order to make unification more efficient by solving not just one 
equation but many at a time. However, they do not point out that this common-part form derived from two terms, by 
keeping only what is common in both, is in fact the dual of their unified form, which brings into one term what is in 
either.

Contribution of this work
Our objective in this work is to provide a formal and operational answer to the following question:

“What happens to the original Reynolds-Plotkin lattice—that is, FOTs preordered with FOT subsumption, FOT
substitutions preordered by way of composition,4 and operations such as unification and generalization—when 
syntactic term equality is generalized into a weighted measure of similarity as done in Fuzzy Logic?”

Starting from the original Reynolds-Plotkin lattice of First-Order Terms ordered by subsumption, we first give a 
constraint-based formal specification of its least upper-bound operation (generalization, or anti-unification) as has 
been the case for its greatest lower-bound operation (unification). This declarative semantics is new and simplifies 
establishing the formal correctness of the specification as well as providing an implicit operational semantics for both 
lattice operations by way of constraint normalization. We then allow these operations to be calibrated at approximation 
degrees in [0, 1] upon the existence of distinct but possibly similar function symbols (traditionally called “functors” 

1 Ref. [1], Chap. 5, Sec. 2.4, pp. 95–96, where it corresponds to expanding an equation into normal form that verifies what he calls “Property A.”
2 Chap. 5 is on pp. 148ff.
3 For example, https://en .wikipedia .org /wiki /Unification _(computer _science).
4 I.e., ordered by the “more general than” relation whereby a substitution σ is said to be more general than a substitution θ if there exists a 

substitution δ such that θ = σδ
def= δ ◦ σ (see Appendix A).

https://en.wikipedia.org/wiki/Unification_(computer_science)


JID:FSS AID:7632 /FLA [m3SC+; v1.298; Prn:10/04/2019; 12:54] P.3 (1-46)

H. Aït-Kaci, G. Pasi / Fuzzy Sets and Systems ••• (••••) •••–••• 3
in Logic Programming); i.e., term constructor symbols related by a fuzzy equivalence relation. We first derive the 
operation that is the dual of so-called “weak” unification due to Maria Sessa in [12]. This dual operation corresponds to 
fuzzy generalization taking into account distinct but similar functors. We then extend the resulting fuzzy operations to 
yet a more expressive one tolerating not only distinct similar functors, but also distinct arities or misaligned argument 
positions. This last lattice captures a maximally expressive fuzzification of both operations of the Reynolds-Plotkin 
lattice. As a bonus, its formal declarative syntax-driven specification consists of logical axioms and rules over standard 
first-order terms and substitutions. This yields operational algorithms for these powerful fuzzy operations on a data 
structure used in a large number of Logic Programming idioms and systems.

Relation to other works
There have been other works dealing with the larger issue of integrating general equational theories into logical 

reasoning, not just the specific theory of fuzzy equivalence among terms. Among the most formally and operationally 
complete approach, pioneered by Goguen et al. in the seventies, is the set of works based on initial algebras [13].5

Recall that an operator algebra is initial iff there exists a homomorphism from it to all other algebras that are semantic 
models of first-order terms freely built with these operators and variables [14]. Namely, initiality is the property 
that guarantees that the formal meaning of syntactic terms defined for FOTs modulo congruence classes defined by 
equations is preserved for all interpretations. This result was later extended from equational systems to implicational 
systems by Mahr and Makowsky [15]. In this latter paper, it was also shown that Horn Logic (i.e., an implicational 
system constituting the formal basis of the Prolog language), is the largest class of logic that admits an initial algebra 
semantics.

While the initial algebra approach has shown its general applicability for term unification and generalization, in-
cluding more recently with the work of Alpuente et al. over order-sorted signatures [16] and with equational theories 
[17], its specific application to fuzzy congruences has yet to be done. While it could conceivably be specified by 
instantiating the general scheme of initial semantics, this must be at the expense of both formal and operational sim-
plicity when compared with our approach which can be expressed as a direct extension of conventional operations 
of unification and generalization of first-order terms. This is because it is specifically adapted to a fuzzy equiva-
lence of terms rather than general-purpose reasoning modulo equational theories. In the latter more general approach, 
equations can be used as term rewrite rules and unification modulo this theory is made operational using the general 
equation-solving technique known as “narrowing” [18], [19]. However, for this to work, one must have a terminating 
and confluent set of rewrite rules. Such may be derived in some cases based on undecidable procedures such as Knuth-
Bendix completion [20], or unterminating term rewriting [21]. Rather, we limit ourselves to the obviously decidable 
theory generated homomorphically on FOTs from a fuzzy equivalence relation (a similarity) on a finite signature. 
This follows the intuition behind Maria Sessa’s formal work on fuzzy FOT unification as well [12]. Also, we support 
arity and argument position mismatch for similar operators.6 Be that as it may, one could envisage studying how 
E-unification for common equational theories such as associativity or commutativity could be extended to unification 
of terms with similar functors. However, this is another issue and we do not do so in this document’s setting.

There have been also works in logic-based databases such as using a similarity distance while comparing syntac-
tically unequal terms; for example, Francesca Arcelli et al.’s LIKELOG database logic programming language [22], 
[23]. These works, however, concern only ground terms (i.e., with no variables), not first-order terms (i.e., possibly 
having variables). Arcelli et al.’s notion of similarity distance between terms was later extended from ground terms 
to first-order terms by Shroeder and Gilbert in the fuzzy logic programming language FURY [24], [25], [26]. They 
use the same concept as Arcelli et al.’s fuzzy equivalence but derived from dynamically evaluating so-called “edit 
distance” between strings on ground terms as well as first-order terms.7 Thus, their objective is to derive dynamically 
an estimate of an “edit distance” between terms. The same comments also apply to work by Kutsia et al. [28], [29], 
where the objective is to check all the possibilities of dynamically matching FOTs with equal function symbols hav-
ing unspecified number of arguments (i.e., the same sort of search objective pursued in FURY, where this is done for 

5 An initial algebra is also called free algebra, or syntactic algebra, or tree algebra, or term algebra—because its elements are the syntactic term 
structures one can define recursively by nesting terms as arguments of other terms (i.e., the model taking as interpretation homomorphism the 
identity function on terms).

6 See Section 4.1.2.
7 See [27] this email discussion on the issue.
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unequal symbols as well). This objective is not ours in that we are not trying to infer dynamically distances between 
terms. Rather, we assume given a matrix of approximation degrees for such a static similarity relation on term con-
structors and use this information exactly in the same manner as done by Maria Sessa in [12]. In Sessa’s context (and 
ours), this information is given statically, not inferred dynamically. Finally, the main advantage of working from a 
given static matrix of approximation degrees rather than estimating syntactic edit distances (whether dynamically or 
statically) is that similarity may be semantic among syntactically unrelated but semantically close strings. The context 
of dynamic syntactic distance estimation is typically for applications of purely lexical variants such as estimating gene 
similarity in biology [24]. Ours concerns deriving approximate solutions to fuzzy equations given similarity among 
term constructors [30].

Our last reference to other work related to unification and generalization of graph data and type structures, is the set 
of work due to Aït-Kaci et al. (i.e., [31] and [32]). In this context, nodes denote sorts (that are organized in a lattice) 
and arrows denote features (functional attributes between sort nodes); variables denote equations among (possibly 
cyclic) feature paths. Just as such subsumption and its lattice operations on FOTs can be fuzzified, so can indeed the 
lattice of Order-Sorted Feature terms. This is also relevant to non-aligned knowledge bases [33]. This is work we are 
currently pursuing soon to be published [34].

Organization of contents
The rest of this document is organized as follows. Section 2 recalls basic algebra on first-order terms and substitu-

tions. Section 3 covers formal background on the lattice of first-order terms preordered with subsumption defined as 
variable instantiation by substitution application. The core of the paper is then developed in Section 4—Section 4.1
discusses fuzzy unification while fuzzy generalization is covered in Section 4.2. Section 5 concludes the paper.

This article’s topic being at the junction of two well-developed independent formal computational domains (First-
Order Term and Fuzzy Set algebras), readers more familiar with one domain than the other might feel short-changed if 
we assumed as background concepts from the field they are not, or only partially, knowledgeable about. For this reason, 
and in order to allow us to get to the heart of our work quickly without penalizing readers with varied backgrounds, 
we added an appendix summarizing all such needed material, terminology, and notation used in some essential way 
in this article.

2. First-order term algebra

2.1. First-order term

The first-order term (FOT ) was introduced as a data structure in software programming by the Prolog language.8

Just like the S-expression for LISP, the FOT is Prolog’s universal data structure. Using formal algebra notation, we 
write T�,V for the set of FOTs on an operator signature � def= ⋃

n≥0 �n where �n is a set of n-ary operator symbols.9

The set V is a countably infinite set of variables. Also following Prolog’s tradition, we shall designate an element f in 
� as a functor, with arity(f ) denoting its number of arguments.10 This set T�,V can then be defined inductively as:

T�,V
def= V ∪ {f (t1, . . . , tn) | f ∈ �n, n ≥ 0, and ti ∈ T�,V , 0 ≤ i ≤ n }.

Technically, an additional condition of well-foundedness requires that �0 	= ∅. We write c instead of c() for a constant 
c ∈ �0. Also, when the set � of functor symbols and the set V of variables are implicit from the context, we simply 
write T instead of T�,V .

The set var(t) of variables occurring in a FOT t ∈ T is defined as11:

var(t) def=
{ {X } if t = X ∈ V⋃n

i=1 var(ti) if t = f (t1, . . . , tn).

8 https://en .wikipedia .org /wiki /Prolog.
9 We shall use the notation “ def= ” to mean “is defined as.”

10 When arity(f ) = n, this is sometimes denoted by writing f/n.
11 We shall use Prolog’s convention of writing variables with capitalized symbols.

https://en.wikipedia.org/wiki/Prolog
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A term t such that var(t) = ∅ is called a ground term. We call T0 the subset of T of ground terms. The depth of a 
FOT t is a value in IN defined inductively as:

depth(t)
def=

{
0 if t ∈ V ∪ �0;
1 + maxn

i=1 depth(ti) if t = f (t1, . . . , tn) with n > 0.

The var and depth notation is extended to a set of terms T ⊂ T as var(T )
def= ⋃

t∈T var(t) and depth(T )
def=

maxt∈T depth(t).

2.2. Substitution

In order to express the notion of instance of a term, the concept of variable substitution σ is formalized as a 
functional mapping σ : V → T that is the identity function everywhere on V except on a finite set of n variables, 
n ∈ IN, written dom(σ )

def= { Xk | Xk 	= σ(Xk) }k=n
k=1 , and called the domain of σ . The range of a substitution σ is the 

set of terms in T defined as ran(σ )
def= { t ∈ T | ∃ X ∈ dom(σ ) such thatσ(X) = t }.

Such a mapping σ from V to T is then extended homomorphically to a mapping σ̄ from T to T as follows:

σ̄ (t)
def=

{
σ(X) if t = X ∈ V
f (σ̄ (t1), . . . , σ̄ (tn)) if t = f (t1, . . . , tn)

(1)

which, because it coincides with σ on V , will be written simply σ rather than σ̄ even when applied to non-variable 
terms. In a similar fashion, substitutions may be applied to equations, as well as to sets of terms or equations in the 
obvious manner.

We shall denote as SUBSTT the set of functions in V → T that are substitutions. Because it is non-identical only 
on a finite number of variables, we can express a substitution σ in SUBSTT as a finite set of “term/variable” pairs of 
the form:

σ
def= { tk/Xk | tk = σ(Xk) and Xk 	= σ(Xk) }

associating each of a finite set of variables with a term not equal to it. Each pair t/X in a substitution’s set notation is 
read “term t is substituted for all occurrences of variable X.”

By tradition, rather than the prefix parenthesized notation usually used for functional application, substitution 
application to a term is written in postfix notation; viz., tσ instead of σ(t). Thus, as defined by Expression (1), a 
substitution σ is a function in T → T mapping a term t into another one noted tσ , called its (σ -)instance, obtained 
after replacing all occurrences in t (if any) of variables in dom(σ ), the domain of the substitution, by the term 
associated with this variable by σ . If var(ran(σ )) = ∅, σ is called a ground substitution, and for any term t in T , 
tσ ∈ T0 and is called a ground instance of t .

We define the composition of two substitutions σ ∈ SUBSTT and θ ∈ SUBSTT seen as finite sets of non-identical 
term/variable pairs as the set of pairs written as σθ and defined in terms of σ and θ as:

σθ
def= ({ tθ/X | t/X ∈ σ } \ {X/X | X ∈ dom(σ ) })

∪(
θ \ {u/Y | Y ∈ dom(σ ) }).

(2)

For terminology and proofs of formal properties of FOT substitutions as defined above and used in the remainder 
of this article, please refer to Appendix A.

3. First-order term subsumption lattice

The lattice-theoretic properties of FOTs as data structures were initially and independently studied by Reynolds 
(in [5]) and Plotkin (in [35] and [6]). They noted that the set T is preordered by term subsumption (denoted as ‘�’); 
viz., t � t ′ (and we say: “t ′ subsumes t”) iff there exists a variable substitution σ ∈ SUBSTT such that t ′σ = t . Two 
FOTs t and t ′ are considered “equal up to variable renaming” (denoted as t � t ′) whenever both t � t ′ and t ′ � t . 
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Fig. 1. Subsumption lattice operations.

Then, the quotient set of first-order terms modulo variable renaming augmented with a bottom element T/� ∪ {⊥T }
has a lattice structure for subsumption. It has a least element ⊥T that corresponds to no term in T , since there exists 
no term that is an instance of all terms. It has a top element which is the set of all variables V , since V is the class of 
any variable modulo renaming.

Unification corresponds to the greatest lower bound (glb) operation. This is the case also for failure of unification 
as in this case the glb operation results in ⊥T . Given two FOTs t1 and t2, unifying them is seeking to compute a 
most general substitution of their variables σ such that: t1σ = t2σ .12 Such a substitution, when one exists, is not 
unique since any less general substitution verifies the equation; indeed, then t1σθ = t2σθ for any θ ∈ SUBSTT . We 
want only the most general such substitution. That is, for any other substitution θ ∈ SUBSTT such that t1θ = t2θ , then 
necessarily θ � σ . This is why it is called the Most General Unifier (mgu) of t1 and t2 [7]. If no such substitution 
exists, unification fails and returns ⊥T as the glb of t1 and t2, and no substitution. Formally, this is equivalent to 
instantiating the two terms with a bottom substitution ⊥SUBSTT

that is added to SUBSTT . This new substitution is a 
zero element in the quotient monoid of substitutions with composition. Namely, for all σ ∈ SUBSTT , σ⊥SUBSTT

=
⊥SUBSTT

σ = ⊥SUBSTT
; which implies that ⊥SUBSTT

� σ for all σ ∈ SUBSTT . From this, it follows necessarily that, 
for all t ∈ T , t⊥SUBSTT

= ⊥T . Thus, when t1 and t2 are not unifiable, mgu(t1, t2) = ⊥SUBSTT
.

The dual operation, generalization of two terms, yields a term that is their least upper bound (lub) for subsumption. 
That is, it finds the most specific term t , and two most general substitutions σ1 and σ2 such that ti = tσi for i =
1, 2. Importantly, unlike unification, generalization cannot fail. This is because two term structures having different 
functors, or two unequal terms one of which is a variable, are always generalizable into a new variable (which may be 
construed as “anything”). Also, generalization yields two substitutions rather than just one like for unification. This is 
because a variable in the generalizing term t may correspond to two different instantiations in t1 and t2. Unification, 
on the other hand, seeks the same instantiation for all the variables in t1 and t2 to compute their most general common 
instance.

This can be summarized as the lattice diagram shown in Fig. 1. In this diagram, given a pair of terms 〈t1, t2〉, the 
pair of substitutions 〈σ1, σ2〉 are their respective most general generalizers, and the substitution σ is the pair’s most 
general unifier (mgu).

Example 1. [FOT lattice operations] Consider the terms t1 and t2 defined as:

t1
def= f (a,g(X1, b), Y1, g(a,Y1)),

t2
def= f (X2, Y2, g(X2, g(X2, b)), g(X2, g(a,Z2))).

Their most general unifier mgu(t1, t2) is the substitution σ given by:

σ = {a/X2, g(X1, b)/Y2, g(a, g(a, b))/Y1, g(a, b)/Z2 }
and so their greatest lower bound glb(t1, t2) = t is given by:

t = t1σ = t2σ = f (a,g(X1, b), g(a, g(a, b)), g(a, g(a, g(a, b)))).

12 See Appendix A, First-Order Term Substitutions.
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Fig. 2. FOT unification as a constraint.

TERM DECOMPOSITION VARIABLE ERASURE

E ∪ {f (s1, . . . , sn)
.= f (t1, . . . , tn) }

E ∪ { s1
.= t1, . . . , sn

.= tn } [n ≥ 0] E ∪ {X
.= X }

E

VARIABLE ELIMINATION EQUATION ORIENTATION

E ∪ {X
.= t }

E[X← t] ∪ {X
.= t }

[
X /∈ var(t)
X occurs in E

]
E ∪ { t

.= X }
E ∪ {X

.= t } [t /∈ V]

Fig. 3. Herbrand-Martelli-Montanari unification rules.

Dually, their least upper bound lub(t1, t2) = t is given by t = f (X, Y, Z, g(U, V )), with their most general gener-
alizers 〈σ1, σ2〉 such that:

t1 = tσ1 with σ1 = {a/X,g(X1, b)/Y,Y1/Z,a/U,Y1/V }
t2 = tσ2 with σ2 = {X2/X,Y2/Y,g(X2, g(X2, b))/Z,X2/U,g(a,Z2)/V }.

Next, we formalize these lattice operations on FOTs by specifying them as declarative constraint normalization.

