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'ABSTRACT

The purpose of this paper is to give an introduction
to a possibly wider generalization of the mathematical
framework of the theory of hierarchies and eigen value
analysis to the continuous case. Extensions and
generalization of expressions of eigen functions and
basic theoréms on consistency are given. A conjecture
- about what consistency and continuity mean is thus

drawn from a simple discussion about judgments.




Introduction

The theory of hierarchies based on pairwise comparison matrices
~gives a means to generate, through a process of decomposition into levels
of vectors of priorities, an overall priority vector whose elements (from
1 to N, say) are the final weights of the N components regarding the
top objective of the hierarchy; One can thus ask the question of using
a similar process when the decomposition can no longer be done into a
discrete set of components, but rather into a continuous interval of
compenents. 'To illustrate this, let us think of an objective whose
achievement depends on time -- different instants of the day, say. A
discrete decomposition could roughly be: [Morning, Midday, Evening, Night]
for examb]e; and the pairwise comparison analysis would give a priority
vector of four components corresponding to the four moments. Now, we
can also consider a day as a continuous interval of time, every point of
which can be compared to any other. What was a pairwise comparison
matrix in a discrete model thus becomes the set of all the values of
these judgments, for any couple of instants of the day.

More generally, given an interval [a,b], we can as a first approach

assume that the judgments are defined by
J(s,t) (s,t) e [a,b] x [a,b]

where J is a function of the two arguments s and t, points of the "effect"”
interval [a,b].
The properties of this function J are to translate the reciprocity

of the judgments and the scaling of the judgments. This is written as:




»

J(s,t) « 9(t,s) =1 ¥(s,t) ¢ [a,b] (1)

0 é?g-ls_d(s,t) <a V(s,t) ¢ [a,b]? (2)

where o is the scale used for the judgments. (Note that for all t in
[a,b] J(t,t) = 13
Let us assume, for the moment, that the function J has all nice
properties such as continuity, integrability, and so forth, with regard
to both arguments, and let w be the function on [a,b] which shall be
the eigen function, solution of the integral equation:
b

S d(s,t)w(t)dt = x w(s) (3)
a

and a normaiization relation:

b _
row(t)dt =1 (4)
a

The integral equation (3) can be rewritten as:

b
w(s) = Kk(s,t)w(t)dt (5)
=
where N
K (s,t) = Lt (6)

The equation (5) is a particular case of the typical Fredholm's integral

equation




=3
afs) w(s) + s, K(s,t) w(t)dt = f(s) (7)

in which the right hand side would be the function identically null on
[a,b].1 This type of equation has been studied and numerical methods

of resolution have been developed and are available. It is not of our

. present purpose to discuss this point here.2

Overall Priorty Function

Similarly to the discrete case, we are bound to consider a succession
of dominance Tlevels in a hierarchy. Let us first recall some notation
and formulation in the discrete case in grder to give the corresponding
generalization in the continéus case.

We shall remember a discrete -- complete -- hierarchy to be a sequence
of n levels. A Tevel i has Ni elements and therefore the ith Tevel

priority vector Pi has Ni components and is expressed as

T i=1,2,....n

_opad i i
Py = oy pg oee by

Between two successive levels i and i+1, is an eigen matrix, Hi;whose
columns are the eigen vectors resulting from the impact of the higher ith

level upon its successor i+l-st level. The matrix Ty has dimension

1As az1, the equation (5) is in fact a Fredhofm integral equation of
the second kind,

2For more details, see [1] and [2], and all referred and abundant
literature in these books.




4.

N X Ni and a recurrent relation exists between the eigen matrices

i+l

. and the priority vectors:

Py = By Py i=1,2,.. .1 (8)
top objective

Level T RS ST P N1 elements

Level 2 :' | N2 elements

Level n | | KU Nn elements

Expanding the relation (8) to have the expression of a component of Pi
in terms of Pi-l’ we get:

pl=z nitpl §=1,2,... N (9)

d kel K
From (8) and (9), expanding now the recurrence we obtain the expression

of the overall priority vector Pn in terms of the first level eigen

vector:

n-1 n-2 1
SR LR R SO
k1-1 kz—] kn—l—j 1 172 n-< n- n-
(10)

An interesting remark, here, is -that the expression (10) appears to be

. 3
the expression of a.tensor.

