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Abstract

LIFE is a programming language integrating different programming paradigms in the
same framework, such as object orientation, concurrency and passive constraints. We
have used this language to implement the prototype of a very basic and simple graphical
toolkit for LIFE applications. This prototype is built on top of a basic interface between
LIFE and the X Windows library It demonstrates that the combination of the different
paradigms supported by LIFE is most adequate for designing such applications. Because
the toolkit is all realized in LIFE, it could be easily ported to another window system
(e.g., MS-Windows) provided the basic calls to the underlying window system are given
as interface.

1 Introduction

LIFE, an acronym for Logic, Inheritance, Functions, and Equations, is an experimental
programming language designed after these four precepts for specifying structures and
computations([3]. LIFE can also be seen as a specific instantiation of a Constraint Logic
Programming (CLP) scheme with a particular constraint language; in its most primitive form,
this constraint language constitutes a logic of record structures.

In this paper, we mean to overview informally the functionality of LIFE and the conveniences
that it offers for programming, and describe a simple toolkit to build interactive window-based
applications in LIFE. It provides the user with some basic functionalities of bigger toolkits, in
short the ability to use buttons, text fields, menus, and sliders. Comp-osite objects containing
these primitives can be created arbitrarily at run-time. The prootype toolkit is built on top of a
basic X interface that consists essentially in calls to the X library.

The toolkit is organized around three concepts: boxes, looks, and constructors.

• boxes are used to compute the sizes and positions of objects on the screen.
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• constructors are used to build and initialize screen objects. All objects that have a
behavior (i.e. not simple graphical objects, but real widgets) inherit from one constructor
type.

• looks are used to describe the appearance of screen objects. An object may be a subtype
of several look types and will inherit the appearance of these' 'looks" .

In the next section, we give an overview of the LIFE language, then we shall focus on the
toolkit and describe its implementation.

2 The LIFE language

LIFE expressions are of three kinds: functional, relational, and structural. The function-
oriented component of LIFE is directly derived from functional programming languages with
higher-order functions as first-class objects, data constructors, and algebraic pattern-matching
for parameter-passing. The convenience offered by this style of programming is one in
which expressions of any order are first-class objects and computation is determinate. The
relation-oriented component of LIFE is essentially one inspired by the Prolog language [5, 6].
Unification of first -order patterns used as the argument-passing operation turns out to be the key
of a quite unique and hitherto unusual generative behavior of programs, which can construct
missing information as needed to accommodate success. Finally, the most original part of
LIFE is the structure-oriented component which consists of a calculus of type structures---the
'l,b-calculus [1, 2]---and accounts for some of the (multiple) inheritance convenience typically
found in so-called object-oriented languages.

The next subsection gives a very brief and informal account of the calculus of type inheritance
used in LIFE ('l,b-calculus). The reader is assumed familiar with logic programming.

2.1 'l,b-Calculus

In this section, we give an informal but informative introduction of the notation, operations,
and terminology of the data structures of LIFE. It is necessary to understand the programming
examples to follow, and the description of the toolkit.

The 'l,b-calculusconsists of a syntax of structured types called 'l,b-termstogether with subtyping
and type intersection operations. Intuitively, as expounded in [4], the 'l,b-calculus is a
convenience for representing record-like data structures in logic and functional programming
more adequately than first-order terms do, without loss of the well-appreciated instantiation
ordering and unification operation.

Let us take an example to illustrate. Let us say that one has in mind to express syntactically
a type structure for a person with the property, as expressed for the underlined symbol in
Figure 1, that a certain functional diagram commutes.

The syntax of 'l,b-terms is one simply tailored to express as a term this kind of approximate
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Figure 1: A commutative functional diagram

description. Thus, in the 1j!-calculus, the information of Figure 1 is unambiguously encoded
into a formula, perspicuously expressed as the 1j!-term: -

X: personiname => idlfirst => string,
last => S : string),

spouse => person (name => id( last => S),
spouse => X)).

