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This paper is a stort mathematical note dealing with the follow-

ing problem. Defining the Sign pattern of a matrix of order n to be
the set of its entries that are equal to zero, we would 1ike £o find
necessary and sufficient conditions for any matrix to have the same
Sign pattern as a doubly stochastic hatrik of the same order. That is,
if A is a matrix of order n, we would like to find out about the exist-

ence of a matrix D such that:

n
i) =z di' = for all j=1,....n

j=1
h .

ii) ® di, =1 for all i=1,...,n
Rafha
J'_"l

iii) a3y = 0 if and only if dij = 0

As‘a matter of fact, this problem is sq]ved as a corollary of the

famous maximum flow-minimum cut theorem due to Ford and Fulkerson (see
reference [1]) giving for condition the existence of a maximum flow in

a clever network representation. However, in the case where existence

of a doubly stochastic matrix is proven, the Ford and Fulkersén corollary
cannot exhibit one. Ve would Tike to propose a graph theoretic proof

of these necessary and sufficient conditions that can, in the positive
caée, come up with a doubly stochastic matrix such as desired: The

method uses a labelling algorithm.
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We will, after expressing the graph theoretic representation,
~give a few interesting and useful properties of such notions as bipartite
graphs, matchings, etc., then we will proceed to presenting the tentra]

theorem proof as a labelling algorithm.

We can associate to a matrix M of order n a unique bipartite graph:

Gy = (1, J; EM) defined as follows

o1 % J=1{1,2,...,n} 7 - (i)

Ey C1xJ | (2)
(i,3) e By <= Mgy Fo iel, jed 2+ - {8)

s in
That is, the bipartite graph,constitute on one side by the row indicfes,
on the other side by the column indices, and whose edges correspond to

non-zero entries in the matrix M.

P1: Proposition: Given a matrix A of order n, each non-zero mononomial
in the development of its determinant characterizes a perfect matching

(i.e., a matching of size n) in its associated bipartite graph.

Check: It is easy to see this propefty when we notice that each

mononomial of A is of the form-

. . (4
i-a111 a212 e amn (4)
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where'{i], iz,...,in} is & permutation of the set {1, 2,...,n}. Thus,
a mononomial of A is non-zero if and only ifiaji £ 0 for all jed. In
other words, if and only if there is a matching {(1, i]), (2,,12),...,(n,in)}

in the associated bipartite graph of A.

‘Definition: Given two bipartite graph GA and GB’ associated respectively
to two nxn matrices, we say that a matching of GA is a matchfng of GB

if the edges of the matching in GA figure also as edges in Gé.

P2. Proposition: Let A and B be two nxn matrices. If A and B have
the same Sign pattern, then all perfect matchings of GA are in GB’ and

conversely;
Proof: Assume A and B have the same Sign -pattern.
Case 1: A has no matching of Size n. By P1, this means that all its

~mononomials are zero. In other words, for all permutation

= 0. Or,

{1], 12,...,1n} of {1, 2,...,n} , we have a]i] 6121.2 - anin

for all permutation, there exist jed such that aj{; = 0.. Since A and
. o

B have the same sign pattem this is equivalent to bjf- = 0 for some

L
J in all permutation. Hence, B has no perfect matching.

Case 2: A has at least one perfect matching. By P1, there exists a

permutation {1], 12,...,3n} such that a“—1 aZi2 - am.n + 0. For the
same permutation, ?111 pZiz e bm.n + 0. Hence, B has the same

perfect matching.
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P3. Theorem: (Reference [2], pp. 105-106], If D is a doubly stochastic

matrix, at least one of its monomomials is non-zero.

This theorem is a corollary of the konig-theorem. By P1, it is equivalent
to stating that there is at least one perfect matching in the bipartite

~graph associated to a doubly stochastic matrix.

nxn * mxm

Definition: Given a matrix MeR ~, we define its reduced form M e R,

m<n to be the matrix obtained from M as follows: for all entries alone

in their row and column (i.e., VM'ij £ 0 such that Mg = Mig = 0 Vk=i,

Ve § j) the corresponding row and column are suppressed.

Note: If M is such that M is vacuous, then M has exactly one non-zero
element per row and per column. In this case, it is trivial to find
a doubly stochastic matrix with the same sign pattern.

P4. Lemma: Let D be a doubly stochastic matrix, then the bipartite
*
graph associated to the reduced matrix D is such that every edge belongs
to a cycle.
“ -
i lpore b
' *
Proof: Suppose that in the bipartite graph associated to D , there is
Q‘I\Mﬁ&?b& . %
one edge u = (i, jl. Therefore u must be an isthmus. We have Dij 0

from the definition of the associated graph. The edge u separates the

~graph into two components G, and C, as shown in
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the figure. D 1is of order m < n and doubly stochastic as only isolated
entries per row and per column (thus equal to one) were suppressed in D.
The sum of its entries alongf{ its row and columns must then be equal to the

*
order of D . Hence,

1

*
(p Dij) +g=m along the rows

p + (é + D:j) =m along the.columns

where )
D*
p=-I 5
) leJnC1 keP(2) k2
o _* . "
. oy Pk R

"keInCz 2eS(k)

where P(2) is the set of ‘elements of I linked to &; and S(k) is the set

of elements of J linked to k.
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*
It hence comes Dij = 0. A& contradiction. Therefore each edge belongs

to a cycle. Q.E.D.

