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Abstract. This paper presents a missing link between Plotkin’s least
general generalization formalism and generalization on the Order Sorted
Feature (OSF) foundation. A feature term (or ψ-term) is an extended
logic term based on ordered sorts and is a normal form of an OSF-term.
An axiomatic definition of ψ-term generalization is given as a set of OSF
clause generalization rules and the least generality of the axiomatic defi-
nition is proven in the sense of Plotkin’s least general generalization (lgg).
The correctness of the definition is given on the basis of the axiomatic
foundation. An operational definition of the least general generalization
of clauses based on ψ-terms is also shown as a realization of the axiomatic
definition.

1 Introduction

A feature term (or ψ-term) is an order-sorted logic term, i.e., an extended form
of a logic term where functor symbols are ordered sorts. In addition, features (or
attribute labels) are added to a sort as argument indicators. [1,2,3]

For example, the following two ψ-terms describe George and his mother as
having the same last name “Bush” and Al and his mother as having the same
last name “Gore”:

George( last ⇒ Y1 : Bush,
mother ⇒ Barbara(last ⇒ Y1)),

Al( last ⇒ Y2 : Gore,
mother ⇒ Pauline(last ⇒ Y2)).

In this example, George, Barbara, Bush, Al, Pauline, and Gore are sort
symbols, while last and mother are feature symbols. The variables Y1 and Y2
link George’s and Al’s last names to their mother’s last names.

A goal of a ψ-term generalization is to calculate (or induce) the following
generic knowledge from the two examples:

person( last ⇒ Y : name,
mother ⇒ person(last ⇒ Y ))
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Formally, without syntax sugaring, the schema is represented as

X : person( last ⇒ Y : name,
mother ⇒ Z : person(last ⇒ Y : >))

where > is the universal—i.e., the most general—sort, and variable tags are
systematically used for each sort.

The ψ-term is useful in many subjects of Artificial Intelligence (AI), most no-
tably in Natural Language Processing (NLP). For instance, the feature term [5],
equivalent to the ψ-term, is used to represent the syntax and semantics of nat-
ural language sentences. In case-based reasoning, feature terms are used as the
data structures of cases [9] and the generalization of cases is a key towards the
reuse of cases. Inductive Logic Programming (ILP) was extended to an induction
(i.e., generalization) of logic programs based on ψ-terms [11,12].

While feature terms play an essential role in AI and NLP, there is a miss-
ing link between Plotkin’s least general generalization formalism of classic logic
terms and the generalization of ψ-terms on the basis of the OSF foundation.
This paper presents the missing link.

2 Preliminaries on ψ-Terms

This section introduces ψ-terms on the basis of the Order-Sorted Feature (OSF)
formalism [2,3].

2.1 Syntax

Definition 1 (OSF Signature) An OSF Signature is given by

ΣOSF = 〈S,�,u,t,F〉, s.t. :

– S is a set of sort symbols with the sorts > and ⊥;
– � is a partial order on S such that > is the greatest element and ⊥ is the

least element;
– 〈S,�,u,t〉 is a lattice, where su t is defined as the infimum (or glb) of sorts
s and t and s t t is the supremum (or lub) of sorts s and t;

– F is a set of feature symbols.

For sorts s1, s2 ∈ S, we denote s1 ≺ s2 iff s1 � s2 and s1 6= s2.
Let V be a countable infinite set of variables.

Definition 2 (OSF-terms) Given ΣOSF = 〈S,�,u,t,F〉, if s ∈ S,
l1, . . . , ln ∈ F , X ∈ V, n ≥ 0, and t1, ..., tn are OSF-terms, then an OSF-term
has the form

X : s(l1 ⇒ t1, ..., ln ⇒ tn).
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Let ψ = X : s(l1 ⇒ t1, ..., ln ⇒ tn). X is called the root variable of ψ, which
is described as Root(ψ), and s is called the root sort of ψ, which is described as
Sort(ψ).

For a lighter notation, hereafter we omit variables that are not shared and
the sort of a variable when it is >.

