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Abstract

HO•O•T is a knowledge-base language designed to express and queryHierarchies,

Objects, Ontologies, and T ypes. Hierarchies are used to organize taxonomic

concepts. Objects are used to represent instances of these concepts. Ontolo-

gies are used to constrain the structure and properties of objects organized in

such conceptual hierarchies. Types defined in such ontologies embody the for-

mal axioms defining concepts, which axioms must be verified by objects that

are instances of the defined concepts. Operationally, these axioms can be used

as constraints. Thus, HO•O•T ’s computational semantics consists in normaliz-

ing such constraints as needed to guarantee their consistency w.r.t. an ontol-

ogy (a Terminological Box, or “TBox”) and of the objects referring to it that

make up the data as an RDF triplestore (an Assertional Box, or “ABox”). It

also uses TBox knowledge-based reasoning to optimize queries to be submitted

to an ABox triplestore before compiling them into SPARQL. This document

motivates and specifies the design of a first version of HO•O•T —its syntax and

operational semantics.

Keywords: Semantic Web; Knowledge Representation; Ontological Reasoning; Con-

sistency Checking; Constraint Normalization; Knowledge-Based Pro-

cessing; SPARQL Querying.
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1 Introduction

This document is the initial technical specification of a computer language called

HO•O•T designed for processing taxonomic attributed ontologies. The presentation

is organized as follows. Section 2 puts this work in context and motivates it. Section 3

describes the basic idea underlying our contribution in informal terms. Section 4 com-

prises the essentials of this work’s technical material. It describes the (formal and

operational) syntax and semantics of HO•O•T as a semi-structured object management

and query language. Section 4.1 defines a specific grammatical and lexical formal syn-

tax for HO•O•T . Section 4.2 describes the essential nature of semi-structured, possibly

distributed, data and knowledge this syntax is intended to denote in the form of “order-

sorted featured” (OSF) graphs. Section 4.3 focuses on the part of the language that

concerns types and axioms—its terminological part. Then, Section 4.4 discusses a few

facts concerning the representation and use of factual data inOSF-form. Finally, Sec-

tion 4.5 overviews a possible RDF-representation for OSF-terms and a schematic

operational interpretation with a SPARQL query management system when access to

intensional data is required. It is followed by a conclusion in Section 5.

2 Motivation

The essential difference between a Data Base (DB) and a Knowledge Base (KB) is

that a DB can only provide answers to queries from explicit data, while a KB can use

its knowledge and deductive power to provide answers to queries from implicit facts

inferred to be true, as well as from data inferred to be relevant. We are interested in

specifying a KB language keeping notation and semantics simple and intuitive, while

enabling efficient processing. This is what the Relational Model has provided for Data

Base (DB) processing with unmatched success thus far—by being intuitive, formally

simple, and operationally efficient to process. Such a state of affairs has yet to be

achieved for KB processing.

WhileRDF has admittedly provided a (relatively) simple and intuitive representation

for knowledge encoded as graphs, efficient reasoning using knowledge about RDF-

data has turned out to be a trickier goal to attain. RDF-triple stores comprise Linked

Data sets of RDF triples making up extensional data query-able using knowledge

in KBs. This is because data populating triplestores must abide by the intensional

knowledge specifying its properties in the KBs they refer to. Knowledge expressed in

a KB allows drawing inferences to materialize implicit facts about this data. The set of

axioms making up knowledge from which to make such implicit inferences is called

a Terminological Box—or TBox for short. The set of extensional data is called an

Assertional Box—or ABox for short. A TBox may be construed as a kind of Database

Schema; or, as type definitions and axioms. Even if limited to simple logical axioms,

implicit knowledge is derived as logical consequences thanks to deductive reasoning

using inference rules. As a result, a KB should also be capable of answering generic

queries about properties of data without necessarily involving actual data retrieval. It

should also be capable of using its knowledge to focus data retrieval only on relevant

data.
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Similarly to how SQL can retrieve explicit data from relational data base, querying ex-

plicit RDF data can be done with SPARQL.1 In fact, SPARQL is an RDF-triple

query language that is a straightforward adaptation of SQL, with similar operations

(viz., select, project, join, ordered-by , etc., . . . ) working on the RDF
graph data model rather than relational tables. Reasoning with RDF-based knowl-

edge, however, has turned out to be more challenging.

Therefore, the purpose of this document is to restart from scratch and build from the

ground up. It describes the syntax and operational semantics of a basic language called

“HO•O•T ,” a formal and operational system for representing and querying knowledge

and data in the form of Hierarchical Ontologies, Objects, and Types. This language

is basic in that it is only a bare system that has many limitations as to the complexity

of the reasoning it can carry out. Yet, it can express non-trivial ontological knowledge

and is designed to support efficient graph-constraint inference. Importantly, these lim-

itations are in no way definitive. Most are simply due to it being a core language

meant to be extended with more expressive and/or efficient constructs and operations

in future elaborations—this is only HO•O•T V0.0.

3 Basic Idea

This version, as well as any future elaboration, of HO•O•T is meant for reasoning with,

and querying, an RDF knowledge base, whereby answers may be derived both from

axiomatic knowledge about data and the data it describes. It uses a graph-based knowl-

edge reasoning formalism stemming from first-order term unification as used in Logic

Programming (e.g., Prolog), but extended to a much more expressive, yet as efficient,

order-sorted graph-constraint logic. Like Prolog term unification, its essential opera-

tional semantics is a syntax-driven constraint normalization process [3].

Quite importantly, and deliberately, it uses a simple, intuitive, and familiar universal

representational syntactic structure. Here, “universal” is meant in the sense of LISP,

where everything is an S-expression, or Prolog, where everything is a first-order term.

HO•O•T ’s universal syntactic structure is a labeled graph which can be used for repre-

senting knowledge (i.e., TBox axioms), as well as data (i.e., ABox objects) and queries

(involving a TBox, with or without an ABox). In HO•O•T ’s case, we represent every-

thing as a directed labeled graph. For example, let us assume that we wish to describe

a 30-year-old person with an id consisting of a name, itself made of two parts: a first

name and a last name, both represented as strings. Let us also say that we wish to in-

dicate that such a person has a spouse that is a person sharing his or her id’s last name,

and such that this latter person’s spouse is the first person in question. We propose to

represent this information as the graph in Figure 1.

This graph consists of a set of nodes and arcs between some nodes. This graph, how-

ever, is a labeled graph. There are two kinds of label symbols: one kind is for the

nodes (e.g., person, name, etc.), and the other is for the arcs. We call the symbols

labeling nodes “sorts,” and the symbols labeling arcs “features” (e.g., spouse, age,

etc.). Intuitively, sort symbols denote sets, and feature symbols denote functions be-

1
http://www.w3.org/TR/rdf-sparql-query/
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Figure 1: Example of OSF graph

tween these sets. We will identify value-denoting symbols such as 30 as sorts as well

since they can be thought of as singleton sets (e.g., in this case the set containing the

single integer 30). We will also assume that sort symbols are partially ordered with a

“subsort” relation “is-a” denoting set inclusion on the sets denoted by the sorts. This

justifies calling such a graph an “order-sorted feature” graph; or,OSF graph for short.

The reader may wonder what the other labels, such as !P and !S , that appear in the

graph of Figure 1 stand for. These are simply used as pointers to designate specific

nodes—so we call them reference tags. The symbols used for such tags are only rele-

vant in a specific context to indicate, as is the case in this example, that the nodes they

refer to are shared.

The above informal description of an OSF graph is certainly not difficult to under-

stand to anyone with basic knowledge of the kind of data structure used in object-

oriented programming to represent a structured object. This is indeed a good way to

think about it. It is this intuitive understanding that we wish the reader to keep in mind.

Our intention, however, is to go beyond merely representing and using structured types

and objects; we also want to be able to reason about them, while never losing this sim-

ple intuition. Thus, we propose a simple syntax to represent these graphs that will

enable us to do so. For example, we represent the graph shown in Figure 1 using the

syntax shown in Figure 2.

The reader with some knowledge of Logic Programming will have noted that this syn-

tax generalizes that of Prolog terms. Indeed, a Prolog term can be seen as a restricted

kind of OSF term, where sort symbols are data constructors (or, to use a more formal

logical jargon, uninterpreted Skolem functions); feature symbols are (implicit) sub-

term positions; and, reference tags are so-called “logical variables.” It is to stress this

fact that we call an expression such as that in Figure 2 an “OSF term.” Note that,

unlike a Prolog term where subterms are written following an implicit position order,
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!P : person(id → name(first→ string,
last→ !S : string),

age→ 30,
spouse→ person(id → name(last→ !S),

spouse→ !P)).

