
A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

Design of a Generic Linear Equation Solver

and its Implementation

Hassan Aı̈t-Kaci∗

hak@acm.org

Abstract

This work exploits the convenience of object-orientation—as supported by, e.g., C++ (viz., multiple inher-

itance, template classes and functions, and operator overloading)—for designing a minimal set of generic

classes implementing linear-equation solvers for a large variety of specific semi-ring structures. This illus-

trates using a simple relativistic paradigm to obtain, with a minimal set-up, a large collection of algorithms

which can all be obtained as derived classes and instance objects of a single very abstract scheme. The

resulting system is a truly generic solver which can single-handedly and efficiently solve left or right linear

equational systems for optimization problems in number structures, but also in graphs and networks.

Keywords: Software Design Pattern; Object-Oriented Programming; Algebraic Structures; Fixed-Point Equations

∗http://hassan-ait-kaci.net

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 1 / 27

http://hassan-ait-kaci.net

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

Contents

1 Purpose of this work 3

2 One Equation and One Unknown 3

2.1 Inverses and quasi-inverses . 3

2.2 Examples . 5

3 Many Equations and Many Unknowns 5

3.1 Reduction to one equation and one unknown . 5

3.2 Examples . 9

4 Three Solving Schemes 10

4.1 Structures with inverses and exact precision . 10

4.2 Structures without inverses, but with stationary points . 10

4.3 Structures with inverses, but no exact precision . 10

5 A definitional ontology of algebraic structures 10

5.1 Monoidal structures . 10

5.1.1 Semigroup . 11

5.1.2 Monoid . 11

5.1.3 Group . 11

5.1.4 Abelian structure . 11

5.1.5 Semilattice . 11

5.2 Binoidal structures . 12

5.2.1 Semiring . 13

5.2.2 Path algebra . 13

5.2.3 Ring . 14

5.2.4 Lattice . 14

5.2.5 Boolean ring . 16

5.2.6 Boolean lattice . 16

5.2.7 Matrix liftings . 16

6 A Relativistic View of Object Orientation 18

7 Implementation 20

8 Discussion 21

8.1 Purpose of structure . 21

8.2 Purpose of Rational::solve(Equation) . 21

8.3 Testing the design . 21

A Right Linear Equations 25

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 2 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

1 Purpose of this work

This work means to illustrate how the we can exploit the convenience of object-orientation—as supported

by, e.g., C++ (viz., multiple inheritance, template classes and functions, and operator overloading)—for de-

signing a minimal set of generic classes implementing linear-equation solvers for a large variety of specific

semi-ring structures. This will also illustrate a simple software development methodology based on a sim-

ple relativistic interpretation of object orientation that allows a minimal set-up to yield a large collection of

algorithms which can all be obtained as derived classes and instance objects of a single very abstract scheme.1

Because algebraic structures were invented in mathematics for the precise same purpose and use as those of

object-orientation in programming, it comes as no surprise that the two paradigms match quite harmoniously.

The design specified in this paper is a proof of this in the domain of linear equation solving in a variety of

algebraic structures.

This document is a specification of an Application Program Interface (API) in the form of a few generic

classes for linear-equation solving in an abstract semi-ring structure. This specification is detailed below,

along with all the mathematical background that is needed to understand it.

If implemented correctly, this API can solve a variety of linear equation-solving problems ranging from

familar numerical equations, to regular expression equations, to graph path problems, including network flow

optimization problems [2], Abstract Interpretation of programs [3, 1], and Program flow analysis [5].

2 One Equation and One Unknown

2.1 Inverses and quasi-inverses

The left linear fixed-point equation:

x = ax+ b (2.1)

is easily solved in a ring structure by:2

x = ax+ b

x− ax = b

(1 − a)x = b

x = (1− a)−1b (2.2)

The right linear version of Equation (2.1) is:

x = xa+ b (2.3)

which is, too, solved by:

x = xa+ b

x− xa = b

x(1 − a) = b

x = b(1− a)−1 (2.4)

If the ring is a commutative ring—i.e., ∗ is commutative as well—then both Equations (2.1), and (2.3) “col-

lapse” into one, and so do solutions (2.2), and (2.4) “collapse” into:

x =
b

1− a
. (2.5)

1See Section 6.
2Please refer to Section 5.2.3.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 3 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

as the solution of Equation (2.1).

This is the most familar case, for most readers, of the field of rationals 〈Q,+, 0, ∗, 1〉.3

Let us define x∗, the quasi-inverse of x, as the infinite sum:

x∗ def
=

∑

n≥0

xn. (2.6)

This sum is well known as the simplest of all Taylor series expansion:

1

1− x
= 1 + x+ x2 + x3 + · · · =

∞
∑

n=0

xn = x∗. (2.7)

It is then possible to rewrite the solution in (2.5) as either:

x = a∗b. (2.8)

or:

x = ba∗. (2.9)

Both can also be verified to be indeed bona fide solutions of Equations (2.1) and (2.3), respectively, by

direct substitution:

a(a∗b) + b = (aa∗)b+ b

= (a∗ − 1)b+ b

= a∗b.

and

(ba∗)a+ b = b(aa∗) + b

= b(a∗ − 1) + b

= ba∗.

The forms x = a∗b and x = ba∗ of the solutions of Equations (2.1) and (2.3), are more general than

the forms (2.2) and (2.4) in the sense that they involve only the additive operation + and the multiplicative

operation ×, whereas the forms (2.2) and (2.4) involve also both an additive and multiplicative inverse op-

erations. This is a more general property because, after all, Equations (2.1) and (2.3) use only + and ×, no

inverses. Therefore, the forms (2.8) and (2.9) may be used to compute a solution to Equations (2.1) and (2.3)

for different interpretations of + and ×, when the sets wherein a, b, and x take their values do not possess

sufficient algebraic structure for + and × to provide all elements with inverses. The only requirement is

that the quasi-inverse’s infinite “Taylor” expansion (2.6) converge to a limit ; i.e., it must denote a finitely

expressible element, or a finitely approximable element.

Indeed, for well-known structures with different interpretations of + and ×, such as multiplicative semi-

lattice4 (also known as path algebras [2]),5 these operations are also idempotent and therefore quasi-inverses

exist. Then, using the solution’s form (2.8) or (2.9) allows to solve systems of linear equations in a wider

variety of algebraic structures, including graphs, regular sets, distributive lattices, as well as the familiar ring

structures where the form (2.5) happens to be more easily expressible, as well as all the multi-dimensional

variations of all these structures using matrix algebra.