Definition 3 (ψ-terms) An OSF-term

ψ = X : s(l1 ⇒ ψ1, . . . , ln ⇒ ψn)

is in a normal form (and is called a ψ-term) if:

– For any variable Vi in ψ, Vi is the root variable of at most one non-top
ψ-term, i.e., one whose root sort is not >;

– s is a nonbottom sort in S;
– l1, . . . , ln are pairwise distinct feature symbols in F ;
– ψ1, . . . , ψn are ψ-terms.

We will see that OSF-terms can be normalized to ψ-terms by OSF clause
normalization rules, which are given in Section 2.3, or are otherwise proven to
be inconsistent by being reduced to ⊥.

Let ψ = X : s(l1 ⇒ ψ1, ..., ln ⇒ ψn). s(l1 ⇒ ψ1, ..., ln ⇒ ψn) is called an
untagged ψ-term.

Definition 4 (Feature Projection) Given a ψ-term t = X : s(l1 ⇒ t1, . . .,
ln ⇒ tn), the li projection of t (written as t.li) is defined as t.li = ti.

The definitions of atoms, literals, clauses, Horn clauses, and definite clauses
are as usual with the difference being that terms are ψ-terms. If a feature is a
non-zero integer 1, . . . , n, then a ψ-term X : s(1 ⇒ t1, 2 ⇒ t2, . . . , n ⇒ tn) can
be abbreviated to X : s(t1, t2, . . . , tn).

2.2 Semantics

Definition 5 (OSF Algebras) An OSF Algebra is a structure
A = 〈DA, (sA)s∈S , (lA)l∈F 〉 s.t. :

– DA is a non-empty set, called a domain of A;
– for each sort symbol s ∈ S, sA ⊆ DA; in particular, >A = DA and ⊥A = ∅;
– (s u s′)A = sA ∩ s′A for two sorts s, s′ ∈ S;
– (s t s′)A = sA ∪ s′A for two sorts s, s′ ∈ S;
– for each feature symbol l ∈ F , lA : DA → DA.

Definition 6 (A-Valuation) Given ΣOSF = 〈S,�,u,t,F〉, an A-valuation
is a function α : V → DA.
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Definition 7 (Term Denotation) Let t be a ψ-term of the form

t = X : s(l1 ⇒ t1, . . . , ln ⇒ tn).

Given an OSF Algebra A and an A-valuation α, the term denotation of t is
given by

[[ t ]]A,α= {α(X)} ∩ sA ∩
⋂

1≤i≤n

(lAi )−1([[ ti ]]A,α).

[[ t ]]A=
⋃

α:V→DA
[[ t ]]A,α

.

2.3 Unification of ψ-Terms

An alternative syntactic presentation of the information conveyed by OSF-terms
can be translated into a constraint clause [2].

Definition 8 (OSF-Constraints) An order-sorted feature constraint (OSF-
constraint) has one of the following forms:

– X : s
– X

.= Y
– X.l

.= Y

where X and Y are variables in V, s is a sort in S, and l is a feature in F .

Definition 9 (OSF-clauses) An OSF-clause φ1 & . . . & φn is a finite, pos-
sibly empty conjunction of OSF-constraints φ1, . . . , φn(n ≥ 0). 1

We can associate an OSF-term with a corresponding OSF-clause.
Let ψ be a ψ-term of the form

ψ = X : s(l1 ⇒ ψ1, ..., ln ⇒ ψn).

An OSF-clause φ(ψ) corresponding to an OSF-term ψ has the following form:

φ(ψ) = X : s & X.l1
.= X ′

1 & . . . & X.ln
.= X ′

n

& φ(ψ1) & . . . & φ(ψn),

where X,X ′
1, . . . , X

′
n are the root variables of ψ,ψ1, . . . , ψn, respectively. We say

φ(ψ) is dissolved from the OSF-term ψ.

Example 1 Let ψ = X : s(l1 ⇒ Y : t, l2 ⇒ Y : >)). The OSF-clause of ψ is:
φ(ψ) = X : s & X.l1

.= Y & Y : t & X.l2
.= Y & Y : >

1 We sometimes regard an OSF-clause as a set of OSF constraints.
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Sort Intersection:
φ & X : s & X : s′

φ & X : s u s′

Inconsistent Sort:
φ & X : ⊥

X : ⊥
Variable Elimination:

φ & X
.
= X′

φ[X/X′] & X
.
= X′

if X 6= X
′

and X ∈ V ar(φ)

Feature Decomposition:
φ & X.l

.
= X′ & X.l

.
= X′′

φ & X.l
.
= X′ & X′ .

