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Abstract 

This document aims at a discussion of the different interpretations that can be made of the calculus of 
probabilities with the question of how to assign a probability to an event: upon which elements, whether objective 
or subjective, does one base oneself in order to assign probabilities to events in areas as diverse as games of 
chance, social phenomena, or athletic competitions? The law of large numbers, which appears to reduce all 
probability evaluation to a limit of frequency, is discussed. 

Introduction 
As surprising as this may appear, the calculus of probabilities, that is the mathematical 
theory that concerns probabilities, does not say what the probability of an event actually is. 
In no opus of mathematics could you find a proof that the probability of getting “tails” when 
flipping a coin is 1/2; worse still, even if that was the case, the opus would not teach you 
what the probability of getting tails actually means. The objective of the calculus of 
probabilities is, given the probability of certain events, to calculate the probability of other 
events that depend on the given ones. Now, if you ensure a mathematician that the 
probability of obtaining tails when flipping a coin is 1/2, s/he would be able to tell you, or 
even prove to you, that the probability of obtaining tails exactly twice in three independent 
successive coin tosses is 3/8. However, this still does not teach you what this 3/8 means. 
Let there be no misunderstanding though: it is precisely because of this limitation that the 

                                                        
1 Laboratoire de Mathématiques d’Orsay — hugo.lavenant@u-psud.fr. 

2 One must think in order to measure but not measure in order to think. 

https://www.math.u-psud.fr/~lavenant/
http://www.hassan-ait-kaci.net/
https://www.math.u-psud.fr/~lavenant/msc/msc.html
https://www.math.u-psud.fr/~lavenant/msc/attribution_probabilite.pdf
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calculus of probabilities took off and realized intellectual constructions of great beauty 
which honor the human mind. But when it is question to use the results of the calculus of 
probabilities in concrete situations, to make decisions or as arguments in a debate, the 
meaning of the probability arises inevitably, whether implicitly or explicitly. 

This document will try to bring to light some elements of answer to the following question: 
how can we assign a probability to an event? That is, upon which criteria can we base 
ourselves to aver that the probability of obtaining tails is 1/2? It is necessary to define 
some terms, at least to draw a rough picture that will be later made more precise. An event 
is said to be random, risky, or also fortuitious, if there is some uncertainty concerning its 
happening. Of course, this definition is insufficient and begs being discussed in more 
details, but such is not the object of the present document; we shall assume that everyone 
has a sufficiently clear idea of what a fortuitious event is. To give some examples, such is 
the case of the coin that can fall on tails (or heads), but also of the fact that an individual 
dies in the coming year, or that a sport team wins its next game. A random experiment 
describes the conditions in which a random event can happen or not. The possible results 
of the experiment are the issues; therefore, a random event is one of the possible issues of a 
random experiment. In the three examples mentioned above, a coin toss, an individual’s 
life, or a game match are random experiments respectively associated to the corresponding 
random events. A central question is to know whether an experiment is reproducible; that 
is, whether the conditions in which an event possibly happens can be reproduced all other 
things being equal. Lastly, the probability of an event is a measure of its degree of certainty. 
The only constraint, is that probability of an event is a number that must be comprised 
between 0 and 1; the value 0 being assigned to an impossible event, and the value 1 to a 
certain event. 

In an attempt to clarify our project with a metaphor, let us compare the calculus of 
probabilities to geometry: one of the objectives of geometry is to express relationships 
between lengths, such as Pythagoras’s theorem; but geometry does not mention what a 
length is, and especially it does not say how a length is measured. It does not specify 
whether to use a ruler if the length to be measured is a straight line, or a string if what is to 
be measured is the perimeter of a curved shape like a circle. It does not specify what 
precautions to take in order for the measurement to be as precise as possible. On the other 
hand, geometry can prove theorems that explain how to measure a length indirectly; for 
example, in order to measure the distance between Earth and the Moon, there is no need to 
build a gigantic ruler as it suffices to measure the various angles under which the Moon is 
seen from Earth and some lengths on Earth in order to derive the length we seek. It is 
exactly the same for the calculus of probabilities: it suffices to replace “length” by 
“probability.” In particular, the calculus of probabilities can teach us how to measure some 
probabilities indirectly; namely, by reducing the measure of the probability of an event to 
that of another that is easier to obtain. The difference is that, while there is a consensus 
regarding how to measure lengths, such is not the case for probabilities. 

We next review threes manners of assigning probabilities, without pretense of exhaustivity 
nor historical contextualization; then, we shall discuss the result that seems to attempt to 
unify these conceptions: the law of large numbers. 
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Three ways of assigning probabilities 

The “classical” conception 
If we were to give only one name to symbolize the classical conception of probabilities that 
would be that of Pierre Simon de Laplace (1749–1827). In order to evaluate the probability 
of an event 𝐸 in a random experiment, one must begin by determining the cases (the issues, 
taking the terminology of the introduction) that are equally probable, then define: 

Probability(𝐸) =
number of cases 𝐸 happens

number of possible cases
. 