3Strictly speaking, a field is not quite a commutative ring as required; i.e., Q does not admit a multiplicative inverse for 0. Then, the

solution described by Equation (2.5) exists in Q only under the condition that a 6= 1. In the case where a = 1, Equation (2.1) becomes

degenerate. In Q, a degenerate equation admits solutions iff b = 0, in which case any element of Q is a solution. In general semi-rings,

existence of solutions for a degenerate equation will depend on the specific algebraic structure.
4Please refer to Section 5.1.5.
5Please refer to Section 5.2.2.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 4 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

In all (!) these structures, a simple generic elimination algorithm such as, e.g., the standard Gaussian

elimination procedure, may be used to solve systems of linear fixed-point equations. Equation solving may

be made more efficient in specific structures using the particular algebraic properties local to the specific

structures. For example, the Ring class has both additive and multiplicative inverse methods; if it has as well

exact precision, then an algorithm based on Equation (2.5), rather than on quasi-inverses, can be used.

2.2 Examples

〈Q,+, 0, ∗, 1〉

This is the most familiar setting: the usual field of rational numbers arithmetic.6

This is how the structure 〈Q,+, 0, ∗, 1〉 is interpreted:

• it is an field on the set Q of rational numbers (i.e., an Abelian ring without inverse for 0);

• the additive operation + is the addition of rationals;

• the additive unit (or zero) is 0 ∈ Q;

• the additive inverse of a rational r is its negative −r;

• the multiplicative operation is the multiplication of rationals;

• the multiplicative unit (or one) is 1 ∈ Q;

• the multiplicative inverse of a rational r is its reciprocal 1
r

(except for r = 0).

〈R,+, 0, ∗, 1〉

〈REΣ,+, ∅, ·, ǫ〉

The set REΣ is the set of all regular sets of finite strings of symbols of an alphabet Σ (e.g., as denoted by

regular expressions on Σ).

〈{0, 1},∨, 0,∧, 1〉

〈2S ,∩, ∅,∪, S〉

〈R,max,−∞,min,∞〉

3 Many Equations and Many Unknowns

A system of m > 1 left linear equations with n > 1 unknowns in fix-point form is shown in Figure 1. Luckily,

this case can be reduced to the previous single equation and single unknown case.

3.1 Reduction to one equation and one unknown

There are two (equivalent) ways in which this reduction can be done. The first one is based on Dynamic

Programming, and the second one is based on Matrix Algebra.

6Strictly speaking, the C++ types float and double are rational numbers because they use only a finite representation. The fact

that real numbers can be approximated by finite rational number representations is the reason why such types are also used for computing

with real numbers. The only important difference to keep in mind for the latter is that finite-representation types do rounding and/or

truncating beyond the precision imposed by the finite representation. Such errors propagate and therefore, comparisons among floats

and doubles must be done up to that precision. That is, rather than x == y, it is better to use x− y < ε, where ε is a small number

(e.g., ε = 2−p , where p is any non-negative number of precision bits allowed by the representation). The lesser the precision p is, the

slacker the approximation will be, but the faster will the convergence.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 5 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

x0 = a00x0 + · · · + a0jxj + · · · + a0(n−1)xn−1 + b0
...

...
...

...
...

...

xi = ai0x0 + · · · + aijxj + · · · + ai(n−1)xn−1 + bi
...

...
...

...
...

...

xm−1 = a(m−1)0x0 + · · · + a(m−1)jxj + · · · + a(m−1)(n−1)xn−1 + bm−1

Figure 1: System of m Left-Linear Fix-Point Equations With n Unknowns

Dynamic programming

The system of Figure 1 is expressed more concisely as:

S0 =

{

xi =

n−1
∑

j=0

aijxj + bi

}m−1

i=0

(3.1)

Expression (3.1) can be rewritten as:

S0 = {x0 = α0x0 + β0} ∪ S1 (3.2)

where:

α0 = a00, (3.3)

β0 = b0 +

n−1
∑

j=1

aijxj (3.4)

and

S1 =

{

xi =

n−1
∑

j=0

aijxj + bi

}m−1

i=1

. (3.5)

Since β0 is independent of x0, the equation:

x0 = α0x0 + β0 (3.6)

in Expression (3.2) is solved by:

x0 = α∗
0β0. (3.7)

Expression (3.7) gives x0 only as a parametric solution in terms of the n− 1 remaining parametric variables

x1, . . . , xn−1.

Substituting the value of x0 given by Expression (3.7) in Expression (3.5), we get:

S1 =

{

xi =

n−1
∑

j=1

a1ijxj + b1i

}m−1

i=1

(3.8)

where, for all i = 1, . . . ,m− 1 and all j = 1, . . . , n− 1:

a1ij = aij + ai0a
∗
00a0j , (3.9)

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 6 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

and for all i = 1, . . . ,m− 1:

b1i = bi + ai0a
∗
00b0. (3.10)

Having proceeded thus, the new system obtained as Expression (3.8) is a system of m−1 equations and n−1
variables (x1, . . . , xn−1). In other words, the system (3.8) contains one less variable (x0 has been eliminated)

and one less equation (x0 =
∑n−1

j=0 aijxj has been eliminated).

Repeating this elimination process, it is straightforward to generalize the foregoing scheme by induction as

follows. We start with the base case (k = 0): for all i = 0, . . . ,m− 1 and all j = 0, . . . , n− 1,

a0ij = aij (3.11)

and, for all i = 0, . . . ,m− 1,

b0i = bi. (3.12)

For all k, k = 0, . . . ,m− 1, we have,

Sk =

{

xi =
n−1
∑

j=k

akijxj + bki

}m−1

i=k

. (3.13)

Expression (3.13) can be rewritten as:

Sk = {xk = αkxk + βk} ∪ Sk+1 (3.14)

where, for k = 0, . . . ,m− 1:

αk = akkk, (3.15)

βk = bkk +

n−1
∑

j=k+1

akijxj . (3.16)

such that, for all i = k, . . . ,m− 1 and all j = k + 1, . . . , n− 1:

akij =







aij if k = 0,

ak−1
ij + ak−1

i(k−1)α
∗
k−1a

k−1
(k−1)j if 0 < k < m;

(3.17)

and for all i = 1, . . . ,m− 1:

bki =







bi if k = 0,

bk−1
i + ak−1

i(k−1)α
∗
k−1b

k−1
k−1 if 0 < k < m.