= X′′

Fig. 1. OSF Clause Normalization Rules

On the other hand, an OSF-clause φ can be converted to an OSF-term ψ(φ)
as follows: first complete it by adding as many V :> constraints as needed so that
there is exactly one sort constraint for every occurrence of a variable V in an
X.l=V constraint, where X is a variable and l is a feature symbol; then convert
it by the following ψ transform:

ψ(φ) = X : s(l1 ⇒ ψ(φ(Y1)), . . . , ln ⇒ ψ(φ(Yn)))

where X is a root variable of φ, φ contains X : s, and X.l1
.= Y1,. . . ,X.ln

.= Yn

are all of the other constraints in φ with an occurrence of variable X on the
left-hand side. φ(Y ) denotes the maximal subclause of φ rooted by Y .

Definition 10 (Solved OSF-Constraint) An OSF-clause φ is called solved
if for every variable X, φ contains:

– at most one sort constraint of the form X : s, with ⊥ ≺ s;
– at most one feature constraint of the form X.l

.= Y for each X.l;
– no equality constraint of the form X

.= Y .

Given φ in a normal form, we will refer to its part in a solved form as
Solved(φ).

Example 2 Let φ = X : s & X.l1
.= Y & Y : t & X.l2

.= Y & Y : >. The
solved normal form of φ is :
Solved(φ) = X : s & X.l1

.= Y & Y : t & X.l2
.= Y .

Theorem 1 [2] The rules of Fig. 1 are solution-preserving, finite-terminating,
and confluent (modulo variable renaming). Furthermore, they always result in a
normal form that is either an inconsistent OSF clause or an OSF clause in a
solved form together with a conjunction of equality constraints.

Note that V ar(φ) is the set of variables occurring in an OSF-clause φ and
φ[X/Y ] stands for the OSF-clause obtained from φ after replacing all occurrences
of Y by X.
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Sort Induction (SI):

{X1\X} ∪ Γ1, {X2\X} ∪ Γ2 ` φ & ((X1 :s1 & φ1) ∨ (X2 :s2 & φ2))
{X1\X} ∪ Γ1, {X2\X} ∪ Γ2 ` φ & (X :s1 t s2) & ((X1 :s1 & φ1) ∨ (X2 :s2 & φ2))

if ¬∃s (X :s ∈ φ)

Feature Induction (FI):

{X1\X} ∪ Γ1, {X2\X} ∪ Γ2 ` φ&((X1.l
.
= Y1&φ1) ∨ (X2.l

.
= Y2&φ2))

{X1\X, Y1\Y } ∪ Γ1, {X2\X, Y2\Y } ∪ Γ2 ` φ&X.l
.
= Y &((X1.l

.
= Y1&φ1) ∨ (X2.l

.
= Y2&φ2))

if ¬∃ y (Y1\y ∈ {X1\X} ∪ Γ1 and Y2\y ∈ {X2\X} ∪ Γ2)

Coreference Induction (CI):

{X1\X, Y1\Y } ∪ Γ1, {X2\X, Y2\Y } ∪ Γ2 ` φ&((X1.l
.
= Y1&φ1) ∨ (X2.l

.
= Y2&φ2))

{X1\X, Y1\Y } ∪ Γ1, {X2\X, Y2\Y } ∪ Γ2 ` φ&X.l
.
= Y &((X1.l

.
= Y1&φ1) ∨ (X2.l

.
= Y2&φ2))

if X.l
.
= Y 6∈ φ

Fig. 2. OSF Clause Generalization Rules

Theorem 2 (ψ-term Unification) [2] Let ψ1 and ψ2 be two ψ-terms. Let φ
be the normal form of the OSF-clause φ(ψ1) & φ(ψ2) & X1

.= X2, where X1 and
X2 are the root variables of ψ1 and ψ2, respectively. Then, φ is an inconsistent
clause iff the glb of the two ψ-terms is ⊥. If φ is not an inconsistent clause, then
the glb ψ1 u ψ2 is given by the normal OSF-term ψ (Solved(φ)).

