BABEL : A Base for an Expcrimental Library

Hassan Ait-Kaci*, Roger Nasr™, Jungyun Sco**

*Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive, Austin, TX 78759, U.S.A.

“* Artificial Intelligence Laboratory ’%Taylor Hall 2.124)
The University of Texas, Austin, TX 78712, U.S.A.

This report discusses the implementation of a knowledge base for a library information
system. It is done using a typed logic programming language---LOGIN---where type
inheritance is built in. The knowledge base is structured in a hierarchical taxonomy of
library object classes where each class is represented in a FRAME style knowledge structure
and inherits the properties of its parents, and where infrastructural inference rules have been
established through typed Hom clauses. Also in this document, some programming
techniques aimed at using the power of inheritance as taxonomic inference are discussed.

1 Introduction

The idea of attribute inheritance has been adopted by various programming languages. In
particular, so called object-oriented programming languages have shown that this idea can
be very practical in solving some knowledge rcpresentation problems. [Goldberg 80] [Stefik

83]

Ait-Kaci and Nasr [Ait-Kaci 86al have proposed a new programming language, LOGIN,
combining the idea of inheritance with logic programming. LOGIN replaces Prolog’s first-
order terms with y-terms which generalize first-order terms by allowing partially ordered
constructors. LOGIN uscs the standard Prolog operational semantics---a computation
mechanism which implements natural deduction---with a w-term unification algorithm
rather than an ordinary unification algorithm. It becomes natural to express frame style
knowledge structures [Bobrow 77| [Minsky 75] using w-terms in LOGIN. Furthermore, the
strategies of y-term unification provides elficicnt expressions of set theoretical operations.

This paper describes an experimental library system called BABEL as a concrete
application written in LOGIN.] The motivation for this work is the need for testing the
design concepts of LOGIN, specifically showing its uscfulness as a knowledge and database
language. We believe that our learning experience from the design and implementation of
practical applications is a neccssary complement to our theoretical research.

I!BABEL: Authentique Bibliothéque Ecrite en LOGIN.

Permission to copy without fee all part of this material is granted provided that the copies are not made or distri-
buted for direct commercial advantage, the ACM copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fec and/or specific permission.

C 1988 ACM 0-89791-274-8 88 0600 0175 $ 1,50

—175—

In its current state of design, BABEL consists of four parts: the transaction manager, the
query manager, the natural language intzrface, and the knowledge base. The transaction
manager keeps track of the librarian’s traditional duties: checking books in and out,
reminding borrowers of overdue materials, asscssing fines, and reserving loaned bocks for
the next user. The query manager provides the library’s users with information normally
found in card catalogs. In BABEL, the query manager is an interactive query generator.
The query manager accepts user qucries through menus and generates the equivalent
LOGIN queries. The natural language interface accepts natural language queries and
generates equivalent LOGIN queries.? The knowledge base in BABEL consists of two parts.
One is static and a representation of the library's structural information; the other is
dynamic, a representation of its assertional information. The structural representation is
formed by organizing library materials into a hierarchy of object classes where each class is
given a (type) definition. A set of such definitions constitutes a formal knowledge base as
defined in [Ait-Kaci 86b]. The assertional information is expressed in an order-sorted typed
Horn logic [Smolka 87}, whose types are drawn from the knowledge base. Such logical
sentences, in the form of rules and facts (typed Horn clauses), are used to

s maintain time-dependent records---¢.g., items on loan, on rescrve, on shelf,
being recalled, etc.

® express queries---e.g., itemize all library users holding an overdue item.
The library’s extensional database (i.e., the object values) consists of the individual library
items and library users.

Although we inroduce LOGIN briefly in Section 2, we shall assume for the most part
that the reader is familiar with logic programming. In Section 3, a quick point is made to
illustrate the LOGIN way of representing, some BABEL library object as opposed to the
Prolog way. In Section 4, our mcthod of building a knowledge base for library information
using a hierarchical classification of library objects is presented. The transaction manager
and the query manager are described in Section 5. Finally, a brief conclusion speculating on
this experiment is drawn in Section 6.

2 LOGIN: an Overvicw

LOGIN [Ait-Kaci 86a] is an elaboration of Prolog. The main extension is its new
definition of terms which are arguments of literals. In first-order logic, a literal is of the
form: p(tl,...,tn) where p is a predicate symbol, and the ti’s are (functional) first-order terms.
LOGIN extends the first-order terms of Prolog into partially ordered (first-order) type
structures called y-termis. A Wy-terimn denotes a class of objects. Unification of y-terms
denotes class intersection. The least specific class (the universe) is the largest type T, and
the over-specified class (the empty set) is the smallest (uninhabited) typeJJa.

Informally, a y-term consists of:
1. A root symbol which is a type consiructor and denotes a class of objects.