Figure 2: OSF term syntax for the OSF graph of Figure 1

an OSF terms may be written up to permutation of its subterms since explicit feature

labels allow specifying subterms in any order while still representing the same OSF
graph. For example, the OSF term in Figure 3 could as well be used to represent the

same OSF graph.

!P : person(age→ 30,
spouse→ person(spouse→ !P,

id → name(last→ !S : string)),
id → name(last→ !S,

first→ string)).

Figure 3: Equivalent OSF term syntax for the OSF graph of Figure 1

AnOSF-graph can be characterized as the set of all the arcs comprising it. Thus, each

arc in such a graph can be construed as a triple of the form 〈Domain,Feature,Range〉
denoting the signature of a function (called its “Feature”) from a set-denoting sort

(called “Domain”) to a set-denoting sort (called its “Range”). Sorts are partially-

ordered—this sort ordering denoting set inclusion. Node sharing is indicated with

node reference tags.

The next section specifies a basic proof-of-concept prototype for HO•O•T using the

OSF formalism to represent, reason with, and query, both intensional and extensional

information.

4 The Knowledge-Based Query Language HO•O•T

We now proceed to give a detailed description of HO•O•T as a basic knowledge rep-

resentation and query language based on the OSF formalism. A HO•O•T knowledge

system is a set of modules. A module is a syntactic unit that may be one of three kinds:

1. a terminological module (TBox unit) used to define schematic axioms for OSF
structures referring to this module; it usually declares a partially ordered sort

taxonomy and a OSF signature of properties verified by some sorts in this tax-

onomy, which are recursively inherited by all subsorts;

2. an assertional module (ABox unit) comprising only ground labeled-graph ob-
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jects denoting individuals—i.e., OSF object structures populating a graph data-

base conforming to specific terminological modules as schema;

3. a query module (QBox unit) wherein one may specify queries in the form of

partially instantiated OSF structures referring to concepts and features used

in terminological modules, seeking to resolve them against any terminological

modules they referred to, and/or the contents of specified assertional modules

that verify the knowledge declared in the terminological modules.

All three rely on, and use, the syntax of OSF-terms, albeit each with its own partic-

ular syntactic restrictions and its own operational semantics. Informally, these can be

described as follows:

1. a HO•O•T TBox consists of a set ofOSF sorts and features declarations defining

the structure of an ontology (namely, its “is-a” sort taxonomy and domain/range

constraints on features inherited down this taxonomy); and, an operational se-

mantics that amounts to maintaining the constituents of the TBox in consistent

normal form;

2. a HO•O•T ABox consists of a set of OSF ground objects, all of which are in-

stances abiding by the type axioms of a specific TBox; and, an operational se-

mantics that amounts to maintaining the constituents of the ABox in consistent

normal form with respect to its TBox (i.e., keeping it “clean” of ill-typed objects

and objects referring to such ill-typed objects);

3. a HO•O•T QBox consists of a set of OSF forms that must be kept in consistent

normal form w.r.t. a TBox, query the TBox, and also the ABox using constraints

identifying TBox knowledge and/or the set of objects in an ABox satisfying

them; and, an operational semantics consisting of the efficient retrieval of this

set (possibly through RDF query engines).

Thus, it is important to realize that the OSF term syntax is used in all three parts to

represent labeled feature graphs, although with sightly different interpretations due to

what they represent and how they are used.

4.1 Syntax

As will be made clear in Section 4.2, an OSF term such as the one displayed in

Figure 2 is in fact a specific kind of OSF term called “ψ-term.” But first, let us

specify the formal syntax of general OSF-terms. This is given by the grammar in

Figure 4 and the lexical grammar in Figure 5.

In Figure 4, the symbol ‘@’ stands for “anything” (i.e., the set of all denotable val-

ues). It denotes the supreme mother-sort of all sorts—i.e., the abstract sort ⊤ (pro-

nounced “top”). Note also that this grammar of the HO•O•T syntax allows for “setOf”

sorts. These sorts allow expressing roles in the OSF formalism, since roles are bi-

nary relations, which therefore can be seen as set-valued functional features along the

lines described in [4]. Finally, in this grammar, the symbols Tag, BuiltInValue,

BuiltInSort, Identifier, and Feature are terminal symbols whose lexical

structure is detailed in Figure 5. We omit giving rules detailing the lexical structure

of the terminal symbols IntegerValue, FloatValue, CharacterValue, and
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OSFTERM ::= UNTAGGEDOSFTERM

| Tag
[

‘:’ UNTAGGEDOSFTERM
]

UNTAGGEDOSFTERM ::= BuiltInValue

| BuiltInSort

| SETVALUE

| SETOFSORT

| OBJECTSORT
[

‘(’ SUBTERMLIST ‘)’
]

SETVALUE ::= ‘{’
[

SETELEMENTLIST
]

‘}’

SETELEMENTLIST ::= SETELEMENT
[

‘,’ SETELEMENTLIST
]

SETELEMENT ::= BuiltInValue | OTag | SETVALUE

SETOFSORT ::= ‘setOf’ ‘(’ SETELEMENTSORT ‘)’

SETELEMENTSORT ::= SORT | SETOFSORT

SORT ::= BuiltInSort | OBJECTSORT

OBJECTSORT ::= ‘@’ | Identifier

SUBTERMLIST ::= SUBTERM
[

‘,’ SUBTERMLIST
]

SUBTERM ::=
[

Feature ‘→’
]

OSFTERM

Figure 4: BNF grammar for OSF-term syntax

StringValue, since they are of the standard of modern programming languages

(say, Java)—in particular, a string is a double-quoted sequence of characters, and a

character is a single-quoted literal character or its code.2

Note also that in Figure 5, there are three kinds of tags. A tag is essentially a syntactic

marker for shared terms or query results—it indicates (or “points to”) an OSF-term

within the scope of a HO•O•T language construct in a TBox, ABox, or QBox. In other

words, any consistent renaming of tags within a defined scope does not change the

value of the denotations of the structure in which they appear. Of course, such a scope

must be well defined, whether local or global, depending on the nature of the structure,

exactly as it is the case in programming languages. More precisely:

• an ETag (for “Equation Tag”)—starting with a ‘!’—is just a tag indicating an

equation between parts within the scope of the OSF-term in which is occurs;

• an OTag (for “Object Tag”)—starting with a ‘#’—is a particular kind of ETag

which may only point to a specific instance, necessarily a “ground” object, in an

ABox, or to such a ground object in the global scope of a TBox;3

• a QTag (for “Query Tag”)—starting with a ‘?’—is also a particular kind of

2
http://character-code.com/

3An OTag is what is usually called an Object Identifier or “OID.”
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Tag ::= ETag | OTag | QTag

ETag ::= ‘!’ TagId

OTag ::= ‘#’ TagId

QTag ::= ‘?’ TagId

TagId ::=
(

Letter | ‘’ | ‘-’ | Digit
)+

BuiltInValue ::= BooleanValue

| IntegerValue | FloatValue

| CharacterValue | StringValue

BooleanValue ::= ‘true’ | ‘false’

BuilInSort ::= ‘boolean’
| ‘integer’ | ‘float’
| ‘character’ | ‘string’

Feature ::= Identifier | NumericFeature

Identifier ::= Letter
(

Letter | ‘’ | ‘-’ | Digit
)*

NumericFeature ::= NonZeroDigit Digit*

Letter ::= ‘a’ | ‘A’ | . . . | ‘z’ | ‘Z’

Digit ::= ‘0’ | NonZeroDigit

NonZeroDigit ::= ‘1’ | . . . | ‘9’

Figure 5: Lexical BNF grammar for terminal symbols used in the grammar of Figure 4

ETag which may only occur in the scope of a QBox to indicate which parts

of the structure are to be returned as answers to the query. Any other structure

sharing within the scope of a QBox is indicated using a general ETag or an

OTag, as the case may apply.

Like a logical variable, an ETag and a QTag is essentially a “scoped pointer.” As such,

it points to a sort node, a value node, or to another tag—and thus must be dereferenced.

In the latter case, it is said to be bound. An “unbound” tag is conveniently represented

as a self-referring tag, as commonly done in Prolog implementations [2] (see Page 11

for details). Thus, it can be argued that a tag is always bound since it always refers to

a node or another tag—itself, by default.
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4.2 Order-sorted featured terms

Since OSF terms make up the basic data structure to be used by HO•O•T , it is only fair

that the reader get a clear view of what these are, and where they come from. In fact,

the examples given in the previous section are, formally speaking, OSF terms that

are in normal form. Such a normal form ensures that it is devoid of inconsistency. An

OSF term in normal form is called aψ-term. The expression “ψ-term” was introduced

originally by the author in his PhD thesis [1] as a shorthand for “Property Structure

Inheritance Term,” as a formalization of some parts of Ron Brachman’s “Structured

Inheritance Networks” (or “SI-Nets”) defined informally in his PhD thesis [11].