A paradigmatic example is that of rolling a (six-faced) die: if the die is balanced, then each 
of the six faces constitutes an “equally probable case,” such that in order to compute the 
probability of obtaining any of the faces, for example “five,” there is only one favorable case 
among the six that are possible, and therefore: 

Probability(“five”) =
1
6

. 

If the event in question is composed of several elementary cases, it suffices to enumerate: 
for example, there are three ways of obtaining an even number (namely, “two,” “four,” or 
“six”) so that: 

Probability(“obtain an even number”) =
3
6

=
1
2

. 

Another example that is abundantly used is that of picking a ball in an urn: if an urn 
contains 𝑝 white balls and 𝑞 black balls which are all otherwise identical except for color, 
then there are 𝑝 + 𝑞 balls and so 𝑝 + 𝑞 equally probable cases, and 𝑝 cases are favorable for 
picking a white ball, so that: 

Probability(“picking a white ball”) =
number of white balls
total number of balls

=
𝑝

𝑝 + 𝑞
. 

That is to say that the probability of picking a white ball is equal to the proportion of white 
balls in the urn. In general, the problem of assigning probabilities is reduced to an 
enumeration problem, since it suffices to count, to enumerate, the favorable cases and the 
possible cases. This type of problem is not always simple but it has the advantage of 
possessing an answer that is well determined, and more importantly that is determinable 
thanks to purely mathematical tools in which the notion of randomness or chance is 
eliminated. 

In reality, however, this definition begs clarification: how can we determine the “equally 
probable” cases? Since if this term is not made precise the definition is circular in that it 
presupposes a concept of equiprobability in order to obtain that of probability. In the 
foregoing examples, and in games of chance in general, it is considerations of symmetry 
that enable concluding: if the die is perfectly symmetrical, it is hard to see why a face would 
be more probable that the others; if the balls are identical, there is no reason why a ball 

https://www.encyclopediaofmath.org/images/4/47/PierreSimonMarquisDeLAPLACE.pdf
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would have more chance to be picked over another, etc. This is perfectly natural, almost 
instinctive, and this is why games of chance have been used to explain the meaning of the 
probability of an event. Thus, to explain the meaning of, for example, a death rate of 3 for a 
thousand, we can use an urn containing 3 black balls and 997 white balls, and the death of 
an individual is assimilated to picking a black ball, and the survival to picking a white ball. 
One must keep in mind that this is only an analogy; it does not define exhaustively the 
meaning of death rate. 

But how can we proceed beyond games of chance? We could say that the equally probable 
events are those about which we lack the same amount of information, those for which we 
are equally indecisive. This permits recognizing explicitly that probabilities are a means to 
measure our uncertainty, that they are a tool that allows us to express our lack of 
knowledge: probabilities are epistemic; that is, relative to our knowledge, or more precisely 
its imperfection. Laplace’s demon,3 having before his eyes all that happened and that will 
happen to the world, does not need probabilities; we humans do. But in reality the question 
has now shifted to quantifying our lack of knowledge: how can we judge whether we are 
“equally indecisive”? Either no information is available to us, but in this case one wonders 
on what authority we can pretend quantifying that about which we know absolutely 
nothing; or, we have pieces of information that are of equal weight, but then again we must 
explain how to weigh information. It is undoubtedly for this reason that it is hard to assign 
classical probabilities when conditions of symmetry do not apply: a trick die is already out 
of scope,4 but what about probabilities of death? 

Another severe criticism can be expressed against classical probabilities which becomes 
relevant when the number of equally probable cases is infinite as this gives rise to 
Bertrand’s Paradox. Indeed, if the number of possible cases and that of favorable cases are 
both infinite, the quotient defining the probability does not have a univocal sense. The 
paradox may be formulated as follows: let us assume that you have before you a glass 
containing a a mixture of 20 cl of water and an unknown quantity of alcohol, which you 
know to be comprised between 0 and 20 cl. What is the probability that the quantity of 
alcohol is comprised between 10 and 20 cl? Intuitively, you have a tendency to answer 1/2 
since, in the absence of information, the cases “between 0 and 20 cl” and “between 10 and 
20 cl” are equally probable. However, the problem can also be stated as follows: the 
proportion (the degree) of alcohol in this glass is comprised between 0∘ (if there is 0 cl) 
and 50∘ (if there is 20 cl). And a quantity of alcohol between 10 and 20 cl corresponds to a 

                                                        
3 To Laplace, the world is perfectly deterministic; that is, the state of the future of the universe is 
entirely determined by the present. The “demon of Laplace,” possessing an absolute intelligence and a 
perfect knowledge of only the present state of the universe, is capable by computation of knowing the 
future and the past as clearly as the present. 