(3.18)

Again, since βk is independent of x0, . . . , xk, the equation:

xk = αkxk + βk (3.19)

in Expression (3.14) is solved by:

xk = α∗
kβk. (3.20)

Thus, Expression (3.20) gives xk as a parametric solution in terms of the n − k − 1 remaining parametric

variables xk+1, . . . , xn−1.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 7 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

Clearly, after at most m steps, this iterated parametric solving process halts. Indeed, substituting m for k

in Expression (3.13), we obtain:

Sm =

{

xi =
∑n−1

j=m amijxj + bmi

}m−1

i=m

= ∅. (3.21)

Therefore, the previous step’s equational system Sm−1 is independent of variables x0, . . . , xm−1:

Sm−1 = {xm−1 = αm−1xm−1 + βm−1}. (3.22)

where,

αm−1 = am−1
(m−1)(m−1), (3.23)

βm−1 = bm−1
m−1 +

n−1
∑

j=m

am−1
ij xj . (3.24)

Since βm−1 is independent of variables x0, . . . , xm−1, the equation:

xm−1 = αm−1xm−1 + βm−1 (3.25)

in Expression (3.22) is solved by:

xm−1 = α∗
m−1βm−1. (3.26)

There are three situations to consider:

1. m < n: more variables than equations;

2. m = n: as many variables as equations;

3. m > n: more equations than variables.

This is what happens in each case:

1. m < n—Underdefined system: in this case, Equation (3.26) gives an expression of xm−1 in terms of

the n−m remaining variables xm, . . . , xn−1. Therefore, since xj , for j = 0, . . . ,m− 1, depends on

the n − j − 1 variables xj+1, . . . , xn−1, all m variables x0, . . . , xm−1 are expressed in terms of the

n−m remaining parametric variables xm, . . . , xn−1.

2. m = n—Well-defined system: in this case, Equation (3.24) becomes βm−1 = bm−1
m−1, and hence

Equation (3.26) gives an expression of xm−1 independently of any variable. Therefore, since xj , for

j = 0, . . . ,m− 2, depends on the m− j − 1 variables xj+1, . . . , xm−1, all m variables x0, . . . , xm−1

are expressed independently of any parametric variable. In this case the system is fully solved, and

solutions are obtained by the propagation of values from xm−1 back to x0.

3. m > n—Overdefined system: in this case, when we have a solution for x0, . . . , xm−1 by back propa-

gation of eliminated variables, there are still additional equations outstanding in the system. The only

way the outstandingm−n equations may be satisfied is if they are redundant with the m first equations;

that is, if the solution x0, . . . , xm−1 verifies the m− n remaining equations.

If the structure R happens to be a ring 〈D,+, ∅,×, 1〉, then the expressions solving the system in Figures 1

become, for all k = 0, . . . ,m− 1, for all i = k, . . . ,m− 1 and all j = k + 1, . . . , n− 1:

akij =



















aij if k = 0,

ak−1
ij + ak−1

i(k−1) ×
(

1+ (−αk−1)
)−1

×ak−1
(k−1)j

if 0 < k < m;

(3.27)

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 8 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

and, for all i = 1, . . . ,m− 1:

bki =



















bi if k = 0,

bk−1
i + ak−1

i(k−1) ×
(

1+ (−αk−1)
)−1

×bk−1
k−1

if 0 < k < m.

(3.28)

The equation (3.19) is solved by:

xk =
(

1+ (−αk)
)−1

× βk (3.29)

and the equation (3.25) is solved by:

xm−1 =
(

1+ (−αm−1)
)−1

× βm−1. (3.30)

We leave expressions of the right version of the ring solutions as an exercise to the reader.

Matrix algebra

In the case where m = n, the systems of Figures 1 and 10 can be respectively rewritten, using matrix notation,

as:7

X = AX +B (3.31)

where X ∈ Dn1, A ∈ Dnn and B ∈ Dn1, and:

X = XA+B (3.32)

where X ∈ D1n, A ∈ Dnn and B ∈ D1n.

Therefore, by Theorem 4,8 it comes that the solutions of Equations (3.31) and (3.32) are, respectively:

X = A∗B (3.33)

and:

X = BA∗. (3.34)

3.2 Examples

〈Q,+, 0, ∗, 1〉

This structure is a commutative ring. Therefore, the two systems in Figures 1 and 10 are identical, and the

left and right solutions collapse into one solution. Namely, for all k = 0, . . . ,m− 1, for all i = k, . . . ,m− 1
and all j = k + 1, . . . , n− 1:

akij = a′
k

ij =















aij if k = 0,

ak−1
ij +

ak−1
i(k−1)a

k−1
(k−1)j

1− αk−1
if 0 < k < m;

(3.35)

7See Section 5.2.7.
8See Page 16.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 9 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

and for all i = 1, . . . ,m− 1:

bki = b′
k

i =















bi if k = 0,

bk−1
i +

ak−1
i(k−1)b

k−1
k−1

1− αk−1
if 0 < k < m.

(3.36)

Finally, Equation (3.19) is solved in 〈Q,+, 0, ∗, 1〉 by:

xk =
βk

1− αk

(3.37)

and Equation (3.25) is solved by:

xm−1 =
βm−1

1− αm−1
(3.38)

where, for k = 0, . . . ,m− 1:

αk = α′
k = akkk, (3.39)

βk = β′
k = bkk +

n−1
∑

j=k+1

akijxj . (3.40)

〈R,+, 0, ∗, 1〉

〈REΣ,+, ∅, ·, ǫ〉

〈{0, 1},∨, 0,∧, 1〉

〈R,max,−∞,min,∞〉

4 Three Solving Schemes

4.1 Structures with inverses and exact precision

〈Q,+, 0, ∗, 1〉

〈R,max,−∞,min,∞〉

4.2 Structures without inverses, but with stationary points

〈REΣ,+, ∅, ·, ǫ〉

〈{0, 1},∨, 0,∧, 1〉

4.3 Structures with inverses, but no exact precision

〈R,+, 0, ∗, 1〉

5 A definitional ontology of algebraic structures

5.1 Monoidal structures

DEFINITION 1 (MONOIDAL STRUCTURE) A monoidal structure 〈D, ⋆〉 consists of a set D of elements—the

domain—with an internal binary operation:

⋆ : D ×D → D. (5.1)

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 10 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

In a monoidal structure, the operation ⋆ has an associated prefix relation defined for all x, y ∈ D as:

x ≺⋆ y iff ∃z ∈ D, x ⋆ z = y. (5.2)

5.1.1 Semigroup

DEFINITION 2 (SEMIGROUP) A semigroup 〈D, ⋆〉 is a monoidal structure with domain D whose operation

⋆ (5.1) is associative. That is, for all x, y, z ∈ D:

x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z. (5.3)

Note that in a semigroup 〈D, ⋆〉, the prefix relation ≺⋆ is always transitive (by virtue of associativity of ⋆).