3It is in fact a degenerate tensor of order 1 -- a hypo tensor. How-

ever, the important tensorial properties (i.e., multi-Tinearity,
covariance, tensorial product, etc...) hold and it would be of interest
to establish the contravariance of the left eigen vector prority vector.
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Let us now draw a generalization ta a continuous level hierarchy.
This {s, similarly, a sucession of dominance levels, each one heing a
continuous interval: the ith level 1s an interval [ai,bf], say. We
then can define faor each level a priority function Wa taking values on
[ai’bi] and normalized over [ai’bi]3 that 1is,

b
Low(t)dt =1 128525550500 (11)
a; 1 ) .
Now, between two successive Tevels, i and {+1, a two argument eigen func-
tion -- that we shall call the "impact function" -- generalizes the con-.
cept of the eigen matrices by a recurrent relation:
i

Wi (x) = Itéai I (x,t)w, (t)dt, Vnela,,;» bsyq] (12)

obviously equivalent to equation (9).

top objective

"a dt b
Tevel 1 1 az] 1
a dt b
level 2 2 f42 2
a : B
level n i i

Accerdingly, the expression (10) becomes the expréssion of the over-

all priority function;
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Hn-~1('x’t12 Hna2ct1ft2)l

(13)
SO A G AR I G LS

for all x a[an, bn]

Moreover and to be comdbte - if not elegant - , we can consider a
general mixed hierarchy both discrete and continuous, each level of which
being a sequence of finite intervals:

i I T i i
a b, a b ANy by
ith level 1 ]3 2 23 wwie ' 5 ! !

and then the overall priority vector of functions (actually,a function
N N
from [0,1] 1 to [0,1] n) would be given by a combination of both (10)

and (13), and despite its monstrosity4 is easily understandable.

Consistency - The Judgment Function

In the discrete case, the pairwise comparison matrix of judgments
is clearly i]1ustrated5 by the idea of compariscns of stone weights.
The cancept of cansistency then is significantly introduced and induces
a very elegant and solid mathematical framework supporting the varioué

and maﬁy applications of hierarchy and eigenvale analysis. It is observed

4w_h.ic,h is our reasen not to give it here explicitiy!

5As presented in [3], page 31.
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that, except for the case of 2-dimensional matrices, real Tife (i.e.,
biased and suﬁjgc;iyg feXpertsf j@dgments due to human uncapability to
~group as a whole a complex and scattered phenomenon), provides but in-
consistent matrices. Although consistency as a pure mathematical concept
(as we shall see) is nicely generalized to the continuous case, it

appears to be linked to continuity of judgments.

Definition 1: A reciprocal judgment function J defined over [a,b}2
is cansistent when '

Is.t) = I(s.u) - Iu,t) W(s,t) e [a,b]° (14)

An alternative definition for consistency, easily
deduced as equivalent to definition 1, is:

. . - . 2
Definition 2: A reciprocal judgment function J defined over [a,b]
is consistent when

J(s,t) = %%%%- Y (s,t) ¢ [asb]z (15)

where w is a solution of equation (3).

The second is obtained from the first by naticing that the ratio %%%4%%-

s , : ooow(s) 2 Jd(s.u) :
is independent of u and we thus can define o C MR ) to a multi-

plicative constant (equal to one by normalization). w(s) thus defined

obviously solves {3). The converse (i.e., Definition Zgﬁjmﬁ’Definition 1)
\ —

is trivial.




Thegorem 1:

Proof:

Theorem 2:

Corollary:

Thearem 3:

Proof:
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If J is pasitive and consistent then
J(s,8) = 1 Vsel[a,b]
and o
As,t) =gy Vst) e [p)
K i !J t,S Sk | 2
From Definition 1 J(s,s) ='£qé,s) « J(s,s) and hence
J(s,s) = 1. Now J(s,s) = Jd(s,t) - J(t,s) implies
J(s,t) = 1 Ys,t

g Vet
If the reciprocal judgment function J is consistent,
then w(s) = J(s,t), vte[a,b], is a solution of
equation (3). This is trivially proved by substitution.
If J is consistent, equations (3) and (4) are
simultaneously and uniquely solved by

W_(S) - J(s,t)
Ib J(x,t)dx
a

The following theorem gives a nice extension
to Theorem 5 of [3] in both its statement and
its proof.
A reciprocal judgment function J defined over [a,b]2

is consistent if and anly if A = b-a.