4 We must be careful with such a statement: historically, probabilities were introduced in the 17th 
century to think about fair contracts in the presence of uncertainty. They were strongly connected to 
the notion of fairness and enabled finding the correct price. The idea of a trick die, or more generally of 
an unfair game of chance, was unthinkable from the perspective of probabilities at that time. 

https://www.uio.no/studier/emner/matnat/math/MAT4010/v17/notater/w-bertrand-paradox-%28probability%29.pdf
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proportion of 33∘ (more precisely: 1/3 of alcohol if there is 10 cl) and 50∘. However, the 
probability of the proportion of alcohol to be comprised between 33∘ and 50∘ knowing that 
it varies between 0∘ and 50∘ is, according to the classical method, 1/3 (the computation is 
(50 − 33)/50 ≃ 1/3). To the same question, namely “what is the probability that the 
quantity of alcohol is comprised between 10 cl and 20 cl?” we find two different answers: 
1/2 (if we reason in terms of quantity of alcohol) and 1/3 (if we reason in terms of 
proportion of alcohol). Two answers to the same question: this shows indeed that this 
question is ill-stated; that is, that the classical method is insufficient. 

Is there really nothing that can be salvaged in the classical conception, must it be all 
discarded in the dungeons of history? Not quite. First of all because, as pointed out above, it 
is not a matter of chance if rolling a die or picking a ball from an urn remain the most used 
examples to introduce the notion of probability, our mind intuitively perceiving the 
concept of equiprobability in this situations since it is reduced to that of symmetry. But also 
because modern methods enable us to push the classical method further by incorporating 
the cases where the available pieces of information do not put us in a situation of equal 
indecision: the incorporation is achieved by taking the distribution of probability that 
encodes the available pieces of information without any additional information, that is 
which maximizes the “disorder” among all situations that contain the available 
information,5 so that the probability reflects our knowledge and our lack of knowledge at a 
given time. 

The frequentist conception 
This conception is often presented as the only one worthwhile. If the underlying principle 
is rather simple, a rigorous definition and a real exploration of the consequences thereof 
can be attributed to Richard von Mises (1883–1953). The basic idea is that an event is seen 
as the issue of a random experiment, experiment which defines the conditions for the 
possible happening of the event and which must be reproducible. When it is reproduced a 
certain number of times, the frequency of an event 𝐸 is defined as the ratio of the number 
of times 𝐸 was realized over the total number of experiments, that is by: 

                                                        
5 Reference is made here to the concept of entropy as defined in Information Theory. If a random 
experiment has 𝑛 pairwise disjoint issues 𝐸1,𝐸2, … ,𝐸𝑛, in order to assign a distribution of probability 
p = (𝑝1,𝑝2, … ,𝑝𝑛), we choose the distribution p that maximizes the entropy: 

𝑆(p) = −�𝑝𝑘

𝑛

𝑘=1

ln(𝑝𝑘) 

among all the distributions of probability satisfying certain constraints corresponding to the available 
information on the random experiment. For example, we can impose that the expectation of a random 
variable, computed from the distribution p, be a fixed value. Maximizing the entropy guarantees that 
the distribution of probability does not encode more information than what is contained in the 
constraints on p. 

https://www.encyclopediaofmath.org/images/b/b3/RichardVonMISES.pdf
https://ee.stanford.edu/~gray/it.pdf
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Frequency(𝐸) =
number of experiments that realize 𝐸

total number of experiments
. 

This definition is quite different from that of the classical conception: in the latter 
enumeration was with respect to the possible issues of the experiment, while here it is with 
respect to the results of the experiments actually carried out. This definition depends on 
how many experiments have been carried out and it is not possible to identify frequency 
and probability without falling into paradoxical situations. For example, if a die is rolled 
and settles showing face “five,” taking into account only this experiment, the conclusion is 
that: 

Frequency(“five”) =
1
1

= 1. 

Yet, a probability of 1 corresponds to an event that is certain and it is not by making a 
single experiment that we can conclude that the event is certain always to occur: it is not 
possible to identify probability with frequency. To palliate this problem, we must carry out 
a sufficient large number of experiments. If for example a die is rolled 100 times and settles 
on the number “five” 18 times, then: 

Frequency(“five”) =
18

100
≃

1
6

. 

The larger the number of experiments, the more the frequency of realization of an event 𝐸 
approaches a limit value, and it is this value that is defined as the probability of 𝐸: the latter 
is measured more and more precisely by computing the frequencies of realization of 𝐸 for a 
larger and larger number of experiments. 