3 Axiomatic ψ-Term Generalization

As a dual of ψ-term unification, ψ-term generalization (or anti-unification) can
be defined as OSF clause generalization rules.

To define the generalization, we introduce a new constraint symbol ∨, where
A ∨B denotes the generalization of two OSF clauses A and B.

A ψ-term generalization rule is of the form:

Γ1, Γ2 ` φ & (φ1 ∨ φ2)
Γ ′

1, Γ
′
2 ` φ′ & (φ1 ∨ φ2)

where Γ1 and Γ2 are sets of substitutions of the form {X1\X ′
1, . . . , Xn\X ′

n}2, φ
and φ′ are OSF-clauses, and φ1 and φ2 are solved normal forms of OSF-clauses
of target ψ-terms ψ1 and ψ2, respectively.

Definition 11 (Axiomatic Generalization) Let φ1 and φ2 be solved normal
forms of ψ1 and ψ2, respectively, and Γ1 and Γ2 be variable substitutions. Then,
a generalized OSF-clause φ of

Γ1, Γ2 ` φ & (φ1 ∨ φ2)
2 This means that X ′

i is substituted by Xi.
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is obtained by applying OSF clause generalization rules (Fig. 2) until no rule is
applicable, initiated with

{X1\X}, {X2\X} ` (φ1 ∨ φ2)

where X1 = Root(ψ2), X2 = Root(ψ2), and X is a fresh variable.

A generalized ψ-term is given as ψ(φ).

Proposition 1 The result of the axiomatic generalization is an OSF-clause in
the normal form.

Proposition 2 The OSF clause generalization is finite terminating.

Proof. Termination follows from the fact that the number of variables in φ1 is
finite because OSF-clauses are finite, and each of the three rules SI, FI, and CI
strictly decreases the number of combinations of variables in φ1 and φ2 that
satisfy the preconditions of the OSF generalization rules.

From the definition of φ(·) and OSF clause normalization rules (Fig. 1), the
number of variables in φi is finite since ψi is finite by the definition of OSF-
terms. The Sort Induction (SI) strictly decreases the number of variable pairs
that satisfy the conditions of the generalization rules. That is, the variable pair
X1 of X1 : s1 and X2 of X2 : s2 does not satisfy the precondition of SI after its
application. The Feature Induction (FI) strictly decreases the number of pairs of
variable pairs that satisfy the rule conditions. The pair of variable pairs 〈X1, Y1〉
and 〈X2, Y2〉 does not satisfy the precondition of FI after its application. Since
FI is only applicable a finite number of times, FI increases the finite number
of pairs applicable to the SI and CI rules. Like FI, the Coreference Induction
(CI) strictly decreases the number of pairs of variable pairs that satisfy the rule
conditions. The pair of variable pairs 〈X1, Y1〉 and 〈X2, Y2〉 does not satisfy the
precondition of CI after its application.

3.1 Least General Generalization

This section newly introduces the least general generalization of ψ-terms along
the line of Plotkin’s least general generalization (lgg) [10].

Definition 12 (Sorted Substitution) A sorted substitution has the form
{X1:s1/Y1:t1,. . . ,Xn:sn/Yn:tn}, where X1, . . . , Xn are pairwise distinct vari-
ables and Y1, . . . , Yn are variables in V, s1, . . . , sn and t1, . . . , tn are sort symbols
with ⊥ ≺ si � ti for every i. If expression E is a term, a literal, or a clause, Eθ
is the result of replacing all occurrences of Yi:ti by Xi:si and Yi by Xi simulta-
neously for every i.

Note that the sorted substitution changes only variable names and sorts; it
does not add or remove constraints of the form X.l

.= Y . This means that the
sorted substitution preserves the structure of an original expression.
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Definition 13 (Sorted Ordering of ψ-terms) Let ψ1 and ψ2 be two ψ-
terms. Let φ1 and φ2 be solved normal forms of OSF clauses of ψ1 and ψ2,
respectively. ψ1 ≤ ψ2 iff there exists a sorted substitution θ such that φ1θ ⊆ φ2
3 and (Root(ψ2) : Sort(ψ2)/Root(ψ1) : Sort(ψ1)) ∈ θ.

We read ψ1 ≤ ψ2 as meaning that ψ1 is more general than ψ2.