2. Anributes, label and value pairs, which are record ficlds. Each label is
associated with a sub-y-term as a value for the label. The sub-y-term can be a
constuctor, a typed variable called tag, or a Ww-term.

An example of a y-term is:

book (title => string,
author => name (fname => X: string,
ilname => X),

call number => lc_number,

pub_date => date(day => integer,
month => monthname,
year => integer),

isbn => string)

—176—

The root symbol is books---a type constructor---which shows the class that this (y-term)
type expression dcnotes. It has five sub-y-terms under the attribute labels ritle, author,
call number, pub _date, and isbn. This y-terms denotes a class of books whose authors
have the same first and last names, e.g., Allcn Allen.

Each class inherits the attributes of its parents in the class hierarchy---i.e., if a class ¢ has
a subclass d, d inherits all of ¢’s attributes. For example, we can define an ordering between
the two type symbols (denoting classes) library _matcrial and books as follows. Given a
definition of [ibrary_matcrial3 with its attributes and their types (no root symbol means T),

library material = (title => string,
author => name,
call number => lc number,
pub_date => date).

name = (fname => string,

lname => string).

(day => integer,

month => monthname,

year => integer).

date

we can define books as:
books = library material(isbn => string).
which is the same as:

books = library material(title => string,
author => name,
call number => lc_number,
pub_date => date,
isbn => string).

We call books a subtype (subclass) of library material. This definition of books can be read
as ‘‘books is a subset of library_material and has one more attribute---ISBN (International
Standard Book Number)™’,

Ilibrary_ntatcria{]

ai_malcria putabase_nlalcriaj

B[R

Figure 1: A Type Hierarchy with Multiple Inheritance

(l] [(lz d3

2The natural language query interface manager is not included in this report and will be iniplemented
in the future.

3This definition of library.material can be read as *library_malcrialis a set of object in anytype with
four attributes’

—177—-

Given a partially ordercd type hicrarchy, we can implement a generalized unification
algorithm between w-terms, interpreted as set intersection. The following illustraies the
y-term unification algorithm [Ait-Kaci 86a). Given a type hierarchy in Figure 2, unifying
the yr-term:

book(title => X,
author => (Iname => ‘Winston’),
call_number => Y)

and the y-term:
ai_material(title => 2,
author => (fnarme => W),
pub_date => (year => 1985))

results in the y-term:

ai_book(title => X,
author => (fname => W,
Iname => ‘Winston’),
call_number=> Y,
pub_date => (year => 1985))

Unifying these two w-terms---books and ai_material---bccome ai_books. This is
precisely the intersection of two sets, the set of all Al material and the set of all books (in the
library), which results in the set of all AI books. As illustrated in above example, the set of
the attributes in a resulting y-term from the unification of two y-terms is the same as the
unior. of attributes in the two wy-terms. Taking a wunion of attributes imposes more
restrictions on the resulting y-term. Restricting a y-term by assigning constraints (values)
to attributes thus specifies a subsct of a set. For example, the y-term

book(author => (lname => ‘Winston’))

denotes books written by Winston, a subset of all books.

Informal description of y-term unification algorithm is:* unification of two W-terms fails

if the root symbols---type constructors---ar¢ not unifiable in partially ordered type hierarchy,
or the two y-terms have at least one same attribute label but with values which are not
y-term unifiable. Otherwise the unification succeeds.

In LOGIN, one can explicitly define a disjunctive class, which is not allowed in other
frame representation languages [Bobrow 77] [Goldstein 77]. For example, we can redefine
a y-term date as

date = (day => integer,
month => {integer ; monthname},
year => integer).
monthname = {’Jan’; *Feb’; "Mar’; "Apr’; "May’; "Jun’;
>Jul’; "Aug’; *Sep’; *Oct’; 'Nov’; "Dec’}.
It means that the attribute month can have a value of type integer or monthname, and any
of the twelve character strings can be a valid value of type monthname.

Apgain, LOGIN is simply Prolog where first-order terms are replaced by wy-terms. Thus,
LOGIN uses the standard Prolog operational semantics (SLD-resolution) with a w-term
unification algorithm rather than an ordinary unification algorithm (order-sorted SLD-
resolution [Smoika 87].)

Since ordinary first-order terms in Prolog can be represented as w-terms, LOGIN is more

expressive than Prolog, and subsumes it. For example, an ordinary term in Prolog
fla,g(b.X)) is equivalently represented in LOGIN as the (y-term}:
f(l =>a,
2=>g(l =>b,
2 =>X))

--178~

where the function symbols, f and g, in ordinary terms become type symbols in y-terms.
Unlike Prolog, the arity and the order of arguments (attributes) in y-terins are {ransparent to
the uscr, in the sensc that one may specify only subsets of them, and in any order.?