This constraint of “large” number of experiments demands some clarification. First of all, 
the fact the frequency of realization of an event approaches more and more a limit value by 
making a large number of experiments is an empirical property which is not postulated a 
priori but is verified experimentally: in this sense, the probabilities are objective; they 
describe the regularities of the world around us. It is only by actually rolling a die a large 
number of times that we can ensure that the frequency of realization of the face “five” is 
closer and closer to 1/6, and in this sense the casinos provide us the best proof of this fact, 
since they are indeed places where a large number of dice are rolled. Another example of 
empirically observed regularity is that of social phenomena such as weddings. Here, the 
event is identified to an individual, and the result of the experimentally is positive if this 
individual gets married within the coming year, and negative otherwise. It was a surprise, 
in the 19th century, to discover that the frequency of weddings was of unfailing regularity, 
and that the more the number of individuals (that is of experiments) increased, the more 
the frequency of individuals getting married within the year approached a limit value. It 
was a surprise because a wedding was seen as the expression of free will, so finding a 
regularity in such a phenomenon was unexpected. Once this regularity was observed, it is 
possible to give meaning to the probability that an individual get married within the year; it 
is the limit of the proportion of persons that get married within the year in a larger and 
larger population. 
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A possible objection is that it is not possible actually to realize an infinite number of 
experiments, and therefore the “true” probability of an event will never be known. In 
reality, thanks to the calculus of probabilities, it is possible to estimate the gap between the 
observed frequency and the “real” probability, and so for a large but finite number of 
experiments, the frequency gives the probability up to some known uncertainty.6 And 
thinking about it, this is the same thing for all physical quantity: a quantity such as the 
length of a table cannot be defined with infinite precision; any measure of the length of a 
table is flawed due to uncertainty depending on the measuring device (with a double-
decimeter ruler the uncertainty is of the order of one millimeter), and the “true” value of 
the length could be defined as the limit of the measure as more and more precise measure 
devices are used. But, one may argue, in some cases such as social phenomena the number 
of experiments can never exceed the number of people on Earth; hence, the probability can 
never be known up to a precision as small as wanted. Here again, a comparison with the 
concept of lengths is relevant: the length of a table is never defined up to an arbitrary 
precision; at a microscopic scale the edge of the table is not straight but irregular, 
temperature can fluctuate and modify slightly the length, etc., so that an irreducible 
imprecision plagues any measure of length. Thus, the concept of probability in this respect 
is as defined as that of length7 since we know, thanks to the calculus of probability, the 
conditions in which the frequency gives a good approximation of the probability. 

Another objection concerns the reproducibility of the experiments: rigorously speaking no 
experiment is similar to another, and this is all the more obvious when probabilities are 
defined for social phenomena. No wedding is identical to another; the statistical study of 
social facts goes through considering phenomena to be equivalent that are not so. This 
criticism is not unjustified but can be refined. The probability of an event depends on the 
random experiment of which it is seen as an issue; this is a property of the whole set of 
experiments and not of a particular case: as for rolling a die, the probability of obtaining the 
number “five” is not a property of the next die roll, but of a very large set of rolls indeed; as 
for weddings, the probability of getting married within the year does not concern one 
individual in particular but a whole social group, and so can vary depending on the group 
to which an individual belongs. Thus, the probability of getting married for a 25-year-old 
male individual who is still a student is not the same if he is considered to belong to the 
group of 25-year old males or that of students.8 If we specify too many conditions 
characterizing the social group that any single individual must belong to (25-year old male, 

                                                        
6 This is the concept of confidence interval: such an interval, centered around the observed frequency, 
indicates where the true value of the probability lies very probably. 

7 This does not necessarily mean that these concepts are well defined: thinking that there exists a “true” 
value that is real, objective, of the length of a table or of the probability of getting a “five” when rolling a 
die, that our measurements attempt to reveal it, or at least get close to it, is not a conception that is 
accepted by all, but it is argued here that the problem is not any different for the probability or the 
length. 

8 Even if this begs verification, it is surely higher in the first case than in the second. 
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student, living in Paris, diabetic, practicing a sport, amateur of broccoli, etc.), the social 
group could end up being restricted to a single individual and the probability does not 
make any sense any longer since the number of experiments is too small. Choosing a 
random experiment, that is of an equivalence class of distinct phenomena, is constrained by 
two opposite requirements between which a compromise must be found: the equivalence 
class must contain sufficiently many elements so that the frequency approaches the 
probability sufficiently well, while at the same time the distinct elements of the equivalence 
class must be sufficiently similar for the notion of “reproducibility” to make sense. 