It is important to distinguish among the three kinds of symbols participating in a 1j!-term. We
assume given a set S of sorts or type constructor symbols, a set F of features, or attributes
symbols, and a set V of variables (or coreference tags). In the 1j!-term above, for example, the
symbols person, id, string are drawn from S, the symbols name,jirst, last, spouse from F, and
the symbols X, S from V. (We capitalize variables, as in Prolog.)

A 1j!-term is either tagged or untagged. A tagged 1j!-term is either a variable in V or an
expression of the form X : t where X E V is called the term's root variable and t is an untagged
1j!-term. An untagged 1j!-term is either atomic or attributed. An atomic 1j!-term is a sort symbol
in S. An attributed 1j!-termis an expression of the form s(i 1 => tl, ... ,in => tn) where the root
variable's sort symbol s E S and is called the 1j!-term's principal type, the ii's are mutually
distinct attribute symbols in F, and the tj' s are 1j!-terms (n ~ 0). -
Variables capture coreference in a precise sense. They are coreference tags and may be viewed
as typed variables where the type expressions are untagged 1j!-terms. Hence, as a condition to
be well-formed, a 1j!-termmust have all occurrences of each coreference tag consistently refer
to the same structure. For example, the variable X in:
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personi id => nameifirst => string,
last => X : string),

father => person ( id => name( last => X : string) ) )
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refers consistently to the atomic 1jJ-term string. To simplify matters and avoid redundancy, we
shall obey a simple convention of specifying the sort of a variable at most once and understand
that other occurrences are equally referring to the same structure, as in:

person (id => name (first => string,
last => X : string),

father => person ( id => name( last => X)))

In fact, since there may be circular references as in:

X : person (spouse => person (spouse => X))

this convention is necessary. Finally, a variable appearing nowhere typed, as uijunkl; kind => X)
is implicitly typed by a special greatest initial sort symbol T always present in S. This symbol
will be written as the symbol @ as in @(age => integer, name => string). In the sequel, by
'l,b-termwe shall always mean well-formed 'l,b-term.

Generalizing first-order terms.' 'l,b-termsare ordered up to variable renaming. Given that the
set S is partially-ordered (with a greatest element T), its partial ordering is extended. to the set
of attributed 1jJ-terms. Informally, a 1jJ-term tI is subsumed by a 1jJ-term tz if (1) the principal
type of tI is a subtype in S of the principal type of t2; (2) all attributes of t2 are also attributes
of tI with 1jJ-terms which subsume their homologues in tI; and, (3) all coreference constraints
binding in tz must also be binding in tI.

For example, if student < person and paris < cityname in S then the 'l,b-term:

student( id => name (first => string,
last => X : string),

lives..at => Y : address (city => paris),
father => personiid => nameilast => X),

lives...at => Y))

is subsumed by the 1jJ-term:

personiid => nameilast => X: string),
lives..at => address (city => cityname),
father => person ( id => namel last => X))).

In fact, if the set S is such that greatest lower bounds (GLB's) exist for any pair of type
symbols, then the subsumption ordering on 1jJ-term is also such that GLB' s exist. Such are
defined as the unification of two 'l,b-terms. A detailed unification algorithm for 'l,b-terms is
given in [4].

Consider for example the poset displayed in Figure 2 and the two 1jJ-terms:

IIn fact, if a first-order term is written f(ll, ... ,tn), it is nothing other than syntactic sugar for the 1/>-term
f(1 :::} tl, ... , n :::}tn).



Figure 2: A lower semi-lattice of sorts

X : student( advisor => laculty( secretary => Y : staff,
assistant => X),

roommate => employeei representative => Y))

and:

employee (advisor => 11(secretary => employee,
assistant => U :person),

roommate => V: studenti representative => V),
helper e- Wl(spouse=> U)).

Their unification (up to tag renaming) yields the term:

W : workstudyi advisor => I1 (secretary => Z :workstudyi representative => Z),
assistant => W),

roommate => Z,
helper => wl(spouse => W)).