‘Note: In what follows we will consider only a matrix A such that'A* = A.
Indeed, showing that A has the same Sign pattern than a doubly stochastic
matrix is equivalent to showing that this is the case for A”, and then
completing A” back to its nxn form by adding 1's at those entries which
were suppressed.

Theorem: Let A be a reduced nxn matrix. A has the 'same sign pattern
than a doubly stochastic matrix if and only if all edges in the associated

bipartite graph belong to cycles.

Proof: For‘the ﬁecessity, assume A'has ihe same sign pattern than a doubTy
stochastic matrix D. Then, by P4, we simply conclude our fact. Conversely,
Tet GA be the graph associated to A. There is a perfect matching in GA’
since if there were none, by P2 and P3, we could immediately deduce that
there is no doubly stochéstic matrix with the same sign pattern. Let G£0)
the graph GA whose edges are assigned weights in the following manner:
~on the edges of the perfect matching>the weight is equal to one, and all
the other edges have a weight equal to zero. The following procedure is
going@%%ﬁ%ﬁﬁ&o distribute weights along cycles by succesijvely adding and
subtracting the same quantity to the existing weights iﬁi; wayi@o preserve
' - ({double atmetues bt biy) ' '

the property of(being doubly stochastic) Since all edges are on cycles and
since the number of edges fs fih;ie, we eventually obtain a doubly stochastic

distribution of weights; hence, a doubly stochastic matrix with the same

sign patternas the initial one.
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Notes: For each node iel, S(i) is the set of the successors of i
(S(A) < ), and US(i) is the set of the unlabelled seccessors of i
(US(i) < S(i); accordingly, for each node jed, P(j) is the set of the
- predecessors of j(P(j) < 1), and UP(§) is the set of the unlabelled pre-
decessors of j(UP(j) < P(j)). AT o

For each node xeIUJ, label (x) stands for the label of x.

UPRE the weight on edge (1, de

 Step 0: For all el and all Jed do US(i) = S(i), UP(j) = P(j);
Ke =1, go to Step 1;

Step 1: If Wy # 0 for all (1j) eE then terminate

R . _
else let iy el such that 330 & oy injO 0
label(iy): = *; label(jy): = i UP(3g): = UP(3,) - {ig}s

L: = jO; go to Step 2;
Step 2:
(2.1): if UP(2) = ¢ then if e = g then go to (2.4)

else 2: = Tabel(label(s))
go to (2.1);

Sty

else Tet rel: w = max (w

.15
- ieUP(z) 1%

Tabel(r): = 23 UP(2): = UP(2) - {r}; go to (2.2);

(2.2): if US(r) = ¢ then [r: = Tabel(Tabel(r))

if r = i then go to (2.4)

‘else go to (2.2)

“else let Sed: w__ = min (w_.):
T ra jeUs(r)y 19

label(s): =r; US(r): =US(r) - {s}; go to (2.3);
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(2.3): if g e P(A) then go to Step 3

if i
‘else 2: = s; go to Step 23

(2.4): Stop: (io jo) is an isthmus;
'Step 3:
(3.1): 1i: =15 J: =s;

i

B BT e R
(3.2): Wiyt wij Zk HAER Tabel(j);

) 1.
it T Wiyt oK

ifis= io then go to Step 4
else j: = Tabel(i); go to (3.2);
Step 4: For all iel, and all jed do US(i): = S(i). UP(j): = P(3);

K: = k+1;

go to Step 1;

1. Proof of Termination: The general procedure in this a1gofithm is
to find an even cycle given a zero edge. First, we c]éarly see
that, provided the loops (2.1) and (2.2) are finite, the bigger
lbop Step 2 is always finite since we add two edges at Teast at
each iteration. So we only have to prove that Toops (2.1) and

(2.2) cannot be infinite.




Flow-Chart Representation of Labelling Procedure
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Loop (2.1): At the firstviteration in Step 2 we do not reach into

Loop (2.1); so the first time we get into it, we have already 6hecked :

at Teast a path from 10’ and if we go back to-jb that means that 530
is an isthmus: | : )

labelled nodes

' ’ a7 '
and this is impossible under our hypothesis{bi.f;. ; §§ ﬁxahéi”i k{; *
, | 7

Loop (2.2): The reasoning is similar. Therefore, this algorithm either

“terminates, or produces an isthmus.

2. Proof of Legality: We have to show that the way we choose the

nodes r and § at each iteration is correct.Q}Since we know that
the graph is such that each node of J has at,Teaét one non-
zero-weighted edge coming inf}éince we choose § by taking

the zero edges by priority when labelling from I to 33 and

{3} since we start with a zero edge (ibjo), we conclude that we

3
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never label from J to I tﬁrqugh a zero edge. . Thereforg,the choices are

_ justified. Now, when tracing back the cycle we'subtracéfik-to positive

2 g
weights. Since, at the beginning, the non-zero weights were "1's" and
n .. :
since 1 > I "JF’ then the weights are always positive or zero.
k=1 2 '

N
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