A problem subsists: it must be possible to distinguish, among the results of repeated 
experiments whose frequencies of event realization converge, those which possess 
additional regularities from those corresponding to actual random experiments. Let us 
think of days of the week: although the frequency of “Thursday” is 1/7, to say that the 
probability of a given day of being “Thursday” is 1/7 appears devoid of meaning: the 
sequence of week days is not a random sequence; on the contrary, it exhibits a foolproof 
regularity. In order to palliate this flaw, it is necessary to have a criterion defining what a 
random sequence is. If we consider an experiment repeated a large number of times and 
we are interested in whether an event 𝐸, supposed to happen with probability 𝑝, is 
realized, we say that the sequence of results of the experiments is random if there is no way 
to earn money by betting on the happening of 𝐸. That is to say that if before each 
experiment, a gambler can bet any amount of money 𝑆 of his or her choice on 𝐸 happening 
(in which case, s/he wins 𝑆/𝑝 if 𝐸 actually happens) or on 𝐸 not happening (in which case, 
s/he wins 𝑆/(1 − 𝑝) if 𝐸 does not happen), and such that this gambler has only access to 
the results of the previous experiments, then there is no algorithm, no procedure, that will 
guarantee him/her (via the choice of the amounts 𝑆 of the bets) making a profit: over the 
long term, s/he will neither win nor lose money. Going back to the day-of-the-week 
example, a gambler would quickly understand that it is best to bet on “Thursday” 7 days 
after the last “Thursday” came about and then win money for sure. On the contrary, for 
games of chance, there does not exist any miraculous procedure that will guarantee 
winning money for sure, and there again this judgment does not follow from a priori 
considerations but from an empirical observation indeed; such observation having been 
made in the casinos.9 Here also the hypothesis that a sequence of experiments is random is 
a global property, which depends on the whole set of experiments, not on a particular case. 
Hence, it makes no sense to say that a single event is random; it always is so relatively to a 
series of experiments of which it is only one of the instances. 

Is the frequentist conception satisfactory? Not quite. First of all because the calculus of 
probabilities as it is today, although strongly inspired by this conception, presupposes in 

                                                        
9 Richard non Mises compares this observation with that of the impossibility of perpetual motion: just as 
physics does not prove that perpetual motion does not exist but on the contrary observes it and 
elevates this impossibility to a postulate (the second principle of thermodynamics), the calculus of 
probabilities does not prove that it is impossible to win money for sure in a casino but on the contrary 
elevates this impossibility to the rank of an axiom, of a criterion allowing to distinguish a random 
sequence from another. 
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reality stronger hypotheses.10 But also because if the experiments are not sufficiently 
reproducible or do not happen in sufficiently large number, by the frequentist conception 
one must renounce using the calculus of probabilities altogether. However, the concept of 
probability is sometimes used in such cases, notably as we shall see in what follows when it 
concerns the unique law of chance. 

The subjectivist conception 
This is perhaps the most unusual of the three conceptions, that we shall present below in 
the form given to it by the work of the philosopher and mathematician Bruno de Finetti 
(1906–1985), who is able, in an elegant manner, to rest his philosophical pretentions on 
mathematical results. For him, the probability of an event is a measure of the degree of 
belief regarding this event’s happening. The probability of an event is the result of the 
judgment of a human subject; therefore, it can vary from a subject to another for the same 
event: it is in this sense that it is subjective. It differs from the epistemic probability because 
the latter is relative to knowledge and so is identical for different rational subjects knowing 
the same things, while the subjective probability could still differ for such subjects. The 
classical example, besides the usual games of chance, are sporting events. Before a soccer 
game takes place, its issue is uncertain and everyone has a certain belief as to which team 
will win, the probability effectively allows quantifying this belief. Depending on the 
available pieces of information, on the sensitivity and experience of each, the beliefs and 
therefore the probabilities differ. Another example is prospecting for oil: a geologist is 
mandated by an oil company to indicate whether or not there is oil in a given region. The 
geologist investigates, assembles pieces of information and acquires a certain degree of 
belief, resting on the collected pieces of information and his/her own knowledge, regarding 
the presence of oil, or lack thereof, in the region in question. This degree of belief must be 
integrated into a complex decision process of the company: the decision to drill at this 
location depends on the potential presence of oil, or lack thereof, but also on the cost of 
drilling, or perhaps several potential drillings in other regions, on the economic objectives 
of the enterprise, etc. However, the geologist is not aware of all these details, and this is 
why s/he expresses her/his degree of belief using a probability: the latter is an operational 
means for expressing in a language comprehensible by all her/his level of certainty. Thanks 
to this language, the company can integrate this expert’s advice in its decision process 
without having to acquire the competence of the geologist, and without requiring that the 
latter know all the other stakes involved in the decision. 

It is necessary to have a way to operationalize the concept of probability, that is assign a 
number value to the degree of belief. The key tool is the bet. A subject assigns a probability 
𝑝 to an event 𝐸 if s/he is ready to bet a sum of money 𝑝𝑝 in exchange for winning the 
reward sum 𝑆 if 𝐸 actually happens. In other words, we measure the probability that is 
assigned by a subject to an event by looking at the odds at which s/he is willing to bet.11 To 
                                                        
10 For the connoisseurs, enumerable additivity (𝜎-additivity) of probability can be put in question by the 
frequentist conception even though it is one of Kolmogorov axioms. 