C—assume J is consistent. From equation (3) we have

w(s) = 72 5 (s, th(t)dt

substituting under the integral sign, it comes




by Definition 1;

J(s,u) wlu)duldt

pd Bl

w(s) = fﬁ

il

b
Iy

b-a =

w(s) = fg %-w(s)dt = w(8) “ A = b-a

S A
G Conversely, from the expression of A
A= fg as,t) WL gy

w(s)

taking integral of both sides

_ . b w(t) _ b b
A(b-a) = /o £y d(s,t) gy dt ds = 7o s, Gls,t)dt ds
where
(t
6(s,t) = J(s,t) %%g%
_ /b S b b
a(b-a) = IS?a ftégaﬁ(s,t)dtds + fséaftzs G(s,t)dtds

Inverting the integral signs in the second integral

» _ b S b t A
~A(b-a) = f&ﬁa ft;a G(s,t)dtds + ftéa ISéa G(s.t)dtds,
hence
A= 7 1 fb IS [a(s,t) + G{t,s)]dtds
-7 (b-a s=a 't=a S —

Noting that

6(s.t) = ER;%ET' Y (s,t)




Corollary:

Theorem 4:

Proof:

1
A E_E:E'f /

=10=

i? comes

A ='33;5 fg‘za [3=q [6(s,1) +'§(1§.j%]dt ds
But

X + ];Z 2 VX e R#

hence,

b S _
s=a 't=a 2 dt ds = b-a

A attains its minimum value when . and only when

G(s,t) + EréLij-attains its minimum 2. That is

= - e ] = =
. & = b-a = G{s,t) + sty 2 hence G(s,t) =1
and J(s,t) ?%%%)y Q.E.D.
For any general reciprocal judgment function over [a,b]z,
A > b-a.

If J is positive and consistent, and if w is a .
sotution of equation (3) then J(s,t) > J(u,v) if and only if

2
{

A
.

w(s) _ wlu)
w(t) = wlv)

By Definition 2,

It {s expected, when we give judgments, that we try to be as

consistent as possible., The ideal case being attained for the most

consistent.

In a matrix (discrete case) of judgments, if two elements




to be compared are harely differentiable with respect to a same
Qﬁjectiv¢, it s natural to observe, near cansistency, the same or
very close values of their comparisons with the other elements. So,
tending to consistency and making two elements bedw closer and closer
to each other will make a'conéistént Jjudgment matrix tend toward a
1imiting continuous judgment function: In other words, consistency
for a judgment function will cofrespond to continuity of this function.
Nothing prevents us from being more accurate in our definitions

of consistency and we thus can define:

1. Consistency at a point: J is consistent at
ty ela,b] when J(s, tOT’ ( O,u) = J(s,u) v(s,u)

2. Consistency: J is consistent on [a,b) when .
Is,t) - At,u) = ds,u) V(s,tu) & [o6 ]

We then could conjecture the following theorem.

/;7;Eeorem: a reciprocal positive Judgment function J 1s consistent
= at t, if and only if J is continuous at t,.// J, although
of two arguments, being reciprocal, has the property

that it 1s continuous with respect to one argument if

and if 1t 1{s continuous with respect to the other one.
This comes as a straight forward remark from (1) and (2),
and hence we can simply state ”J contlnous at to" without
specifying whichargument,

Conclusian

The idea of this paper has no other meaning than pure theoretical
~generalization. No application to any "real 1ifef (made-up ar not)
problem has been made yet, but it {s not outrageous to think of an

example where judgments -- non-consistent if non-continuous -- could be




expressed by a judgp;n; fuﬁctiaﬁ}and theféféfe,ana]ysis being drawn
would giye a priority/distribution at any point which 1s of real

- interest for computational purposes. - ¢v£4f?5?» 57

£
Ve £
A

(ﬁ.{f“,‘” A,
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Y

Examples of Consistent Judgment Functions

a)  Js,t) = eKis-H v 5.t e [a,b]
for 0 < |k .<_—.lt;-f~§-

where o is the judgment scale. In this case, the eigen function is
ks
k e
Ws) 5 e
: ekb _ eka

 \o°
_ f(s) o ir . ,
b)  Any J(s,t) = 6 where f eyer~[a,b] is such that 0 < f(t)
Vvt e [a.b] and

Max f(t)
t e[a,b]
Min _ f(t) =
t e[a,b]
and
Min  f(t)
t e[a,b] o1
Max f(t) — o

t efa,h]
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