Normal form for OSF terms is defined as follows.

DEFINITION 1 (OSF -TERM NORMAL FORM) An OSF-term is said to be in nor-

mal form if, and only if:

• it is just the inconsistent sort ⊥;4

• or,

– the sort ⊥ appears nowhere in it; and,

– all subterms are indicated by distinct features (i.e., there may not be dupli-

cate feature attached to a given sort); and,

– each tag occurs at most once as the root of a term; all other occurrences, if

any, must be the tag alone with no term.

For example, while the OSF-term in Figure 6 is an OSF-term is well formed syn-

tactically according to the syntax specified in Figures 4 and 5, it is not in normal form

according to Definition 1. On the other hand, the OSF-term in Figure 7 is in normal

form; and thus is a ψ-term. It corresponds to the normal form of the OSF-term of

Figure 6.

!P : person(id → @(first→ "John"),
age → 42,

id → name(last → !S,

first → string),
age → 30,

spouse → married-person(address→ !A : location,
age → integer),

spouse → @(id → name(first→ "Jane",

last→ !S : "Doe"),
id → name(first→ string),
spouse→ !P : married-person(address → !A,

age → integer))).

Figure 6: Example of OSF-term that is not in normal form

Normalizing anOSF term can be presented formally as a set of constraint simplifica-

tion rules acting on a conjunction of simple atomic constraint granules of the form:

4This symbol is pronounced “bottom” and denotes the empty set.
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!P : married-person(id → name(first→ "John",

last → !S : "Doe"),
address→ !A : location,
age → 42,

spouse→ married-person(id → name(first→ "Jane",

last→ !S),
address → !A,

spouse → !P,

age → integer)).

Figure 7: Example of OSF-term in normal form—a ψ-term

• X : s,

• X.f
.
= X ′, and

• X
.
= X ′.

It is not difficult to see how this formal notation can be obtained from the syntax of an

OSF term by “dissolving” it into the set of sorted node and labeled arcs comprising it.

The constraint X : s stands for a sorted node (the sort being s), tagged by a tag X; the

constraint X.f
.
= X ′ represents an arc labeled by a feature f between nodes tagged

by X and X ′; and X
.
= X ′ stands for a constraint equation indicating that the graphs

with root nodes X and X ′ are actually the same graphs—which is the case when there

are duplicate feature arguments for a same tag.

(1) SORT INTERSECTION:

φ & X : s & X : s′

X : s∧s′

(2) FEATURE FUNCTIONALITY:

φ & X.f
.
= X ′ & X.f

.
= X ′′

φ & X.f
.
= X ′ & X ′ .= X ′′

(3) INCONSISTENT SORT:

φ & X : ⊥

X : ⊥

(4) VARIABLE ELIMINATION:

φ & X
.
= X ′

φ[X ′/X ]
[if X ′ occurs in φ]

Figure 8: Basic OSF-constraint normalization rules

Formal normalization rules acting of these granules were given in [8], and recalled

in Figure 8. However, while this manner of presenting OSF-term normalization is

perfectly satisfying to formalists, it may leave many programmers rather puzzled as

to how to implement this process in a conventional object-oriented programming lan-

guage such as Java. Therefore, we next specify such an algorithm in the form of

pseudocode. Besides being closer to an actual implementation, this algorithm has also

the merit of working on the structure of anOSF-term as it is written and parsed—i.e.,

without the need to “dissolve” it first into constraint granules as described above.

Basically, normalizing OSF-term notation consists of transforming the raw syntax
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of an OSF term that was parsed using the BNF-grammar rules given in Figures 4

and 5 into a data structure representing a ψ-term. This process is specified as the

pseudocode described as Algorithm 1. It consists of two steps: (1) building a (possibly

incomplete) ψ-term with one structure per tag and per feature argument, collecting

possible duplicate structures as equations to be solved; then, (2) resolving any such

collected equations.

1 function NORMALIZEOSFTERM (RawOsfTerm raw) returns Tag

2 Tag tag ← BUILDPSITERM (raw);

3 if tag 6= inconsistentTag and SOLVEEQUATIONS () then

4 return tag;

5 end

6 return inconsistentTag;

7 end

Algorithm 1: Normalizing OSF-term syntax into a ψ-term structure

Before we explain this pseudocode in detail, we need to describe the data structures

this pseudocode uses. These are defined to represent the raw syntactic structure of an

OSF term and the data structure of a ψ-term. We do so next, as well as describing the

operations used on these structures as pseudocode.

An OSF term to be normalized comes from parsing notation such as that in Fig-

ure 6 into a raw syntax-tree form that uses only string tokens (as opposed to meaning-

carrying data structures). These tokens are essentially strings standing for tags, sorts,

and features. We represent such a syntax-tree as an object of class RawOsfTerm

consisting of three fields:

• tagName—a string, set to null if there is no tag;

• sortName—a string, set to "@" by default (denoting ⊤, the most general sort

subsuming all other sorts);

• subterms—a list of pairs of objects of the form 〈feature,term〉, repre-

senting a feature and the RawOsfTerm syntax-tree object that is the subterm it

designates; this list is empty by default.

Again, this syntax is not guaranteed to be that of an OSF term in normal form; so

there may be duplicate feature arguments for a same tag, and the same tag may occur

as the root of several RawOsfTerm objects.

As for a normalized OSF term to be built from a raw OSF syntax tree, it is repre-

sented as an object of class PsiTerm, which consists of two fields:

• sort—of type Sort;

• subterms—a hash table mapping features (strings) to objects of type Tag.

The class Sort is the type representing partially-ordered symbols making up a con-

cept taxonomy. We will also assume that known sorts are stored in a global (static)

hash table, called taxonomy, associating strings (sort names) to Sort objects. A

global (static) method getSort(String) will return a sort given its name. For
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now, we do not worry about what to do if this sort is not defined. We also assume a

binary operation on sorts, denoted ∧, that returns their maximum lower bound. We

will make such details clearer in Section 4.3.2, when we give details on taxonomy

classification by encoding sorts using bit-vectors as described in [5].

The data structure Tag is a class consisting of three fields:

• name— a string: the tag’s name;

• value—of type Tag;

• term—of type PsiTerm, which is by default set to a PsiTerm object with

sort field set to the top sort, and empty subterms.

The field value is set by default to point to the tag itself. But it may also be bound to

another object of type Tag. A tag bound to itself (the default), is said to be unbound.

It is said to be bound otherwise. The argumentless method called deref() for the

class Tag returns the first unbound Tag object obtained by following the chain of such

objects accessible through their value field.

We will also assume a global (static) hash table, called knownTags, associating

strings (tag names) to Tag objects. A global (static) method getTag(String)

will behave as follows on its argument (called tagName):

• if tagName is null, getTag(tagName) will create a new tag name and

a new tag object with this name, install the pair in the table knownTags, and

return the newly created Tag object; else,

• if there is no Tag object in the table knownTags associated to the string

tagName, a new Tag object is created with this name, associated to it in the

table knownTags, before being returned; else,

• the Tag object already associated to tagName in the table knownTags is

returned.

In this manner, a Tag object is uniquely identified by its name. The knownTags table

is initialized always to contain a special tag, called inconsistentTag, defined

to have as name the string "{}", and as value, a special PsiTerm object called

bottom, with sort set to ⊥ and no subterms. This will be the object returned to

indicate an inconsistent OSF term.

Building a ψ-term for an OSF-term syntax tree using the data structures described

above is specifed as Algorithm 2. It defines a function called BUILDPSITERM that

takes an object of type RawOsfTerm and returns an object of type Tag. This function

recursively walks down the syntax-tree structure, building one ψ-term per subtree and

installing it as subterm of the ψ-term being built. If there are duplicate ψ-terms for a

feature argument, they are collected into a global (static) Stack called equations.

Solving the equations accumulated in the equations stack by BUILDPSITERM is

done by the Boolean function SOLVEEQUATIONS, specified as Algorithm 3. This

function returns true if, and only if, the OSF term being normalized is consistent.