Example 3 (X:s) ≤ Y :t(l⇒ Z:u) with t � s because for θ={Y :t/X:s}, (X:s)θ
= {Y :t} ⊆ (Y :t & Y.l

.= Z & Z:u).

Proposition 3 If φ is the result of the ψ-term generalization of the OSF-clauses
of ψ-terms ψ1 and ψ2 and ψ = ψ(φ), then ψ ≤ ψ1 and ψ ≤ ψ2 in terms of sorted
ordering ≤.

Proof. Prove ψ ≤ ψ1. Let φ1 be a solved normal form of ψ1. Let the final
result of the ψ-term generalization be Γ1, Γ2 ` φ & (φ1 ∨ φ2) with Γ1 =
{X ′

1\X1, . . . , X
′
n\Xn}. Let s′

i be the sort of X ′
i:s

′
i ∈ φ(ψ1) and si be the sort

of Xi:si ∈ φ(ψ). A sorted substitution θ = {X ′
1:s

′
1/X1:s1,. . ., X ′

n:s′
n/Xn:sn}

clearly satisfies the relation φθ ⊆ φ1 according to the OSF generalization rules.
The proof of ψ ≤ ψ2 is the same.

Definition 14 (Least General Generalization) Let ψ1 and ψ2 be ψ-terms.
ψ is the least general generalization (lgg) of ψ1 and ψ2 iff

(1) ψ ≤ ψ1 and ψ ≤ ψ2.
(2) If ψ′ ≤ ψ1 and ψ′ ≤ ψ2, then ψ′ ≤ ψ.

Theorem 3 (Least Generality of Generalization) The axiomatic ψ-term
generalization is a least general generalization with respect to the sorted ordering
of ψ-terms.

Proof. (1) ψ ≤ ψ1 and ψ ≤ ψ2 are immediate from Proposition 3. (2) Let ψ1
and ψ2 be ψ-terms and ψ be the result of the ψ-term generalization of ψ1 and
ψ2. Also assume that there exists a ψ-term ψ′ such that ψ′ ≤ ψ1, ψ′ ≤ ψ2, and
ψ < ψ′, i.e., ψ is strictly more general than ψ′. Let φ, φ1, φ2, and φ′ be solved
normal forms of ψ, ψ1, ψ2, and ψ′, respectively. The assumption ψ < ψ′ requires
that there be an OSF constraint C ′ in φ′ such that no sorted substitution θ
satisfies C ′θ ∈ φ and φ′θ ⊆ φ. There are two cases to be considered: (case 1) C ′

is of the form X ′ : s′ and (case 2) C ′ is of the form X ′.l .= Y ′.
Case 1: From the assumptions ψ′ ≤ ψ1 and ψ′ ≤ ψ2,X ′ : s′ can be substituted

to X1 : s1 in φ1 and X2 : s2 in φ2. Therefore, s1 � s′ and s2 � s′. Since
sorted substitutions preserve the structures of ψ-terms, according to ψ-term
generalization rules, if X1 : s1 and X2 : s2 correspond to the same constraint
X ′ : s, then X : s should be included in φ. By SI, sort s in ψ is the least upper
3 We regard a clause as a set of constraints here.
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bound (lub) of a sort s1 in ψ1 and a sort s2 in ψ2. This contradicts s1 � s′,
s2 � s′, and s′ ≺ s.

Case 2: Similarly, from the assumptions of ψ′ ≤ ψ1 and ψ′ ≤ ψ2, X ′.l .=
Y ′ can be substituted to X1.1

.= Y1 in φ1 and X2.l
.= Y2 in φ2. Since sorted

substitutions preserve the structures of ψ-terms, if X1.l
.= Y1 and X2.l

.= Y2
correspond to the same constraint X ′.l .= Y ′, then X.l .= Y should be in φ. This
is a contradiction.

4 Operational ψ-Term Generalization

On the other hand, an operational definition of ψ-term generalization [11] has
been defined as an extension of Plotkin’s least general generalization (lgg) using
the following notations. a and b represent untagged ψ-terms. s, t, and u represent
ψ-terms. f , g, and h represent sorts. X, Y , and Z represent variables in V.