Last in this brief introduction to the 1j;-calculus, we explain type definitions. The idea is that
types in the signature may be specified to have attributes in addition to being partially-ordered.
Inheritance of attributes from all supertypes to a subtype is done in accordance with 1j;-term
subsumption and unification. For example, given a simple signature for the specification of
linear lists S = {list, cons, []} with [] < list and cons < list, this is expressed as:

[J < 1 list.
cons <I list.
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In addition, it is possible to specify that cons has an attribute 2 ~ list. This is expressed as:

:: cons(2 => list).

In fact, it is possible to attach complex properties (attributes or arbitrary constraints) to sorts.
These properties will be verified during execution, and also inherited by subsorts. A definition
attaching attributes to a sort is expressed using the following syntax:

:: sort (label => '1j;-terrn,...r label => '1j;-terrn).

For example, to express that "vehicles have a make that is a string, and a number of wheels
that is an integer" we may write:

:: vehicle(make => string, number_of_wheels => int).

And to say that "cars are vehicles that have 4 wheels", we write:

car <I vehicle.
:: car(number_of_wheels => 4).

Obviously if the relation car < I vehicle is asserted then any properties attached to car
must be compatible with those attached to vehicle, otherwise type car would be l..
It is also possible to use functions in attribute definitions, for example:

:: square(side => S:real,surface => S*S).

One can also demand that certain constraints always hold about a sort. The syntax for this is:

:: sort (attributes) 1 constraint.

where constraint has the same form as that of a definite clause's body. The operator is
pronounced "such that. " For example:

:: code(key => S:string) 1 pretty_complicated(S).

attaches a constraint to any object of sort code where pret ty _compl ica ted is a predicate
expressing some property on strings. You might find it helpful to read this as "all codes have
a key that is a string, S, such that S is pretty complicated. "

In fact, the "such that" operator I may be used not only in sort definitions but as with
arbitrary terms in functions and predicate definitions. It is a function in that the expression
El G (pronounced "E such that G") evaluates the expression E, then proves the goal G, and
finally returns the value E in the c's solution context. For example, the 'l/J-term conjunction
operator & is defined as the following (infix) function:

X & Y -> X 1 x = Y.

1(:,6
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2.2 Functions and suspensions in LIFE

In LIFE, a basic 1j;-termdenotes a functional application if its root symbol is a defined function.
An example of such is append ( list, L), where append is the function defined as:2

append(n, L : list) -+ L.
append([HIT: list], L: list) -+ [Hlappend(T, L)].

The 1j;-term fooibar =? X : list, ba: =? Y : list.fuz =? appendl X, Y)) is one in which the
attribute fu: is derived as a function of the attributes bar and baz: Unifying such 1j;-terms
proceeds modulo suspension of functional expressions whose arguments are not sufficiently
refined to be provably subsumed by patterns of function definitions. For instance, the equation
X = append(Y,Z) will be suspended until Y is bound to a 1j;-term subsumed by [] or [@Ilist),
and Z by a 1j;-term subsumed by list.

Arithmetic functions in particular are implemented as functions that will suspend until their
arguments are bound to numbers. This gives the power of passive constraints to the language,
which will be extensively used in the following to express placement constraints between
objects.

Another important application of this suspension mechanism is the ability to mimic concurrent
processes that may communicate thanks to the logical variables. Consider for instance the two
functions:

process_l([lINXl,Y) -> process_l(NX,NY)
process_2([2INYl,X) -> process_2(NY,NX)

Y
x

[2INY] .
[lINX] .

with the query:

process_l(X,Y), process_2([2IY] ,X) ?

The execution first suspends process_1 since its arguments are not sufficiently instantiated.
Then it calls process_2, which can be executed. Its execution first suspends the recursive
call to process_2, then binds X to [11NX].By doing this, the call to process_1 will be
released, and its execution will suspend a new call to process_1, and release the suspended
call to process_2. Thus, we have two processes synchronized thanks to their arguments.

This mechanism is used in the toolkit to deal with events. An event handler is a recursive
function that waits for events, is released when an event occur, and reinstalls itself after having
performed the right actions.