3.1. Unification rules

Fig. 2 illustrates FOT unification as a commutative diagram constraint. Solving such a constraint is done by 
a system of equation-normalization rules that we shall call Herbrand-Martelli-Montanari [1], [2]. These rules are 
given in Fig. 3. Each rule can be proven correct as a solution-preserving transformation of a set of equations. In 
Rule VARIABLE ELIMINATION, the notation E[X← t] denotes the set of equations E in which all occurrences of 
variable X have been replaced with the term t .

Thus, we can use these rules to unify two FOTs t1 and t2, starting with the singleton set of equations E def= { t1 .=
t2 }.13 Then, we transform this set of equations using any applicable rule in any order until none applies. This always 
terminates into a finite set of equations E′. If all the equations in E′ are of the form X .= t with X occurring nowhere 
else in E′, then this is a most general unifying substitution (up to consistent variable renaming) σ def= { t/X | X .= t ∈
E′ } solving the original equation (i.e., t1σ = t2σ ); otherwise, there is no solution.

In the rules of Fig. 3, Rule VARIABLE ELIMINATION has the side condition X /∈ var(t) to prevent cyclic terms 
(such as, e.g., X = f (X)) whose presence indicates no FOT solutions. This condition could be omitted if wished, 
thus extending the set of FOTs and solutions of equations to rational FOTs—also called “infinite trees” (see, e.g., 
[36], [37], [38]).

13 In such equations, we use the notation t1
.= t2 not to confuse it with the equality symbol “=” (at the meta-level).
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Example 2 (FOT unification). Consider the equation set 
{
t1

.= t2
}

for the terms t1 and t2 of Example 1:{
f (a,g(X1, b), Y1, g(a,Y1))

.= f (X2, Y2, g(X2, g(X2, b)), g(X2, g(a,Z2)))
}

and let us apply the rules of Fig. 3:

• Rule TERM DECOMPOSITION:{
a

.= X2, g(X1, b)
.= Y2, Y1

.= g(X2, g(X2, b)), g(a,Y1)
.= g(X2, g(a,Z2))

} ;
• Rule EQUATION ORIENTATION to a .= X2:{

X2
.= a,g(X1, b)

.= Y2, Y1
.= g(X2, g(X2, b)), g(a,Y1)

.= g(X2, g(a,Z2))
} ;

• Rule VARIABLE ELIMINATION to X2
.= a:{

X2
.= a,g(X1, b)

.= Y2, Y1
.= g(a, g(a, b)), g(a,Y1)

.= g(a, g(a,Z2))
} ;

• Rule EQUATION ORIENTATION to g(X1, b) .= Y2:{
X2

.= a,Y2
.= g(X1, b), Y1

.= g(a, g(a, b)), g(a,Y1)
.= g(a, g(a,Z2))

} ;
• Rule VARIABLE ELIMINATION to Y1

.= g(a, g(a, b)):{
X2

.= a,Y2
.= g(X1, b), Y1

.= g(a, g(a, b)), g(a, g(a, g(a, b)))
.= g(a, g(a,Z2))

} ;
• Rule TERM DECOMPOSITION to g(a, g(a, g(a, b))) .= g(a, g(a, Z2)):{

X2
.= a,Y2

.= g(X1, b), Y1
.= g(a, g(a, b)), a

.= a,g(a, g(a, b))
.= g(a,Z2)

} ;
• Rule TERM DECOMPOSITION to a .= a:{

X2
.= a,Y2

.= g(X1, b), Y1
.= g(a, g(a, b)), g(a, g(a, b))

.= g(a,Z2)
} ;

• Rule TERM DECOMPOSITION to g(a, g(a, b)) .= g(a, Z2):{
X2

.= a,Y2
.= g(X1, b), Y1

.= g(a, g(a, b)), a
.= a,g(a, b)

.= Z2
} ;

• Rule TERM DECOMPOSITION to a .= a:{
X2

.= a,Y2
.= g(X1, b), Y1

.= g(a, g(a, b)), g(a, b)
.= Z2

} ;
• Rule EQUATION ORIENTATION to g(a, b) .= Z2:{

X2
.= a,Y2

.= g(X1, b), Y1
.= g(a, g(a, b)),Z2

.= g(a, b)
}
.

This last equation set is in normal form defining the substitution

σ = {a/X2, g(X1, b)/Y2, g(a, g(a, b))/Y1, g(a, b)/Z2 }.
So the greatest lower bound t def= glb(t1, t2) of:

t1
def= f (a,g(X1, b), Y1, g(a,Y1))

and:

t2
def= f (X2, Y2, g(X2, g(X2, b)), g(X2, g(a,Z2)))

is given by:

t = t1σ = t2σ = f (a,g(X1, b), g(a, g(a, b)), g(a, g(a, g(a, b)))).
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Fig. 4. FOT generalization judgment validity as a constraint.

3.2. Generalization rules

Next, we present a set of constraint normalization rules for FOT generalization which are equivalent to the 
procedural method of Reynolds and Plotkin. The advantage of specifying this operation in this manner rather than 
procedurally as done originally by Reynolds and Plotkin is that each rule or axiom relates a pair of prior substitutions 
to a pair of posterior substitutions based only on local syntactic-pattern properties of the terms to generalize, and this 
without resorting to side-effects on global structures. In this way, the terms and substitutions involved are derived as 
solutions of logical syntactic constraints. In addition, correctness of the so-specified operation is made much easier to 
establish since we only need to prove each rule’s correctness independently of that of the others. Finally, the rules also 
provide an effective means for the derivation of an operational semantics for the so-specified operation by constraint 
solving, without need for control specification as any applicable rule may be invoked in any order.14

Definition 1 (GENERALIZATION JUDGMENT). A generalization judgment is an expression of the form:

(
σ1
σ2

)
�

(
t1
t2

)
t

(
θ1
θ2

)
(3)

where σi ∈ SUBSTT , θi ∈ SUBSTT , ti ∈ T (i = 1, 2), and t ∈ T .

Informally, it reads: “given two prior substitutions σ1 and σ2, the term t is the least generalization of terms t1σ1

and t2σ2 with posterior substitutions θ1 and θ2.” How all the constituents of such a generalization judgment must be 
related to constitute what we shall consider a valid judgment, is defined next.

Definition 2 (GENERALIZATION JUDGMENT VALIDITY). A FOT generalization judgment such as (3) is said to be 
valid whenever, for i = 1, 2:

1. tiσi = tθi ; and,
2. ∃ δi ∈ SUBSTT s.t. ti = tδi and θi = δiσi (i.e., ti � t and θi � σi ).

Fig. 4 illustrates the validity of a FOT generalization judgment as a commutative diagram constraint.

14 Such as the Herbrand-Martelli-Montanari rules w.r.t. to Robinson’s procedural unification algorithm.
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e 
Definition 3 (TRIVIAL FOT GENERALIZATION JUDGMENT). The FOT generalization judgment:

true
def=

( ∅
∅

)
�

(
t

t

)
t

( ∅
∅

)
(4)

where t is an arbitrary term in T is called a “trivial FOT generalization judgment.”

Lemma 1 (TRIVIAL FOT GENERALIZATION JUDGMENT VALIDITY). The trivial FOT generalization judgment 
true is always valid.

Proof. This follows from Definition 2 since in this particular case the equations of the first condition of Definition (2)
becomes t = t , which is trivially true for any term t ∈ T . �

Contrary to unification normalization rules which are expressed as conditional rewrite rules whereby a prior form 
(the “numerator”) is related to a posterior form (the “denominator”), these normalization rules are more naturally 
rendered as (conditional) Horn clauses of judgments. This is formally as convenient as rewrite rules since a Prolog-lik
operational semantics can then readily provide an effective interpretation.15 Thus, a generalization rule is of the form:

[φ]
J1 . . . Jn

J

(5)

where φ is an optional side meta-condition, and J, J1, . . . , Jn are judgments, and it reads, “whenever the side condition 
φ holds, if all the n antecedent judgments J1, . . . , Jn are valid, then the consequent judgment J is also valid.” Such a 
generalization rule without a specified antecedent (a “numerator”) is called a “generalization axiom.” Such an axiom 
is said to be valid iff its consequent (the “denominator”) is valid whenever its optional side condition holds. It is 
equivalent to a rule where the only antecedent is the trivial generalization judgment true.

Definition 4 (GENERALIZATION RULE CORRECTNESS). A generalization rule such as Rule (5) is correct iff Jk is a 
valid judgment for all k = 1, . . . , n implies that J is a valid judgment, whenever the side condition φ holds.

Given t1 and t2 two FOTs, in order to find the most specific term t and most general substitutions σi , i = 1, 2, such 
that tσi = ti , i = 1, 2, one needs to establish the generalization judgment:( ∅

∅
)

�
(

t1
t2

)
t

(
σ1
σ2

)
. (6)

In other words, this expresses the upper half of Fig. 1 whereby t = lub(t1, t2), with most general substitutions σ1 and 
σ2. We give a complete set of normalization axioms and rule for generalization for all syntactic patterns in Fig. 5.

Rule “EQUAL FUNCTORS” specifies a sequence of judgments constrained as a sequence. It does so exactly as a 
so-called “Definite Clause Grammar” (or DCG) rule.16 This rule uses an “unapply” operation (‘ ↑ ’) on a pair of 
terms (t1, t2) given a pair of substitutions (σ1, σ2). It may be conceived as (and in fact is) the result of simultaneously 
“unapplying” σi from ti into a common variable X only if such X is bound to ti by σi , for i = 1, 2. If there is no such 
a variable, it is the identity. This operation avoids the introduction of a new variable when generalizing two already 
generalized terms. Formally, this is defined as:

15 This operational semantics is also efficient because it does not need backtracking as long as the complete set of conditions of a ruleset covers 
all but mutually exclusive syntactic patterns.
16 A DCG rule (see https://www .metalevel .at /prolog /dcg) is a Horn rule expressing constraints on a sequence of words constituting 
a sentence. The judgment sequencing in the rules we define uses exactly the same kind of constraint: the posterior pair of substitutions of a judgment 
must match the prior pair of substitutions of the judgment following it. Still, contrary to a DCG rule that constrains an ordered sequence of 
constituents, the order of constraints on the antecedent judgments on the arguments is arbitrary. We choose the same order as that of the arguments 
as it is the most natural, but it could be any of its permutations as long as the sequence’s posterior/prior constraints are consistent with the chosen 
argument ordering.

https://www.metalevel.at/prolog/dcg
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EQUAL VARIABLES VARIABLE-TERM

(
σ1
σ2

)
�

(
X

X

)
X

(
σ1
σ2

) [t1 ∈ V or t2 ∈ V; t1 	= t2; X is new](
σ1
σ2

)
�

(
t1
t2

)
X

(
σ1{ t1/X }
σ2{ t2/X }

)

UNEQUAL FUNCTORS

[m ≥ 0, n ≥ 0; m 	= n or f 	= g; X is new](
σ1
σ2

)
�

(
f (s1, . . . , sm)

g(t1, . . . , tn)

)
X

(
σ1{f (s1, . . . , sm)/X }
σ2{g(t1, . . . , tn)/X }

)

EQUAL FUNCTORS

[n ≥ 0](
σ1
σ2

)
�

(
s1
t1

)
↑

(
σ1
σ2

)
u1

(
σ 1

1
σ 1

2

)
. . .

(
σn−1

1
σn−1

2

)
�

(
sn
tn

)
↑

(
σn−1

1
σn−1

2

)
un

(
σn

1
σn

2

)
(

σ1
σ2

)
�

(
f (s1, . . . , sn)

f (t1, . . . , tn)

)
f (u1, . . . , un)

(
σn

1
σn

2

)

Fig. 5. Generalization axioms and rule.

(
t1
t2

)
↑

(
σ1
σ2

)
def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
X

X

)
if ∃X ∈ V, ti = Xσi, for i = 1,2;

(
t1
t2

)
otherwise.

(7)

Note also that Rule “EQUAL FUNCTORS” is defined for n ≥ 0. For n = 0, it becomes the following axiom for any 
constant c and any two substitutions σi , i = 1, 2:(

σ1
σ2

)
�

(
c

c

)
c

(
σ1
σ2

)
. (8)

Referring to the axioms (seen as rules with no antecedent) and the rule of Fig. 5, we first establish the following 
fact.

Lemma 2. In Rule EQUAL FUNCTORS of Fig. 5, taking σ 0
i

def= σi , for i = 1, 2, the substitutions σ 0
i , . . . , σn

i are such 
that, for all k, 1 ≤ k ≤ n, σk

i � σk−1
i , for i = 1, 2.

Proof. We proceed by induction on the depth d of the terms; i.e., we consider only terms of depth less than or equal 
to d .

1. d = 0: This limits terms to constants and variables. The inequality between prior and posterior substitutions 
is verified for the three first axioms: the posterior substitutions are all either equal to the corresponding prior 
substitutions or of the form θ = σ {t/X} where X is a new variable and σ is the corresponding prior substitution; 
that is, θ � σ . As well, when limited to terms of 0 depth, Rule EQUAL FUNCTORS becomes the single judgment 
Axiom (8), which preserves the substitutions.

2. d > 0: Let us assume that this is true for all terms of depth strictly less than d . We now consider two terms 
at least one of which is of depth d . For Axiom EQUAL VARIABLES, the same argument given above for the 
case d = 0 justifies concluding that θ � σ , since then θ = σ . For Axiom VARIABLE-TERM and Axiom UNEQUAL 
FUNCTORS, this true for terms t1 and t2 of any depth since the posterior substitutions are both less general than the 
corresponding prior substitutions. As for Rule EQUAL FUNCTORS, there are two possible cases for the generalized 
terms in its consequent (the “denominator”):
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(a) n = 0: then, the conclusion follows true by Axiom (8).
(b) n ≥ 0: since the unapply operation (7) yields either a pair of terms having the same depth as the corresponding 

terms it is applied to, or 0 (because it can only be a new variable), we can say that all the terms of unapplied 
pairs of arguments in the judgments of the rule’s antecedent (the “numerator”) are of depth at most d − 1. 
Therefore, all the terms in the n antecedent judgments verify our inductive hypothesis; namely: σk

i � σk−1
i , 

for all k = 1, . . . , n. Then, by transitivity of the “more general” ordering on substitutions, the conclusion 
follows.

Hence, this establishes that, for both i = 1, 2, σ k
i is monotonically refined from more general to less as k increases 

from 1 to n. �
From this lemma, the following corollary follows by transitivity of the � preorder on substitutions.

Corollary 1. In Rule EQUAL FUNCTORS, the substitutions σk
i are such that, for all k, 1 ≤ k ≤ n, σn

i � σn−1
i � . . . �

σ 1
i � σ 0

i , for i = 1, 2.

It is also verified in the proof of the following theorem.

Theorem 1. The axioms and the rule of Fig. 5 are correct.

Proof. We must show that they verify the conditions of Definition 4. For each of the three axioms of Fig. 5 this means 
that they must be always valid as judgments, verifying the conditions of Definition 2, which are:

– Condition 1: tiσi = tθi ,
– Condition 2: ti � t and θi � σi

for i = 1, 2, for a generalization judgment such as (3) in Definition 1. These conditions for the axioms and the rule of 
Fig. 5 translate as the following.

Condition 1.

– EQUAL VARIABLES: it amounts to the two identities Xσi = Xσi , i = 1, 2;
– VARIABLE-TERM: it amounts to the two identities tiσi = tiσi , i = 1, 2;
– UNEQUAL FUNCTORS: it amounts to the two equations:

f (s1, . . . , sn)σ1 = Xσ1{f (s1, . . . , sn)/X },
g(t1, . . . , tn)σ2 = Xσ2{g(t1, . . . , tn)/X },

which, because X is a new variable that does not occur in either σ1 or σ2, can be simplified to the identities:

f (s1, . . . , sn) = f (s1, . . . , sn),

g(t1, . . . , tn) = g(t1, . . . , tn).

Condition 2. All threes cases are tautologies:

– EQUAL VARIABLES: X � X and σi � σi , i = 1, 2;
– VARIABLE-TERM: ti � X and σi{ti/X} � σi , i = 1, 2;
– UNEQUAL FUNCTORS:

f (s1, . . . , sn) � X and σ1{f (s1, . . . , sn)/X } � σ1,

g(s1, . . . , sn) � X and σ2{g(s1, . . . , sn)/X } � σ2.

As for Rule EQUAL FUNCTORS, as required by Definition 4, we must show that if all the judgments in the numerator 
are valid, then the judgment in the denominator must be valid too. Let us proceed by induction on the argument-
position number k, for k = 1, . . . , n.
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For n = 0, this rule becomes Axiom (8), a judgment that is trivially valid since the conditions of Definition 2
become the identity c = c, the term inequality c � c, and the substitution inequalities σi � σi , for i = 1, 2.

For n > 0, a fuzzy judgment in the rule’s antecedent, for each argument-position k = 1, . . . , n, is of the form:(
σk−1

1
σk−1

2

)
�

(
sk
tk

)
↑

(
σk−1

1
σk−1

2

)
uk

(
σk

1
σk

2

)

that is, the form given by Definition 1, whose formal validity conditions are given by Definition 2, which in the above 
case is equivalent to:(

vk
1

vk
2

)
def=

(
sk
tk

)
↑

(
σk−1

1
σk−1

2

)
and

(
σk−1

1
σk−1

2

)
�

(
vk

1
vk

2

)
uk

(
σk

1
σk

2

)
.

Let us now assume that all the judgments in the rule’s antecedent are valid. That is, for k = 1, . . . , n, for i = 1, 2
(taking σ 0

i

def= σi ):

– Condition 1 of Definition 2 holds:

ukσ
k
i = vk

i σ
k−1
i ; (9)

– Condition 2 of Definition 2 holds:

vk
i � ukandσk

i � σk−1
i . (10)

Condition 1. By Equation (7), this means that for all k = 1, . . . , n:

(
vk

1
vk

2

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
X

X

)
if sk = Xσk−1

1 and tk = Xσk−1
2 for some variableX;

(
sk
tk

)
otherwise.