11 The probability is then defined as the inverse of the odds. 

http://www.brunodefinetti.it/bibliografia/bruno%20de%20finetti_statistics_med.pdf
https://www.stat.washington.edu/~nehemyl/files/UW_MATH-STAT394_axioms-proba.pdf
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dissipate any misunderstanding, several remarks are due. First of all, the bet is supposed to 
be made for any reward sum 𝑆 as long as it is not too large (for the sums that are too large 
people start being subject to risk aversion). In particular the reward sum can be negative, 
which is the same as betting on the opposite event with probability 1 − 𝑝. Thus, the subject 
had better bet at the odds that appear fair to her/him, at which s/he is neither losing nor 
winning. Second, and indeed in order to counter risk aversion, the subject is obliged to 
make the bet and propose a probability 𝑝. Last, this faculty of expressing one’s degree of 
belief using the betting method can only be acquired by experience. Bruno de Finetti 
trained his students by making them bet regularly on the games of the teams of the Italian 
soccer league, and as time went by they acquired a finer intuition of what probability 
measures. The probability is not a number given in some arbitrary way; it permits 
translating a conviction as to the happening or not of an event, and translation by the 
betting method requires practice, experience, to work correctly. 

So the probability of an event has a meaning only before the event takes place, since it is 
here to quantify the uncertainty. Once the event has occurred, only certainty remains and 
probability no longer has any reason to be. A probability is therefore associated to a 
singular event, contrary to the preceding conception where it had a sense only for the 
repetition of a random experiment and so depended on the complete set of results of the 
different experiments. While the probability has no meaning after the potential realization 
of the event, it can however be updated before in case new pieces of information become 
available. Take the soccer game example, if one of the two teams scores, then the subjective 
probability of the scoring team winning will surely increase: this does not mean that the 
new probability is more precise or “fairer”: the probability simply changes because the 
pieces of information that are accessible to the subject (here, the fact that a goal was 
scored) have changed. 

Part of the beauty of this method is that it possible to fall back on the usual rules of the 
calculus of probabilities. To take an example, let us assume that a subject (let’s call her 
Alice) has been led to place a bet on the issue of a soccer game between Bourges and Caen. 
She must choose among three options: (A) Bourges wins, (B) Caen wins, and, (C) tied game. 
She assigns to these three options the respective probabilities 𝑝𝐴, 𝑝𝐵, and 𝑝𝐶 . Now, let us 
suppose that 𝑝𝐴 + 𝑝𝐵 + 𝑝𝐶 ≠ 1: this violates the rules of the calculus of probabilities, since 
one and only one of the three options will happen. Then, there is a betting system, that is to 
say a choice of three sums of money 𝑆𝐴, 𝑆𝐵, and 𝑆𝐶 , such that if Alice bets on (A), (B), or (C), 
the respective sums 𝑆𝐴, 𝑆𝐵, and 𝑆𝐶 , at the odds indicated by 𝑝𝐴, 𝑝𝐵, and 𝑝𝐶 , then she loses 
money for sure. To be sure to understand this result well, a numerical application may 
help; so let us suppose that 𝑝𝐴 = 0.5, 𝑝𝐵 = 0.4, and 𝑝𝐶 = 0.3, so that 𝑝𝐴 + 𝑝𝐵 + 𝑝𝐶 = 1.2 >
1. Then, if Alice bets 5€ on (A) (and so wins 10€ if (A) is realized), 4€ on (B) (and so wins 
10€ if (B) is realized), 3€ on (C) (and so wins 3€ if (C) is realized), then she bets in total 
5 + 4 + 3 = 12€ and wins 10€ whatever the outcome is: she loses 2€ for sure. In a more 
general manner, with the only constraint being that a subject is coherent, that is to say that 
s/he does not accept a betting system in which s/he loses for sure, then it is possible to 
deduce the rules of the calculus of probabilities. 

The subjectivist conception possesses the advantage of enjoying a great coherence (at least 
more than the two others) and of being of great conceptual beauty. It is sometimes accused 

https://en.wikipedia.org/wiki/Risk_aversion
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of authorizing probability assignments that are “crazy” since arbitrary, but in reality one 
must see the betting method as a means to measure the judgment of a subject regarding an 
uncertain event, the degree of belief pre-exists to the measure and the latter requires 
training, experience, to take on a real meaning. Another criticism, or at least another point 
to clarify, is to know whether the objective probabilities can be made to constrain the 
subject probabilities: in the case where the frequency of the results of a random 
experiment that is repeated a large number of times approaches a limit value, must the 
evaluation of subjective probability of the result of the random experiment agree with the 
limit of the frequency? This will be discussed in the next section. Still, a major criticism 
persists: this concept of probability is fundamentally antirealistic,12 which poses a problem 
when it is used in theoretical physics. In statistical physics, which makes abundant use of 
the concept of probability, it is wished that probabilities have an objective sense, or at least 
an intersubjective sense (that is to say the assignment of a probability is the same for all 
the subjects), because we want the probabilities to reflect a reality that is in one sense or 
the other independent of us. And in fact the subjective probabilities miss this aspect. 