3 Knowledge Representation in LOGIN

Let us consider an example. A record for a book in the library database such as
Call Number : QA76.65 b77

Title : The Handbook of Artificial Intelligence
Author : Avron Barr, Edward A. Feigenbaum
Subject : Artificial Intelligence

can be represented in Prolog as, say,

library_item(type(book),
title(‘The hand book of artificial intelligence’),
author([‘Avron Barr’, ‘Edward A. Feigenbaum’]),
call_number(‘QA76.65 b77’),
subject(artificial_intelligence)).

Given this data, a user query such as:
“*Show computer science books written by Edward A. Feigenbaum'’
which would be expressed formally in Prolog as

query :-
library_item(type(book),
title(X),
author(Author_list),

subject{(computer_science)),
member(‘Edward A. Feigcnbaum’,
Author_list),
show(X).

would not succeed. The query fails because subjeci(artificial_intelligence) cannot be unified
with subject(computer _science) in Prolog. In an intelligent library information system, a
simple deduction like “‘since Artificial Intelligence (Al) is one area of Computer Science
(CS), all items in the Al arca would be regarded as items in the CS area,” is taken as an
inference step. '

In LOGIN, the same data may be represcnted as

artificial_intelligence < computer_science.
/* define hierarchy between two terms */
bi101 = book(title => ‘The Handbook of Artificial Intelligence’,
author => { (fname => ‘Avron’,

Iname => ‘Barr’) ;

(fname => *‘Edward’,

mname => ‘A’

Iname => ‘Feigenbaum’)},
call_number => ‘QA76.65 b77’,
subject => artificial_intelligence).

library_item(b101).

So, the query:

45¢c [Ait-Kaci 86a] for rigorous dcfinitions and algorithms

5As a syntactic sugar, LOGIN also supports positional terms in Prolog. i.c., fla.g(b}X) and fla.g(b)num =>
X) arc all valid y-terms. In this case, argumcents which have no labels are scnsitive (o the order.

—179—

query :-
library_item(book(author => (Iname =>> ‘Feigenbaum’),
subject => computer_science,
title => X)),
show(X).

will succeed with X = ‘The Handbook of Artificial Intelligence’. Since
artificial_intelligence is declared as a subtype of computer science, artificial_intelligence
can be y-term unifiable with computer_science. Furthermore, the disjunctive definition for
the value of the attribute qurhor make it possible to succeeds to get an answer in unification
phase, not using inference step. Note that even though the query carries only the first name
of the author, it succeeds to get an answer. This makes it possible to handle an incomplete
query.

Note that number and order of arguments are transparent to the unification of two
y-terms. Also, the reader may wonder why library_item is an assertional predicate rather
that a structural type in the knowledge base like library material. The reason is that the
latter records static immutable information pertaining to the structure of a library object,
while the former is nceded as a handle to access the actual library records. Representation in
current BABEL of a record’s dynamic states {e¢.g., on loan, on shelf, or current borrower,
date due, etc.) will be discussed in Section 4.2,

Naturally, the problem can be solved in Prolog, but it requires more rules and facts in the
inference system, such as:

is_a(X,) :- var(X), /* to prevent infinite loop */
fail, 1.

is_a(X, X).

is_a(X, Y) :-is_a(X,),
is_a(Z, Y).

is_a(artificial_intelligence, computer_science).

We contend that, although semantically equivalent, the solution in Prolog is
pragmatically inferior to that of LOGIN for the following reasons. First, in Prolog, the
number and the order of arguments are not transparent to the programmer, noticeably losing
perspicuity. Second, it is more desirable to express information into the type language (the
partially-ordered knowledge base), whereby rcalizing a more restricted logic---albeit more
efficiently---leaving to the more general and consequently lcss efficient deduction system
only the tasks which require its differential power. In addition, this saves precious
backtracking steps (this will be discussed in Scction 4.2.)

4 Knowledge Base of BABEL

We now discuss the implementation of BABEL’s knowledge base. The ordering
structure of the knowledge base is set inclusion (is-a) between object classes. Each class is
comprised of objects sharing certain characteristics. This is the representation of structural
library information. For example the class denoted by books is the class of all books. The
type ¢s_material is a class of all materials in computer science. Items in ¢s_material can be
books, theses, technical reports, microfilns, periodicals, or proceedings in computer science.

We can easily come up with a new class by combining two classes to make a more
restricted class. For example, we can define a new object class, cs_books, which is the class
of all computer science books by taking an intersection of the two classes books and
cs_material. We call this new class a subclass of both books and c¢s_material---indeed, the
greatest such class. At the same time, thcese two classes are called super classes of
cs_books.