In other words, for each k = 1, . . . , n, there are two cases:

1. sk = Xσk−1
1 and tk = Xσk−1

2 for some variable X; then, by Axiom EQUAL VARIABLES, we must have uk = X, 
and σk

i = σk−1
i for i = 1, 2; and therefore Equations (9) entail:

skσ
k−1
1 = Xσk−1

1 σk−1
1 = Xσk−1

1 = Xσk
1 = ukσ

k
1

tkσ
k−1
2 = Xσk−1

2 σk−1
2 = Xσk−1

2 = Xσk
2 = ukσ

k
2 .

2. There is no such variable X; in which case, Equations (9) also become:

skσ
k−1
1 = ukσ

k
1

tkσ
k−1
2 = ukσ

k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in the axioms, for any 
argument position k, 1 ≤ k ≤ n, we have:

σk
i = σ 0

i { τ1/X1 } . . . { τ�/X� }
where each of the variables X1 . . .X�, with 0 ≤ �, is a variable possibly introduced in the validity of the judgment 
corresponding to some argument preceding position k. Therefore, for any argument position k, 1 ≤ k ≤ n:

skσ
0
1 = skσ

1
1 = . . . = skσ

k−1
1

tkσ
0
2 = tkσ

1
2 = . . . = tkσ

k−1
2

as well as:
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ukσ
k
1 = ukσ

k+1
1 = . . . = ukσ

n
1

ukσ
k
2 = ukσ

k+1
2 = . . . = ukσ

n
2

because σk
i affects only new variables introduced in some axioms verifying the validity of a subterm of argument at 

position k; and because the same variable in uk is always instantiated by the same term, and thus as well all at higher 
argument positions.

This means that in both cases we have, for all k = 1, . . . , n:

skσ
0
1 = ukσ

n
1 ,

tkσ
0
2 = ukσ

n
2 .

Therefore, for k = n:

f (s1, . . . , sn)σ
0
1 = f (u1, . . . , un)σ

n
1 ,

f (t1, . . . , tn)σ
0
2 = f (u1, . . . , un)σ

n
2 .

This proves Condition 1.
Condition 2. By transitivity of the ≤ ordering on approximation degrees and that of the � preorder on SUBSTT , 

both parts of Condition 2 of our induction hypothesis (10) implies that f (s1, . . . , sn) � f (u1, . . . , un), f (t1, . . . , tn) �
f (u1, . . . , un) and σi � σn

i , for i = 1, 2, which completes the proof. �
In particular, with empty prior substitutions, we obtain the following corollary.

Corollary 2 (FOT GENERALIZATION). Whenever the judgment( ∅
∅

)
�

(
t1
t2

)
t

(
σ1
σ2

)
is valid, then tσi = ti , for i = 1, 2.

Example 3 (Generalization of ground FOTs). Let us now consider the terms f (a, g(b, a), b)) and f (b, g(a, b), a)).

• Let us find term t and substitutions σ1 and σ2 such that tσ1 = f (a, g(b, a), b)) and tσ2 = f (b, g(a, b), a); i.e., 
let us try to solve the following constraint problem:( ∅

∅
)

�
(

f (a,g(b, a), b)

f (b, g(a, b), a)

)
t

(
σ1
σ2

)
• By Rule EQUAL FUNCTORS, we must have t = f (u1, u2, u3) since:( ∅

∅
)

�
(

f (a,g(b, a), b)

f (b, g(a, b), a)

)
f (u1, u2, u3)

(
σ1
σ2

)
where:

– u1 is the generalization of 
(

a

b

)
↑

( ∅
∅

)
; that is of a and b; and by Rule UNEQUAL FUNCTORS:

( ∅
∅

)
�

(
a

b

)
X

( {a/X }
{b/X }

)
and therefore u1 = X;

– u2 = g(v1, v2) is the generalization of 
(

g(b, a)

g(a, b)

)
↑

( {a/X }
{b/X }

)
; that is, of g(b, X) and g(a, X); and by Rule

EQUAL FUNCTORS:

∗ v1 is the generalization of 
(

b

a

)
↑

( {a/X }
{b/X }

)
; that is, of b and a; and by Rule UNEQUAL FUNCTORS:

( {a/X }
{b/X }

)
�

(
b

a

)
Y

( {a/X,b/Y }
{b/X,a/Y }

)
so v1 = Y ;
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∗ v2 is the generalization of 
(

a

b

)
↑

( {a/X,b/Y }
{b/X,a/Y }

)
; that is, of X and X; and by Rule EQUAL VARIABLES:

( {a/X,b/Y }
{b/X,a/Y }

)
�

(
X

X

)
X

( {a/X,b/Y }
{b/X,a/Y }

)
so v2 = X;

therefore:( {a/X }
{b/X }

)
�

(
g(b,X)

g(a,X)

)
g(Y,X)

( {a/X,b/Y }
{b/X,a/Y }

)
so u2 = g(Y,X);

– u3 is the generalization of 
(

b

a

)
↑

( {a/X,b/Y }
{b/X,a/Y }

)
; that is, of Y and Y ; and by Rule EQUAL VARIABLES:

( {a/X,b/Y }
{b/X,a/Y }

)
�

(
Y

Y

)
Y

( {a/X,b/Y }
{b/X,a/Y }

)
so u3 = Y ;

• therefore, this yields:( ∅
∅

)
�

(
f (a,g(b, a), b)

f (b, g(a, b), a)

)
f (X,g(Y,X),Y )

( {a/X,b/Y }
{b/X,a/Y }

)
that is t = f (X, g(Y, X), Y) with σ1 = { a/X, b/Y } such that tσ1 = f (a, g(b, a), b), and σ2 = { b/X, a/Y }
such that tσ2 = f (b, g(a, b), a).

Example 4 (Generalization of non-ground FOTs). Let us apply the FOT generalization axioms and rules of Fig. 5
to the following FOTs:

t1
def= h(f (a,X1), g(X1, b), f (Y1, Y1)), and t2

def= h(X2,X2, g(c, d)).

• Let us find term t and substitutions σ1 and σ2 such that tσ1 = h(f (a, X1), g(X1, b), f (Y1, Y1)) and tσ2 =
h(X2, X2, g(c, d)); that is, let us try to solve the constraint problem:( ∅

∅
)

�
(

h(f (a,X1), g(X1, b), f (Y1, Y1))

h(X2,X2, g(c, d))

)
t

(
σ1
σ2

)
.

• By Rule EQUAL FUNCTORS, we must have t = h(u1, u2, u3) since:( ∅
∅

)
�

(
h(f (a,X1), g(X1, b), f (Y1, Y1))

h(X2,X2, g(c, d))

)
h(u1, u2, u3)

(
σ1
σ2

)
where:

– u1 is the generalization of 
(

f (a,X1)

X2

)
↑

( ∅
∅

)
; that is of f (a, X1) and X2; and by Rule VARIABLE-TERM:

( ∅
∅

)
�

(
f (a,X1)

X2

)
X

( {f (a,X1)/X }
{X2/X }

)
so u1 = X;

– u2 is the generalization of 
(

g(X1, b)

X2

)
↑

( {f (a,X1)/X }
{X2/X }

)
; that is, of g(X1, b) and X2; and by Rule

VARIABLE-TERM:( {f (a,X1)/X }
{X2/X }

)
�

(
g(X1, b)

X2

)
Y

( { . . . , g(X1, b)/Y }
{ . . . ,X2/Y }

)
so u2 = Y ;

– u3 is the generalization of 
(

f (Y1, Y1)

g(c, d)

)
↑

( {f (a,X1)/X,g(X1, b)/Y }
{X2/X,X2/Y }

)
; that is, of f (Y1, Y1) and g(c, d); 

and by Rule UNEQUAL FUNCTORS:( {f (a,X1)/X,g(X1, b)/Y }
{X2/X,X2/Y }

)
�

(
f (Y1, Y1)

g(c, d)

)
Z

( { . . . , f (Y1, Y1)/Z }
{ . . . , g(c, d)/Z }

)
and so u3 = Z;
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• therefore, this yields:( ∅
∅

)
�

(
h(f (a,X1), g(X1, b), f (Y1, Y1))

h(X2,X2, g(c, d))

)
h(X,Y,Z)

( { . . . , f (Y1, Y1)/Z }
{ . . . , g(c, d)/Z }

)
that is, t = h(X, Y, Z) with σ1 = { f (a, X1)/X, g(X1, b)/Y, f (Y1, Y1)/Z } such that tσ1 = h(f (a, X1),

g(X1, b), f (Y1, Y1)), and: σ2 = { X2/X, X2/Y, g(c, d)/Z } such that tσ2 = h(X2, X2, g(c, d)).

4. Fuzzy lattice operations on first-order terms

For the formal Fuzzy Algebra notation and terminology that we use in the remainder of this work, see Appendix C.

4.1. Fuzzy unification

4.1.1. Sessa’s weak unification
A fuzzy unification operation on FOTs, dubbed “weak unification,” was proposed by Maria Sessa in [12] which 

consists in normalizing fuzzy equations between conventional FOTs modulo a similarity relation ∼ over functor 
symbols [39]. This similarity relation is then homomorphically extended to one over all FOTs.

Example 5. [Functor Similarity Matrix] Given a similarity relation ∼ (i.e., a fuzzy equivalence) on a finite signature 
� = ∪n�n, as explained in [39], we employ the notation x ∼d y to denote that the similarity degree between x and y as 
defined by the similarity relation ∼ is d . The similarity relation ∼ can be represented as a matrix in � × � → [0, 1]. 
For example, if the signature � is the union of �0 = { a, b, c, d }, �2 = { f, g }, �3 = { h }, and �n = ∅ otherwise 
(n = 1 or n ≥ 4), and with a similarity that is the reflexive, symmetric, and transitive closure of the pairs a ∼0.7 b, 
c ∼0.6 d , and f ∼0.9 g. This corresponds to the similarity matrix whose rows and columns are indexed by elements of 
�:

∼ def=

a b c d f g h

a 1 0.7 0 0 0 0 0
b 0.7 1 0 0 0 0 0
c 0 0 1 0.6 0 0 0
d 0 0 0.6 1 0 0 0
f 0 0 0 0 1 0.9 0
g 0 0 0 0 0.9 1 0
h 0 0 0 0 0 0 1

Following Maria Sessa’s formal setting [12], we assume given such a similarity relation between functors of equal 
arity (i.e., which admit the same number of arguments). Upon this basis, this similarity can be extended homomorphi-
cally from functors to FOTs as follows. Let ∼ be a similarity on functors of equal arity in a signature �.

Definition 5 (SESSA’S FOT SIMILARITY). The fuzzy relation ∼T : T 2

�,V → [0, 1] is defined inductively on T�,V as 
follows:

1. ∀ X ∈ V, X ∼T
1 X;

2. ∀ X ∈ V, ∀ t ∈ T , such that X 	= t, X ∼T
0 t and t ∼T

0 X;

3. if f ∈ �n and g ∈ �n with f ∼α g, and if si ∈ T and ti ∈ T are such that si ∼T
αi

ti for i = 1, . . . , n, then:

f (s1, . . . , sn) ∼T
α∧∧n

i=1 αi
g(t1, . . . , tn). (11)

Theorem 2. The relation ∼T defined by Definition 5 is a similarity relation on the set of FOTs T�,V .

Proof. See proof of more general Theorem 3 below, as this is a particular case of that theorem where every similar 
pairs of functors have same arity and every argument position mapping is the identity. �
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Since from the above definition of similarity ∼T extends homomorphically a similarity ∼ on the functors to all 
FOTs in T , we shall also assimilate ∼T to ∼. This allows to define formally fuzzy subsumption among FOTs as the 
fuzzy relation � on T that can be verified to be a preorder (modulo variable renaming) as a corollary of Theorem 2.

Definition 6 (FUZZY FOT SUBSUMPTION). For all terms t1 ∈ T and t2 ∈ T , t1 is said to be subsumed by t2 for some 
α in [0, 1] (and this is written t1 �α t2) if and only if there exists a substitution σ ∈ SUBSTT such that t1 ∼α t2σ .

Note that, for the identity similarity on the signature and α = 1, this reduces to the classical definition of term 
subsumption, as expected.

In Definition 6, the more specific term t1 is then called a fuzzy instance of term t2 realized with substitution σ

at approximation degree α. It comes also that the “more general” relation on FOT substitutions extends to a “fuzzy 
more general” fuzzy relation on substitutions, which can also readily be verified to be a fuzzy preorder on SUBSTT
as a corollary of Theorem 2. It is formally equivalent to the relation defined in [12].17

Definition 7 (FUZZY “MORE GENERAL” ORDERING ON FOT SUBSTITUTIONS). If σ1 and σ2 are two substitutions 
in SUBSTT and α in [0, 1], we say that σ1 is less general than σ2 at approximation degree α (and this is written 
σ1 �α σ2), if and only if for any term t ∈ T , it is true that tσ1 �α tσ2 as terms.

Also as expected, note that for the identity similarity on the signature and α = 1, this reduces to the classical “more 
general than” ordering on substitutions.

The following fuzzy relation defined on SUBSTT can also be verified to be a similarity as a corollary of Theo-
rem 2.18

Definition 8 (FOT SUBSTITUTION SIMILARITY). Given an approximation degree α in [0, 1], two substitutions σ
and θ in SUBSTT are said to be α-similar (written σ ∼α θ ) iff tσ ∼α tθ for all FOT t in T .

Therefore, referring to Definition 6 of fuzzy FOT subsumption, it comes as a fact that:

Lemma 3. For any two substitutions σ and θ in SUBSTT and approximation degree α in [0, 1], σ �α θ iff σ ∼α θδ

for some substitution δ.

Proof. Stating that σ �α θ , by Definition 7, is equivalent to stating that tσ �α tθ , for any t ∈ T . By Definition 6, 
this is equivalent to stating that for all term t , tσ ∼α tθδ, for some substitution δ; namely, again by Definition 7, that 
σ ∼α θδ. �

The following two facts regarding the fuzzy term subsumption relation on terms and the fuzzy “more general” 
relation on substitutions will be useful later in proof arguments.

Lemma 4. For any two approximation degrees α and β in [0, 1], for any terms t1, t2, and t3 in T , if t1 �α t2 and 
t2 �β t3, then t1 �α∧β t3.

Proof. Let t1 �α t2 and t2 �β t3; this is, by definition, equivalent to t1 ∼α t2σ , for some σ ∈ SUBSTT , and t2 ∼β t3θ , 
for some θ ∈ SUBSTT . However, for any set S, any pair 〈x, y〉 in S2, and any similarity ∼: S2 → [0, 1], if x ∼α y

for some α in[0, 1], then x ∼β y for all β ∈ [0, α].19 This, the fact that α ∧ β ≤ α and α ∧ β ≤ β , together with our 
assumption, entail then that t1 ∼α∧β t2σ and t2 ∼α∧β t3σ ; which, by transitivity of ∼α∧β , implies that t1 ∼α∧β t3σ ; 
that is, t1 �α∧β t3. �
17 Ref. [12], Page 410, Definition 6.2.
18 A equivalent definition is given in [40].
19 See Appendix C.2.
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Fig. 6. Fuzzy unification as a constraint.

WEAK TERM DECOMPOSITION VARIABLE ERASURE

(E ∪ {f (s1, . . . , sn)
.= g(t1, . . . , tn) })α

(E ∪ { s1
.= t1, . . . , sn

.= tn })α∧β

[
f ∼β g

n ≥ 0

]
(E ∪ {X

.= X })α
Eα

VARIABLE ELIMINATION EQUATION ORIENTATION

(E ∪ {X
.= t })α

(E[X ← t] ∪ {X
.= t })α

[
X /∈ var(t)
X occurs in E

]
(E ∪ { t

.= X })α
(E ∪ {X

.= t })α
[t /∈ V]

Fig. 7. Normalization rules corresponding to Maria Sessa’s “weak unification”.

Corollary 3. For any two approximation degrees α and β in [0, 1], for any substitutions σ1, σ2, and σ3 in SUBSTT , if 
σ1 �α σ2 and σ2 �β σ3, then σ1 �α∧β σ3.

Proof. Let σ1 �α σ2 and σ2 �β σ3; this is, by definition, equivalent to stating that for any term t ∈ T , tσ1 �α tσ2 and 
tσ2 �β tσ3. By Lemma 4, it follows that for any term t ∈ T , tσ1 �α∧β tσ3; that is, σ1 �α∧β σ3. �

Using the definition of similarity between terms in T extending one on functors of equal arity, Sessa proposes to 
extend the FOT unification problem to the following fuzzy unification problem: given two FOTs t1 and t2 in T , 
find the most general substitution σ ∈ SUBSTT and maximum approximation degree α in [0, 1] such that t1σ ∼α t2σ . 
Fig. 6 expresses fuzzy unification as a commutative diagram constraint.

In Fig. 7, we provide a set of declarative rewrite rules for fuzzy unification equivalent to Sessa’s case-based “weak 
unification algorithm” [12]. To simplify the presentation of these rules while remaining faithful to Sessa’s weak 
unification algorithm, it is assumed for now that functor symbols f/m and g/n of different arities m 	= n are never 
similar. This follows Sessa’s assumption for weak unification, which fails on term structures of different arities. (See 
Case (2) of the weak unification algorithm given in [12], Page 413.) Later, we will relax this and allow functors of 
different arities to be similar.