However, but it is not necessarily reflexive.

5.1.2 Monoid

DEFINITION 3 (MONOID) A monoid 〈D, ⋆, ǫ〉 is a semigroup 〈D, ⋆〉 with a special element ǫ ∈ D, called a

unit, such that, for all x ∈ D:

x ⋆ ǫ = ǫ ⋆ x = x. (5.4)

Note that in a monoid 〈D, ⋆, ǫ〉, the prefix relation ≺⋆ is also reflexive (by virtue of the unit element).

Therefore, it is a preorder, and is sometimes called the monoid’s prefix approximation.

5.1.3 Group

DEFINITION 4 (GROUP) A group 〈D, ⋆, ǫ〉 is a monoid such that any element x has an inverse. That is, for

any x ∈ D, there exists a (necessarily unique) x−1 ∈ D such that:

x ⋆ x−1 = x−1 ⋆ x = ǫ. (5.5)

5.1.4 Abelian structure

DEFINITION 5 (ABELIAN STRUCTURE) An Abelian structure is any of the foregoing monoidal structures

whose operation ⋆ (5.1) is commutative. That is, for all x, y ∈ D:

x ⋆ y = y ⋆ x. (5.6)

Thus, we speak of an Abelian operation, an Abelian semigroup, an Abelian monoid, an Abelian group,

etc., . . . Alternatively, the more suggestive adjective “commutative” is sometimes preferred to “Abelian.”

5.1.5 Semilattice

DEFINITION 6 (SEMILATTICE) A semilattice 〈D, ⋆〉 is a commutative semigroup such that ⋆ is idempotent;

i.e., for all x ∈ D:

x ⋆ x = x. (5.7)

A natural partner to the ⋆ operation is the relation defined as ≤⋆ on D by:

∀x, y ∈ D, x ≤⋆ y iff x ⋆ y = y. (5.8)

The relation ≤⋆ is called the semilattice ordering and indeed defines a partial order on D. Namely, ≤⋆ is

reflexive (by idempotence of ⋆), anti-symmetric (by commutativity of ⋆) and transitive (by associativity of ⋆).

In a semilattice 〈D, ⋆〉, the prefix relation ≺⋆ is also an ordering and furthermore it coincides with the

semilattice ordering. Namely:

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 11 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

THEOREM 1 (ALGEBRAIC APPROXIMATION ORDERING) ∀x, y ∈ D, x ≺⋆ y iff x ≤⋆ y.

PROOF Assume that x ≤⋆ y. By definition, this means that x ⋆ y = y. Thus, it is clear that ∃z, x ⋆ z = y

(taking z = y). Therefore, x ≺⋆ y.

Now assume that x ≺⋆ y. Then, by definition, x ⋆ zxy = y for some zxy ∈ D. Hence,

x ⋆ y = x ⋆ (x ⋆ zxy) (replacing y by its value)

= (x ⋆ x) ⋆ zxy (associativity)

= x ⋆ zxy (idempotence)

= y

and so, x ≤⋆ y. �

Note that, ⋆ is automatically a supremum operation for its semilattice ordering; namely:

THEOREM 2 (ALGEBRAIC APPROXIMATION SUPREMUM) For all x, y, z ∈ D:

if y ≤⋆ x and z ≤⋆ x then y ⋆ z ≤⋆ x. (5.9)

PROOF Assume that y ≤⋆ x and z ≤⋆ x; then,

y ⋆ x = x by (5.8) (a)
z ⋆ x = x by (5.8) (b)
(y ⋆ x) ⋆ (z ⋆ x) = x ⋆ x by (a) and (b)
(y ⋆ x) ⋆ (z ⋆ x) = x by (5.7)

(y ⋆ z) ⋆ (x ⋆ x) = x by (5.3) and (5.6)

(y ⋆ z) ⋆ x = x by (5.7)

y ⋆ z ≤⋆ x by (5.8).

�

Finally, note that if a semilattice 〈D, ⋆〉 is also a monoid 〈D, ⋆, ǫ〉, Equation (5.8) entails that ǫ is the

(necessarily unique) least element of D for ≤⋆. Then, it is sometimes written as ⊥ (and called bottom).

Thus, a semilattice with bottom can also be described as an idempotent Abelian monoid.

5.2 Binoidal structures

DEFINITION 7 (BINOIDAL STRUCTURE) A binoidal structure 〈D, ⋆, ∗〉 consists of two monoidal structures

〈D, ⋆〉 and 〈D, ∗〉

In the notation used for an abstract structure, the particular symbols that denote the operation and unit

element (if it is a monoid), are, of course, generic. Thus, in our definitions so far, we have used ⋆ for

the operation, and ǫ for the unit element. Clearly, however, other symbols could be used instead—what

matters is that the chosen symbols substituted for ⋆ and ǫ obey the appropriate equations. This being said,

the familiar arithmetic operation symbols + and ×, with associated unit symbols ∅ and 1, respectively, are

sometimes used as generic symbols, despite their conventional arithmetic meaning. Generally, this is to

suggest that the structure at hand will behave as, or mostly as, in familiar arithmetic. The adjective additive

(resp., multiplicative) is then used to designate properties of a structure whose operation is written + (resp.,

×).

Many common binoidal structures combine an additive and an multiplicative operation thanks to distributivity.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 12 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

Monoidal Structure

Abelian Structure Semigroup

Partially Ordered Set Abelian Semigroup Monoid

Semilattice Abelian Monoid Group

Semilattice with Bottom Abelian Group

FIGURE 2: TAXONOMY OF MONOIDAL ALGEBRAIC STRUCTURES

5.2.1 Semiring

DEFINITION 8 (SEMIRING) A semiring 〈D,+, ∅,×, 1〉 is a binoidal (additive and multiplicative) structure

on a single set D such that:

• 〈D,+, ∅〉 is a commutative monoid;

• 〈D,×, 1〉 is a monoid;

• × is distributive over +; that is, for all x, y, z ∈ D:

x× (y + z) = (x× y) + (x× z) (5.10)

and

(x + y)× z = (x× z) + (y × z). (5.11)

To distinguish between the two operations’s unit elements in a semiring, the additive unit ∅ is referred to as

the zero element, and the multiplicative unit 1 as the unit element.