Each class may have arbitrarily many attributes represented as label-value pairs. A value
can be a specific ground value or a typed/untyped variable. These attributes are inherited by
lower classes. For example, the class ¢s_material has an attribute subject with the value
computer_science. Since c¢s_books is a subclass of cs_material, the attribute subject and the

~180—

value computer_science are inherited by c¢s_books. Since the inheritance operation is type
unification and dcnotes set intersection, the value of an attribute in a subclass takes priority
over an inherited value of the same attribute.

In addition to object class hierarchies, BABEL maintains several conceptual term
hierarchies in its knowledge base. Operationally and semantically there is no difference
between the two, but the purpose of a conceptual hierarchy is different from that of an object
hierarchy. For example, c¢s_books has an attribute with label subject and value
computer_science. The class ai_books, a subclass of ¢s_books, also has the same attribute,
subject, but has a different value, artificial_intelligence. Since ai_books is a subtype of
cs_books, artificial_intelligence should be a subtype of computer science. Therefore,
artificial_intelligence is classified as a subclass of computer science in the conceptual term
hierarchy of subjects. 1t does not describe a class of physical objects but rather a conceptual
relationship between subjects.

4.1 Classes in the Knowledge Base

In this section, we examine the relationships among the different classes in the
knowledge base.

The highest class in BABEL’s physical library object taxonomy, library material,
encompasses all the library’s contents. Each item in the library is then classified by its

physical description---book, magazine, film, efc.---and also by subject--- { philosophy, social
science, pure science, etc.

4.1.1 Classification by Physical Description

According to [Gorman 78], one possible taxonomy of library material by physical
description is as follows:

e printed_monograph: printed materials including books, pamphlets, articles, and
printed sheets. Subclasses include monograph and pamphlet.

e cartographic_material: geographical representations. Subclasses include
globes and maps_atlases.

s rmusic_score: subclasses include vocal_score and instrument_score.

» sound_recording: subclasses include disc and tape.

* motion_picture: subclasses include motion_film and video_tape.

e micro_forms: sublasses include microfilm and microfiche.

The above six subclasses of library_material are physically distinct. However, serials,
another subclass of library_matcrial, is_ﬁot; in the sense that serials is a class of publications
of any type of mediun issued in succession, either numerically or chronologically, and
intended to be continued indefinitely. We can gencrate new subclasses by combining other

classes with the class serials. For example, the subclass series books is a subclass of two
classes, series and books.

4.1.2 Classification by Subjecct

This section describes BABEL’s classification by subject. In this taxonomy, library
materials are classified according to their subjects, regardless of physical description.
Therefore, new subclasses can be generated by combining any classes in this scheme with
any classes defined by physical description.

According to Dewey classification, all library items are divided into ten subject classes---
independent of their physical description. A taxonomy of library material by subject is
obtained by further constraining the type of the subject attribute of library material to be

the appropriate specific subtype of subjects, from the conceptual subject hierarchy. Thus,
such a type definition as:

—181-—

philosophy_material =
library_material{(subject => philosophy).

is made for all such material. In addition to philosophy, they include applied_science, art,
hisiory, language, literature, pure_science, religion, and social_science. For each of these---
call it ?77---there is a corresponding type definition:

27?7 _material =

library_material(subject => 777).

Once more, general_reference cannot be specified with any specific subject, and therefore
simply declared to be a subclass of library_material:

general_reference < library_material.

These classes can also be divided into more specific subclasses. For example, the class of
pure science material can be divided into following subclasses having more specific
subjects; for example,

mathematics_material =
pure_science_material(subject => mathematics).
Still further, these classes divide into even more specific subclasses, ad lib.

Thus, subclasses can be derived as desired to make the structural knowledge base of
BABEL a truly static inference system. For example, we can combine two classes,
artificial_intelligence_material and programming_language, as follows:

ai_programming_language_material =
artificial_intelligence_material(subject => ai_programming_language).

ai_programming_language_matcrial =
programming_language_material(subject => ai_programming_language).

In this way, we can realize multiple inheritance in a class hierarchy. Indeecd, the conceptual
hierarchy allows class coercion by subject value unification. For instance

X = linguistics,

X = artificial_intelligence,

Y = book(subject => X).
becomes

Y = book(subject => natural_language_processing).
4.1.3 User Class Hierarchy

The user hierarchy is yet another part of the structural knowledge base in BABEL. The
class library_user is placed at the top of this hierarchy. Subclasses include faculty_user,
staff_user, and student_user. student_user has two subclasses, graduate_student_user and
undergraduate student _user. All ground values denoting individual user records are placed
at the bottom of this hicrarchy.

The class library user has several attributes to identify cach user. Those are ss_number
(social security number), name, and address. One more attribute, fine, kecps a record of
library fines incurred by library users---clements of this class.