3 A Graphical Toolkit in LIFE

As we have seen in the introduction, the toolkit we describe now is organised around three
concepts: boxes, constructors, and looks. These three concepts are represented by sorts in the

2For convenience, LIFE adopts the list syntax of Prolog. The notation [A IBl is syntactic sugar for the term
cons (A, B), which is itself a shorthand for the 'l/J-tenn cons (l=>A, 2=>B).



process.Z

release 1 suspend 2

suspend 1 release 2

implementation, which we detail in the next subsections.

3.1 Boxesand placement constraints

3.1.1 Definition of boxes

The basic concept used in this toolkit is that of a box. A box resembles very much the box
concept used by TeX. They have been introduced in the toolkit to let the developper of an
application describe simply the position constraints between the objects of the interface. The
passive constraints of LIFE are then used to compute the actual position parameters of the
boxes satisfying these constraints.

All the objects manipulated by the toolkit are boxes. A box is defined by the following type
decIaration:

:: box (X, YI width => DX, height => DYI border => B) ..

x and Y are integers giving the coordinates of the box, DX and DY are integers giving the
dimensions of the box. The border feature is the width of reserved space on each side of a
box.

When a box is declared, the user need not specify all these parameters. Some of them have
(customizable) default values, others may be computed thanks to constraints defined over
boxes. We describe in the following the basic constraints offered by the tool kit. These
primitives just set and try to resolve the placement constraints.

1 68 8
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3.1.2 Constraints on boxes

Relative positioning The toolkit offers a number of primitives to place boxes. They are
functions taking two boxes as arguments and returning the smallest box containing these
arguments placed in a certain way. For instance

Boxl l_above Box2

returns the smallest box containing Boxl and Box2,such that:

• Box 1 is above Box2, and

• their left sides are aligned.

Containment "Boxl contains Box2" expresses that Boxl contains Box2. Ifno size
is specified for Boxl, it will be given the same size as that of Box2. If Boxl has a border
feature worth Border, it will be used to reserve a space ofthat width around the box. In this
case, Boxl will be larger than Box2.

Refined positioning There are also some primitives that set finer constraints. For instance:

Boxl lr_aligned Box2

will force the left side of Boxl to be aligned with the right side of Box2 .

will force the centers of Boxl and Box2 to be vertically aligned.

Sizes of boxes It is very useful to be able to constrain some boxes to have the same size.
same_size (List_of_Boxes) will force all the boxes of the list to have the same height
and width.

When boxes contain text, their sizes are computed on the fly, using a subsort of box: t_box.
If no size is already given for a box, and if it is a sub type of t_box, then its size is computed
according to the text, the font used, and the space to be reserved around it (which are declared
as features of t_box).

These constraints may be cumulated and imposed in any order. The local constraint
propagation of LIFE guarantees that if the constraints are consistent and enough information
exists to determine a placing, it will be determined. If the constraints are inconsistent, then
they will fail and cause backtracking.
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3.2 Constructors: Describing the behavior of widgets

3.2.1 Constructor types

A constructor type defines the behavior of a family of widgets, and defines the methods to
initialize them by creating the windows and setting up the event handlers.

Let us take the example of the constructor of text field widgets. It is defined as follows:

text_field_c <I box.
:: A:text_field_c( on => bool,

text => string,
action => Action,
constructor => build_text_field(A)).

The on feature determines the state of the button, text its text, action the action to be
performed when a new text is entered, and cons truc tor the method used to actually create
a text field. Creating a text field consists in initializing the first features, creating a window,
and setting up an event handler for this window.

build_text_field(Button) :-
create_subwindow(Button) ,
Button.on «- false,
initialize_action (Button) ,
initialize_text (Button) ,
catch_text_field_events(Button) .

Bu tton .on designates the on feature of Bu tton. The < < - sign is a permanent assignment,
which means that this value won't be modified on backtracking.