The rules of Fig. 7 transform Eα , a finite conjunctive set E of equations among FOTs along with an associated 
approximation degree α in [0, 1], into E′

α′ , another set of equations E′ at approximation degree α′ in [0, α]. Given 
to solve a fuzzy unification equation s .= t between two FOTs s and t , we start by forming the set { s .= t }1 (i.e., a 
singleton equation set at approximation degree 1), then transform it using any applicable rules in Fig. 7 until either 
the approximation degree of the transformed set of equations is 0 (in which case there is no solution to the original 
equation, not even a fuzzy one), or the final resulting set Eα is a solution at approximation degree α in the form of a 
variable substitution σ def={ t/X | X .= t ∈ E } such that sσ ∼α tσ .
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In [12],20 a transformation rule of a set of equation at approximation degree is considered to be correct when all the 
solutions of the posterior set are also solutions of the anterior set but with a possibly lesser similarity degree, which is 
also our Definition 10.21

Example 6. [FOT fuzzy unification] Taking the functor signature of Example 5, let us consider the fuzzy equation 
set:

{
h(f (a,X1), g(X1, b), f (Y1, Y1))

.= h(X2,X2, g(c, d))
}

1 (12)

and let us apply the rules of Fig. 7:

• Rule WEAK TERM DECOMPOSITION with α = 1 and β = 1:

{
f (a,X1)

.= X2, g(X1, b)
.= X2, f (Y1, Y1)

.= g(c, d)
}

1 ;
• Rule EQUATION ORIENTATION to f (a, X1) 

.= X2 with α = 1:

{
X2

.= f (a,X1), g(X1, b)
.= X2, f (Y1, Y1)

.= g(c, d)
}

1 ;
• Rule VARIABLE ELIMINATION to X2

.= f (a, X1) with α = 1:

{
X2

.= f (a,X1), g(X1, b)
.= f (a,X1), f (Y1, Y1)

.= g(c, d)
}

1 ;
• Rule WEAK TERM DECOMPOSITION to g(X1, b) .= f (a, X1) with α = 1 and β = .9:

{
X2

.= f (a,X1),X1
.= a, b

.= X1, f (Y1, Y1)
.= g(c, d)

}
.9 ;

• Rule VARIABLE ELIMINATION to X1
.= a with α = .9:

{
X2

.= f (a, a),X1
.= a, b

.= a,f (Y1, Y1)
.= g(c, d)

}
.9 ;

• Rule WEAK TERM DECOMPOSITION to b .= a with α = .9 and β = .7:

{
X2

.= f (a, a),X1
.= a,f (Y1, Y1)

.= g(c, d)
}
.7 ;

• Rule WEAK TERM DECOMPOSITION to f (Y1, Y1) 
.= g(c, d) with α = .7 and β = .9:

{
X2

.= f (a, a),X1
.= a,Y1

.= c,Y1
.= d

}
.7 ;

• Rule VARIABLE ELIMINATION to Y1
.= c with α = .7:

{
X2

.= f (a, a),X1
.= a,Y1

.= c, c
.= d

}
.7 ;

• Rule WEAK TERM DECOMPOSITION to c .= d with α = .7 and β = .6:

{
X2

.= f (a, a),X1
.= a,Y1

.= c
}
.6 .

This last equation set is in normal form with similarity degree .6 and defines the substitution σ given by σ =
{ a/X1, c/Y1, f (a, a)/X2 }, so that:

t1σ = h(f (a, a), g(a, b), f (c, c)) ∼.6 h(f (a, a), f (a, a), g(c, d)) = t2σ. (13)

20 Ref. [12], Page 410.
21 Note that in [12], no explicit proof for of formal correctness of “weak unification algorithm” is given: it is just mentioned that “it can be proven 
following the same line of the proof” for crisp unification in classible Logic Programming in [41].
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4.1.2. A generic fuzzy unification scheme
From our perspective, a fuzzy unification operation ought to be able to fuzzify full FOT unification: whether 

(1) functor symbol mistmatch, and/or (2) arity mismatch, and/or (3) in which order subterms correspond. Sessa’s 
fuzzification of unification as weak unification misses on the last two items. This is unfortunate as this can turn out 
to be quite useful. In real life, there is indeed no such guarantee that argument positions of different functors match 
similar information in data and knowledge bases, hence the need for alignment [33].

Still, it has several qualities:

• It is simple—specified as a straightforward extension of crisp unification: only one rule (Rule “FUZZY TERM 
DECOMPOSITION”) may alter the fuzziness of an equation set by tolerating similar functors.

• It is conservative—neither FOTs nor FOT substitutions per se need be fuzzified; so conventional crisp repre-
sentations and operations can be used; if restricted to only 0 or 1 similarity degrees, it is equivalent to crisp FOT
unification.

We now give an extension of Sessa’s weak unification which can tolerate such similarity among functors of dif-
ferent arities. We are given a similarity relation ≈: �2 → [0, 1] on a ranked signature � def= �n≥0. Unlike M. Sessa’s 
equal-arity condition, we now allow similar symbols with distinct arities, or equal arities but different argument orders.

Example 7. [Similar functors with different arities] Consider person/3, a functor of arity 3, and individual/4, 
a functor of arity 4 with:

• person/3 ≈.9 individual/4; and,
• one-to-one position mapping p : { 1, 2, 3 } → { 1, 2, 3, 4 }:

from person/3 to individual/4 with p : {1 → 1,2 → 3,3 → 4 }
so that:

person(Name,SSN,Address) ≈p

.9 individual(Name,DoB,SSN,Address)

where we write f ≈p
α g to denote a pair in the similarity relation ≈ consisting of a functor f and a functor g, with simi-

larity degree α and f -to-g argument-position mapping p; in our example, person≈{ 1→1,2→3,3→4 }
.9 individual.

With this kind of specification, we can tolerate not only fuzzy mismatching of terms with distinct functors person
and individual up to a realigning correspondence of argument positions fromperson to individual specified 
as p, all with a similarity degree of .9.

We formalize this by requiring that the fuzzy relation ≈ on � be such that:

• for each pair of functors 〈f, g〉 ∈ �2, such that f ∈ �m and g ∈ �n, with 0 ≤ m ≤ n, and f ≈ g, there exists an 
injective (i.e., one-to-one) mapping μfg : { 1, . . . , m } → { 1, . . . , n } associating each of the m argument positions 
of f with a unique position among the n arguments of g, which we shall express as f ≈μfg g;

• argument alignment mapping between similar functors must be consistent; i.e.,
– for any functor f/n:

μff = 1{1,...,n}; (14)

– for any two equal-arity functors f/n and g/n:

μfg ◦ μgf = 1{1,...,n}; (15)

– for any three functors f/m, g/n, h/� such that 0 ≤ m ≤ n ≤ �:

μf h = μgh ◦ μfg. (16)
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Fig. 8. Identity consistency condition for FOT argument alignment mapping.

Fig. 9. Invertibility consistency condition for equal-arity FOT argument alignment mappings.

Fig. 10. Compositional consistency condition for non-aligned FOT argument alignment mappings.

Fig. 8 illustrates Condition (14), Fig. 9 illustrates Condition (15), and Fig. 10 illustrates Condition (16).
Note that Condition (16) applies when 0 ≤ m ≤ n ≤ �; so the one-to-one argument-position mappings always go 

from a smaller set to a larger set. There is no loss of generality with this assumption as this will be taken into account in 
the definition of non-aligned FOT similarity,22 and in the normalization rules.23 This amounts to systematically taking 
a FOT with functor of least arity as similarity class representative. Finally, note also that such a class representative is 
not unique because for similar functors of equal arity, it can be either terms due to Condition (15). Indeed, then the set 
of positions are equal and there are two injections from this set to itself in each direction which are mutually inverse 
bijections; i.e., inverse permutations in the order of arguments realigning one’s with the other’s in either direction. The 
similarity degrees in both directions are always equal due to symmetry of similarity.

Fuzzy unification with similar functors and arity mismatch
As in the case of similarity restricted to functors of equal arities only, the similarity with argument position align-

ment mapping on functors can be extended homomorphically to a similarity on FOTs. Let ≈ be a similarity on 
functors of any arity in a signature �. To lighten notation, rather than writing systematically f ≈μfg g for two func-
tors f and g such that arity(f ) ≤ arity(g), we shall sometimes simply write f ≈p

α g, with p standing for the injective 
argument realignment mapping μfg .

22 Cf., Definition 9 below.
23 Cf., Fig. 11 below, Rule FUZZY EQUATION ORIENTATION.
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Definition 9. The fuzzy relation ≈T on T�,V is defined inductively as:

1. ∀ X ∈ V, X ≈T
1 X;

2. ∀ X ∈ V, ∀ t ∈ T , such that X 	= t, X ≈T
0 t and t ≈T

0 X;

3. if s = f (s1, . . . , sm) and t = g(t1, . . . , tn) with n < m, then s ≈T t = t ≈T s;

4. if f ∈ �m and g ∈ �n with m ≤ n and f ≈p
α g, and if si ∈ T , i = 1, . . . , m, and tj ∈ T , j = 1, . . . , n, are such 

that si ≈T
αi

tp(i) for all i ∈ { 1, . . . , m }, then:

f (s1, . . . , sm) ≈T
α∧∧m

i=1 αi
g(t1, . . . , tn). (17)

Theorem 3 (NON-ALIGNED FOT SIMILARITY). The fuzzy relation ≈T on the set T of FOTs specified in Defini-
tion 9 is a similarity.

Proof. We must establish that ≈T is reflexive, symmetric, and transitive.
Reflexivity: we must show that t ≈T

1 t , for all t ∈ T . We proceed by induction on the depth of the term. Base case:
either t = X ∈ V , in which case, by the first condition of Definition 9, X ≈T

1 X; or, t = c ∈ �0, in which case the 
fourth condition of Definition 9 and the fact that c ≈1 c implies that c ≈T

1 c, for all c ∈ �0. Inductive case: let us 
assume that ≈T is reflexive for all terms of depth less than or equal to d , and consider the term t = f (t1, . . . , tn) of 
depth d + 1; then, the fourth condition of Definition 9 implies also that t ≈T t since, by Condition (14) and the fact 
that ≈ is a similarity, f ≈1{1,...,n}

1 f for all f ∈ �n, for any arity n > 0.
Symmetry: we must show that s ≈T t = t ≈T s for all s and t in T . When either of the terms is a variable, this is 

so by the two first cases of Definition 9. When s = f (s1, . . . , sm) and t = g(t1, . . . , tn), it is always the case that ≈T

is symmetric on such pairs since the third condition of Definition 9, states precisely that in this case ≈T is symmetric.
Transitivity: we must show that (s ≈T t ∧ t ≈T u) ≤ s ≈T u for all terms s, t, u. There are eight possibilities:

(1) s ∈ V and t ∈ V and u ∈ V;
(2) s ∈ V and t ∈ V and u /∈ V;
(3) s ∈ V and t /∈ V and u ∈ V;
(4) s ∈ V and t /∈ V and u /∈ V;

(5) s /∈ V and t ∈ V and u ∈ V;
(6) s /∈ V and t ∈ V and u /∈ V;
(7) s /∈ V and t /∈ V and u ∈ V;
(8) s /∈ V and t /∈ V and u /∈ V .

– Case (1): s ∈ V, t ∈ V, u ∈ V . In this case, there are five possibilities. Using different variable names to denote 
different variables, the corresponding similarity degrees for s ≈T t , t ≈T u, and s ≈T u, for each possibility do 
indeed verify the inequality. Namely:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X Y Z 0 ∧ 0 ≤ 0
X Y Y 0 ∧ 1 ≤ 1
X Y X 0 ∧ 0 ≤ 1
X X Y 1 ∧ 0 ≤ 0
X X X 1 ∧ 1 ≤ 1

– Case (2): s ∈ V, t ∈ V, u /∈ V . There are two possibilities, each verifying the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X X u 1 ∧ 0 ≤ 0
X Y u 0 ∧ 0 ≤ 0

– Case (3): s ∈ V, t /∈ V, u ∈ V . There are two possibilities, and each verifies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X t X 0 ∧ 0 ≤ 1
X t Y 0 ∧ 0 ≤ 0



JID:FSS AID:7632 /FLA [m3SC+; v1.298; Prn:10/04/2019; 12:54] P.23 (1-46)

H. Aït-Kaci, G. Pasi / Fuzzy Sets and Systems ••• (••••) •••–••• 23
– Case (4): s ∈ V, t /∈ V, u /∈ V . There is only one possibility, for any α ∈ [0, 1], which verifies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X t u 0 ∧ α ≤ 0

– Case (5): s /∈ V, t ∈ V, u ∈ V . There are two possibilities, and each verifies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

s X X 0 ∧ 1 ≤ 0
s X Y 0 ∧ 0 ≤ 0

– Case (6): s /∈ V, t ∈ V, u /∈ V . There is only one possibility, for any α ∈ [0, 1], which verifies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

s X u 0 ∧ 0 ≤ α

– Case (7): s /∈ V, t /∈ V, u ∈ V . There is only one possibility, for any α ∈ [0, 1], which verifies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

s t X α ∧ 0 ≤ 0

– Case (8): s /∈ V, t /∈ V, u /∈ V . In this case, we must have s = f (s1, . . . , sm), t = g(t1, . . . , tn), and u =
h(u1, . . . , u�). We detail this case below.

We must then show that:

f (s1, . . . , sm) ≈T g(t1, . . . , tn) ∧ g(t1, . . . , tn) ≈T h(u1, . . . , u�)

≤
f (s1, . . . , sm) ≈T h(u1, . . . , u�).

By symmetry of ≈T , all cases are equivalent to when 0 ≤ m ≤ n ≤ �, so we assume that this is so, with f ≈μfg
α g and 

g ≈μgh

β h. By the fourth condition of Definition 9, the above inequality is the same as the following one:

f ≈ g ∧ ∧m
i=1 si ≈T tμfg(i) ∧ g ≈ h ∧ ∧n

j=1 tj ≈T uμgh(j)

≤
f ≈ h ∧ ∧m

i=1 si ≈T uμf h(i).

Using commutativity of ∧, let us rearrange the different factors of the conjunction in the lefthand-side of this inequality 
as:

f ≈ g ∧ g ≈ h ∧ (∧m
i=1 si ≈T tμfg(i) ∧ tμfg(i) ≈T uμgh(μfg(i))

) ∧ �

≤
f ≈ h ∧ ∧m

i=1 si ≈T uμf h(i)

where � stands for the remaining conjunction 
∧j /∈ran(μfg)

j∈{1,...,n} tj ≈T uμgh(j). Let us now proceed by induction on the 
depth of the terms to verify this inequality. For terms of depth 0, it is verified since it reduces to the transitivity 
inequality of ≈ on �0. Let us assume that it holds for terms of depth less than d , and that at least one of the terms 
s, t , or u, is of depth d . By transitivity of ≈ on �, we have (f ≈ g) ∧ (g ≈ h) ≤ f ≈ h. Also, by the inductive 
hypothesis, the transitivity inequality for ≈T holds for all similar subterms of depth less than or equal to d . Therefore, 
this assumption entails that for all i ∈ {1, . . . , m}:

si ≈T tμfg(i) ∧ tμfg(i) ≈T uμgh(μfg(i)) ≤ si ≈T uμgh(μfg(i));
thus, since, by Condition (16), it is required that the mappings be consistent and verify μfh = μgh ◦ μfg , and by 
isotonicity of ∧ w.r.t. ≤, this is equivalent to:



JID:FSS AID:7632 /FLA [m3SC+; v1.298; Prn:10/04/2019; 12:54] P.24 (1-46)

24 H. Aït-Kaci, G. Pasi / Fuzzy Sets and Systems ••• (••••) •••–•••
m∧
i=1

(si ≈T tμfg(i)) ∧ (tμfg(i) ≈T uμf h(i)) ≤
m∧

i=1

si ≈T uμf h(i).

In summary, the inequality we seek to establish is of the form A ∧ B ∧ � ≤ A′ ∧ B ′, and we have shown that A ≤ A′
and B ≤ B ′. From this, the inequality follows by isotonicity of ∧ w.r.t. ≤. �

Since we have just formally defined a new notion of similarity ≈T on T extending Sessa’s similarity ∼T to 
non-aligned functors, all the properties we covered for ∼T carry over to corresponding extensions for terms with 
non-aligned functors. Namely, Definitions 6–8 and Lemmas 3–4, as well as Corollary 3, where the term similarity ∼T

is replaced with any similarity on T such as ≈T (or ∼∼∼T that we shall define later and prove also to be a similarity on 
T extending ≈T ). Indeed, it is easy to see that all these notions are valid algebraically when parameterized with any 
relation on FOT proven to be a similarity on T .

Weak unification with fuzzy functor/arity mismatch
Starting with the Herbrand-Martelli-Montanari ruleset of Fig. 3, fuzziness is introduced in Sessa’s weak unification 

by relaxing “TERM DECOMPOSITION” to make it also tolerate possible arity or argument-order mistmatch in two 
structures being unified. It is the only rule that does not preserve the equation set’s similarity degree. In other words, 
the given functor similarity relation ≈ on � is adjoined a position mapping from argument positions of a functor f to 
those of a functor g when f ≈α g with f 	= g, for some α in (0, 1]. This is then taken into account in tolerating a fuzzy 
mismatch between two term structures s = f (s1, . . . , sm) and t = g(t1, . . . , tn). This may involve a mismatch between 
the terms’ functor symbols (f and g), their arities (m and n), subterm ordering, or a combination. We first reorient 
all such equations by flipping sides so that the left-hand side is the one with lesser or equal arity. In this manner, 
assuming f ≈p

β g and 0 ≤ α, β ≤ 1, an equation set of the form: 
{

. . . , f (s1, . . . , sm) .= g(t1, . . . , tn), . . .
}
α

for 0 ≤ m ≤ n acquires its new similarity degree α ∧ β due to functor and arity mismatch when equated. Thus, 
a fully fuzzified term-decomposition rule should proceed by replacing a structure equation by the conjunction of 
equations between their respective subterms at corresponding indices given by the one-to-one argument mapping 
p : { 1, . . . , m } → { 1, . . . , n }, but (possibly) decreasing the original equation set similarity degree by conjoining it 
with that of the decomposed terms’ functor pair; that is, 

{
. . . , s1

.= tp(1), . . . , sm
.= tp(m), . . .

}
α∧β

. Note that all the 
subterms in the right-hand side term that are arguments at indices which are not p-images are ignored as they have no 
counterparts in the left-hand side. These terms are simply dropped as part of the approximation. This generic rule is 
shown in Fig. 11 along with another rule needed to make it fully effective: a rule reorienting a term equation into one 
with a lesser-arity term on the left.