Definition 15 (lgg of ψ-terms) Let ψ1 and ψ2 be ψ-terms. lgg(ψ1,ψ2) is
defined as follows with the initial history Hist = {}.
1. lgg(X : a,X : a) = X : a.
2. lgg(X : a, Y : b) = Z : >, where X 6= Y and the tuple (X,Y, Z) is already

in the history Hist.
3. If s = X:f(ls1 ⇒ s1, . . . , l

s
n ⇒ sn) and t = Y :g(lt1 ⇒ t1, . . . , l

t
m ⇒ tm), then

lgg(s, t)=Z:(f t g)(l1 ⇒ lgg(s → l1, t → l1), . . . , l|L| ⇒ lgg(s → l|L|, t →
l|L|)), where li ∈ L = {ls1, . . . , lsn} ∩ {lt1, . . . , ltm}. Then, (X,Y, Z) is added to
Hist.

Note that in this definition s → l is defined as s → l = X : a if s.l = X : >
and X : a ∈ ψ1 with a 6= > else s → l = s.l. t → l is defined similarly.

For example, the lgg of X:passenger(of⇒X ′:10) and Y :man(of⇒Y ′:2) is
Z : person(of ⇒ Z ′ : number), if passenger t man = person and 10 t 2 =
number.

Theorem 4 (Correctness) The result of the operational ψ-term generaliza-
tion ψ is the least general generalization of ψ-terms ψ1 and ψ2 in terms of the
sorted ordering.

Proof. (Sketch) Each step of the operational definition can be translated into
OSF generalization rules. Step 1 is a special case of Sort Induction.

Step 2 is Coreference Induction where tuple (X,Y,Z) in Hist corresponds to
X\Z in Γ1 and Y \Z in Γ2.

Step 3 is Sort Induction of X : f t g and Feature Induction, where tuple
(X,Y, Z) added to Hist corresponds to X\Z and Y \Z which are added to vari-
able substitutions. All of the steps of the operational definition are realizations
of the OSF clause generalization. Therefore, the result of the operational gener-
alization is a least general generalization of ψ-terms.
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5 Generalization of Clauses Based on ψ-Terms

This section presents the least general generalization of logic programs based on
ψ-terms along the line of Plotkin’s lgg of atoms and clauses [10].

Definition 16 (Ordering of Atoms) Let A1 = p(ψ1, . . . , ψn) and A2 =
q(ψ′

1, . . . , ψ
′
n) be atomic formulae based on ψ-terms. A1 ≤ A2 iff A1θ = A2

for some sorted substitution θ which includes a substitution replacing the root
variable of ψi by the root variable of ψ′

i.

Definition 17 (Ordering of Clauses) Let C1 and C2 be clauses based on ψ-
terms. C1 ≤ C2 iff C1θ ⊆ C2 for some sorted substitution θ which includes
substitutions replacing the root variables of ψ-terms in C1 by the corresponding
root variables of ψ-terms in C2.

Definition 18 (Lgg of Atoms) Given a signature ΣOSF = 〈S,�,u,t,F〉
and a set of predicate symbols P, let P and Q be atomic formulae. An operational
definition of a function lgg(P,Q) that computes the least general generalization
of P and Q is as follows.

1. If P = p(s1, . . . , sn) and Q = p(t1, . . . , tn),
lgg(P,Q) = p(lgg(s1, t1), . . . , lgg(sn, tn)) with the sharing of history Hist.

2. Otherwise, lgg(P,Q) is undefined.

Definition 19 (Lgg of Literals) Let P and Q be atoms and L1 and L2 be
literals. The lgg of the literals is defined as follows [8].

1. If L1 and L2 are atoms, then lgg(L1, L2) is the lgg of the atoms.
2. If L1 and L2 are of the forms ¬P and ¬Q, respectively, then lgg(L1, L2) =

lgg(¬P,¬Q) = ¬lgg(P,Q).
3. Otherwise, lgg(L1, L2) is undefined.

Definition 20 (Lgg of Clauses) Let clauses C = {L1, . . . , Ln} and D =
{K1, . . . ,Km}. Then lgg(C,D) = { lgg(Li,Kj) | Li ∈ C,Kj ∈ D and
lgg(Li,Kj) is not undefined}.