The law of large numbers 
It would be dishonest to discuss these different conceptions of probability without 
mentioning the result that is supposed to unify them by championing the frequentist 
interpretation; namely, the law of large numbers. Schematically, it states that if a random 
experiment is repeated a large number of times so that the different experiments are 
independent from one another, then the frequency of the realizations of an event will be close 
to the probability of this event. But in this formulation it is not specified what conception of 
probability, and in fact the status of law of large numbers remains to be clarified: is it a 
mathematically proven theorem or an empirical law? To answer these questions, it is 
necessary to explicate the meaning of this law in each of the three conceptions presented 
above. 

The classical conception 

To simplify the situation, we shall consider an experiment possessing only two equally 
probable issues, “success” and “failure,” so that the probability of “success” is equal to 
1/2. If 𝑛 independent experiments are carried out, the number of equally probable cases 
for the whole set of 𝑛 experiments is 2𝑛: for example, if 3 experiments are carried out, there 
are 8 equally probable possible issues:13 

“success, success, success” 
“failure, success, success” 
“success, failure, success” 

                                                        
12 One of treatises on probability by de Finetti starts with this voluntarily provocative sentence: 
“Probability does not exist.” 

13 The independence hypothesis is indeed expressed by saying that these issues are equally probable. 

https://plato.stanford.edu/entries/scientific-realism/#AntiFoilForScieReal
https://whatis.techtarget.com/definition/law-of-large-numbers
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“failure, failure, success” 
“success, success, failure” 
“failure, success, failure” 
“success, failure, failure” 
 “failure, failure, failure.” 

The law of large numbers states that if 𝑛 is large, among the 2𝑛 equally possible cases for 
the series of 𝑛 experiments a majority will correspond to situations where the frequency of 
success in the 𝑛 experiments is close to 1/2. In other words, if we fix a gap to be 𝜖 > 0 as 
small as we wish, then for sufficiently large 𝑛 the probability (as the proportion of success 
cases in over the 2𝑛 equiprobable possible cases) that the frequency of success in the 𝑛 
experiments is comprised between 1/2 − 𝜖 and 1/2 + 𝜖 is close to 1. For example, if we 
choose 𝜖 = 0.1, then by carrying out 𝑛 = 500 experiments, the probability for the 
frequency of success in these 500 experiments to be between 0.4 and 0.6 is 0.95. 

Let us clarify this result: the two probabilities appearing in this law of large numbers are 
probabilities in the classical sense; that is, as the ratios of success cases over the total 
number of cases. The law of large numbers is therefore a theorem; it is a result that can be 
proven mathematically and whose proof relies on enumeration: it does not involve any 
chance. Is the question settled then? No, because this law of large numbers does not say 
that in a very large number of experiments, the frequency of an event is close to the 
probability of the event; rather, it says that it is very probable that the frequency of the 
event be close to the probability of the event.14 To complete this line of reasoning, it should 
be possible to say that if an event possesses a probability that is very close to 1, then in 
practice it will occur (or equivalently, if an event possesses a probability that is very close 
to 0, then then in practice it will not occur), statement which can be called unique law of 
chance.15 However, the “classical” definition of the probability does not say why, if the 

                                                        
14 Connoisseurs will have noticed that only the so-called “weak” law of large numbers, that is of 
convergence in probability and not almost-sure convergence, is mentioned. The first reason is that 
convergence in probability is the one used in practice because it gives useful information for a large 
finite number of experiments; the second is that it is simpler to present. But more importantly that the 
strong law of large numbers does not resolve the problem of the unique law of chance (see below), 
because it is always necessary to explain why an almost sure event (which is not an event that is certain) 
always occurs in practice. 

15 This appellation in due to Émile Borel. He even gave an estimate of the probability above which an 
event never occurs in practice: for events that concern a unique individual, it is set to 10−6. That is to 
say that if an event possesses a probability that is less that a millionth, then it is safe to behave in 
practice as if it will not occur. This number is not arbitrary, it comes from the observation that if an 
individual had to take into account the complete set of events whose probability is less that 10−6, s/he 
would quickly be paralyzed and could no longer do anything. If on the other hand an event concerned 
only a single individual among the whole of humanity, its probability must be less that 10−15 in order for 
anyone to act as if it does not occur. For example, at an individual’s scale, a subject must behave as if 
s/he was going to lose at the game of lotto, but a the scale of a country’s population, it is not longer 
possible to behave as if everybody would lose at the game of lotto. 

https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_probability
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Almost_sure_convergence
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probability of an event is extremely close to 1, one has to behave in practice as if it occurs 
certainly. The classical conception does not explain in a logical manner why we practically 
never observe events whose probability is almost 0 and always those whose probability is 
almost 1. This is a hypothesis that falls out of the framework of classical conception, so that 
within the latter it is not possible to prove the convergence of the frequencies. 