4.2 Attributes in Classes of Library Material

4.2.1 Representation of Object States

At this point, we must emphasize a key observation pertaining to the pragmatic use of
static vs. dynamic information. Most of the information about an item such as a specific
book instance in BABEL, is static. Indeed, author, title, publication, and all such

—182—

information is not time dependent, and thus is adequately represented in LOGIN as
structures suffering no side-cffects (attribute/value pairs). However, during the course of its
existence in BABEL, such a library item also evolves through a time-dependent maze of
states which describe its status at particular points in time. Thus, whether a book is on shelf,
borrowed, recalled, etc., is abviously going to determine the behavior of queries about it.
Hence, such dynamic information must somchow be side-cffected as the BABEL item
evolves in time.

Let us take as an example the particular BABEL object: the book 5107 that we have seen
before. Let us consider the problem of representing its state showing whether it has been
checked out. Having an attribute/value pair such as

b101(check_out => boolean).

whose boolean value would be subject to destructive assignments as the book’s state
changes is obviously not so clean.

The ideal solution would be provided by augmenting Prolog (and thus LOGIN) with a
pointer type. Assuming such an expression of the form ~ (5701) to denote the address of
b101---now a purely static object---one could thus keep a record of the dynamic information
in a dynamic table, checked_out, which can be side-effected by assert/retract sequences. For
example, check _out(” ((isbn => ‘0-86576-004-7’})) will succeed if it has been recorded that
bI101 is currently on loan. The reason for desiring to use a pointer to /07 as opposed to
bI01 itself is obviously to avoid copying the whole 5707 structure into the check_out table.
Clearly, this solution presents the advantage of separating cleanty static and dynamic
information about BABEL objects. Unfortunately, this not implementable in Prolog where
such pointer expressions arc missing. This leads us to our compromise. Of course, this

solution is provisional until more versatile addressing primitives are eventually implemented
for LOGIN.

At any rate, we built into LOGIN a special type symbol record _key which is simply
syntactic sugar for a newly generated type symbol (and thus incomparable with any other
type symbol other than itself and T). The Lisp programmer may sec it as (gensym). Such a
symbol is then used as a unique key into a dynamic table which records the changes of state
of whatever BABEL item has it as the value of a uniquely corresponding state attribute.
Naturally, the value actually generated stays invisible to the user. Thus, provided that
library_material has the auribute/value pair check out => record__ key, the query®

..., library_item(b101(check_out => X)), recorded(X,yes,_), ...

will succeed only if 8101 is currently recorded as being on loan.
4.2.2 Library Object Attributes

In BABEL, each class of the physical hierarchy shares eleven common attributes.

Therefore, they can be defined at the highest level of the hierarchy---i.e., library material.
Those attributes are:

® ritle---title of a library item. It is a list of words.
e [_responsibility---list (conjunction) of authors or editors for most works.
® 5_responsibility---set (disjunction) of authors or editor for most works.

. squect---subject catecgory of the item. It has one of the classes in the subject
hierarchy as its value,

® call number---has a [c_number (library congress number) of the item as a
value. [lc_nwmber, in turn, has several attributes. Those are ¢_letter (category
letter), f digit (first digit), s_digir (second digit), and cuttering of the call
number. For example, the call number ‘‘QA 76.55 s77°° can be represented as

SThe predicate record(Key, Value Reference) succeeds with the side effect of cntering (asscrting) in the
Prolog fact (hash) table the pair <Key,Value> and scis Reference to its memory address. The companion
relation recorded(Key,Value Reference) succeeds if a unifiable corresponding pair was rccorded.

—183—

(call_number => (c_letter => ‘QA’,
f_digit => 76,
s_digit ==> 55,
cuttering => ‘s77’))

e publisher---an attribute for publisher information. It has a value of type publish.
The type publish has, in turn, several attributes: publisher _name, for the name
of the publisher, and address of the publisher.

e date_of pub---publication date of the item. It has three atiributes: day, monih,
and year.

e language---idiom in which the work is published.

e lend_info---has lend_tab (loan table) as a value type. This loan table lend_tab
has several attributes:

 library_use_only---record key used to record whether the item may be
checked out.

« lend_period---record key used to record the lending period.

* check_out---record key used to record whether the item is currently on
loan.

* checking_time---record key used to record when the item was last loaned.
* return_time---record key used to record when the item is due.

* 55_number---record key used to record the social security number of the
borrower.

The atuaibutes, checking_time, return_time, and ss_number, have no meaningful
value if the value recorded by check out is no.

¢ recalled---record key used to record whether the item has been requested by
another user.

® recall_info---has a record key used to record a recall_tab as a value. The class
recall_tab has three attributes: type, which shows the type of recall request---
recall or search; ss_number, which is the social security number of the
requesting party; and rore, which shows other recall requests (if there are
multiple requests).