Algorithm 3 is in fact the ψ-term unification algorithm introduced in [1] and used

in [7] for order-sorted Logic Programming. It is a simple but powerwul inference

algorithm that performs deduction modulo an “is-a” concept taxonomy.
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1 function BUILDPSITERM (RawOsfTerm raw) returns Tag

2 Tag tag ← getTag(raw.tagName);

3 Sort sort ← tag.term.sort ∧ getSort(raw.sortName);

4 if sort = ⊥ then

5 return inconsistentTag;

6 end

7 tag.term.sort ← sort;

8 foreach 〈feature,rawsub〉 ∈ raw.subterms do

9 Tag subtag ← BUILDPSITERM (rawsub);

10 if subtag = inconsistentTag then

11 return inconsistentTag;

12 end

13 if 〈feature, 〉 6∈ tag.term.subterms then

14 tag.term.subterms.add(〈feature,subtag〉);
15 else

16 equations.push(tag.term.subterms.get(feature));

17 equations.push(subtag);

18 end

19 end

20 return tag;

21 end

Algorithm 2: Building ψ-term structure from OSF-term syntax

4.3 Knowledge—HO•O•T TBox

This section describes the HO•O•T language terminological part, which contains the

axioms that constrain the structural and semantic nature of objects they range over.

4.3.1 Sort and feature declarations

The most basic semantic information is that of declaring a conceptual taxonomy. This

set of declarations is organized into a partial order among concepts, whereby all prop-

erties of a concept are implicitly inherited by all its subconcepts.5

As for ensuring that structural information is semantically consistent with constraints

declared in a TBox, it is possible to declare the form expected by a ψ-term when

its root-sort symbol is such-and-such symbol. This kind of structural constraint must

also be inherited down the concept taxonomy. Ideally, it would be desirable that a

TBox express OSF theories specifying constraints of a more complex nature than

simple feature domain/range. However, enforcing arbitrary constraints can turn out

to be quite tricky, or even undecidable [9]. This is why we wish to start only with

domain/range constraints: the problem is not only decidable, but clever processing

5We refer to “concepts” equally as “sorts” or “types” (same for sub/superconcept as sub/supersort) for

the symbols defined in a taxonomy, each concept (or sort, or type) denoting a set and subconcept (subsort,

subtype) relation denoting set inclusion.
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1 function SOLVEEQUATIONS () returns Boolean

2 Tag lhs;

3 Tag rhs;

4 while not equations.isEmpty() do

5 lhs ← equations.pop().deref();

6 rhs ← equations.pop().deref();

7 if lhs 6= rhs then

8 Sort sort ← lhs.term.sort ∧ rhs.term.sort;

9 if sort = ⊥ then

10 return false;

11 end

12 rhs.sort ← sort;

13 lhs.value ← rhs;

14 foreach 〈feature,lhsarg〉 ∈ lhs.term.subterms do

15 if 〈feature,rhsarg〉 ∈ rhs.term.subterms then

16 equations.push(rhsarg);

17 equations.push(lhsarg);

18 else

19 rhs.term.subterms.add(〈feature,lhsarg.deref()〉);
20 end

21 end

22 end

23 end

24 return true;

25 end

Algorithm 3: Solving ψ-term equations

December 2014 Page 13 / 36
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also enables surprisingly expressive TBox reasoning and remarkably efficient ABox

querying as demonstrated in [10]. We next specify HO•O•T ’s TBox declaration syntax,

then we detail how to preprocess such knowledge for efficient TBox inference and

ABox querying.

A basic grammar’s set of BNF rules defining the HO•O•T syntax for TBox sort and

feature declarations is given in Figure 9.

OSFDECLARATIONS ::= ISADECLARATION+

| FEATUREDECLARATION+

ISADECLARATION ::= SORTLIST ‘is-a’ SORTLIST ‘.’

SORTLIST ::= SORT
(

‘,’ SORT
)*

FEATUREDECLARATION ::= Feature ‘:’ DOMAINRANGELIST ‘.’
| SORT ‘(’FEATURERANGELIST ‘)’ ‘.’

DOMAINRANGELIST ::= DOMAINRANGE
(

‘,’ DOMAINRANGE
)*

DOMAINRANGE ::= SORT ‘→’ SORT

FEATURERANGELIST ::= FEATURERANGE
(

‘,’ FEATURERANGE
)*

FEATURERANGE ::= SORT

| FEATURE ‘→’ SORT

Figure 9: BNF grammar for OSF declarations

The most basic sort declaration is of the form: “s is-a t.” which declares the sort s

as an immediate subsort of sort t. The shorthand: “s1, . . . , sn is-a t1, . . . , tm.” is

the same as the n×m declarations: “si is-a tj.” for i = 1, . . . , n and j = 1, . . . ,m.

The most basic feature declaration is of the form: “f : d → r.” which declares that

the feature f’s domain is the sort d, and its range is the sort r. The form: “f : d1 →
r1, . . . ,dn → rn.” is a shorthand for the n feature declarations: “f : d1 → r1.”,

. . . , “f : dn → rn.”. We can also use the notation: “d(fi → ri, . . . ,fn → rn).”
as a shorthand for the n feature declarations: “f1 : d → r1.”, . . . , “fn : d → rn.”.

Note that, as is the case in OSF-term syntax, implicit-position features can be used.

Thus, the declaration: “d(ri, . . . ,rn).” is a shorthand for the n positional-feature

declarations: “1 : d → r1.”, . . . , “n : d → rn.”. Finally, mixing explicit-feature and

implicit-position argument range specifications are allowed as is the case in the syntax

of subterms of OSF terms. Implicit-positions are simply identified in the order they

come to the number-feature corresponding to their rank in the argument list. Number-

features can also be specified explicitly as well.
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4.3.2 TBox reasoning

We now explain static preprocessing of the TBox declarations to optimize inference.

Operationally, a HO•O•T TBox is statically processed by:

1. encoding the sort taxonomy using bit-vectors to make sort intersection, union,

and complementation compiled into efficient logical operations on bit-vectors

(namely, and, or, and not) [5, 6];

2. propagating and checking the consistency of a feature’s domain/range declara-

tions through the taxonomy by inheritance.

Bit-vector encoding of sorts Knowledge in a TBox consists of the “is-a” ordering

among sorts making up a taxonomy. This may be viewed as constituting a logical

theory (i.e., a set of axioms) limited to monadic implications since “a is-a b” expresses

the same logical semantics as the monadic-implication axiom ∀x : a(x) ⇒ b(x),
where a sort is formalized as a monadic predicate. The point of using partially-ordered

sorts as done in OSF-constraints rather than general-purpose logical reasoning with

monadic-implication axioms is that it is operationally much more efficient. We recall

next how this may be done in virtually constant time.

In [5], a method is described to encode sorts as bit-vectors. It is recalled here as the

pseudocode procedure ENCODETAXONOMY expressed as Algorithm 4. The class

1 procedure ENCODETAXONOMY ()

2 Set layer ← ⊥.parents;
3 while layer 6= ∅ do

4 foreach x ∈ layer do

5 x.code ← 2x.index ∨
∨

y∈x.children
y.code;

6 x.coded ← true;

7 end

8 layer ←
⋃

x∈layer
x.parents;

9 foreach x ∈ layer do

10 if ∃ y ∈ x.children such that not y.coded then

11 layer.remove(x);

12 end

13 end

14 end

15 end

Algorithm 4: Encoding the sorts of a taxonomy as bit-vectors

Sort is given a two new fields of type Set, called “parents” and “children”

containing respectively, for any sort, its sets of immediate children and parents in the

taxonomy. Thus, for every sort object, these sets are filled with sorts by processing the

“is-a” declarations. In addition, the class Sort has a field called “code” that is its

bit vector representation (initialized to be all zeroes), a field called “index” that is an

integer, its unique characteristic rank in the array taxonomy containing all the sorts,
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and a Boolean field called “coded” indicating whether this sort has been encoded

or not (so it is initially set to false). The procedure is a very efficient computation of

the reflexive-transitive closure of the “is-a” ordering as explained in [6].6

Processing and enforcing feature declarations In addition to taxonomic ordering,

knowledge in a TBox may be enhanced with additional axioms, as long as enforcing

these axioms may be performed computationally. We next add another kind of ax-

ioms to a TBox to express domain and range constraints for features, which denote

functions. This enables making consistency inference regarding which feature appears

between which sorted node in an OSF term, and use such inference to normalize

further a ψ-term using this knowledge.

For example, let us assume that the sort married-person was declared as a sub-

sort or the sort person. Let us also assume the feature declaration spouse :
married-person → married-person. Then, with these declarations, the ψ-

term in Figure 2 is further normalized into the ψ-term in Figure 10.

!P : married-person(id → name(first→ string,
last→ !S : string),

age→ 30,
spouse→ married-person(id → name(last→ !S),

spouse→ !P)).