The least general generality of lggs of atoms, literals, and clauses is conser-
vative extension of Plotkin’s lgg since the operational ψ-term generalization is
an lgg of terms.

6 Related Works

The definition of the least general generalization (lgg) was first investigated in
[10]. The lgg of ψ-terms has already been illustrated [1]; however, axiomatic
and operational definitions have been left untouched. The lgg of a subset of
description logics, called the least common subsumer (LCS), was studied in [4].
The lgg of feature terms, which are equivalent to ψ-terms, can be found in [9].
The generalization for Sorted First Order Predicate Calculus (SFOPC) [7] is
presented in [6].
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7 Conclusion and Remarks

Two generalization approaches have been presented and related. An axiomatic
definition of ψ-term generalization was presented as ψ-term generalization rules.
The definition was proven to be a least general generalization (lgg) in terms of
Plotkin’s lgg on the OSF foundation. The correctness of an operational definition
of ψ-term generalization was provided on the basis of the generalization rules.
The operational definition was shown to be one realization of the axiomatic
generalization. An lgg of clauses based on ψ-terms was presented, and a fun-
damental bridge between ψ-term generalization and the lgg useful for inductive
logic programming was given. The main benefit of this paper is that it expresses
generalization (and hence induction) as an OSF constraint construction process.
This approach may lead to other axiomatic constraint systems provided with
inductive algorithms.
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Appendix (Example of Axiomatic ψ-Term Generalization)

Suppose that we have two ψ-terms ψ1 and ψ2, and u=s t t.

ψ1 = X : s(a ⇒ Z : s, b ⇒ Z)
ψ2 = Y : t(a ⇒ W : t, b ⇒ U : t)

The normal form of OSF clauses of these ψ-terms are:

φ(ψ1) = X : s & X.a
.= Z & Z : s & X.b

.= Z,
φ(ψ2) = Y : t & Y.a

.= W & W : t & Y.b
.= U & U : t.

A generalization of these two OSF clauses is obtained by applying generalization
rules to the OSF clause C = φ(ψ1) ∨ φ(ψ2). The following steps show the
process to achieve a generalization.

{X\V }, {Y \V } `
((X :s & X.a

.= Z & Z :s & X.b
.= Z)∨

(Y : t & Y.a
.= W & W : t & Y.b

.= U & U : t))
{X\V }, {Y \V } ` (V :u)

& ((X :s & X.a
.= Z & Z :s & X.b

.= Z)∨
(Y : t & Y.a

.= W & W : t & Y.b
.= U & U : t)) (by SI)

{X\V,Z\V ′}, {Y \V,W\V ′} ` (V :u & V.a
.= V ′)

& ((X :s & X.a
.= Z & Z :s & X.b

.= Z)∨
(Y : t & Y.a

.= W & W : t & Y.b
.= U & U : t)) (by FI)

{X\V,Z\V ′}, {Y \V,W\V ′} ` (V :u & V.a
.= V ′ & V ′ :u)

& ((X :s & X.a
.= Z & Z :s & X.b

.= Z)∨
(Y : t & Y.a

.= W & W : t & Y.b
.= U & U : t)) (by SI)

{X\V,Z\V ′, Z\V ′′}, {Y \V,W\V ′, U\V ′′} ` (V :u&V.a .=V ′&V ′:u&V.b .= V ′′)
& ((X :s & X.a

.= Z & Z :s & X.b
.= Z)∨

(Y : t & Y.a
.= W & W : t & Y.b

.= U & U : t)) (by FI)
{X\V,Z\V ′, Z\V ′′}, {Y \V,W\V ′, U\V ′′} `
(V :u & V.a

.= V ′ & V ′ :u & V.b
.= V ′′ & V ′′ :u)

& ((X : s & X.a
.= Z & Z : s & X.b

.= Z)∨
(Y : t & Y.a

.= W & W : t & Y.b
.= U & U : t)) (by SI)

Therefore, an OSF clause ψ3 of a ψ-term generalization of ψ1 and ψ2 is:

φ3 = V : u & V.a
.= V ′ & V ′ : u & V.b

.= V ′′ & V ′′ : u

The ψ-term of ψ3 is: ψ(φ3) = V : u(a ⇒ V ′ : u, b ⇒ V ′′ : u).
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