® reserve_info---has a record key used to record the value reserve tab to show
whether the item is reserved for special use (e.g., a course). The value appears
only if the item is reserved. The class reserve tab has five attributes:
instructor, course_name, course_nuamber, semester, and year.

These cleven attributes are common to all library items. There can be more attributes,
depending on the specific class of a library item. For example, every item in the class
monograph has an attribute isbn (International Standard Book Number), while items in
serials have issn (International Standard 5Serial Nurnber).

BABEL demonstrates an example of its ability to infer by its flexible handling of the
attributes pertaining to statement of responsibility. Notice that we have two such attributes.
One is s_responsibility, the other is !_responsibility. The information contents of these
attributes are the same. However, the internal structures are different. The attribute,
s_responsibility, is defined as a disjunctive class of authors, while the attribute
{_responsibility is defined as a list of authors. The reason to keep two different autributes for
the same information is purely for efficiency. For example, a book item, #/0/ say, is
asserted to be a library_item as follows:

b10l

= book('
title => ‘The handbook of artificial intelligence’,

s_responsibility =>
(type => authorx,

184

author => {{(fname => Fl: ‘Avron’,
lname => L1: ‘Barr’) :
{fname => F2: ‘Edwazrd’,
mname => M2: ‘A.’,
lname => L2: ‘Feigenbaum’)},

1l _responsibility =>
(type => author,
author => (name => (fname => F1,
Ilname => Ll),
co_name => (name => (fname => F2,
mname => M2,
Ilname => L2j})}),
call number => (c_lettexr => ‘QA’,
£ digit => 76,
s_digit => 65,
cuttering => ‘b777).
subject => artificial_intelligence).

library item(bl01l}).

When a user wants an item by many authors, but knows the name of only one, BABEL
can process the request through the two attributes s_responsibility and [_responsibility. The
first is used to verify efficiently (indced by simplc match as opposed to search’) the
existence of the author in the set of the item’s authors (disjunction of authors), and the
second is used to keep alf authors (conjunctive list of authors) and to be able to list the
names of all authors because we cannot enumecrate authors with a disjuctive class. The

following user query, although somewhat incomplete, gets a successful response without
backtracking:

“‘Show me a book, written by Feigenbaum, of which subject is computer science’’

query :-
library_item(book(s_responsibility =>
(author => (Iname => ‘Feigenbaum’)),
subject => computer_science,
title => X)),
show (X).

To implement the above example in Prolog, we need to keep the name of authors as a list
of names. For example,

/* Fact */

book (/* the title */
‘The handbook of artificial intelligence’,
/* the list of the last names of authors */
[‘Barx’, ‘Feigenbaum’],
/* the call number */
‘QAT76.65 b77’,
/* subject */
artificial_intelligence).

/* Query */

query :-
book (X, Name_ list, _, YY),
is_a(Y, computer_gcience),
member (‘Feigenbaum’, Name list),
show (X) .

As demonstrated, in Prolog, the first literal in the query book(X,Name_list, ,) will
succeed with any item in the relation books. Then it will check if the subject of the item can
be regarded as computer_science using is_a inference rules which was defined in section 3.
Then it will check if ‘Feigenbawm’ is in the list of last names of the authors. If any of above
two checkings fails, then it backtracks and checks the next item. It might require
backtracking through all the books in the library.

7 Actually LOGIN encodes a type hierarchy when it compiles the hierarchy so that it can check types
in one matching operation without scarching the entire type hierarchy. [Art-Kaci 87}

—185—

5 Transaction and Query Managers

BABEL would not be much of an experiment without some sample application
programms. In this section, we discuss the transaction and query managers of BABEL. The
query manager serves the user of the libriry, and the transaction manager serves the staff,

5.1 Transaction Manager

In its present state of conception, BABEL manzages five basic transactions for the
librarian:

* Maintaining records of current library material and users; 3
e Check out and return operations;

* Recall request processing;

® Rescrve request processing;

e User fine calculation and notice generation.
These are, of course, not meant to be as realistic as possible---e.g., few libraries (hopefully)
fine without repeated warnings!

We discuss only checkout and return operations duc to space limitation.

When a user wishes to borrow a book, the librarian reguests information from a terminal
at the lending desk by call number. If the book is cleared for lending (not reserved or
previously requested), its status is updated during the lending transaction as follows:

check out :-
/* Read call number of an item */
get_call number (LC number : lc_number),
/* Get the record of the item using the call number*/
library_item((call_pumber => LC_number,
lend info => (lend period => Lend Period Key,
checked cut => Checked out_Key,
checking_time => Checking time Key,
ss_numbexr => S5 number Key,
return_ time => Return_time_ Key),
recalled => Recalled Key,
recall info => Recall info Key)),
/* Read the social security number of the user */
get_ss_number (SS_num),
/* If somebody recalled the item, and */
{ recorded(Recalled Key, yes, _)
=> /* if the recall person is the borrower */
{ recorded(ssmpumbe;*xey, recall tab(ss_number => S5S_num),)
—> remove_recall (LC_ number) - - -
; (write ('This item is recalled by another user.’),
faily))
; true),
/* Set Check_out to yes */
pPutvar (Checked out_Key, yes),
/* Set user ss_number to SS_number */
putvar {SS_number Key, S$S_num),
(more to_check_ out
-> check_out
; true).