Definition 10 (FUZZY UNIFICATION RULE CORRECTNESS). A fuzzy unification rule that transforms Eα, a set of 
equations E at a prior approximation degree α, into E′

β , a set of equations E′ at a posterior approximation degree β , 
is said to be correct iff β is the largest degree such that β ≤ α and all the substitutions of E′ are also substitutions of 
E at approximation degree β .

Note that this notion of correctness, contrary to that of crisp unification, does not require that all solutions of the 
posterior sets of equations be the same as those of the prior set. It only states that this be so as a possibly lesser 
posterior approximation degree.

Theorem 4. The fuzzy unification rules of Fig. 7 where Rule “WEAK TERM DECOMPOSITION” is replaced by the rules 
of Fig. 11 are correct.

Proof. Rules VARIABLE ELIMINATION, VARIABLE ERASURE, and EQUATION ORIENTATION are those, unchanged, 
of Maria Sessa’s weak unification. Their correctness follows from those of the corresponding Herbrand-Martelli-
Montanari rules since all three rules keep their similarity degree α unchanged under the same side conditions as their 
crisp versions. As for Rule FUZZY EQUATION ORIENTATION, it is also correct as it simply uses the symmetry of 
equality or similarity denoted by the .= relation and it leaves the similarity degree unchanged.

The correctness of Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION follows from the fact that it 
tolerates equations between two distinct but similar functors, f on the left and g on the right, by “paying a toll” as 
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FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION[
0 ≤ m ≤ n; f ≈p

β g
]

(
E ∪ {f (s1, . . . , sm)

.= g(t1, . . . , tn) })
α(

E ∪ { s1
.= tp(1), . . . , sm

.= tp(m) })
α∧β

FUZZY EQUATION ORIENTATION

[0 ≤ m < n](
E ∪ {g(t1, . . . , tn)

.= f (s1, . . . , sm) })
α(

E ∪ {f (s1, . . . , sm)
.= g(t1, . . . , tn) })

α

Fig. 11. Fuzzy FOT unification’s non-aligned decomposition and orientation rules.

the most general way this can be true is by reducing the prior equation set’s similarity degree α to α ∧ β . It must do 
so whenever a prior equation set contains an equation between two terms whose respective head functors f and g are 
β-similar with f having at most as many arguments as g. It collects m corresponding subterm equations from the two 
terms’s subterms using the specific one-to-one argument mapping p that associates with each position i among f ’s m a 
unique specific position p(i) among g’s n, n ≥ m. Orienting all functorial term equations to have the lesser number of 
arguments on the left guarantees completeness over all such syntactic patterns. By structural induction, assuming that 
all si ≈α∧β tp(i) for all i ∈ { 1, . . . , m }, then whenever f ≈p

β g, we must also have f (s1, . . . , sm) ≈α∧β g(t1, . . . , tn)

(by definition, since α ∧ β ≤ α) for whatever arguments of g at indices missed by p and these two terms are in 
the same similarity class at approximation degree α ∧ β for arbitrary arguments in these positions (by definition of 
f ≈p

β g and since α ∧ β ≤ β). The rest of the equations in E that were true at approximation degree α must now be 
considered true only up to approximation degree α ∧ β in order to account for f and g being functors of possibly 
fuzzier similarity β . Hence, all solutions of the new set of equations are also solutions of the previous one, although 
only at the possibly lesser approximation degree α ∧ β . This approximation degree is also the greatest such degree by 
virtue of the ∧ operation yielding the infimum of its operands.

Finally, when m = n this rule is correct in either direction since a consistent similarity on a signature requires by 
definition that equal-arity functors f and g have arguments in bijection (inverse permutations of the set { 1, . . . , n }): 
f ≈p

α g and g ≈p−1

α f . In this case, the set of solutions of the new equation set is also a solution of the previous one, 
with equal similarity degree.

As for termination, it follows (like that of the Herbrand-Martelli-Montanari rules) from (1) the finite width and 
depth of FOTs, and (2) there being no rule that is indefinitely applicable. Regarding (1), term decomposition always 
replaces a term equation with finitely many shallower term equations, which is a well-known well-founded process 
guaranteed to terminate (multiset ordering [42]). Regarding (2), Rule FUZZY EQUATION ORIENTATION may not be 
reapplied to the same functors thanks to the side condition m < n.

In other words, applying this modified ruleset to E1
def= { s .= t }1, an equation set of similarity degree 1 (in any 

order as long as a rule applies and its similarity degree is not zero) always terminates. And when the final equation 
set is a substitution σ at approximation degree α, σ is the most general substitution (up to a variable renaming) that 
is a solution at approximation degree α (i.e., sσ ≈α tσ ), and α is the greatest approximation degree for which this is 
true. �
Example 8. [FOT fuzzy unification with similar functors of different arities] Take a functor signature such that: 
{ a, b, c, d } ⊆ �0, { f, g, � } ⊆ �2, { h } ⊆ �3; and let us further assume the functor similarity that is the reflexive 
symmetric transitive closure of24:

a ≈.7 b, c ≈.6 d, f ≈{ 1→2,2→1 }
.9 g, g ≈{ 1→2,2→1 }

.9 f, and � ≈{ 1→2,2→3 }
.8 h.

24 Recall that the argument mapping is the identity by default.
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Let us consider the fuzzy equation set { t1 .= t2 }1:{
h(X,g(Y, b), f (Y, c))

.= �(f (a,Z), g(d, c))
}

1 (18)

and let us apply the rules of Fig. 7 where rule WEAK TERM DECOMPOSITION has been replaced by the rules of Fig. 11:
Rule FUZZY EQUATION ORIENTATION with α = 1 because arity(�) < arity(h); new set: { �(f (a, Z), g(d, c)) .=

h(X, g(Y, b), f (Y, c)) }1;
Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION with α = 1 and β = .8 since � ≈{ 1→2,2→3 }

.8 h; 
new set: { f (a, Z) .= g(Y, b), g(d, c) .= f (Y, c) }.8;

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to f (a, Z) .= g(Y, b) with α = .8 and β = .9
since f ≈{ 1→2,2→1 }

.9 g; new set: { a .= b, Z .= Y, g(d, c) .= f (Y, c) }.8;
Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to a .= b with α = .8 and β = .7 since a ≈.7 b; 

new set: { Z .= Y, g(d, c) .= f (Y, c) }.7;
Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to g(d, c) .= f (Y, c) with α = .7 and β = .9

since f ≈{ 1→2,2→1 }
.9 g; new set: { Z .= Y, d .= c, c .= Y }.7;

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to d .= c with α = .7 and β = .6 since d ≈.6 c; 
new set: { Z .= Y, c .= Y }.6;

Rule EQUATION ORIENTATION to c .= Y with α = .6; new set:: { Z .= Y, Y .= c }.6.
Rule VARIABLE ELIMINATION to Y .= c with α = .6; new set: { Z .= c, Y .= c }.6.
This last equation set at approximation degree .6 is in normal form and defines the substitution σ = { c/Z, c/Y }

so that: t1σ = h(X, g(Y, b), f (Y, c))σ ≈.6 �(f (a, Z), g(d, c))σ = t2σ ; that is: t1σ = h(X, g(c, b), f (c, c)) ≈.6
�(f (a, c), g(d, c)) = t2σ .

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION is a very general rule for normalizing fuzzy equa-
tions over FOT structures. It has the following convenient properties:

1. it accounts for fuzzy mismatches of similar functors of possibly different arity or order of arguments;
2. when restricted to tolerating only similar equal-arity functors with matching argument positions, it reduces to 

Sessa’s weak unification’s WEAK TERM DECOMPOSITION rule;
3. when similarity degrees are further restricted to be in { 0, 1 }, it is the Herbrand-Martelli-Montanari TERM DE-

COMPOSITION rule;
4. it requires no alteration of the standard notions of FOTs and FOT substitutions: similarity among FOTs is 

derived from that of signature symbols;
5. finally, and most importantly, it keeps fuzzy unification in the same complexity class as crisp unification: that of 

Union-Find [43].25

As a result, it is more general than all other extant approaches we know which propose a fuzzy FOT unification 
operation. The same will be established for the fuzzification of the dual operation: first a limited “functor-weak” 
FOT generalization corresponding to the dual operation of Sessa’s “weak” unification, then to a more expressive 
“functor/arity-weak” FOT generalization corresponding to our extension of Sessa’s unification to functor/arity weak 
unification.

4.2. Fuzzy generalization

While there has been relatively intense interest in devising a fuzzy FOT unification operation, we know of no
work regarding its dual operation, fuzzy FOT generalization. This comes as no surprise since even in the crisp case 
only marginal attention has been paid to generalization (a.k.a. anti-unification) as compared to unification.

The Reynolds-Plotkin characterization of FOT subsumption as a lattice ordering relies on formalizing this ordering 
as FOT instantiation. Namely, t1 � t2 iff there exists a variable substitution σ such that t1 = t2σ . Then, unification 

25 Quasi-linear; i.e., linear with a log . . . log coefficient [44].
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Fig. 12. Fuzzy generalization judgment validity as a constraint.

and generalization are respectively the glb and lub operations for this ordering and are specified in terms of variable 
substitutions.

It is clear however, as overviewed in the previous section, that there are several ways one can propose to fuzzify 
FOT unification. As a consequence of this, for each specific fuzzification of FOT unification, and therefore of 
associated specific fuzzy subsumption ordering on FOTs, there should also correspond a dual operation of fuzzy 
generalization of FOTs.

In what follows, we first elaborate some lattice-theoretic consequences for Maria Sessa’s “weak unification” fuzzy 
operation on FOTs presented in [12]. In particular, we derive its corresponding fuzzy dual lattice operation that 
we shall dub “weak FOT generalization.” We then extend this lattice to signatures admitting similar functors with 
differing arity or argument order.

Fuzzy functor-weak generalization
Let t1 and t2 be two FOTs in T to generalize. We shall use the following notation for a fuzzy generalization 

judgment:

(
σ1
σ2

)
α

�
(

t1
t2

)
t

(
θ1
θ2

)
β

(19)

given:

• σi ∈ SUBSTT (i = 1, 2): two prior substitutions with prior similarity degree α,
• ti (i = 1, 2): two prior FOTs,
• t : a posterior FOT ,
• θi ∈ SUBSTT (i = 1, 2): two posterior substitutions with similarity degree β .

Definition 11 (FUZZY FOT GENERALIZATION JUDGMENT VALIDITY). A fuzzy FOT generalization judgment such 
as (19) is valid whenever, for i = 1, 2:

1. β ∈ (0, α];
2. tiσi ≈β tθi ;
3. ∃ δi ∈ SUBSTT s.t. ti ≈α tδi and θi ≈β δiσi (i.e., ti �α tσi and θi �β σi ).

Fig. 12 shows an illustration of a valid fuzzy generalization judgment constraint as a commutative diagram.
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FUZZY EQUAL VARIABLES FUZZY VARIABLE-TERM

(
σ1
σ2

)
α

�
(

X

X

)
X

(
σ1
σ2

)
α

[t1 ∈ V or t2 ∈ V; t1 	= t2; X is new](
σ1
σ2

)
α

�
(

t1
t2

)
X

(
σ1{ t1/X }
σ2{ t2/X }

)
α

DISSIMILAR FUNCTORS

[f � g; m ≥ 0, n ≥ 0; X is new](
σ1
σ2

)
α

�
(

f (s1, . . . , sm)

g(t1, . . . , tn)

)
X

(
σ1{f (s1, . . . , sm)/X }
σ2{g(t1, . . . , tn)/X }

)
α

SIMILAR FUNCTORS[
f ∼β g; β > 0; n ≥ 0; α0

def= α ∧ β
]

(
σ1
σ2

)
α0

�
(

s1
t1

)
↑α0

(
σ1
σ2

)
u1

(
σ 1

1
σ 1

2

)
α1

. . .

(
σn−1

1
σn−1

2

)
αn−1

�
(

sn
tn

)
↑αn−1

(
σn−1

1
σn−1

2

)
un

(
σn

1
σn

2

)
αn(

σ1
σ2

)
α

�
(

f (s1, . . . , sn)

g(t1, . . . , tn)

)
f (u1, . . . , un)

(
σn

1
σn

2

)
αn

Fig. 13. Functor-weak generalization axioms and rule.

Definition 12 (FUZZY GENERALIZATION RULE CORRECTNESS). A fuzzy generalization rule is correct iff, whenever 
the side condition holds, if all the fuzzy generalization judgments making up its antecedent are valid, then necessarily 
the fuzzy generalization judgment in its consequent is valid.

In Fig. 13, we give a fuzzy version of the generalization rules of Fig. 5. As was the case in Sessa’s weak unification, 
we assume as well for now that we are given a similarity relation ∼: � × � → [0, 1] on the signature � = ∪n≥0�n

such that for all m ≥ 0 and n ≥ 0, m 	= n implies f � g. In other words, functors of different arities may not be similar.
Rule SIMILAR FUNCTORS uses a “fuzzy unapply” operation (‘↑α’) on a pair of terms (t1, t2) given a pair of substitu-

tions (σ1, σ2) and a similarity degree α. It is the result of “unapplying” σi from ti , for i = 1, 2, into a common variable 
X, if any such exists such that the terms Xσi are respectively similar to ti with similarity degrees αi . It returns a fuzzy 
pair of terms and a similarity degree in (0, α] defined as:

(
t1
t2

)
↑α

(
σ1
σ2

)
def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
X

X

)
α∧α1∧α2

if ∃X ∈ V, ti ∼αi
Xσi

for some αi ∈ (0,1] i = 1,2;(
t1
t2

)
α

otherwise.

(20)

In Equation (20), the “if ” condition is “∃ X ∈ V, ti ∼αi
Xσi” for some αi ∈ (0, 1] (i = 1, 2). But could there be 

two such variables? That is,

∃X ∈ V, ∃Y ∈ V, X 	= Y, s.t. ti ∼αi
Xσi and ti ∼βi

Yσi (21)

for some αi ∈ (0, 1] and βi ∈ (0, 1] (i = 1, 2). Note that a new variable is introduced in the generalizing pair of 
substitutions only in Axiom FUZZY VARIABLE-TERM and Axiom DISSIMILAR FUNCTORS. Then, each axiom binds 
the new variable in the two substitutions to two terms that are dissimilar at any similarity degree (as required by their 
side conditions). However, by Lemma 4, Condition (21) would imply that:

ti ∼αi∧βi
Xσi ∼αi∧βi

Yσi

with αi ∧ βi ∈ (0, 1], for i = 1, 2. This would mean that X or Y was introduced while the side condition of neither 
Axiom FUZZY VARIABLE-TERM nor Axiom DISSIMILAR FUNCTORS was verified; which is impossible. Thus, there 
can be at most only one such variable.
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Importantly, note that fuzzy unapplication defined by Equation (20) returns a pair of terms and a (possibly lesser) 
approximation degree, unlike crisp unapplication defined by Equation (7) which returns only a pair of terms. Because 
of this, when we write a fuzzy judgment such as:(

σ

σ ′
)
α

�
(

t

t ′
)

↑α

(
σ

σ ′
)

u

(
θ

θ ′
)
β

(22)

as we do in Rule SIMILAR FUNCTORS, this is shorthand to indicate that the posterior similarity degree β is at most

the one returned by the fuzzy unapplication 
(

t

t ′
)

↑α

(
σ

σ ′
)

. Formally, the notation of the fuzzy judgment (22) is 

equivalent to:(
t

t ′
)

↑α

(
σ

σ ′
)

=
(

s

s′
)

β ′
and

(
σ

σ ′
)

β ′
�

(
s

s′
)

u

(
θ

θ ′
)

β

(23)

for some β ′ such that β ≤ β ′ ≤ α. This is because a fuzzy unapplication invoked while proving the validity of a fuzzy 
judgment may require, by Expression (20), lowering the prior approximation degree of the judgment.

Note also that Rule “SIMILAR FUNCTORS” is defined for n ≥ 0. For n = 0, it becomes the following fuzzy judgment:(
σ1
σ2

)
α

�
(

c

c

)
c

(
σ1
σ2

)
α

(24)

which can be verified to be an axiom since it is valid at any approximation degree α in [0, 1], for any constant c in 
�0, and any substitutions σ1 and σ2 in SUBSTT , thanks to the reflexivity of the similarity ∼α on T .

Referring to the axioms (seen as rules with no antecedent) and the rule of Fig. 13 on Page 28, we establish the 
following fact corresponding to Lemma 2 (taking σ 0

i

def= σi , for i = 1, 2), where the fuzzy ordering on substitutions is 
defined in Definition 7.

Lemma 5. In Rule SIMILAR FUNCTORS of Fig. 13, taking σ 0
i

def= σi , for i = 1, 2, the approximation degrees α0
i , . . . , α

n
i

are such that αk
i ≤ αk−1

i , and the substitutions σ 0
i , . . . , σn

i are such that σk
i �αk

i
σ k−1

i , for all k, 1 ≤ k ≤ n (i = 1, 2).

Proof. We proceed by induction on the depth d of the terms; i.e., we consider only terms of depth less than or equal 
to d .

1. d = 0: This limits terms to constants and variables. The inequality between prior and posterior substitutions is 
verified for the three first axioms of Fig. 13: each preserves the prior approximation degree and the posterior sub-
stitutions are all either equal to the corresponding prior substitutions or of the form θ = σ {t/X} where X is a new 
variable and σ is the corresponding prior substitution. As well, when limited to terms of 0 depth, Rule SIMILAR 
FUNCTORS becomes the Axiom (24), which preserves both the approximation degree and the substitutions.