Figure 10: Feature-normalized ψ-term of Figure 2

Formally, declaring the domains and ranges of features of a set F as sorts from a

partially-ordered set of sorts S (formalizing a taxonomy) can be expressed as a set of

constraint axioms of the form {fi : di → ri}, where fi ∈ F , di ∈ S , and ri ∈ S .

We call such a set of feature constraints an OSF theory. A domain/range feature

declaration f : d→ r is formalized as adding the formal constraint f : d→ r into an

OSF theory called Θ, a conjunctive set of such constraints which is part of a TBox.

The empty theory is the all-permissive true constraint. The inconsistent theory noted

Θ⊥ is the all-forbidding false constraint.

When declaring an OSF theory of n constraints Θ
def
= {fi : di → ri}

n
i=0

, it is

necessary that it be verified to be self-consistent. This means that it must contain

no feature that can be inferred to have an inconsistent range for any of the declared

partial features.7 This consistency check is what the classification preprocessing of the

taxonomy amounts to. It is a constraint propagation and normalization process. Static

taxonomy classification preprocessing also improves the operational performance of

OSF normalization since it eliminates the need for dynamic taxonomic lookups for

relevant feature domain/range constraints.

6op. cit., pages 125–126.
7A feature may not be declared with inconsistent domain but consistent range. This would just be

eliminated as a vacuous axiom (i.e., true) since it is always verified. Indeed, all declared features apply

vacuously to the empty set by inheritance.
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The idea is simple: given a taxonomy defining a partial order on sorts that have been

encoded as bit-vectors, a feature’s f domain/range declaration of the form f : d → r
is propagated to a subsort s of d as follows:

• if there is no declaration for f for the sort s, then we simply install the declara-

tion f : s→ r for the sort s, and iterate the process for subsorts of s;

• if there is already a declaration for f : s → r′ for the sort s, then we normalize

it to be f : s → r ∧ r′, where r ∧ r′ is the (binary code of) the conjunction of

(the binary codes of) the sorts r and r′. If this code is all 0’s, this means that the

feature declaration is inconsistent, and so is the taxonomy.

Clearly, this process always terminates: it is in fact linear in the number of declared

features and the number of subsorts of their domains. If no inconsistency is found, the

resulting taxonomy is then normalized into a consistent set of feature declarations.

For example, assume that the sort ordering on sorts is such that:

researchScientist is-a researcher

researchScientist is-a scientist

scientificResearch is-a research

scientificResearch is-a science

and that we have the feature declarations:

interestedIn : researcher→ research

interestedIn : scientist→ science

Feature propagation brings these declarations for feature interestedIn from the

sorts researcher and scientist down to the sort researchScientist, for

which they are normalized into the single declaration:

interestedIn : researchScientist→ scientificResearch.

This normalization results in a consistent taxonomy by coercing the range sort of the

feature declaration interestedIn on the domain sort researchScientist to

the most general sort that is compatible with the declarations of this feature inherited

from its supersorts. If there had been no compatible range sorts for this feature, this

normalization would have reported an inconsistent feature declaration. The normal-

ization rules for taxonomy consistency check are described more formally next.

Ensuring taxonomy consistency is a process called classification. It computes all im-

plicit sort subsumption relationships and inheritance of properties. An efficient classi-

fication algorithm was proposed in our previous work [5]. This specification extends

the classification performed in [5] with verifying feature consistency with respect to

declared domain/range constraints for features. Using the rules of Figure 11, it prop-

agates feature declarations down the taxonomy, normalizing these declarations to be

consistent if need be, or reporting inconsistencies. A consistent normalized taxonomy

December 2014 Page 17 / 36
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(O1) FEATURE INHERITANCE:

Θ ∪ {f : d→ r}

Θ ∪ {f : d→ r, f : d′ → r}
[if d′ is-a d and f : d′ → r 6∈ Θ]

(O2) FEATURE-RANGE NORMALIZATION:

Θ ∪ {f : d→ r, f : d→ r′}

Θ ∪ {f : d→ r∧r′}

(O3) INCONSISTENT FEATURE RANGE:

Θ ∪ {f : d→ ⊥}

Θ⊥

Figure 11: TBox propagation and normalization rules for OSF feature declarations

(or TBox) can then be used for normalizing queries in HO•O•T form, thus optimizing

potential ABox instance retrieval. How this is done is described next.

Thus, a taxonomy’s feature classification will propagate a declared feature constraint

f : d → r to any subsort of its domain sort d down the taxonomy. Operationally, this

is achieved by transforming an OSF theory Θ, applying the rules shown in Figure 11

until they do not change theOSF theory, or until they produce the inconsistent theory

Θ⊥. Clearly, OSF theory classification can, and should, be carried out as a static

preprocessing step to save runtime processing.

Once a fully classified and normalized consistent OSF theory is at hand, one can

still use the basic syntax-directed OSF-term normalization rules of Figure 8. Taking

into account feature domain-range constraints from an OSF theory is done with the

addition of a single rule to this rule set—the one we give below in Figure 12.

Before we do so, let us first come back to pseudocode to define how we can organize

an actual implementation of OSF-term normalization modulo a domain/range feature

theory. So we now explain the data-structure architecture and pseudocode specification

for processing feature declarations into a normalized consistent taxonomy. Again, all

the algorithms we specify simply implement systematically the declarative rules of

Figure 11 in a Java-like programming style.

Each Sort is given a new field, called features, a hash table associating any fea-

ture name declaring the sort as its domain to its range, a Sort object. We will also

assume a global structure, called definedFeatures, a hash table associating to

each declared feature the set of maximal sorts for which it is defined.

Processing a feature declaration f : d → r then consists in the pseudocode shown as

Algorithm 5. It uses a global Boolean to indicate whether the feature declaration was

not found to be inconsistent. It consists in two steps: (1) propagating and checking for

consistency the declaration for the specified domain and all its subsorts; and, (2) if it
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is consistent, update the global definedFeatures table.

1 procedure DECLAREFEATURE (String feature, Sort domain, Sort

range)

2 consistentDeclaration ← true;

3 PROPAGATEFEATURE (feature, domain, range);

4 if consistentDeclaration then

5 UPDATEDEFINEDFEATURES (feature,domain);

6 end

7 end

Algorithm 5: Processing a sort declaration

The procedure PROPAGATEFEATURE proceeds as follows: if the specified domain

sort is ⊥, it exits—since there is nothing to be declared for the bottom sort. Other-

wise, if the feature is not defined for the specified domain sort, it puts the specified

range sort in the domain’s feature table, then propagates the declaration recursively

to the domain’s children. Otherwise, it intersects the range with the range sort that

was previously defined for this domain. If this yields an inconsistent range, the proce-

dure aborts all further work and reports an inconsistent feature declaration. Otherwise,

if this intersection is actually different from the previously defined range, it sets the

range to be this intersection and propagates the declaration with this coerced range to

the domain’s children.

Updating the defined feature table is specified as Algorithm 7, which keeps only max-

imal domains for every declared feature. Note that there is no need to record also

the ranges in the table definedFeatures because retrieving the range that corre-

sponds to a given feature and domain is accessible as the domain’s features table’s

value for the given feature.

Coming back to formal constraint normalization rules, we still need to explain how to

take feature declarations into account.

In a normalized consistent OSF theory Θ, for any declared feature, f we will denote

as DomΘ(f) the set of maximal sorts d in S such that f : d→ r ∈ Θ for some sort r,

and Rand
Θ
(f) ∈ S for d ∈ Dom(f) the (necessarily unique) range sort corresponding

to d.

Then, in the context of such a normalized consistent OSF theory, the rule shown in

Figure 12 can be used in conjunction with the basic OSF-term normalization rules of

Figure 8 to enforce a declared feature’s domain/range constraints whenever this feature

appears in an OSF-term expression. Note that, contrary to the rules in Figure 8, this

new rule is non-deterministic; i.e., it involves making a choice among several potential

domains d ∈ DomΘ(f) for given feature f . This is is due to the fact that there may be

several maximal domains for which a given feature is defined.

As we have done before, we next explicate how to implement algorithmically OSF-

term normalization in the context of declared features in the form of pseudocode.