A semiring is an Abelian (or commutative) semiring if its multiplicative operation × is commutative (i.e.,

if 〈D,×, 1〉 is a commutative monoid).

5.2.2 Path algebra

A path algebra is the appropriate algebraic structure to handle path problems in graphs and networks [2].

DEFINITION 9 (PATH ALGEBRA) A path algebra 〈D,+, ∅,×, 1〉 is a semiring such that:

• + is idempotent; i.e., for all x ∈ D:

x+ x = x; (5.12)

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 13 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

• × is idempotent; i.e., for all x ∈ D:

x× x = x; (5.13)

• ∅ is absorptive for ×; i.e., for all x ∈ D:

x× ∅ = ∅ × x = ∅; (5.14)

In other words, a path algebra is a semiring which is also an additive semilattice and a ∅-absorptive idem-

potent multiplicative semigroup.

5.2.3 Ring

DEFINITION 10 (RING) A ring is a special case of a semiring. In fact, a ring structure is to a group what

a semiring structure is to a monoid. Indeed, a ring 〈D,+, ∅,×, 1〉 is a binoidal (additive and multiplicative)

structure on a set D such that:

• 〈D,+, ∅〉 is a commutative group;

• 〈D,×, 1〉 is a group;

• the multiplicative operation × is distributive over the additive operation +; that is, Equations (5.10)

and (5.11) hold for all x, y, z ∈ D.

A ring is an Abelian (or commutative) ring if its multiplicative operation× is commutative (i.e., if 〈D,×, 1〉
is a commutative group).

5.2.4 Lattice

DEFINITION 11 (LATTICE) A lattice 〈D,+,×〉 is a binoidal structure such that:

• 〈D,+〉 is a semilattice (called its additive semilattice);

• 〈D,×〉 is a semilattice (called its multiplicative semilattice);

• its two operations are mutually absorptive; i.e., for all x, y ∈ D:

x+ (x × y) = x = x× (x + y). (5.15)

Thus, the structure of a lattice is symmetric with respect to its two operations in the sense that 〈D,+,×〉
is a lattice iff 〈D,×,+〉 is a lattice. This important property is called duality. It makes a statement equally

valid when changing every additive part into its multiplicative counterpart, and vice versa.

Note that a lattice is partially ordered both as an additive semilattice and as a mutiplicative semilattice. In

fact, it is easy to see that the two partial orders are mutual inverses. That is,

≤+ = ≤−1
× , (5.16)

and thus also, by duality:

≤× = ≤−1
+ . (5.17)

By convention, because the additive and multiplicative orderings of a lattice are mutual inverses, we write

simply ≤ for ≤+ and ≥ for ≤×. Thus, if a lattice is an additive (resp., multiplicative) monoid, ∅ is the

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 14 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

least (resp., 1 is the greatest) element for ≤ and is often referred to as “bottom” (resp., “top”) and sometimes

written “⊥” (resp., “⊤”).

Note also that if a lattice 〈D,+,×〉 is an additive monoid 〈D,+, ∅〉, then ∅ is necessarily absorptive for ×;

i.e., Equation (5.14) holds for all x ∈ D. Dually, if a lattice 〈D,+,×〉 is a multiplicative monoid 〈D,×, 1〉,
then 1 is necessarily absorptive for +; i.e., Equation (5.18) holds for all x ∈ D:

x+ 1 = 1+ x = 1. (5.18)

It is important to realize that a lattice is neither an instance of, nor is it more general than, a semiring (it

lacks distributivity). However, it is easy to show that the following “sub-distributive” inequality holds in a

lattice:

THEOREM 3 (SUBDISTRIBUTIVITY) Let L = 〈D,+,×〉 be a lattice. Then, for all x, y and z in D:

x× (y + z) ≥ (x× y) + (x× z) (5.19)

and, dually:

x+ (y × z) ≤ (x+ y)× (x+ z). (5.20)

PROOF We need only establish Inequality (5.20); the proof of Inequality (5.19) is the same up to duality.

Let x, y, and z be arbitrary elements of a lattice 〈D,+,×〉. Clearly, we have:

x ≤ x+ y (5.21)

(since x+ (x+ y) = x+ y). Similarly,

x ≤ x+ z. (5.22)

Since × is an infimum operation for ≤, it follows from Inequalities (5.21) and (5.22) that:

x ≤ (x+ y)× (x+ z). (5.23)

On the other hand, we also have:

y × z ≤ y ≤ x+ y (5.24)

and

y × z ≤ z ≤ x+ z. (5.25)

Again, because × is an infimum operation for ≤, Inequalities (5.24) and (5.25) imply that:

y × z ≤ (x+ y)× (x+ z). (5.26)

Finally, because + is a supremum operation for ≤, Inequalities (5.23) and (5.26) imply Inequality (5.20).

�

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 15 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

A distributive lattice is a lattice in which equality, rather than ≤, holds in (5.19) for all x, y and z (or

equivalently, by duality, if equality, rather than ≥, holds in (5.20)). Thus, a distributive lattice with top and

bottom is both an additive and a multiplicative commutative semiring. That is, Equations (5.10) holds for all

x, y, z ∈ D (and so does (5.11), by commutativity of ×).9

Finally, note that a distributive lattice with top and bottom is simultaneously an additive and a multiplicative

path algebra.

5.2.5 Boolean ring

DEFINITION 12 (BOOLEAN RING) A boolean ring is a ring in which any element admits a (necessarily

unique) complement with respect to the additive and multiplicative operations. That is, for any x ∈ D,

there exists a unique x̄ ∈ D such that:

x+ x̄ = x̄+ x = 1, (5.29)

and

x× x̄ = x̄× x = ∅. (5.30)

5.2.6 Boolean lattice

DEFINITION 13 (BOOLEAN LATTICE) A boolean lattice is a lattice which is also a boolean ring; i.e., it is a

distributive complemented lattice.

5.2.7 Matrix liftings

DEFINITION 14 (MATRIX LIFTINGS) Given a semiring structure R = 〈D,+, ∅,×, 1〉 and two positive nat-

ural numbers m and n, we can construct its m× n matrix lifting:

M
mn(R) = 〈Dmn,+mn, ∅mn,×mn, 1mn〉. (5.31)

as shown as follows in Equations (5.32)–(5.36).