2. d > 0: Let us assume now that this is true for all terms of depth less than d . That is, we consider two terms to 
generalize, at least one of which is of depth d . The same argument given above for when d = 0 for the three first 
axioms of Fig. 5 justifies concluding that θ � σ , since this is true in these cases for terms of any depth. As for 
Rule EQUAL FUNCTORS, there are two possible cases for the two terms in its consequent (the “denominator”):
(a) n = 0: then, the conclusion follows true by Axiom (24);
(b) n ≥ 0: since the fuzzy unapply operation (20) yields either a pair of terms having the same depth as the 

corresponding terms it is applied to, or 0 (because it can only be a new variable), we can say that all the terms 
resulting from fuzzy-unapplied pairs of arguments in the judgments of the rule’s antecedent (the “numerator”) 
are of depth at most d −1. Therefore, this fact, together with our induction hypothesis being verified for depths 
less than d and the expression of a fuzzy judgment (23) involving only terms of such depths, we can conclude 
that all the judgments in the rule’s antecedent can only reduce their prior approximation degree. Therefore, 
αk

i ≤ αk−1
i and σk

i �αk
i
σ k−1

i , for all k = 1, . . . , n. Then, by Corollary 3 and transitivity of the “more general” 
ordering on substitutions �α at fixed α, the conclusion follows.
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Hence, this establishes that, for both i = 1, 2, the approximation degree αk
i is monotonically decreasing and the 

substitution σk
i is monotonically refined from more general to less, as k increases from 1 to n; which concludes our 

proof. �
And the corresponding corollary also follows.

Corollary 4. In Rule SIMILAR FUNCTORS of Fig. 13, for all k, 1 ≤ k ≤ n:

• the approximation degrees αk
i are such that αn

i ≤ αn−1
i ≤ . . . α1

i ≤ α0
i , and

• the substitutions σk
i are such that σn

i �αn
i

σ n−1
i �

αn−1
i

. . . σ 1
i �α1

i
σ 0

i ,

for i = 1, 2.

Theorem 5 (FUNCTOR-WEAK GENERALIZATION CORRECTNESS). The fuzzy generalization rules of Fig. 13 are 
correct.

Proof. We must show that they verify the conditions of Definition 12. For each of the three axioms of Fig. 13, this 
means that they must be valid as fuzzy judgments, verifying the three conditions of Definition 11, which are:

– Condition 1: β ∈ (0, α],
– Condition 2: tiσi ∼β tθi ,
– Condition 3: ti �α t and θi �β σi ,

for i = 1, 2, for a fuzzy FOT generalization judgment such as (19). These conditions for the axioms and the rule of 
Fig. 13 translate as the following.

Condition 1. All three axioms verify this condition because they preserve the approximation degree.
Condition 2. This condition becomes the following for each of the three axioms (for i = 1, 2):

– FUZZY EQUAL VARIABLES: Condition 2 becomes the similarity Xσi ∼α Xσi , which is true by reflexivity of ∼α

for all X, σi , and α;
– FUZZY VARIABLE-TERM: it becomes the similarity tiσi ∼α tiσi , which is true also by reflexivity of ∼α , for all ti , 

σi , and α;
– DISSIMILAR FUNCTORS: Condition 2 becomes:

f (s1, . . . , sm)σ1 ∼α Xσ1{f (s1, . . . , sm)/X }
g(t1, . . . , tn)σ2 ∼α Xσ2{g(t1, . . . , tn)/X }

which, because X is a new variable that does not occur in either σ1 or σ2, simplify respectively to the similarities:

f (s1, . . . , sm) ∼α f (s1, . . . , sm)

g(t1, . . . , tn) ∼α g(t1, . . . , tn)

which hold by reflexivity of ∼α at any approximation degree α.

Condition 3. The three axioms verify the following at all approximation degrees α and β (for i = 1, 2):

– FUZZY EQUAL VARIABLES: X �α X and σi �β σi ;
– FUZZY VARIABLE-TERM: ti �α X and σi{ti/X} �β σi ;
– DISSIMILAR FUNCTORS:

f (s1, . . . , sm) �α X and σ1{f (s1, . . . , sm)/X } �β σ1,

g(t1, . . . , tn) �α X and σ2{g(t1, . . . , tn)/X } �β σ2.
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As for Rule SIMILAR FUNCTORS, as required by Definition 12, we must show that if all the fuzzy judgments in the 
numerator are valid, then the fuzzy judgment in the denominator is valid too. For all three conditions, let us proceed 
by induction on the arity n:

Condition 1. For n = 0, the conclusion follows also because Axiom (24) applies and it also preserves the approx-
imation degree; for n > 0, if we assume that 0 ≤ αk ≤ αk−1 ≤ 1 for all k = 1, . . . , n, by transitivity of ≤ on [0, 1], it 
follows that 0 ≤ αn ≤ α0 ≤ 1, which verifies the definition.

Condition 2. For n = 0, this rule becomes Axiom (24). Since it preserves the approximation degree, Condition 1 is 
verified. Also, this fuzzy judgment is trivially valid at all approximation degrees: the conditions of Definition 11 be-
come the reflexive similarity c ∼α c, and the conjunction of reflexive fuzzy inequality c �α c and reflexive substitution 
fuzzy inequalities σi �α σi , for i = 1, 2. Thus, this verifies both Condition 2 and Condition 3 for n = 0.

For n > 0, for each argument-position k = 1, . . . , n, a fuzzy judgment in the rule’s antecedent is of the form:(
σk−1

1
σk−1

2

)
αk−1

�
(

sk
tk

)
↑αk−1

(
σk−1

1
σk−1

2

)
uk

(
σk

1
σk

2

)
αk

;

that is, the form of Expression (22), whose formal meaning is given as Expression (23), which in the above case is 
equivalent to:(

vk
1

vk
2

)
βk

def=
(

sk
tk

)
↑αk−1

(
σk−1

1
σk−1

2

)
and

(
σk−1

1
σk−1

2

)
βk

�
(

vk
1

vk
2

)
uk

(
σk

1
σk

2

)
αk

for some βk s.t. αk−1 ≤ βk ≤ αk . Let us now assume that all the fuzzy judgment in the rule’s antecedent are valid. 
That is, for k = 1, . . . , n (defining α0

def= α ∧ β), for i = 1, 2:

ukσ
k
i ∼αk

vk
i σ

k−1
i (25)

and (defining σ 0
i

def= σi ):

vk
i �α uk and σk

i �β σ k−1
i . (26)

By Equation (20), this means:

(
vk

1
vk

2

)
αk

def=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
X

X

)
αk−1∧βk

1 ∧βk
2

if ∃X ∈ V s.t. sk ∼βk
1
Xσk−1

1 and tk ∼βk
2
Xσk−1

2 ;

(
sk
tk

)
αk−1

otherwise.

for some βk
1 and βk

2 in (0, 1]. In other words, for each k = 1, . . . , n, there are two cases:

1. sk ∼βk
1

Xσk−1
1 and tk ∼βk

2
Xσk−1

2 for some variable X; then, by Axiom FUZZY EQUAL VARIABLES, we must 

have αk = αk−1 ∧ βk
1 ∧ βk

2 , uk = X, and σk
i = σk−1

i for i = 1, 2; thus, αk ≤ αk−1 and Similarity (25) becomes 
ukσ

k
i ∼αk

Xσk−1
i So that:

skσ
k−1
1 ∼αk

Xσk−1
1 σk−1

1 = Xσk−1
1 = Xσk

1 ∼αk
ukσ

k
1 ,

tkσ
k−1
2 ∼αk

Xσk−1
2 σk−1

2 = Xσk−1
2 = Xσk

2 ∼αk
ukσ

k
2 .

2. There is no such variable X; in which case, αk = αk−1 and Similarity (25) becomes:

skσ
k−1
1 ∼αk

ukσ
k
1 ,

tkσ
k−1
2 ∼αk

ukσ
k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in the axioms, for any 
argument position k, 1 ≤ k ≤ n, we have:
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σk
i ∼αk

σ 0
i { τ1/X1 } . . . { τ�/X� }

where each of the variables X1 . . .X�, with 0 ≤ �, is a variable possibly introduced in proving the validity of the fuzzy 
judgment corresponding to some argument position k. Therefore, since for any argument position k, 1 ≤ k ≤ n:

1. σk
i affects only a new variable introduced in one of the axioms verifying the validity of the subterm at argument 

position k; and,
2. such a newly introduced variable now occurring in uk is always instantiated by the same term;

it comes that, at approximation degree αk:

skσ
0
1 ∼αk

skσ
1
1 ∼αk

. . . ∼αk
skσ

k−1
1

tkσ
0
2 ∼αk

tkσ
1
2 ∼αk

. . . ∼αk
tkσ

k−1
2

as well as, at approximation degree αn:

ukσ
k
1 ∼αn ukσ

k+1
1 ∼αn . . . ∼αn ukσ

n
1

ukσ
k
2 ∼αn ukσ

k+1
2 ∼αn . . . ∼αn ukσ

n
2

which shows that in both cases we have, for all k = 1, . . . , n:

skσ
0
1 ∼αk

ukσ
n
1

tkσ
0
2 ∼αk

ukσ
n
2 .

Therefore, for k = n:

f (s1, . . . , sn)σ
0
1 ∼αn f (u1, . . . , un)σ

n
1

f (t1, . . . , tn)σ
0
2 ∼αn f (u1, . . . , un)σ

n
2

which completes the proof of Condition 2.
Condition 3. This condition becomes, for all k = 1, . . . , n:

f (s1, . . . , sn) �αk−1 f (u1, . . . , un) and σk
1 �αk

σ k−1
1

g(t1, . . . , tn) �αk−1 g(u1, . . . , un) and σk
2 �αk

σ k−1
2

from which, since αk ≤ αk−1 for all k = 1, . . . , n, it follows that:

f (s1, . . . , sn) �αn f (u1, . . . , un) and σn
1 �αn σ 0

1
g(t1, . . . , tn) �αn g(u1, . . . , un) and σn

2 �αn σ 0
2

or indifferently, using the same similarity class representative in both cases since f ∼αn g (because f ∼β g and 
αn ≤ β):

g(t1, . . . , tn) �αn f (u1, . . . , un) and σn
2 �αn σ 0

2

which completes the proof of Condition 3, and the proof of Theorem 5. �
Example 9. [Fuzzy generalization with similar functors of same arities] Consider the signature � containing �0 =
{a, b, c, d}, and �2 = {f, g}, and the closure ∼ of the similar pairs a ∼.7 b, c ∼.6 d , and f ∼.8 g. Let us apply 
the functor-weak generalization axioms and rule Fig. 13 to t1

def= g(c, d), and t2
def= f (a, b); that is, let us find term t , 

substitutions σi ∈ SUBSTT (i = 1, 2), and similarity degree α in [0, 1] such that tσ1 ∼α g(c, d) and tσ2 ∼α f (a, b). 
This is expressed as the following fuzzy judgment:( ∅

∅
)

�
(

g(c, d)

f (a, b)

)
t

(
σ1
σ

)
.

1 2 α
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By Rule SIMILARITY FUNCTORS, we infer that t = g(u1, u2)
26:( ∅

∅
)

1
�

(
g(c, d)

f (a, b)

)
g(u1, u2)

(
σ1
σ2

)
α

which, replaced by the antecedents of Rule SIMILARITY FUNCTORS, becomes (since g ∼.8 f ):( ∅
∅

)
.8
�

(
c

a

)
↑.8

( ∅
∅

)
u1

(
σ ′

1
σ ′

2

)
α′
,

(
σ ′

1
σ ′

2

)
α′
�

(
d

b

)
↑α′

(
σ ′

1
σ ′

2

)
u2

(
σ1
σ2

)
α

.

Since the prior substitutions of the first judgment are empty, evaluating its fuzzy unapplication (using Expres-
sion (23) in which β ′ = α) yields the sequence:( ∅

∅
)

.8
�

(
c

a

)
u1

(
σ ′

1
σ ′

2

)
α′

,

(
σ ′

1
σ ′

2

)
α′
�

(
d

b

)
↑α′

(
σ ′

1
σ ′

2

)
u2

(
σ1
σ2

)
α

.

By Axiom DISSIMILAR FUNCTORS, it comes that u1 = X1, a new variable, and the sequence becomes:( ∅
∅

)
.8

�
(

c

a

)
X1

( { c/X1 }
{ a/X1 }

)
.8

,

( { c/X1 }
{ a/X1 }

)
.8
�

(
d

b

)
↑.8

( { c/X1 }
{ a/X1 }

)
u2

(
σ1
σ2

)
α

.

The validity of the first fuzzy judgment is thereby established. We proceed with the remaining fuzzy judg-
ment evaluating its fuzzy unapplication using Equation (20). Since X1 is such that d ∼.6 X1{c/X1} = c and 
a ∼.7 X1{b/X1} = b, it verifies the first of the conditions of Equation (20). Therefore, the new approximation de-
gree of the judgment is .8 ∧ .6 ∧ .7 = .6, and u2 = X1 so that the judgment becomes:( { c/X1 }

{ a/X1 }
)
.6
�

(
d

b

)
↑.6

( { c/X1 }
{ a/X1 }

)
X1

( { c/X1 }
{ a/X1 }

)
.6
.

This validates the last judgment completing the fuzzy generalization whereby t = g(X1, X1) is the least fuzzy 
generalizer of t1 = g(c, d), and t2 = f (a, b) at approximation degree .6 with σ1 = { c/X1 } so that tσ1 = g(c, c) ∼.6
t1; and, σ2 = { a/X1 } so that tσ2 = g(a, a) ∼.6 t2.

Fuzzy functor/arity-weak generalization
In Fig. 14, we give a fuzzy version of the generalization rules taking into account mismatches not only in functors, 

but also in arities; i.e., number and/or order of arguments. We now assume that we are not only given a similarity 
relation ∼: � ×� → [0, 1] on the signature � = ∪n≥0�n, but also that functors of different arities may be similar with 
some non-zero similarity degree as specified by a one-to-one argument-position mapping for each pair of so-similar 
functors associating each argument position of the functor of least arity with a distinct argument position of the functor 
of larger arity. The only rule among those of Fig. 13 that differs is the last one (SIMILAR FUNCTORS) which is now 
a pair of rules called FUNCTOR/ARITY SIMILARITY LEFT and FUNCTOR/ARITY SIMILARITY RIGHT as they account 
for non-identical correspondence among similar functors’s argument positions whether in the left or in the right of the 
pair of terms to generalize, depending on which side has less arguments. If the arities are the same, the two rules are 
equivalent (each and all the arguments of the two terms are paired in bijection by a position permutation).

Theorem 6 (FUNCTOR/ARITY-WEAK GENERALIZATION CORRECTNESS). The fuzzy generalization rules of Fig. 13
where Rule “SIMILAR FUNCTORS” is replaced with the rules in Fig. 14 are correct.

Proof. The argument in this proof has exactly the same structure as the argument for the proof of Rule SIMILAR 
FUNCTORS of Fig. 13. The only difference is that structural induction on a pair of terms with similar functors to 
generalize is always limited to the largest possible set of pairs of corresponding argument positions as specified by a 
one-to-one argument map from all the argument positions of the functor of lesser arity to those of the functor of larger 
arity, rather than the identity on equal cardinality sets of argument positions. Thus, in the following, parts of the proof 

26 This is a non-deterministic choice of a functor’s similarity-class representative. We shall always take the left (or upper, in this notation) term’s 
functor. This, of course, will also result in a non-deterministic choice of representative for any term elaborated in generalization modulo functor 
similarity. The lower the approximation degree, the larger the similarity class.
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FUNCTOR/ARITY SIMILARITY LEFT[
f ≈p

β g; β > 0; 0 ≤ m ≤ n; α0
def= α ∧ β

]
(

σ1
σ2

)
α0

�
(

s1
tp(1)

)
↑α0

(
σ1
σ2

)
u1

(
σ 1

1
σ 1

2

)
α1

. . .

(
σm−1

1
σm−1

2

)
αm−1

�
(

sm
tp(m)

)
↑αm−1

(
σm−1

1
σm−1

2

)
um

(
σm

1
σm

2

)
αm(

σ1
σ2

)
α

�
(

f (s1, . . . , sm)

g(t1, . . . , tn)

)
f (u1, . . . , um)

(
σm

1
σm

2

)
αm

FUNCTOR/ARITY SIMILARITY RIGHT[
g ≈p

β f ; β > 0; 0 ≤ n ≤ m; α0
def= α ∧ β

]
(

σ1
σ2

)
α0

�
(

sp(1)

t1

)
↑α0

(
σ1
σ2

)
u1

(
σ 1

1
σ 1

2

)
α1

. . .

(
σn−1

1
σn−1

2

)
αn−1

�
(

sp(n)

tn

)
↑αn−1

(
σn−1

1
σn−1

2

)
un

(
σn

1
σn

2

)
αn(

σ1
σ2

)
α

�
(

f (s1, . . . , sm)

g(t1, . . . , tn)

)
g(u1, . . . , un)

(
σn

1
σn

2

)
αn

Fig. 14. Functor/arity-weak generalization axioms and rule.

that are omitted are identical to their corresponding parts in the proof of Rule SIMILAR FUNCTORS. Also, for reason 
of obvious symmetry, we need only provide the detailed proof of correctness of Rule FUNCTOR/ARITY SIMILARITY 
LEFT. The proof of correctness of Rule FUNCTOR/ARITY SIMILARITY RIGHT is the pointwise similar dual argument 
in the other direction.

Considering Rule FUNCTOR/ARITY SIMILARITY LEFT, as required by Definition 12, we must show that if all 
the fuzzy judgments in the numerator are valid, then the fuzzy judgment in the denominator is valid too. Since the 
proofs of Condition 1 and Condition 3 are the same for equal-arity functor similarity, we need only provide a proof 
of Condition 2 of Definition 12. Let us proceed by induction on the argument-position number k, for k = 1, . . . , m, 
where m is the arity of f (the first of the two terms’ functor, with the same or a smaller arity as required by the side 
condition).