Given a normalized sort taxonomy with feature declarations (i.e., in which these have
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1 procedure PROPAGATEFEATURE (String feature, Sort domain,

Sort range)

2 if domain = ⊥;
3 then

4 exit;

5 end

6 Sort sort ← domain.features.get(feature);

7 if sort = null then

8 domain.features.put(feature,range);

9 foreach Sort child ∈ domain.children do

10 PROPAGATEFEATURE (feature,child,range);

11 end

12 else

13 sort ← sort ∧ range;

14 if sort = ⊥ then

15 consistentDeclaration ← false;

16 abort ("inconsistent feature declaration");

17 else

18 if sort 6= range then

19 domain.features.put(feature,sort);

20 foreach Sort child ∈ domain.children do

21 PROPAGATEFEATURE (feature,child,sort);

22 end

23 end

24 end

25 end

26 end

Algorithm 6: Propagating a feature declaration in the taxonomy
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1 procedure UPDATEDEFINEDFEATURES (String feature, Sort

domain)

2 Set domains ← definedFeatures.get(feature);

3 if domains = null then

4 definedFeatures.put(feature,new Set().add(domain));

5 else

6 foreach Sort sort ∈ domains do

7 if domain.isSubsortOf(sort) then

8 exit;

9 else

10 if sort.isSubsortOf(domain) then

11 domains.remove(sort);

12 end

13 end

14 end

15 domains.add(domain);

16 end

17 end

Algorithm 7: Updating the defined feature table to its maximal domains

(5) DECLARED FEATURE:

φ & X.f
.
= Y

φ & X.f
.
= Y & X : d & Y : r

[

if d ∈ DomΘ(f) and r = Rand

Θ(f)
]

Figure 12: OSF-term normalization involving declared features

been verified consistent and propagated), an OSF-term that has been normalized into

a ψ-term object of class PsiTerm must be further normalized to abide by the do-

main/range constraints of features that occur in it.

There are two modes in which this may be done:

• a permissive mode, whereby any non-declared feature f is implicitly assumed

as if declared with f : ⊤ → ⊤; and,

• a strict mode, whereby any non-declared feature f is implicitly assumed as if

declared with f : ⊤ → ⊥.

Thus, in permissive mode, only declared features are made to obey the domain/range

constraints specified in their declarations, while all others are considered defined for

all sorts with no range constraints. Whereas, in strict mode, any undeclared feature

will be deemed inconsistent.

We will assume that feature-consistency normalization mode can be set at the dis-

cretion of a user since there are advantages and drawbacks to both modes. Indeed,

permissive mode has the advantage of relieving the user from having to be exhaustive
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in specifying domain/range declarations for all features. However, it will also prevent

catching common errors such as mistyped features. On the other hand, strict mode will

guarantee that no feature is ever used with a domain or range that was not meant for it.

But it will also require that all features be declared—even if only as f : ⊤ → ⊤. The

pseudocode we specify here provides both possibilities. For this, we assume a global

(static) Boolean flag called strictMode, which can be set at the discretion of the

user.

1 procedure NORMALIZEFEATURES (Tag tag, Set dejavu)

2 if tag 6∈ dejavu then

3 dejavu.add(tag);

4 foreach 〈feature,subtag〉 ∈ tag.term.subterms do

5 if 〈feature,domains〉 ∈ definedFeatures then

6 Sort domain ← domains.pick();

7 domain ← domain ∧ tag.term.sort;

8 if domain = ⊥ then

9 abort ("inconsistent feature domain");

10 end

11 tag.term.sort ← domain;

12 Sort range ← domain.features.get(feature);

13 range ← range ∧ subtag.term.sort;

14 if range = ⊥ then

15 abort ("inconsistent feature range");

16 end

17 subtag.term.sort ← range;

18 else

19 if strictMode then

20 abort ("undefined feature in strict mode");

21 end

22 end

23 NORMALIZEFEATURES (subtag,dejavu);

24 end

25 end

26 end

Algorithm 8: Normalizing a ψ-term w.r.t. defined features

Normalizing a ψ-term with respect to a consistent normalized set of feature declaration

that has been propagated through a taxonomy is done by the NORMALIZEFEATURES

procedure whose pseudocode is given as Algorithm 8. This procedure is a straight-

forward algorithmic adaptation of the normalization rule DECLARED FEATURE of

Figure 12. It recursively traces the features attached to a given tagged term enforcing

the domain/range constraints of defined features between the specified tag and that of

all its subterms. For the recursion to be well-founded even in the presence of cycles, it

passes along as argument a Set of Tag objects, called dejavu, recording previously

processed tags.

Note that, just like the rule DECLARED FEATURE, the NORMALIZEFEATURES pro-
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cedure is also a non-deterministic algorithm. This is reflected on Line 6 where a

domain is picked as a choice among several potentially contained in the set of max-

imal domains on which the feature feature is defined. In a real implementation,

this could be handled as a possible backtracking point to come back to in case a do-

main choice leads to inconsistency. Implementing such a backtracking process should

then involve saving information to be undone for making another domain choice for a

declared feature, if there is any more, to be tried upon inconsistency. A Prolog-style

architecture may then be used for this purpose [2]. We will not give such details here.

Suffice it to say that every structure modification between such choice points must then

be recorded as a state of computation to be potentially recovered upon inconsistency

before making another choice (if any is available), or report definitive inconsistency.

Of course, this entails more involved book-keeping, but is not difficult to set up. In ad-

dition, the number of choices being finite, the process is clearly decidable. Collecting

the set of all resulting feature-consistent ψ-terms can therefore be done in this way.

This is not as expensive at it may appear since the number of resulting consistent ψ-

terms for meaningful structures can be expected to be very small, and often just one,

due to the fact that multiple-domain features rarely relate to compatible structures.

The reader is encouraged to trace the effect of Algorithm 8 on the ψ-term of Fig-

ure 2 and verify that it actually yields the ψ-term of Figure 10, provided that the sort

married-person was declared as a subsort or the sort person along with the

feature declaration spouse : married-person→ married-person, in either

permissive or strict mode (assuming, for the latter, other needed feature declarations

such as id : person→ name, first : name→ string, etc.).

4.4 Data—HO•O•T ABox

This section describes the HO•O•T language assertional part—the form and contents of

the data it expects. As elsewhere, a HO•O•T ABox is a set of RDF triples. It may

be a (set of possibly distributed) triplestore(s) (i.e., one or several possibly distributed

databases of such objects) or an in-memory dataset. It is populated with triples rep-

resenting object instances abiding by axioms (sorts and features) defined in one or

several (self- and mutually consistent) TBoxes.

4.4.1 Data syntax

The elements populating an ABox are ground objects. Informally, a ground object

denotes the value of a structured element. Syntactically, a ground object is also repre-

sented as anOSF term as specified in the grammar of Figure 4, but with the additional

syntactic constraints given by the more specific BNF rules of Figure 13. In other words,

an ABox object can only be, or contain, an extensional value-denoting (as opposed to

an intensional set-denoting) OSF term expression. Note that a set of ground objects

is deemed a extensional value in this setting.

Yet another syntactic well-formedness for a ground set object is that it may contain an

OTag as one of its elements only if this OTag occurs somewhere else in the ABox as

the root tag of a ground object.

December 2014 Page 23 / 36
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GROUNDOSFTERM ::= UNTAGGEDGROUNDOSFTERM

| OTag
[

‘:’ UNTAGGEDGROUNDOSFTERM
]

UNTAGGEDGROUNDOSFTERM ::= BuiltInValue

| SETVALUE

| OBJECTSORT ‘(’ SUBGROUNDTERMLIST ‘)’

SUBGROUNDTERMLIST ::= SUBGROUNDTERM
[

‘,’ SUBGROUNDTERMLIST
]

SUBGROUNDTERM ::=
[

Feature ‘→’
]

GROUNDOSFTERM

Figure 13: BNF grammar specific to ground OSF terms—i.e., ABox values

Finally, an OTag may not be nested inside a set value unless it is inside the subterm

under a feature. For example:

#X : { person(age → 25), ..., #X, ...}

is not syntactically well-formed; whereas the following:

#X : { person(age → 25, likes → #X), ...}

is well-formed.

4.4.2 Data semantics

We will assume such a TBox always to be consistent and normalized; namely, all

feature declarations are checked for consistency and propagated through the taxonomy.

Data populating an ABox with objects whose structure uses sorts and features from

a TBox must abide by TBox axioms constraining them. Thus adding an object to

an ABox may be done only if this object is normalized and checked consistent with

respect to the TBox types and features that occur in its structure. For example, let us

assume that the following axioms are declared in the TBox:

married-person is-a person.

person ( id → name

, age → integer

).

married-person ( spouse → married-person

).

name ( first → string

, last → string

).

and the following ground objects:
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#P2753 : person ( id → #N691

, spouse → #P3902

)

#P3902 : person ( id → #N873

, age → 33

, spouse → #P2753

)

#N691 : @ ( first → "John"

)

#N873 : @ ( first → "Jane"

, last → "Doe"

)

In order to be added to the ABox, these objects must be normalized to be:

#P2753 : married-person ( id → #N691

, spouse → #P3902

)

#P3902 : married-person ( id → #N873

, age → 33

, spouse → #P2753

)

#N691 : name ( first → "John"

)

#N873 : name ( first → "Jane"

, last → "Doe"

)

Note that object normalization does not mind that some objects may be incomplete

with respect to declared features. However, it does check that features that are present

are correctly typed, and infers correct type information wherever required.