The domain of m× n matrices over R is defined as:

Dmn def
=

{

d ∈ Dm×n | d = {dij ∈ D}m−1,
i=0,

n−1
j=0

}

(5.32)

Matrix addition is defined as follows. If a ∈ Dmn and b ∈ Dmn are two m× n matrices, then ∀i, j, 0 ≤
i ≤ m− 1, 0 ≤ j ≤ n− 1,

(a+mn b)ij
def
= aij + bij ; (5.33)

The null m× n matrix is defined as follows: ∀i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1,

∅mn
ij

def
= ∅ ∈ D; (5.34)

9This is equivalent, by duality, to the additive operation + being also distributive over the multiplicative operation ×; that is:

x+ (y × z) = (x+ y) × (x+ z) (5.27)

or, by commutativity of +:

(x× y) + z = (x+ z)× (y + z). (5.28)

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 16 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

Binoidal Structure

Distributive Binoidal Structure Associative Binoidal Structure

Semiring

Path Algebra Abelian Semiring Ring

Distributive Lattice Abelian Ring Boolean Ring

Boolean Lattice

FIGURE 3: TAXONOMY OF BINOIDAL ALGEBRAIC STRUCTURES

Matrix multiplication is defined as follows. If a is an m × n matrix in Dmn, and b is an n × p matrix in

Dnp, then ∀i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ p− 1,

(a×mp b)ij
def
=

n−1
∑

k=0

aik × bkj ; (5.35)

The unit m× n matrix is defined as follows: ∀i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1,

1
mn
ij =

{

1 ∈ D if i = j,

∅ ∈ D otherwise.
(5.36)

We can simplify the mn notation in Equations (5.33)–(5.36) by dropping the dimension superscripts, with

the dimension constraints implicit. Hence, Equations (5.33)–(5.36) become Equations (5.37)–(5.40):

(a+ b)ij
def
= aij + bij ; (5.37)

∅ij
def
= ∅ ∈ D; (5.38)

(a× b)ij
def
=

n−1
∑

k=0

aik × bkj ; (5.39)

1ij =

{

1 ∈ D if i = j,

∅ ∈ D otherwise.
(5.40)

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 17 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

An element d = {dij ∈ D}m−1,
i=0,

n−1
j=0 of Dmn is written:



















d00 · · · d0j · · · d0(n−1)

.

.

.
. . .

.

.

.
.
.
.

di0 · · · dij · · · di(n−1)

.

.

.
.
.
.

. . .
.
.
.

d(m−1)0 · · · d(m−1)j · · · d(m−1)(n−1)



















(5.41)

Given a matrix d ∈ Dmn, an element dij of d is referred to as the entry of d at row i and column j. The

ordered pair mn is called the dimension of the matrix: m is called the row dimension and n is called the

column dimension. Note that the multiplicative matrix operation is not an internal function, but can only be

applied if the first matrix’ column dimension is equal to the second matrix’ row dimension. However,

THEOREM 4 Given a semiring R, its matrix lifting M
n2

(R) for n fixed, is also a semiring.

Note however that, even if R is a ring, Mn2

(R) is still only a semiring.

6 A Relativistic View of Object Orientation

The essence of object-orientation coincides with that of Einstein’s Special and General Relativity theories [4].

Einstein’s Special Relativity Theory (SRT) is all based on the observation that there is a mathematical

duality between being at rest on one hand, and being in motion on the other hand: all motion is relative to a

set of reference. Hence, it is mathematically irrelevant whether I sit in a train moving along with it at some

speed with respect to the scenery, or whether I sit in a motionless train while the scenery moves by in the

opposite direction at the same speed.

Similarly, Einstein’s General Relativity Theory (GRT) is all based on the observation that there is a mathe-

matical duality between free falling frictionless in a straight line on one hand, and the texture of space being

warped by massive bodies on the other hand: the curvature of all trajectory of motion is relative to space’s

own curvature. Hence, it is mathematically irrelevant whether the Earth is orbiting the Sun elliptically is a

closed curve, or whether it free-falls frictionless indefinitely in a straight line, while space in which it moves

is itself curved by the same opposite factor into the (hyper) elliptical (hyper) “eddy” created by the Sun’s

gravity.10 Thus is GRT the key to explaining the mystery of “action at a distance” of gravity.

Similarly as well, object-orientation (OO) is based on the observation that there is a mathematical duality

between an object being acted upon by a function on one hand, and a function being acted upon by an object

on the other hand: the orientation of f(x) is relative to the structure of interpretation of the object or the

function. Hence, it is mathematically irrelevant whether the function f is applied to the object x, or whether

the object x is sent the message f . In the first case (the conventional view), the function f knows what

to do with an object of the type of x and performs it on x; in the second case (the object-oriented view),

the object x knows what to do when it is asked to respond to the message sent to it as f , and performs it.

Thus is OO the key to a new decentralizing view of computation which allows distributed computation and

code modularity: whereas the conventional view’s centralizing computation in functions made them huge,

inefficient, and quickly impractical to maintain, the (mathematically equivalent) OO view now delegates

computation to objects by making them react to messages sent to them by using methods specified for them

by their class definitions.

Thus, object-orientation may simply be construed as exploiting a mathematical relativity principle. This

relativistic view can be used as a systematic object-oriented software design methodology.

10“Hyper” because space is at least 3-dimensional. . .

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 18 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

class Object

{

virtual Object *method (Context *context);

}

Figure 4: Object Class Skeleton

class Context

{

Object *method (Object *object) { return object.method(this); }

}

Figure 5: Context Class Skeleton

To be precise, the change of perspective, when orienting computation with reference to an object rather

than a function, is expressed mathematically by the set isomorphism:

A → (B → C) ≃ B → (A → C). (6.1)

This equation essentially captures the dual relativity of computation alluded to above.

This article is an example of the general case that can be expressed as follows:

method : Context → (Object → Object)

≃

method : Object → (Context → Object).

(6.2)

Therefore, we can define two class structures, Object and Context, which always respectively declare a

method (here called method) as shown in Figures 4 and 5.11 Some examples are given in Figure 6.

Context Object method

Name Value Environment Expression evaluate

Name Type Environment Expression typecheck

Run Time Environment Instruction execute

Algebraic Structure Equation solve

Logical Theory Theorem prove

Constraint Structure Constraint resolve
...