For m = 0, this rule becomes Axiom (24). This fuzzy judgment is trivially valid at all approximation degrees: 
Condition 2 of Definition 11 becomes the reflexive similarity c ≈α c and Condition 3 becomes the conjunction c �α c

and σi �α σi , for i = 1, 2. Thus, this verifies both Condition 2 and Condition 3 for m = 0.
For m > 0, for each argument-position k = 1, . . . , m, a fuzzy judgment in the rule’s antecedent is of the form:(

σk−1
1

σk−1
2

)
αk−1

�
(

sk
tp(k)

)
↑αk−1

(
σk−1

1
σk−1

2

)
uk

(
σk

1
σk

2

)
αk

;

that is, the form of Expression (22), whose formal meaning is given as Expression (23), which in the above case is 
equivalent to:

(
vk

1
vk

2

)
βk

def=
(

sk
tp(k)

)
↑αk−1

(
σk−1

1
σk−1

2

)
and

(
σk−1

1
σk−1

2

)
βk

�
(

vk
1

vk
2

)
uk

(
σk

1
σk

2

)
αk

for some βk s.t. αk−1 ≤ βk ≤ αk . Let us now assume that all the fuzzy judgment in the rule’s antecedent are valid. 
That is, for k = 1, . . . , m (defining α0

def= α ∧ β), for i = 1, 2:

ukσ
k
i ≈αk

vk
i σ

k−1
i (27)

and (defining σ 0
i

def= σi ):

vk
i �α uk and σk

i �β σ k−1
i . (28)

By Equation (20), this means that for all k = 1, . . . , m, vk , vk , and αk are defined by:
1 2



JID:FSS AID:7632 /FLA [m3SC+; v1.298; Prn:10/04/2019; 12:54] P.35 (1-46)

H. Aït-Kaci, G. Pasi / Fuzzy Sets and Systems ••• (••••) •••–••• 35
(
vk

1
vk

2

)
αk

def=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
X

X

)
αk−1∧βk

1 ∧βk
2

if ∃X ∈ V s.t.

(
sk ≈βk

1
Xσk−1

1

tp(k) ≈βk
2

Xσk−1
2

)
;

(
sk
tp(k)

)
αk−1

otherwise.

for some βk
1 and βk

2 in (0, 1]. In other words, for each k = 1, . . . , m, there are two cases:

1. sk ≈βk
1

Xσk−1
1 and tp(k) ≈βk

2
Xσk−1

2 for some variable X; then, by Axiom FUZZY EQUAL VARIABLES, we must 

have αk = αk−1 ∧ βk
1 ∧ βk

2 , uk = X, and σk
i = σk−1

i for i = 1, 2; thus, αk ≤ αk−1 and Similarity (25) becomes 
ukσ

k
i ≈αk

Xσk−1
i So that:

skσ
k−1
1 ≈αk

Xσk−1
1 σk−1

1 = Xσk−1
1 = Xσk

1 ≈αk
ukσ

k
1 ,

tp(k)σ
k−1
2 ≈αk

Xσk−1
2 σk−1

2 = Xσk−1
2 = Xσk

2 ≈αk
ukσ

k
2 .

2. There is no such variable X; in which case, αk = αk−1 and Similarity (25) becomes:

skσ
k−1
1 ≈αk

ukσ
k
1 ,

tp(k)σ
k−1
2 ≈αk

ukσ
k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in the axioms, for any 
argument position k, 1 ≤ k ≤ m, we have:

σk
i ≈αk

σ 0
i { τ1/X1 } . . . { τ�/X� }

where each of the variables X1 . . .X�, with 0 ≤ �, is a variable possibly introduced in proving the validity of the 
fuzzy judgment corresponding to some argument position preceding k. Therefore, since for any argument position k, 
1 ≤ k ≤ m:

1. σ k
i affects only a new variable introduced in one of the axioms verifying the validity of the subterm at argument 

position k; and,
2. such a newly introduced variable now occurring in uk is always instantiated by the same term;

it comes that, at approximation degree αk:

skσ
0
1 ≈αk

skσ
1
1 ≈αk

. . . ≈αk
skσ

k−1
1

tp(k)σ
0
2 ≈αk

tp(k)σ
1
2 ≈αk

. . . ≈αk
tp(k)σ

k−1
2

as well as, at approximation degree αm:

ukσ
k
1 ≈αm ukσ

k+1
1 ≈αm . . . ≈αm ukσ

m
1

ukσ
k
2 ≈αm ukσ

k+1
2 ≈αm . . . ≈αm ukσ

m
2

This means that in both cases we have, for all k = 1, . . . , m:

skσ
0
1 ≈αm ukσ

m
1

tp(k)σ
0
2 ≈αm ukσ

m
2 .

Therefore, for k = m:

f (s1, . . . , sm)σ 0
1 ≈αm f (u1, . . . , um)σm

1

f (t , . . . , t )σ 0 ≈ f (u , . . . , u )σm

p(1) p(m) 2 αm 1 m 2
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which completes the proof of Condition 2 of Theorem 6, and that of the theorem because of the facts stated at the 
outset regarding all other cases each of whose proof is identical to when arities are equal. �
Example 10. [Fuzzy generalization with similar functors of different arities] Consider the signature � containing 
�0 = {a, b, c, d}, �2 = {f, g, l}, and �3 = {h}, and the closure ∼ of the similar pairs a ∼.7, c ∼.6 d , f ∼.8 g, and 
l ∼.9 h. Let us take all argument-position mappings as the default (identity on least-arity set). Let us apply the fuzzy 
generalization axioms of Fig. 13 and the rule of Fig. 14 to t1

def= h(g(b, Y), f (Y, c), V ), and t2
def= l(f (a, Z), g(c, d)); 

that is, let us find term t , substitutions σi ∈ SUBSTT (i = 1, 2), and similarity degree α in [0, 1], such that tσ1 ∼α

h(g(b, Y), f (Y, c), V ) and tσ2 ∼α l(f (a, Z), g(c, d)). This is expressed as the following fuzzy judgment:( ∅
∅

)
1
�

(
h(g(b,Y ), f (Y, c),V )

l(f (a,Z), g(c, d))

)
t

(
σ1
σ2

)
α

.

By Rule FUNCTOR/ARITY SIMILARITY RIGHT, we can infer that t = l(u1, u2):( ∅
∅

)
1
�

(
h(g(b,Y ), f (Y, c),V )

l(f (a,Z), g(c, d))

)
l(u1, u2)

(
σ1
σ2

)
α

which, when replaced by the rule’s antecedents, since h ∼.9 l and 1 ∧ .9 = .9, becomes the sequence:( ∅
∅

)
.9
�

(
g(b,Y )

f (a,Z)

)
↑.9

( ∅
∅

)
u1

(
σ ′

1
σ ′

2

)
α′
,

(
σ ′

1
σ ′

2

)
α′
�

(
f (Y, c)

g(c, d)

)
↑α′

(
σ ′

1
σ ′

2

)
u2

(
σ1
σ2

)
α

.

By evaluating the fuzzy unapplication in its first judgment, this sequence becomes:( ∅
∅

)
.9

�
(

g(b,Y )

f (a,Z)

)
u1

(
σ ′

1
σ ′

2

)
α′

,

(
σ ′

1
σ ′

2

)
α′
�

(
f (Y, c)

g(c, d)

)
↑α′

(
σ ′

1
σ ′

2

)
u2

(
σ1
σ2

)
α

.

By Rule FUNCTOR/ARITY SIMILARITY LEFT,27 it comes that u1 = g(u3, u4) and, since g ∼.8 f and .9 ∧ .8 = .8, the 
sequence becomes:( ∅

∅
)
.8
�

(
b

a

)
↑.8

( ∅
∅

)
u3

(
σ ′′

1
σ ′′

2

)
α′′
,

(
σ ′′

1
σ ′′

2

)
α′′

�
(

Y

Z

)
↑α′′

(
σ ′′

1
σ ′′

2

)
u4

(
σ ′

1
σ ′

2

)
α′
,(

σ ′
1

σ ′
2

)
α′
�

(
f (Y, c)

g(c, d)

)
↑α′

(
σ ′

1
σ ′

2

)
u2

(
σ1
σ2

)
α

.

By evaluating the fuzzy unapplication in the first judgment, and using Rule FUNCTOR/ARITY SIMILARITY LEFT in 
the 0-arity case as Axiom (24), since b ∼.7 a and .8 ∧ .7 = .7, we have u3 = b, and the sequence becomes:( ∅

∅
)

.7
�

(
b

a

)
b

( ∅
∅

)
.7

,

( ∅
∅

)
.7
�

(
Y

Z

)
↑.7

( ∅
∅

)
u4

(
σ ′

1
σ ′

2

)
α′
,(

σ ′
1

σ ′
2

)
α′
�

(
f (Y, c)

g(c, d)

)
↑α′

(
σ ′

1
σ ′

2

)
u2

(
σ1
σ2

)
α

.

The validity of the first fuzzy judgment is thereby established. We proceed with the remaining sequence of fuzzy 
judgments evaluating the fuzzy unapplication in the first of its judgments, which sets α′ = .7:( ∅

∅
)

.7
�

(
Y

Z

)
u4

(
σ ′

1
σ ′

2

)
.7

,

(
σ ′

1
σ ′

2

)
.7
�

(
f (Y, c)

g(c, d)

)
↑.7

(
σ ′

1
σ ′

2

)
u2

(
σ1
σ2

)
α

.

By Axiom FUZZY VARIABLE-TERM, we infer from this that u4 = X1, a new variable, and the judgments become:( ∅
∅

)
.7

�
(

Y

Z

)
X1

( { Y/X1 }
{ Z/X1 }

)
.7

,

27 Since f and g have equal arities, we could also use Rule FUNCTOR/ARITY SIMILARITY RIGHT. This would end in an equivalent 
final result, modulo functor similarities at the final approximation degree. In the remainder of this example, we shall omit making this remark, and 
choose the left rule over the right for equal-arity functors.
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( { Y/X1 }
{ Z/X1 }

)
.7
�

(
f (Y, c)

g(c, d)

)
↑.7

( { Y/X1 }
{ Z/X1 }

)
u2

(
σ1
σ2

)
α

.

The validity of the first fuzzy judgment of the above sequence is thereby established. We proceed with the remainder 
evaluating the fuzzy unapplication in the first of its judgments, which returns the same pair of terms with the similarity 
degree kept at .7:( { Y/X1 }

{ Z/X1 }
)

.7
�

(
f (Y, c)

g(c, d)

)
u2

(
σ1
σ2

)
α

,

and by Rule FUNCTOR/ARITY SIMILARITY LEFT with u2 = f (u5, u6), this becomes:( { Y/X1 }
{ Z/X1 }

)
.7
�

(
Y

c

)
↑.7

( { Y/X1 }
{ Z/X1 }

)
u5

(
θ1
θ2

)
β

,

(
θ1
θ2

)
β

�
(

c

d

)
↑β

(
θ1
θ2

)
u6

(
σ1
σ2

)
α

.

Evaluating the fuzzy unapplication gives β = .7:( { Y/X1 }
{ Z/X1 }

)
.7

�
(

Y

c

)
u5

(
θ1
θ2

)
.7

,

(
θ1
θ2

)
.7
�

(
c

d

)
↑.7

(
θ1
θ2

)
u6

(
σ1
σ2

)
α

,

and by Axiom FUZZY VARIABLE-TERM, we infer from this that u5 = X2, a new variable, which yields:( { Y/X1 }
{ Z/X1 }

)
.7

�
(

Y

c

)
X2

( { Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)
.7

,( { Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)
.7
�

(
c

d

)
↑.7

( { Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)
u6

(
σ1
σ2

)
α

,

and establishes the penultimate judgment. The last remaining judgment, after evaluating its fuzzy unapplication, since 
c ∼.6 d and .7 ∧ .6 = .6, is:( { Y/X1, Y/X2 }

{ Z/X1, c/X2 }
)

.6
�

(
c

d

)
u6

(
σ1
σ2

)
α

,

for which Axiom FUZZY VARIABLE-TERM allows us to infer that u6 = c and α = .6:( { Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)
.6

�
(

c

d

)
c

( { Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)
.6

.

This validates the last judgment and completes the fuzzy generalization whereby t = l(g(b, X1), f (X2, c)) is the least 
fuzzy generalizer of t1 = h(g(b, Y), f (Y, c), V ) and t2 = l(f (a, Z), g(c, d)) at approximation degree .6, with:

• σ1 = { Y/X1, Y/X2 } so that tσ1 = l(g(b, Y), f (Y, c)) ∼.6 t1; and,
• σ2 = { Z/X1, c/X2 } so that tσ2 = l(g(b, Z), f (c, c)) ∼.6 t2.

5. Conclusion

We have developed a formal derivation of fuzzy lattice operations for the data structure known as first-order term. 
This is achieved by means of syntax-driven constraint normalization rules for both unification and generalization. 
These operations are then extended to enable arbitrary mismatch between similar terms whether functor-based, arity-
based (number and order), or combinations.

We studied three lattice structures over FOTs (one crisp and two fuzzy), gave declarative axioms and rules for their 
operations expressing the six corresponding dual lattice operations as constraint solving in these algebraic structures. 
Using the “�” symbol to indicate our original contribution, this article’s contents may be summarized, in each of the 
three lattice structures on FOTs, as follows:

• for conventional signatures (no operator similarity besides identity):
— we presented unification’s declarative rules due to Herbrand, and Martelli and Montanari;
� we provided a declarative constraint-based version of generalization equivalent to the original procedural 

methods due to Reynolds and Plotkin;
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• for signatures with “weak” similarity (all pairs of similar operators have the same number and order of argu-
ments):
— we presented “weak” fuzzy unification as constraint normalization using declarative rules due to Maria Sessa;
� we provided a “weak” fuzzy generalization as a constraint solving using a declarative specification for the dual 

operation of Sessa’s “weak” unification;
• for signatures with possibly misaligned similarity (similar operators possibly with different number or order of 

arguments):
� we extended the above constraint-driven declarative “weak” fuzzy unification to FOTs with possible differ-

ent/mixed arities;
� we extended the above constraint-driven declarative “weak” fuzzy generalization of FOTs with possible dif-

ferent/mixed arities.

This third pair of lattice operations on FOT modulo a similarity involving operators with misaligned or unordered 
arguments extends the previous pair of “weak” operations given argument mappings specified for so-similar operators. 
That is, a similar pair has a similarity degree as well as an injective argument-realigning mapping for each pair of 
operators in the signature. If unspecified, this mapping’s default is the identity from the term with less arguments 
to the one of more arguments. In effect, this third lattice of FOTs permits Fuzzy Logic Programming querying 
misaligned databases, or more generally Information Retrieval (using fuzzy unification) and Approximate Knowledge 
Acquisition (using fuzzy generalization) over heterogeneous but similar data models.

We have started an implementation in Java of the operational semantics derived from the axioms and rules that we 
presented and proved correct in this article which has allowed us to confirm our results on concrete examples [45].28

This was eased by the fact that the fuzzy lattice operations do no require altering these conventional first-order struc-
tures.

As for future work, there are several avenues to explore. There are several other disciplines where this technol-
ogy has potential for fuzzifying applications wherever FOTs are used for their lattice-theoretic properties such as 
linguistics and learning. Finally, most promising is using this work’s approach to more generic and more expressive 
knowledge structures for applications such as Information Retrieval (e.g., in the line of [47]), or Data and Knowledge 
Base Management, Ontology Alignment, etc., . . . Finally, we are currently extending this work to similar functors 
where similarity may be restricted to possibly partial mappings of subterms between similar functors. As well, 
we are also developing the same formal constructions for fuzzy lattice operations over order-sorted feature (OSF) 
graphs [48]. Encouraging initial results are being reported in [34].
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Appendix

The following appendix sections provide formal material, terminology, and notation constituting background for 
the issues developed in this work. Appendix A recalls basic definitions and properties of FOT substitutions repre-
sented, as we do in this work, as finitely non-identical variable-to-terms mappings. Appendix B gives the basic formal 
set-theoretic characterization properties of relations as sets of pairs. Appendix C extends these to their fuzzy gen-
eralizations: Appendix C.1 to fuzzy relations; Appendix C.2 to fuzzy equivalence relations (called similarities); and 
Appendix C.3 to fuzzy partial orders.

Appendix A. First-order term substitutions

This section gives basic terminology and properties of FOT substitutions as defined in 2.2 where the set-theoretic 
definition of substitutions as finitely non-identical variable-to-term mappings is given as Expression (2).

28 See also [46], a recent extension of the Bousi-Prolog system based on our similarity-based unification tolerating functors of differing arities.
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Lemma 6. Given two substitutions σ and θ in SUBSTT , the operation defined by Expression (2) always results in a 
substitution in SUBSTT .

Proof. It must be verified that, given σ and θ two finitely non-identical mappings from V to T , the notation σθ defined 
in set-theoretic terms from the set structure of σ and θ by Expression (2) always results in a finitely non-identical 
mapping from V to T . This is an elementary exercise from the very set-theoretic definition of substitution composition 
given as Expression (2). �
Lemma 7. For any term t in T and any substitutions σ and θ in SUBSTT , the expression σθ defined by Expression (2)
is a substitution that has the same effect as first applying σ to t , and then applying θ to the result; that is, ∀ t ∈ T , ∀ σ ∈
SUBSTT , ∀ θ ∈ SUBSTT , t (σ θ) = (tσ )θ .

Proof. Expression (2) consists of two parts of a (disjoint) set union. The first part of this union consists in the set of 
pairs t/X in σ transformed into the set of pairs tθ/X for each pair t/X in σ . This has for effect to “capture” any 
potential variables in var(tσ ) ∩ dom(θ) by mapping directly to tσ θ any variable mapped to t by σ . This corresponds 
to precomputing the necessary “shortcut” of instantiating X directly into to tσ θ for all such concerned variables in 
dom(θ). Note that since this may possibly introduce identical pairs X/X, which must then be eliminated.

The second part of the union in Expression (2) simply completes the resulting substitution with pairs t/Y in θ
concerning those variables Y which are not affected by σ (i.e., all Y ∈ dom(θ) such that Y /∈ dom(σ )). Indeed, these 
variables are taken care of in the first part in the terms mapping the variables in dom(X) by further instantiating by θ
as need be.