Operationally, the sorting semantics of the features from the ABox may only be pop-

ulated with objects that are structurally conform to the TBox declarations. This is

done at ABox-population time simply by normalizing a candidate ABox object (i.e., a

ground OSF graph) using the rules in Figure 8 on Page 9 and Figure 11 on Page 18,

which are given in pseudocode respectively as Algorithm 1 on Page 10 and Algo-

rithm 8 on Page 22.

4.5 Queries—HO•O•T QBox

This section describes the HO•O•T language query part—the QBox.
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4.5.1 Query syntax

Just like a TBOX or an ABox, a QBox can be expressed usingOSF terms. If involving

ABox data, some such OSF queries have a corresponding interpretation as a type-

normalized type-indexed SPARQL query [10].

QBox OSF-terms may use all three kinds of tags: (1) QTags (?...), (2) ETags

(!...), and (3) OTags (#...). All are tags—the only difference between all three

kinds to indicate, respectively, (1) requested query results, (2) equality constraints that

must be verified, (3) specific ABox object instances or builtin constants.

Informally, the semantics of a HO•O•T query consisting of a conjunctive collection of

OSF constraints of the form ?X:t in the context of a (normalized consistent) TBox

and (normalized consistent) ABox, is to find the set of all maximal TBox-consistent

ψ-terms (including ABox instances) that also verify the OSF graph constraints ex-

pressed by the query. Operationally, this consists in:

1. normalizing the query to determine whether it may be proven consistent with

the TBox; and,

2. if needed, collecting all the ABox instances that verify the constraint that results

as the normalized query; collecting such instances from an ABox is achieved by

compiling the normalized HO•O•T query’s original OSF form into an equivalent

SPARQL query in RDF form;

3. displaying the RDF graphs with roots corresponding to QTags that verify the

query in their equivalent OSF syntax—which is simpler to manipulate and read

than its underlying XML-based RDF syntax.

The operational semantics for interpreting a HO•O•T query term in the context of a

(collection of) TBox(es) and ABox(es) consists in:

1. using TBox axioms to normalize the query term;

2. if the query is strictly a TBox query that does not involve any ABox access,

returning the ψ-terms bound to all QTags in the query;

3. if the query involves accessing ABox data, collecting ABox objects into sets.

In the latter case, the ψ-term corresponding to the normalized query is compiled into

an equivalent SPARQL query assuming an RDF representation of the data in the

ABox.

4.5.2 ABoxRDF representation and processing

Since a ψ-term is a notation for a labeled graph, anRDF notation for it can be readily

derived. Such a representation must account for differences between conventions of

both notations. The essential difference is that, whereas in a ψ-term all nodes are la-

beled uniformly with sort symbols or values, RDF makes a difference between nodes

that are labeled with URIs, blank nodes, and value nodes, and arcs are labeled with

URIs. Also, rather than labeling typed nodes with their types, it uses an arc labeled

with the specific URI rdf:type pointing to such a node (which is then a unique

representation for a type, and thus shared by all so-typed nodes). Hence, an RDF
representation for a ψ-term is obtained as a straightforward adaptation accounting for
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these differences. For example, the RDF graph corresponding to the OSF graph of

Figure 1 (which is that of a ψ-term since in normal form) is as shown in Figure 14,

where the prefix osfex refers to a (hypothetical) URI where the specific sort and

feature symbols it uses could be defined as identifiers (for osf example).
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Figure 14: RDF graph version of the OSF graph of Figure 1

RDF format Just as we make explicit the relationship between the labeled-graph

representation of a ψ-term and anRDF representation for it on the example shown in

Figure 14, we must also define its corresponding serialization syntax in RDF .8 It is

given, for that same example, in Figure 15. The pseudo-code performing this is given

as Algorithm 9.

Because the relation between a ψ-term and itsRDF representation is formally a struc-

ture homomorphism, a bi-directional translation can be realized as a pair of mappings,

each definable as a structure-directed recursive algorithm. The first one takes the in-

8
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
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1 procedure PSITERMTORDF (Tag tag, Set dejavu, Array xmlArray)

2 tag ← tag.deref();

3 String xml ← "<rdf:Description";

4 if tag ∈ dejavu then

5 xml ← xml + " rdf:resource=\"";

6 xml ← xml + "#" + tag.name + "\"/>";

7 xmlArray.add(xml);

8 else

9 if not tag.isAnomymous() then

10 xml ← xml + " rdf:about=\"";

11 xml ← xml + tag.name + "\"";

12 end

13 xml ← xml + ">";

14 xmlArray.add(xml);

15 xml ← "<rdf:type rdf:resource=\"";

16 xml ← xml + tag.term.sort + "\"/>";

17 xmlArray.add(xml);

18 dejavu.add(tag);

19 foreach 〈feature,subtag〉 ∈ tag.term.subterms do

20 switch type-of(subtag.term.sort) do

21 case integer

22 xmlArray.add("<" + feature

23 + "rdf:datatype=\"&xsd;integer\"" + ">"

24 + subtag.term.sort + </" + feature + ">");

25 end

26
...

27 otherwise

28 xmlArray.add("<" + feature + ">");

29 PSITERMTORDF (subtag,dejavu,xmlArray);

30 xmlArray.add("</" + feature + ">");

31 end

32 endsw

33 end

34 xmlArray.add("</rdf:Description>");

35 end

36 end

Algorithm 9: From ψ-term syntax to RDF as an array of XML strings
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1 <rdf:RDF
2 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:osfex="http://cedar.liris.cnrs.fr/ns/osfex#">

4 <rdf:Description rdf:about="P">

5 <rdf:type rdf:resource="osfex:person"/>

6 <osfex:id>

7 <rdf:Description>

8 <rdf:type rdf:resource="osfex:name"/>

9 <osfex:first>

10 <rdf:Description>

11 <rdf:type rdf:resource="osfex:string"/>

12 </rdf:Description>

13 </osfex:first>

14 <osfex:last>

15 <rdf:Description rdf:about="S">

16 <rdf:type rdf:resource="osfex:string"/>

17 </rdf:Description>

18 </osfex:last>

19 </rdf:Description>

20 </osfex:id>

21 <osfex:age rdf:datatype="&xsd;integer">30</osfex:age>

22 <osfex:spouse>

23 <rdf:Description>

24 <rdf:type rdf:resource="osfex:person"/>

25 <osfex:id>

26 <rdf:Description>

27 <rdf:type rdf:resource="osfex:name"/>

28 <osfex:last>

29 <rdf:Description rdf:resource="#S"/>

30 </osfex:last>

31 </rdf:Description>

32 </osfex:id>

33 <osfex:spouse>

34 <rdf:Description rdf:resource="#P"/>

35 </osfex:spouse>

36 </osfex:Description>

37 </osfex:spouse>

38 </rdf:Description>

39 </osfex:spouse>

40 </rdf:Description>

41 </rdf:RDF>

Figure 15: RDF serialization of the ψ-term in Figure 2
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ternal structure of a root tag of a ψ-term structure as defined above and generates

an array of strings using a method PsiTerm.toXmlArray(Set dejavu), each

part of the XML rendition of the equivalent RDF structure. The other taking an

XML structure corresponding to a ψ-term into this ψ-term’s actual OSF graph form

as internal structure representation.

We can also define a mapping from either representation to ψ-term syntax, than can

be parsed into its structure—i.e., a Tag.toString() method. It can also be used

as a format to save on secondary storage. Note incidentally that a similar XmlPsi-

Term.toString(Set dejavu) method is not needed if we have a XmlPsi-

Term.toPsiTerm(Set dejavu). Note also that the switch/case statement on

Line 20 of Algorithm 9 assumes a function type-of which applies to a ψ-term and

returns its type among predefined built-in types (integer, float, string, . . . , or

object—the default otherwise case).

4.5.3 Feature consistency and query optimization

This is a simple but powerful static query optimization done on the OSF formulation

of a query in OSF syntax, prior to being translated into SPARQL form. It consists

in a feature-type verification realized as a normalization of the query using the rules of

Figure 12 and Figure 8. In effect, it is a semantic type checking of consistency of all

features involved in a query with their declared domain/range sorts, inferring missing

sorts.

This semantic type inference may involve changing the query feature domain or range

type. This is a type coercion by intersection, a narrowing correction of the missing or

less precise type information specified in the query. This is by intersecting the known

(from TBox) and implicit (in query) type information using taxonomic knowledge

from the TBox. This is because it is both a type-checking and a type-inference process.