Figure 6: Some Use Cases for the Context/Object Relativity Principle

11Using C++ syntax.̇.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 19 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

7 Implementation

A simple linear-equation solver over an algebraic dual structure (the parameter class Structure) should

provide:

• a class to substitute for Structure, the type of elements in the structure’s domain. This is the type

of the coefficients a, and b, and that of the unknown x as well. This algebraic structure class will have:

– a private member rep whose type is an adequate representation of the structure’s domain ele-

ments.

– a public friendmethod operator+ that takes two arguments of type const &Structure

and returns a result of type &Structure;12

– a public friend method operator- that takes one argument of type const &Structure

and returns a result of type &Structure;

– a public friendmethod operator- that takes two arguments of type const &Structure

and returns a result of type &Structure;

– a public const Structure zero;

– a public friendmethod operator* that takes two arguments of type const &Structure

and returns a result of type &Structure;

– a public friendmethod operator/ that takes two arguments of type const &Structure

and returns a result of type &Structure;

– a public const Structure one;

– a public friendmethodoperator== that takes two arguments of typeconst &Structure

and returns a result of type bool;

• a class Equation representing a linear fix-point equation on the Structures; this class must have

a private member structure of type *Structure;

We must also provide the methods solve for both Structure and Equation<Structure> classes

following the design scheme of Section 6.

For example, solving over rational numbers should provide:

• a class Rational representing a rational number; this can be represented by pairs of integers, or

decimal doubles, or whatever other equivalent representation of a rational number one may decide;13

– a private member rep of, say, type double;

– a public friend method operator+ that takes two arguments of type const &Rational

and returns a result of type &Rational;

– a public friend method operator- that takes one argument of type const &Rational

and returns a result of type &Rational;

– a public friend method operator- that takes two arguments of type const &Rational

and returns a result of type &Rational;

12The & return type may appear odd; however, keep in mind that the generic design eventually will actually allow the overloading of

operators on very big structures such as, e.g., matrices (i.e., multidimensional arrays), and therefore saving the return copy space/time is

worth saving. Be that as it may, we are free to choose to return a Rational instead of &Rational if we so wish. The & return type

version has the advantage of generic uniformity for inheritance if doing the complete generic API.
13Recall that a rational number r ∈ Q is a pair of integers written r = n

d
, where n ∈ N is the numerator and d ∈ N is the denominator,

or equivalently as a number in decimal “dot” notation written r = i.d, where i ∈ N is the integer part and d ∈ N is the decimal part.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 20 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

– a public const Rational zero(0.0);

– a public friend method operator* that takes two arguments of type const &Rational

and returns a result of type &Rational;

– a public friend method operator/ that takes two arguments of type const &Rational

and returns a result of type &Rational;

– a public const Rational one(1.0);

– a public friendmethod operator== that takes two arguments of type const &Rational

and returns a result of type bool;

• a class Equation representing a linear fix-point equation on the Rationals; this class must have a

private member structure of type *Rational;

We must also provide the methods solve for both Rational and Equation<Rational> classes.

8 Discussion

8.1 Purpose of structure

The class Equation representing a linear fix-point equation on the Rationals actually does not need

to have the structure member of type *Rational. In fact, this member comes in handy only when

carrying out the implementation for arbitrary semi-rings.

If one does not wish carry out the implementation for arbitrary semi-rings, this member should be inherited

by the instance Equation<Rational> from a generic class Equation<Semi Ring>. In the latter, the

structure member is of type Semi Ring, the type parameter.

The taxonomy of algebraic structures of semi-rings, or special cases of semi-rings, can easily be encoded

as a class taxonomy deriving from a base class Dual Structure:14

Abstract class hierarchies can now easily be defined following the formal specification given by the math-

ematical ontologies in Section 5. There are two kinds of classes: one for the monoidal algebras shown in

Figure 5.1.5, and the other for the binoidal algebras Figure 5.2.6.

In the generic linear-equation-solver software architecture we are defining, each of these classes is param-

eterized by the type variable Domain, of its (private) representation. For example, the class Rational can

be defined as a subclass of Abelian Ring<double>.15

Figures 7–9 show a skeleton for a C++ implementation of a solver using dynamic programming.16

8.2 Purpose of Rational::solve(Equation)

We would not need to worry about invoking Rational::solve(Equation) unless the system also

means to allow the scheduling of the simultaneous resolution of several systems from the context of a given

semi-ring structure. Only then is this method needed.

8.3 Testing the design

Since Q is not quite a ring (because 0 has no multiplicative inverse), we must test whether a[0][0] is equal

to structure.one. If so, the equation x = x + b is solvable only if the structure is an additive semi-

14We do not have to include all these classes, of course, unless we actually want to implement a complete API library...
15Assuming that we use a double to represent a rational number in Q.
16Please note the “informal” C++ syntax. . . This is just a program skeleton, not a complete solution.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 21 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

// FILE. lineq.h

#ifndef LINEQ_H

#define LINEQ_H

template <class Structure>

class System;

template <class Structure>

class Equation

{

Structure *a;

Structure *b,

Structure *x;

bool left;

public:

Structure *a () { return a; }

Structure *b () { return b; }

Structure *x () { return x; }

bool isLeft () { return left; }

Equation (Structure &a, Structure &b, bool left=true)

: a (a)

, b (b)

, left (left)

{

solve();

}

Equation (System<Structure> s, bool left=true)

{

this = s.solve(left);

}

Equation *solve ()

{

x = isLeft() ? a().quasi_inverse() * b()

: b() * a().quasi_inverse();

return this;

}

};

Figure 7: Header File—Part I

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 22 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

const int DefaultNumberOfEquations = 2;

const int DefaultNumberOfUnknowns = 2;

template <class Structure>

class System

{

int m = DefaultNumberOfEquations;

int n = DefaultNumberOfUnknowns;

Structure* a[m][n];

Structure* b[m];

Structure* x[n];

bool left = true;

public:

int numberOfEquations () { return m; }

int numberOfUnknowns () { return n; }

Structure* a[][] () { return a; }

Structure* b[] () { return b; }

Structure* x () { return x; }

bool isLeft () { return left; }

System (Structure* a[], Structure* b[], bool left)

: m (sizeof(b))

, n (sizeof(a)/m)

, a (a)

, b (b)

, left (left)

{

if (m == 0 | m != n) exit(1);

}

Equation<Structure> *solve ();

};

#endif

Figure 8: Header File—Part II

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 23 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

#include "lineq.h"

template <class Structure>

Equation<Structure> *System<Structure>::solve ()

{

Structure* newa[][], newb[];