These two cases clearly cover the only possibilities for variable mapping by σ and θ , and by construction in each 
case, this results in a finite set of term/variable pairs, thus completely specified by Expression (2) on all V , when 
applied to any term t , has the same effect of first applying σ to t and then applying θ to the result. �
Corollary 5. Substitution composition as defined by Expression (2) is an associative operation; i.e., for all σ , θ , and 
δ in SUBSTT , σ(θδ) = (σθ)δ.

Proof. Let t be any term in T , and σ , θ , and δ be three substitutions in SUBSTT . Applying Lemma 7 successively, 
we have t (σ (θδ)) = (tσ )(θδ) = ((tσ )θ)δ = (t (σθ))δ = t ((σθ)δ). Since both sides applied to any term are equal, this 
means that σ(θδ) = (σθ)δ. �

Note that, as a set of term/variable pairs, the substitution which is the identity everywhere on V is the empty set 
of pairs—which is why it is called the empty substitution and denoted as the empty set ∅. It is easy to verify that 
this empty substitution is also the unique identity element on SUBSTT . Namely, for all substitution σ ∈ SUBSTT , 
σ∅ = ∅σ = σ and if σθ = θσ = σ for some θ ∈ SUBSTT , then θ = ∅. Therefore, SUBSTT with composition and ∅
is a monoid. Note finally that substitution composition is not commutative since in general σθ 	= θσ .29 Therefore, the 
set SUBSTT with substitution composition is a non-commutative monoid.

Like all monoids, the set SUBSTT of substitutions inherits a relation � defined as follows.

Definition 13. σ � θ iff ∃ δ ∈ SUBSTT s.t. σ = θδ.

The expression “σ � θ” is read “σ refines θ” or “θ is more general than σ .”

Lemma 8. The relation � is a preorder on the set of first-order term substitutions SUBSTT .

Proof. We must show that � is reflexive and transitive. Reflexivity: For any σ ∈ SUBSTT , there exists δ = ∅ such 
that σ = σδ, which means by definition of � that σ � σ . Transitivity: Assume σ1 � σ2 and σ2 � σ3; this means that 
there exist δ1 and δ2 such that σ1 = σ2δ1 and σ2 = σ3δ2. Replacing σ2 by its value in the expression of σ1, it comes as 
a result that σ1 = σ3δ2δ1. And so, there exists δ3 = δ2δ1 such that σ1 = σ3δ3; which means that σ1 � σ3. �
29 Take for example σ = { a/X } and θ = { b/X }, for which σθ = { a/X} and θσ = { b/X}.
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Note that � is not an order relation because it is not anti-symmetric. Indeed, if we have both σ � θ and θ � σ , this 
does not necessarily imply that σ = θ . However, this defines an equivalence relation on substitutions.

Lemma 9. The relation � def= � ∩ �−1 is an equivalence on the set of substitutions SUBSTT .

Proof. Let us verify that � has three properties of an equivalence. Reflexivity: Clearly, for any σ ∈ SUBSTT , σ � σ

since this is equivalent to σ � σ and σ � σ , which is always true since � is reflexive because it is a preorder.
Symmetry: Also, for any σ ∈ SUBSTT and θ ∈ SUBSTT , if σ � θ , this is equivalent by definition to σ � θ and 
θ � σ ; which is also equivalent to θ � σ . Therefore, � is symmetric. Transitivity: Let us now assume that (1) σ � θ

and (2) θ � δ. This implies in particular, by definition of � and �: (1) (σ � θ and θ � δ), which by transitivity of �
implies σ � δ; and (2) (δ � θ and θ � σ ); which by transitivity of � implies δ � σ . Hence, we have both σ � δ and 
δ � σ , which is equivalent to σ � δ. Therefore, � is transitive. �
Definition 14. A variable renaming ρ is a substitution in SUBSTT ∩ (V → V) that is injective. That is,

• ρ = {X′
i/Xi}ni=1 with Xi ∈ V and X′

i ∈ V; and,
• if Xi 	= Xj then X′

i 	= X′
j , for any i, j = 1, . . . , n such that i 	= j .

Corollary 6. If both σ � θ and θ � σ , this entails that σ and θ are equal up to a renaming of their variables. Namely, 
∃ ρ : V → V bijective such that θ = ρσ and σ = ρ−1θ .

Proof. If σ � θ and θ � σ then, by definition, there exist two substitutions ρ and ρ′ such that σ = θρ and θ = σρ′. 
In other words:{

σ = σ ρ ρ′,
θ = θ ρ′ρ ; which is equivalent to:

{
ρ ρ′ = ∅,

ρ′ρ = ∅; and therefore to:

{
ρ = ρ′ −1,

ρ′ = ρ −1.

Note also that since ρ and ρ′ are mutual inverses on V , it must be that ρ and ρ ′ are injective. This follows from 
the axiom of functionality for ρ and ρ′, which states that for every pair of variables X and X′ in V , if X = X′ then 
necessarily Xρ = X′ρ and Xρ′ = X′ρ′. But since ρ are mutual inverses on V , this means that whenever Yρ′ = Y ′ρ′
for any pair of variables Y and Y ′ in V , then necessarily Yρ′ρ = Y ′ρ′ρ; i.e., Y∅ = Y ′∅, and thus Y = Y ′, which means 
that ρ′ must be injective. The same reasoning in the other direction will entail that ρ must be injective as well. Note 
finally that ρ is also surjective on V , since any variable X ∈ V is such that Xρ′ρ = X, therefore there exists Y = Xρ′
such that Yρ = X. The same applies to ρ′ in the other direction. Therefore, ρ and ρ′ are bijective inverses. �
Appendix B. Crisp relations

In (crisp) Set Theory, a binary relation r on a set S is a subset of S × S. We say that r is:

• reflexive iff:

1S×S ⊆ r (B.1)

where 1S is the identity relation on S defined as: 1S×S
def= { 〈x, x〉 | x ∈ S };

• symmetric iff:

r = r−1 (B.2)

where r−1 is the inverse relation of r defined as: r−1 def= { 〈y, x〉 ∈ S × S | 〈x, y〉 ∈ r };
• antisymmetric iff:

r ∩ r−1 ⊆ 1S×S (B.3)

where r ∩ r ′ is the intersection of r and r ′; viz., the relation on S defined as: r ∩ r ′ def= { 〈x, y〉 ∈ S × S | 〈x, y〉 ∈
r and 〈x, y〉 ∈ r ′ };
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• transitive iff:

r ◦ r ⊆ r (B.4)

where r ◦ r ′ is the composition of r and r ′; viz., the relation on S defined as: r ◦ r ′ def= { 〈x, y〉 ∈ S × S | 〈x, z〉 ∈
r and 〈z, y〉 ∈ r ′ for some z ∈ S }.

Definition 15 (PREORDER). A relation r on a set S is a preorder on S iff it is reflexive and transitive; i.e., iff r verifies 
conditions (B.1) and (B.4).

Definition 16 (EQUIVALENCE). A symmetric preorder r on a set S is called an equivalence on S; that is, r verifies 
conditions (B.1), (B.2), and (B.4).

Such an equivalence relation ≡ on a set S defines a partition of this set; namely, a collection of non-empty subsets 
Si , 1 ≤ i ≤ I≡ ∈ IN, of S (the equivalence classes) such that:

1 ≤ i 	= j ≤ I≡ =⇒ Si ∩ Sj = ∅ (B.5)

and:

S =
⋃

i ≤ I≡
Si (B.6)

where I≡, the index of ≡, is the number of equivalence classes of ≡ forming the partition of S. The equivalence class 
of an element of x ∈ S is denoted [x]≡ and is defined as:

[x]≡ def= {y ∈ S | x ≡ y }. (B.7)

Definition 17 (PARTIAL ORDER). A relation r on a set S is a partial order on S iff it is an antisymmetric preorder on 
S; i.e., iff r verifies conditions (B.1), (B.3), and (B.4).

Appendix C. Fuzzy set algebra

In this section, we recall some essential terminology and notation on Fuzzy Set algebra used in this document. The 
symbol we shall use for fuzzy conjunction (a canonical model of which is the family of T-norms30) is ∧ (resp., ∨ for 
its fuzzy dual operation). This is generally interpreted as min (resp., max); e.g., in Zadeh’s seminal paper [49]. But 
other T-norms (T-conorms) can be considered depending on the desired effect. For example, here below the definitions 
of three popular definitions for ∧ and ∨ on [0, 1], which are used in practice [39], [50]:

• “Gödel” fuzzy operators:{
α1 ∧

G
α2

def= min(α1, α2)

α1 ∨
G

α2
def= max(α1, α2)

(C.1)

• “Product” (or “probabilistic”) fuzzy operators:{
α1 ∧

P
α2

def= α1α2

α1 ∨
P

α2
def= α1 + α2 − α1α2

(C.2)

• “Łukasiewicz” fuzzy operators:{
α1 ∧

L
α2

def= max(0, α1 + α2 − 1)

α1 ∨
L

α2
def= min(α1 + α2,1)

(C.3)

30 See https://en .wikipedia .org /wiki /T -norm.

https://en.wikipedia.org/wiki/T-norm
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The choice of one of the previous definitions affects the semantics of the fuzzy conjunction (fuzzy disjunction) op-
erator. For example, contrary to the “Gödel” fuzzy conjunction ∧G that imposes the value of one over the other of 
two values, the “Product” version ∧P is less “drastic” and will take a more balanced consideration of the values of 
both arguments. There are a few other fuzzy operators that have been given specific denominations that correspond 
to particular situations.31 But one may design their adequate ∧ operator (or ∨ operator since one can be derived from 
the other by duality).32

However, in all the actual numerical examples provided in this document for illustration, we use min (resp., max) 
as fuzzy conjunction (resp., fuzzy disjunction).

C.1. Fuzzy relation

Let us now fuzzify the conventional set theoretic definitions recalled in Appendix B. It is a straightforward homo-
morphic extension of the conventional view of (crisp) sets as {0, 1}-valued functions to [0, 1]-valued functions. Indeed, 
the former are just a particular case of the more general (fuzzy) sets seen as [0, 1]-valued characteristic functions.33

That is, all the fuzzy notions are obtained as straightforward extensions of their crisp counterparts through a Boolean 
lattice homomorphism. The advantage of the fuzzy extension over conventional sets is that, being structurally richer, 
it is more expressive. It is a homomorphic extension insofar as all the formal algebraic properties of fuzzy sets and 
fuzzy-set connectives reduce to their conventional crisp versions when reducing the membership value φ(x) of every 
element φ(x)/x of a fuzzy set φ into a crisp value in {0, 1} for values which, when compared to a given value α in 
[0, 1], are either strictly less (assimilated to 0), or greater or equal (assimilated to 1). Informally, this is the crisp set of 
elements with “at least” α as membership value. This is called a fuzzy set’s “α-cut” φα such that φα(x)

def= 0 whenever 
φ(x) < α and φα(x)

def= 1 whenever φ(x) ≥ α, for any threshold value α in [0, 1].

Definition 18 (FUZZY RELATION). A fuzzy relation on a set S is a fuzzy subset on S × S.

The following properties generalize those of crisp binary relations seen in Appendix B. Like in the crisp case, we 
will look closer at essentially two kinds of fuzzy binary relations: fuzzy orders and fuzzy equivalences.34

Recall that a fuzzy set φ on a set S is a function φ : S → [0, 1]. Let ρ : S × S → [0, 1] be a fuzzy relation on S. 
We say that ρ is:

• reflexive iff:

1S×S ≤ ρ (C.4)

where 1S×S is the fuzzy identity relation on S defined as: 1S×S(x, y) = 1 if x = y and 0 if x 	= y, for all x and y
in S; and ≤ is fuzzy set inclusion defined as: ρ ≤ ρ ′ iff ρ(x, y) ≤ ρ′(x, y), for all x and y in S;

• symmetric iff:

ρ = ρ−1 (C.5)

where ρ−1 is the fuzzy inverse of ρ; viz., the fuzzy relation on S defined as: ρ−1(x, y)
def= ρ(y, x), for all x and y

in S;

• antisymmetric iff:

ρ ∧ ρ−1 ≤ 1S×S (C.6)

where the fuzzy meet ρ ∧ ρ′ is the fuzzy relation on S defined as: 
(
ρ ∧ ρ′)(x, y)

def= ρ(x, y) ∧ ρ′(x, y), for all x
and y in S;

31 See, e.g.: http://www .nicodubois .com /bois5 .2 .htm.
32 Designing specific fuzzy norms can be done visually in 3D using publicly available tools such as, e.g., http://www .math .uri .edu /
~bkaskosz /flashmo /graph3d2/.
33 Such a fuzzy characteristic function is called a “membership function” in the literature following Zadeh’s original terminology [49].
34 See [51] for even finer and more expressive kinds of useful fuzzy relations that can be defined algebraically.

http://www.nicodubois.com/bois5.2.htm
http://www.math.uri.edu/~bkaskosz/flashmo/graph3d2/
http://www.math.uri.edu/~bkaskosz/flashmo/graph3d2/
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• transitive iff:

ρ ◦ ρ ≤ ρ (C.7)

where the fuzzy composition ρ◦ρ′ is the fuzzy relation on S defined as: 
(
ρ◦ρ′)(x, y)

def= ∨
z∈S

(
ρ(x, z) ∧ρ′(z, y)

)
, 

for all x and y in S.

Definition 19 (FUZZY PREORDER). A fuzzy relation ρ on a set S is a fuzzy preorder on S iff it is reflexive and 
transitive; i.e., iff r verifies conditions (C.4) and (C.7).

C.2. Similarity

Definition 20 (FUZZY EQUIVALENCE). A fuzzy equivalence ρ on a set S is a fuzzy relation on S which is a symmetric 
fuzzy preorder on S—that is, ρ verifies conditions (C.4), (C.5), and (C.7).

A fuzzy equivalence relation is also called “similarity” relation in the literature [50]. For this reason, we speak of 
“similarity degree” to denote the membership value of a pair so related.

A similarity relation ∼ on a set S is a fuzzy equivalence relation on S; i.e., a fuzzy set of pairs of S × S. When S is 
a finite discrete set, say indexed over {1, . . . , n}, since a similarity relation ∼ on S is a fuzzy subset of S × S, the three 
conditions of an equivalence can be visualized on a square n × n matrix ∼∈ {1, . . . , n}2 → [0, 1] as follows. For all 
i, j, k = 1, . . . , n:

• reflexivity: i ∼ i = 1 (i.e., entries on the diagonal are equal to 1);
• symmetry: i ∼ j = j ∼ i (i.e., all symmetric entries on either side of the diagonal are equal);
• transitivity: i ∼ k ∧ k ∼ j ≤ i ∼ j , for any k ∈ { 1, . . . , n} (i.e., going via an intermediate element will always 

result in a smaller or equal similarity degree than going directly).35

Given a similarity relation ∼ on a set S, the subset of [0, 1] denoted DEGREES∼ and defined as DEGREES∼ def= { α ∈
[0, 1] | x ∼α y, for somex, y ∈ S } is called the “similarity degree set” of ∼. A similarity degree α ∈ DEGREES∼ can 
thus be used as an approximation threshold, and a similarity can be rendered a crisp equivalence on S by keeping only 
pairs in ∼ with similarity degree greater than or equal to α (i.e., the α-cut of the similarity).

The similarity class [x]∼α of an element x ∈ S at an approximation threshold α in [0, 1] given a similarity ∼ on S
is defined as:

[x]∼α def= {y ∈ S | x ∼β y, for some β ∈ [α,1] }.
Thus, for lower values of α, more similarity degrees between pairs of distinct elements of S are considered than those 
related in α-cuts of ∼ for greater values of α.

C.3. Fuzzy partial order

Definition 21 (FUZZY PARTIAL ORDER). A fuzzy relation ρ on a set S is a fuzzy partial order on S iff it is an 
antisymmetric fuzzy preorder; i.e., iff ρ verifies conditions (C.4), (C.6), and (C.7).

For a fuzzy partial order, as in the case of a fuzzy equivalence relation, when S is a finite discrete set {x1, . . . , xn}, 
the three conditions of the above definition can be visualized on a square n × n matrix � in [0, 1]2 as follows:

• reflexivity and transitivity (just as for a similarity matrix);

35 Here and elsewhere in this article, we shall use ∧/∨ for fuzzy conjunction/disjunction in generic formulas. We prefer using these more general 
symbols in our formalization since which specific fuzzy operations are used is irrelevant. However, we shall use min/max in all the illustrative 
examples we give that use actual numbers.
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• antisymmetry: the matrix must be triangular (up to reordering of columns and lines); this is because �ij > 0
implies �ji = 0, for all i, j = 1, . . . , n (i.e., all symmetric entries on either side of the diagonal may not be both 
non-zero).

For example, the fuzzy binary relation � on the 6-element set {x1, . . . , x6} defined as the fuzzy min/max reflexive-
transitive closure of the following weighted acyclic graph36:

corresponds to the following fuzzy matrix:

� def=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.8 0.2 0.6 0.6 0.4
0 1 0 0 0.6 0
0 0 1 0 0.5 0
0 0 0 1 0.6 0.4
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(C.8)

upon which these conditions can be verified—which means that the fuzzy relation � so defined is a fuzzy partial order 
on the set {x1, x2, x3, x4, x5, x6}.

Note that, just as in the crisp case, any fuzzy preorder � on a set S (i.e., a fuzzy relation on S that is reflexive and 
transitive) always implicitly defines the following fuzzy relations:

• a similarity ∼ on S defined, for any α ∈ [0, 1], as:

∼α
def= �α ∧ �α (C.9)

where �α is the fuzzy relation defined as: �α
def= �−1

α ;
• a fuzzy partial order �, a fuzzy set of partial orders �α on each partition 
∼

α of S generated by ∼ in the fuzzy 
partition 
∼ def= { 
∼

θ | θ ∈ DEGREES∼ }, such that:

[x]∼α �α [y]∼α iff x ∼α x′ and x′ �α y′ and y′ ∼α y (C.10)

for some x′ ∈ [x]∼α and some y′ ∈ [y]∼α .
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