The return transaction is as follows. Any fines are assessed at this time:

#Current implementation status of BABEL does not support on-line data insert and delete operations
which require dynamic updates of class hierarchy.

—186-

return :-
/* Read call number of an item */
get call number (LC_number : lc_number),
/* Get the record using the call number */
library item(Item : (call number => LC_number,
- lend info => Linfo: (checked_out => Checked out_ Key,
- ss number => SS number_Key,
return time => Return_time Key),
recalled => Recalled Key)),

get current_;ime(cu_;ime),
/* Now, Checked out becomes ‘no’ */
putvar (Checked out, no),
/* get expected return time from the record with record key */
recorded (Return_time Key, Return_time, _),
/* If it is over the due date, */
{ late return (CU_time, Return_time),

-> /* calculate and make a fine notice */

process_fine (Item, S$S_num},

; true),
(more_to_return

-> return

; true) .

5.2 Query Manager

The query manager in BABEL is an interactive query gencrator using menu operation.
Once it is activated, it shows possible options which may be used for searching through
BABEL which constitute the user’s interactive choice. From this choice, the query manager
generates a formal LOGIN query, and executes it. There are various kinds of search queries,
which can be classified according to the key value to be used. Typical examples are,

1. Show by call number

2. Show by title

3. Show by statement of responsibility, i.e., author, editor, etc.
4, Show by temporal, i.e., publication date, ezc.

5. Show by ISBN for books

6. Show by ISSN for serials

7. Show by subject

8. Show by physical description

The user may choose one or more keys to find an item. For example, if the user chooses 1,
for call number, then the query manager reads the call number, e.g., ‘QA 76.66 b77’, and
generates the query such as,

library_itenmi(X : (call_number => (c_letter => ‘QA’,
f_digit => 76,
s_digit => 66,
cuttering => 'b777)),
show_item(X).

If the user chooses 3 and 7, then the system gets the name of author, e.g., ‘Feigenbaum’, and
the category of subject, e.g., computer_science. Then, the generated query looks like

library_item(X : computer_science_material

(author => {lname => ‘Feigenbaum’))),
show_item(X).

The generalized unification operation in LOGIN provides two invaluable built-in search
strategies: focusing computation only on relevant domains of objects, and intersecting such
domains. Such are indeced very effective for navigating through the knowledge base of
BABEL. Both features are performed in exactly same manncr---through y-unification---
but one can use them differently. For example, let us suppose that a user requests a book on

—187—

both computer science and linguistics written by Robert F. Sirnmons. There are two possible
ways to request it. The first:

library_item(X : computer_scicnce_books
(author = (fname => ‘Robert’,
mname => ‘F.’,
Iname => ‘Simmons’))),
library_item(X : linguistics_books),
show_item(X).

and the second

X = computer_science,
X = linguistics,
library_item(Y : book(author => (fname => ‘Robert’,
mname => ‘F.’
Ilname => ‘Simmons’),
subject => X)),
show_item(Y).

Through unification steps in LOGIN, the first query becomes:

library_item(X : nlp_book(author => (fname => ‘Robert’,
mname => ‘F.”,
Iname => ‘Simmons?’))),
show_item(X).

The domain of X which is computer_science_books and linguistics_books is intersected
down to natural_language processing books. This is focusing the domain of objects.

On the other hand, the second query becomes:

library_item(Y : book(author ==> (fname => ‘Robert’,
mname => ‘F.’,
Iname => ‘Simmons’),
subject => natural_language_processing)),
show_item(Y).

In this case, the variable X, which first becomes computer_science through unification, is
intersected with the term linguistics, and finally becomes natural_language processing. In
this way, intersection of types keeps a finer and finer focus on relevant solutions.

In BABEL, we can use either of the above queries, thanks to the hierarchy of physical
library material classified by subjects together with the conceptual subject hierarchy.
Operationally, however, there is a big difference between the two queries. In the first query,
we can reduce the search space by focusing the domain of objects, but not in the second
query. In the latter case, LOGIN will visit each record in the class books to check whether
the value of subject is natural_language processing.

6 Conclusion

We have prescented a prototype library expert system, BABEL, writen in LOGIN. By
using Y-terms, rather than first-order terms, LOGIN provides effective methods to represent
FRAME style knowledge struciure while kceping full expressive power of Prolog.