Once classification is performed, the encoded ontology is saved on disk once and for

all. There are three important advantages for proceeding so:

1. a saved classified ontology can be reused without the need to be reclassified for

every new query sessions;

2. checking a query’s consistency with respect to a classified ontology before exe-

cuting it prevents useless scanning of the ABox for instance retrieval if the query

is not consistent; and,

3. normalizing a query with respect to a classified ontology drastically reduces the

ABox retrieval search space focusing only on relevant instances.

Normalization of queries w.r.t. a normalized consistent OSF taxonomy is therefore

a step that should be performed prior to submitting queries for execution—i.e., before

actual ABox instance retrieval. This has for effect to focus data retrieval.

Let us illustrate this on an example. Figure 16 shows an ontology describing academic

workers and institutions. A bit-vector encoding of this partial order is given in Table 1.
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@

person insitution

university research-
Center

student teacher researcher

professor

associate-
Professor

full-
Professor

teachesAt

worksAt

Figure 16: Example of a taxonomy with attribute features

Sort Code

@ 11111111111

organization 01110000000

university 00100000000

researchCenter 00010000000

person 00001111111

researcher 00000100111

teacher 00000010111

student 00000001000

professor 00000000111

associateProfessor 00000000010

fullProfessor 00000000001

Table 1: Binary codes for the poset shown in Figure 16

Besides the concept taxonomy, let us assume the two following set-valued feature

declarations:

teachesAt : teacher→ setOf(university)

worksAt : researcher→ setOf(researchCenter)

Let us now consider the query Q1 corresponding to the ψ-term:
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Query Q1:

?X : person ( worksAt ⇒ setOf(researchCenter)

, teachesAt ⇒ setOf(university)

).

This query aims to retrieve all instances of persons teaching at a university, and work-

ing at a research center as well. Rather than submitting this query as is for retrieving

instances from the ABox that verify it, we first normalize it to be consistent with the

knowledge in the TBox. Doing so, we identify the sort professor as being the most

specific one. In fact, the sort corresponding to professor is the Maximal Lower

Bound (MLB) of the root sort (person) and the sorts which are the domains of the

two features presents in Q1; namely, researcher and teacher. The MLB is the

intersection (conjunction) of the binary code corresponding to person, teacher

and researcher which are represented by 00001111111, 00000010111, and

00000100111. The result of that intersection is 00000000111, which corresponds

to the sort professor. Thus, the normalized query is Q′

1
:

Normalized Query Q′
1:

?X : professor ( worksAt ⇒ setOf(researchCenter)

, teachesAt ⇒ setOf(university)

).

Following the same reasoning, normalizing the query Q2 expressed as the ψ-term:

Query Q2:

?X : student ( worksAt ⇒ setOf(researchCenter)

)

yields the inconsistent (i.e., empty) sort represented by the code 00000000000.

In this case, the query is considered inconsistent with the TBox because the sort

student has no subsort that is compatible with a known domain for the feature

worksAt. Thus, there is no need to search the ABox for any instance of this query.

4.5.4 SPARQL query generation

Once a query expressed as in OSF syntax is normalized with respect to a TBox and

found consistent, it is compiled into SPARQL for efficient instance retrieval. The

translation is straightforward, and need not even be detailed as pseudo-code. Examples

will suffice.

Figure 17 shows the SPARQL query corresponding to the query Q1 without prior

normalization, and Figure 18 shows the SPARQL query for the same query after

normalization.
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A ÏT-KACI, H. HO•O•T Language Specification

SELECT ?X

WHERE

{
?X rdf:type person.

?X worksAt ?Y.

?Y rdf:type researchCenter.

?X teachesAt ?Z.

?Z rdf:type university.

}

Figure 17: Generated SPARQL from Query Q1 (without normalization)

SELECT ?X

WHERE

{
?X rdf:type professor.

}

Figure 18: Generated SPARQL from Query Q′
1 (with normalization)

One can clearly see that the SPARQL query in the normalized format has many less

constraints than the first one. Not only could the rdf:type of query variable ?X

be narrowed to the more specific sort professor, but also the domain/range feature

constraints could be eliminated altogether! This is because they were already verified

to be consistent by normalization, and since all instances in the ABox are necessar-

ily consistent with the knowledge of the TBox (in the same manner as all data in a

database obey its schema), it can be safely assumed that all relevant instances of sort

professor in the ABox already abide by those feature constraints! This not only

reduces the search space in the ABox, but also greatly improves query evaluation by

removing useless costly joins. In addition, evaluating this query can be made even

more efficient if a datatype indexing is already performed by the triplestore (see Sec-

tion 4.5.5).

Note that it is not always possible to eliminate feature constraints from a generated

SPARQL query. This is the case in particular when a feature constraint in a query

specifies a value as opposed to a sort as the range of a feature. In that case, these

features must be included in the generated SPARQL query. Consider for example:

Query Q3:

?X : person ( school ⇒ "Stanford"

)

(assuming feature declaration school : student → string). The generated

SPARQL query shown in Figure 19 does normalize the sort person to student,

but it must keep the feature name with specific value "Stanford".
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A ÏT-KACI, H. HO•O•T Language Specification

SELECT ?X

WHERE

{
?X rdf:type student.

?X school "Stanford"

}

Figure 19: Generated SPARQL query from normalized QueryQ3 with valued feature

Finally, it is important to mention that for each sort occurring in the query, sending

its binary code along with the query to the triplestore allows efficient filtering of

eligible answer instances. For example, for the sort professor, the binary code

00000000111 allows to filter instances of the sorts associateProfessor and

fullProfessor as eligible answers since their sorts are subsorts of professor.

This is explained next.

4.5.5 TBox-based triplestore indexing

This describes a powerful static query optimization which is possible if HO•O•T ’s un-

derlying triplestore management system offers the means to index its sets of triples to

be queried using HO•O•T ’s bit-vector encoding of a concept taxonomy. Indeed, a sim-

ple type-indexing scheme taking advantage of the bit-vector encoding can focus the

retrieval of triples strictly and only on the concerned ABox instances.

This is achieved as follows. Organize the ABox in memory so that triples of a given

sort (“root” triples of this sort) are all stored contiguously. Then, in the taxonomy

array containing each sort and its properties (such as name, binary code, etc.), add two

integer fields: one indicating the ABox index of the first triple of this sort, and the

other indicating the last such index. In this way, it is possible to iterate only over those

triples in the ABox sorted with subsorts of a given query simply by using the binary

code of the query’s root sort. This is possible since its “1” bits’ positions correspond

to the indices of its subsorts in the taxonomy array [5]. Thus, the relevant ranges of

triples stored at these indices in this array are readily accessible. Such an indexing

scheme is illustrated in Figure 20.

Of course, when used, indexing is performed once and for all as an offline step, to be

reused on the same ABox as often as needed. Using such a scheme, we could verify

experimentally that performance of query processing could be further divided by a

factor in the order of thousands [10]. This indicates that building type-indexing using

encoded sorts in an actual triplestore management system is likely to provide similar

results—even if lessened to a factor of tens for complex queries.
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Taxonomy ABox

name code · · · start end

...

i person 0011...1101 · · ·
...

j teacher 0001...1101 · · ·
...

k professor 0000...1101 · · ·
...

.

.

.

person1
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.

.

personl
.
.
.

teacher1
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.

.
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.
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.
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.

.

.

Figure 20: Illustration of ABox-indexing scheme using TBox sort encoding

5 Conclusion

This document has justified the design of, and detailed an implementation specifica-

tion for, HO•O•T , a computer language designed for processing taxonomic attributed

ontologies. We put this work in the context of the Semantic Web. It is a contribution

in the nascent area of the intelligent processing of distributed knowledge and data rep-

resented as RDF triples. An initial prototype of this specification was realized as the

CEDAR reasoner.9 Initial performance comparison tests with the state of the art show

that the ideas developed in this specification are valuable in boosting TBox and ABox

querying by orders of magnitudes [10].

This initial design is meant as a starter. Later versions of HO•O•T can be developed

to support more sophisticated OSF theories (ontologies of concepts abiding by rule-

defined constraints), focusing always on efficiency. In the eventuality that such theories

may lead to undecidable inference, we will stay on the pragmatic side and opt for an

incomplete but efficient inference system. Indeed, this is a trade-off worth making as it

enhances semantic expressiveness while retaining efficient reasoning—just as Prolog

is w.r.t. first-order Horn logic: while semi-decidable it can be implemented efficiently,

and has much greater expressive power than plain (decidable, but NP-complete) Propo-

sitional Logic.
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