Equation<Structure> *eq;

int i,j;

if (m == 1) return new Equation<Structure>(a[0][0],b[0],left);

newa = new Structure[m-1][n-1];

newb = new Structure[m-1];

Structure qi = a[0][0].quasi_inverse();

if (isLeft())

for (i=1;i<=m-1;i++)

{

for (j=1;j<=n-1;j++) newa[i-1][j-1] = a[i][j] + a[i][0] * qi * a[0][j];

newb[i-1] = b[i] + a[i][0] * qi * b[0];

}

else

for (i=1;i<=m-1;i++)

{

for (j=1;j<=n-1;j++) newa[i-1][j-1] = a[i][j] + a[i][0] * a[0][j] * qi;

newb[i-1] = b[i] + a[i][0] * b[0] * qi;

}

eq = new Equation<Structure>(new System<Structure>(newa,newb,left),left);

return new Equation<Structure>(a[0][0],

b[0] + (left ? a[0][1] * eq->x

: eq->x * a[0][1]),

left);

}

Figure 9: Implementation File

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 24 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

x0 = x0a00 + · · · + xja0j + · · · + xn−1a0(n−1) + b0
...

...
...

...
...

...

xi = x0ai0 + · · · + xjaij + · · · + xn−1ai(n−1) + bi
...

...
...

...
...

...

xm−1 = x0a(m−1)0 + · · · + xja(m−1)j + · · · + xn−1a(m−1)(n−1) + bm−1

Figure 10: System of m Right-Linear Fix-Point Equations with n Unknowns

lattice—that is, has an idempotent plus (i.e., such that x + x = x). In this case, any x such that b ≤+ x is a

solution. The alternatives are:

• abort solving;

• if underdefined, give a parameterized solution;

• if overdefined:

– solve for the square subsystem, and check whether or not the partial solution satisfies the out-

standing equations;

– solve for the least-squares.17

Finally, let us note that the skeleton given above can solve only for well-defined systems, and aborts other-

wise. One should use exceptions for a more graceful control.

Appendix

A Right Linear Equations

A system of m right linear equations with n unknowns in fix-point form is shown in Figure 10.

The right version of all that was done for the left system in Figure 1 is of course valid for the right system

in Figure 10. Namely, the base case (k = 0): for all i = 0, . . . ,m− 1 and all j = 0, . . . , n− 1,

a′
0
ij = aij (A.1)

and, for all i = 0, . . . ,m− 1,

b′
0
i = bi. (A.2)

For all k, k = 0, . . . ,m− 1, we have,

S′
k =

{

xi =

n−1
∑

j=k

xja
k
ij + bki

}m−1

i=k

. (A.3)

17The least-square approximant of a system in canonical form Ax + b = 0 that is overdefined is the well-defined system AtAx +
Atb = 0. This system is always square and can therefore be solved. Its solution xlq is such that its “distance” from any solution x of

the overdefined system Ax+ b = 0—i.e., the inner product (x− xlq)
t(x− xlq)—is minimal; that is, ∀x, ∅ ≤+ x− xlq.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 25 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

Expression (A.3) can be rewritten as:

S′
k = {xk = xkα

′
k + β′

k} ∪ S′
k+1 (A.4)

where, for k = 0, . . . ,m− 1:

α′
k = a′

k

kk, (A.5)

β′
k = b′

k

k +

n−1
∑

j=k+1

xja
′k

ij . (A.6)

such that, for all i = k, . . . ,m− 1 and all j = k + 1, . . . , n− 1:

a′
k

ij =







a′ij if k = 0,

a′
k−1
ij + a′

k−1
i(k−1)a

′k−1
(k−1)jα

′∗
k−1 if 0 < k < m;

(A.7)

and for all i = 1, . . . ,m− 1:

b′
k

i =







bi if k = 0,

b′
k−1
i + a′

k−1
i(k−1)b

′k−1
k−1α

′∗
k−1 if 0 < k < m.

(A.8)

Hence, the equation:

xk = xkα
′
k + β′

k (A.9)

in Expression (A.4) is solved by:

xk = β′
kα

′∗

k. (A.10)

After m− 1 steps, we obtain:

S′
m−1 = {xm−1 = xm−1α

′
m−1 + β′

m−1}. (A.11)

where,

α′
m−1 = a′

m−1
(m−1)(m−1), (A.12)

β′
m−1 = b′

m−1
m−1 +

n−1
∑

j=m

xja
′m−1
ij . (A.13)

The equation:

xm−1 = xm−1α
′
m−1 + β′

m−1 (A.14)

in Expression (A.11) is solved by:

xm−1 = β′
m−1α

′∗

m−1. (A.15)

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 26 / 27

A ÏT-KACI, H. DESIGN OF A GENERIC LINEAR EQUATION SOLVERAND ITS IMPLEMENTATION

References

[1] BANCILHON, F., MAIER, D., SAGIV, Y., AND ULLMAN, J. Magic sets and other strange ways to

implement logic programs. In Proceedings of the ACM Symposium on Principles of Database Systems

(1986), pp. 1–15.

[2] CARRÉ, B. Graphs and Networks. Oxford Applied Mathematics and Computing Science Series. Oxford

University Press, Clarendon Press, Oxford, UK, 1979.

[3] COUSOT, P., AND COUSOT, R. Abstract interpretation and application to logic programs. Journal of

Logic Pogramming 13, 2 & 3 (1992), 103–179.

[4] EINSTEIN, A. Relativity—The Special and the General Theory. Crown Publishers, Inc., New York, NY,

USA, 1961.

[5] MUCHNICK, S. S., AND JONES, N. D. Program Flow Analysis: Theory and Application. Prentice Hall,

1981.

DRAFT—PLEASE DO NOT DISTRIBUTE
Page 27 / 27

	Purpose of this work
	One Equation and One Unknown
	Inverses and quasi-inverses
	Examples

	Many Equations and Many Unknowns
	Reduction to one equation and one unknown
	Examples

	Three Solving Schemes
	Structures with inverses and exact precision
	Structures without inverses, but with stationary points
	Structures with inverses, but no exact precision

	A definitional ontology of algebraic structures
	Monoidal structures
	Semigroup
	Monoid
	Group
	Abelian structure
	Semilattice

	Binoidal structures
	Semiring
	Path algebra
	Ring
	Lattice
	Boolean ring
	Boolean lattice
	Matrix liftings

	A Relativistic View of Object Orientation
	Implementation
	Discussion
	Purpose of structure
	Purpose of Rational::solve(Equation)
	Testing the design

	Right Linear Equations