The strategy of y-term unification algorithm with order-sorted typed Horn logic [Smolka
87] provides efficient way to express set theorctical operations. Every set theoretical
operations can be expressed in unification opcration in LOGIN. Thus, it is possible to use a
set-at-a-time operation in LOGIN. For example, we can use assert to assert the fact whether
a library material 1is rescrved. If an Al facuity requests to reserve all
artificial_intelligence_matcrial, then we can usc ser-as-a-time operation by asserting the
whole set of artificial_intclligence _matcrial is reserved.

—188—

LOGIN 7- assert(reserved(artificial_intelligence_material)).

yes

LOGIN 7- reserved((title => ‘The handbook of artificial intelligence’)).
yes

As in above example, since any item which is an artificial intelligence material succeeds to
unify with artificial_intelligence_material, we can assert a set at a time without asserting
every items in Al as reserved.

In its comparison with its potential implementation in Prolog, BABEL in LOGIN seems
to provide the following advantages.
1. The knowledge base taxonomy is easy to use and maintain because of the
following features:

* Since attributes of a class inherit to its subclass, it allows default value,

e Every attribute is represented as a pair consisting of a label and a value,
as opposed to a position number and a value. Thus, the order of
arguments in a y-term is transparent to the programmer. As a result, the
number of attributes in two y-terms does not need to be the same to
unify the y-terms.

e LOGIN directly supports new programming features like semantic
domain definitions and domain focusing and intersecting.

e The above features enable a user to get without much overhead a
response from queries containing incomplete information.

2. LOGIN code is also likely to be better than Prolog’s for several reasons:

e Many deductions can be done at the unification level rather than at the
resolution level. For example, the unification strategy using disjunctive
classes, as described in Section 4.2, significantly reduces the number of
environment changes and backtrackings.

* By adding more restrictions to each argument in a query, one can reduce
the domain of the search space.

In summary, LOGIN looks very promising for dealing efficiently with the rich taxonomic
information found in BABEL. Ideas for convenient programuming which may turn out to be
good or bad have emerged. Such an example is the integration of a user-specifiable
inheritance operation on specific attributes. A mild example in the form of a self-description
facility is being added to LOGIN for BABEL where definition strings are related by prefix
ordering as opposed to subclass ordering. Extensions thereof may be string or regular
expression matching, erc.

In conclusion, we shall certainly admit that more work needs to be done to determine
fully the effectiveness of LOGIN in a real application. To make its advantages concrete, we
need to be careful in implementing an engine for LOGIN and its extensions so that the
overhead in performing a generalized unification algorithm does not outweigh the cfficiency
gained.

References

[Ait-I{aci 8Ga}] Ait-Kaci, H., An Algebraic Scmantics Approach to the Resolution of
Type Equations. in Journ. of Theoretical Computer Science 45, 1986,
Pp 293-351.

[Ait-IKaci 86b] Ait-I{aci, H. and R. Nasr, LOGIN: A Logic Programming with built-

in Inhcritance. in Journ. of Logic Programming Vol. 3, No. 3, October,
1986, pp 185-215.

—189—

[Ait-Kaci 87]

{Bobrow 77]
[Goldstein 77]
[Goldberg 80}

[Gorman 78]

[Minsky 75]

[Smolka 87]

[Stefik 83}

Ait-Kaci, H., Boyer, R., Lincoln, ., and RR. Nasr, The Efficient Imple-
mentation of Objcct Inhcritance. MCC Technical Report AI-102-87,
AI/ISA Project. Microclectronics and Computer Technology Corpo-
ration, Austin, TX. July, 1087.

Bobrow, D. G., and T. Winograd, An overview of NRL, a Knowledge
Representation Language. Cognitive Science 1o 3-46, 1977

Goldstein, I. P. and R. B. Robert., NUDGE, a knowledge-based
scheduling program. IICAI-3, 257-263, 1977

Goldberg, A. and D. Robson, Smalltalk80: The Language and its
mnplementation, Addison-Wesley, 1080.

Gorman, M. and P. W. Winkcr, (Eds.), Anglo-American Catalogu-
ing Rules, 2nd ed., Amecrica Library Association and Canada Library
Association, 1978.

Minsky, M., A framework for representing knowledge. in P. Winston
(Ed.) The psychology of computer vision, New York: McGrow-Hill,
211-277, 1975

Smolka G., and H. Ait-IKaci, Inlieritance Hierarchies: Semantics and
Unification. MCC Tecinical Report AI-057-87, AI/ISA Project. Mi-
croelectronics and Computer Technology Corporation. Austin, May

1987.

Stefik, M., D. G. Bobrow, S. Mittal, and L. Conway, “Knowledge Pro-
gramming in LOOPS: Report on an Experimental Course,” Artificial
Intelligence, Fall 1983, pp. 3-14.

—190-