3.2.2 Handling events

Events are handled thanks to the ability of LIFE to express implicitly concurrent processes.
Communication with X is handled by the xGetEvent function. This function takes two
arguments, a window and a mask, and suspends until an event matching the mask occurs in
the window.

catch_events (Button) -> true
Event = get_event( ...),
handle_event (Event) .

handle_event (rnouse_event) ->
(actions)
Event = get_event( ...),
handle_event (Event) .

true 1
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Figure 3: text field look

Events are implemented as sorts (mouse_event, expose_event, ... ) An event handler
is implemented as a recursive function that performs some actions when an event of the proper
sort occurs, and reinstalls itself afterwards.

3.3 Looks

The look of a box is also handled through inheritance. For instance, the sort describing the
appearance of a text field --- text_field_l --- is a sub sort of text_box, field and
frame, each of these sorts describing a special look feature. The idea is to have specific types
to which some specific drawing methods are attached. As there is no such thing as overriding
in LIFE, inheritance is not handled as usual.

Drawing methods are described thanks to two predicates: draw_static and draw_dynamic.
draw_static is just used once, when the box is drawn forthe first time. draw_dynamic
is used each time the state of the widget changes, to redraw it according to its new state.

A special control mechanism is used to draw widgets. It is important here to make sure that
all the drawing methods defined for a look will be used each time it is necessary. To do this,
the drawing predicate calls draw_static and draw_dynamic with matching (and not
unification) and backtracks until no method can anymore be used.

3.4 Screenobjects

The screen objects manipulated by the X toolkit are subsorts of .Iooks and/or constructors.
They usually have an additional feature that stipulates how the states of the look and that of
the constructor are linked (change_state).

All these mixed paradigms make it very easy to design interfaces. It is also very easy to add
new objects to the toolkit. For instance, a user that wants to define a slider that contains text
can do it easily this way:

rny_slider <I h_slider_c.
rny_slider <I frame.
rny_slider <I field.



Panel : panel
contains
Button c_left_of SlideBar.

These declarations just stipulate that my_s 1i der has the behavior of an horizontal slider, and
the look of a frame, a field, and a text box. Now, imagine the user wants to use it in an interface
where the value of a text field is related to that of the slider, and the text' 'DANGER" must
appear on the slider if the value is too big. This will be turned into the following code:

make_interface (Panel) :-
Button = text_field_button(text => "100",

action => set_slider(Button,Slider)),
SlideBar slide_bar(width => 200)

contains
Slider : my_slider(min => 0, max => 100,

text => "DANGER",
action => set_text(Slider,Button)),

set_slider(Button,Slider) :-
Value = parse (Button. text) ,
cond(Value :< real,

cond(Value >= Slider.min and Value =< Slider.max,
(move_slider(Slider,Value), check_danger(Slider)))).

set_text (Slider,Button) :-
Button.text «- int2str(floor(Slider.value)),
refresh_look (Button) .

check_danger (Slider) :-
cond( Slider.value >= 80,

Slider.text «- "DANGER",
Slider.text «- ."),

refresh_look (Slider) .

make_interface defines the layout of the interface and its objects. The text in the text
field (resp. the position of the slider) is modified by set_text (resp. set_slider) when
the position of the slider (the text) is modified. Both call check_danger that changes the
text of the slider according to its value.

4 Conclusion

12

We have shown in this paper how the different programming paradigms of LIFE may be used
to simplify the design of the basic mechanisms of a graphical toolkit. Constraints are used to
deal with the placement of boxes, inheritance to deal with the looks of widgets, suspension to
easily design event handlers. The central data structure of LIFE, the 'I{I-termseems to be really
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well-suited for the modelling of objects such as those needed in graphical interfaces. What has
made this toolkit so easy to build is the simultaneous presence of these paradigms in the same
language. To give an idea of the conciseness of the implementation, this toolkit is only 2200
lines long.

The main limitations of this prototype come from the speed limitations of the LIFE interpreter
itself, and the number of available functionalities of the basic X libraries interfaced with LIFE.
Nevertheless, it should be very easy to extend. This toolkit has been used with great ease to
build the X interfaces of some of the example programs of the LIFE system. One can retrieve
the system and use it from the World Wide Web URLhttp://www.isg.sfu.callife/ .
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