The frequentist conception 

The frequentist conception gives the impression on the contrary to start from the law of 
large numbers since it defines probabilities as limits of frequency. In particular, and as it 
has already been said, convergence of frequencies is an empirical observation, it is not 
provable. However, there does indeed exist a law of large numbers that does not 
correspond to this hypothesis made of convergence of frequencies, but that specifies the 
“speed” of convergence. It consists of the same statement as that of classical conception, 
namely that for any 𝜀 > 0 that we pick, it is possible to derive a number 𝑛 of experiments 
sufficiently large so that with a probability close to 1, the observed frequency of an event’s 
realization of probability 𝑝 will be comprised between 𝑝 − 𝜀 and 𝑝 + 𝜀, and it is also 
possible to quantify how large 𝑛 must be.16 This quantification is useful because it enables 
estimating the gap between the “real” probability and the observed frequency, as well as 
determining the degree to which the measure of the probability made by observing the 
frequency is precise. 

Here too let us clarify this result: first of all, it is derived from two premisses: the hypothesis 
of convergence of frequencies, and the hypothesis of randomness of the sequence of 
experiments (that is, there does not exist a betting system that can guarantee winning for 
sure when taking into account past issues of the experiments). In this law of large numbers, 
the probabilities are to be understood in their frequentist interpretation: namely, that the 
probability of an event is equal to the limit of the frequency of its realizations if the number 
of experiments is large, and that the probability that in 𝑛 experiments the frequency of the 
realization of an event is comprised between 𝑝 − 𝜀 and 𝑝 + 𝜀 (where 𝑝 is the probability of 
the event) is close to 1 means that by carrying out a large number of times sequences of 𝑛 
experiments, in the major number of these sequences the observed frequency of the event’s 
occurrence is comprised between 𝑝 − 𝜀 and 𝑝 + 𝜀. As well as in the classical case, the 
frequentist law of large numbers says that it is very probable that the frequency of 
realization of the event be close to its probability, where however the expression “it is very 
probable” takes another meaning. In the frequentist conception, an event is very probable 
if, when the random experiment is repeated a large number of times, it is realized in the 
major number of cases. Taking again the numerical example given above (the one in which 
the probability of the event “success” has probability 1/2), if we repeat a large number of 
times sequences of 500 experiments, then in the major number of these sequences, the 
frequency of success will be comprised between 0.4 and 0.6. But this does not explain why 
the unique law of chance must apply: in most cases we are confronted with a unique 
                                                        
16 In its mathematical form, it states that if 𝑛 experiments are carried out then with probability greater 
than 1 − 1

4𝑛𝜀2
 the gap between the frequency of an event and its probability will not exceed 𝜀. 
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occurrence of an extremely probable event, not several; yet, the probability of an isolated 
event makes no sense in the frequentist conception. In practice, we never carry out several 
sequences of 500 experiments in order to verify that the frequency of success varies only 
so slightly from one sequence to another. Just like the classical conception, albeit for 
different reasons, the frequentist conception is not able to justify only with internal 
arguments the unique law of chance: since probability is always defined relatively to a 
sequence of experiments, it is not possible to explain why it must impose a specific 
behavior facing a singular event even if the probability of this event is very close to 1. 
However, the unique law of chance recommends in fact, when facing a singular event 
whose probability is close to 1, to behave in practice as if it was to happen. If the 
frequentist conception can “prove” the law of large numbers, it cannot formally justify the 
pragmatic use made of it. 

The subjective conception 

The subjectivist conception being indeed anchored in decision making, the unique law of 
chance is natural: almost by definition, if I assign to an event a probability close to 1 then I 
behave in practice as if it was certain. The necessity that prompts me to act like this is not 
located in the world, it is within me, in the sense that the probability that I assign 
corresponds to a judgment, not the state of the external world. This is the reason why the 
problem of justifying the unique law of chance disappears in a subjectivist conception, 
whereas in the other conceptions it has to do with how a state of the external world 
dictates a rational individual a way to behave. 

But another problem poses itself then for the subjectivist conception: how can the 
regularities of the world have an influence on the probabilities that I assign? If for example 
I observe 100 tosses of heads-or-tails and “tails” comes out 52 times, why should I assign 
the probability of coming out tails a value close to 1/2? It would even be possible to try to 
combine both the existence of objective and subjective probabilities, the latter being equal 
to the former whenever these are available; thus infinitely repeatable events would be 
described as limits of the frequencies of their realization and the subjective probabilities 
could apply to singular events. However this is not what de Finetti accepts as valid; he 
proposes another vision relying upon an elegant mathematical theorem. Let us suppose 
that a sequence of random experiments with two issues (“success” and “failure”) occurs 
in front of me, for example as a chance game. Let us suppose that I make the hypothesis 
that the number of success among the 𝑛 tosses does not depend on the order of tosses, 
that is to say for example that I assign an equal probability to 1 “success” followed by 5 
“failures” as to 3 “failures” followed by 1 “success” then 2 “failures.” This supposition 
is a subjective judgment that I am led to make if the experiments seem to be identically and 
independently reproduced. Then, simply with this hypothesis of order indifference and the 
rules of the calculus of probabilities (which, let us be reminded, are derived from a 
requirement of coherence), I must modify my probability estimates with the results of the 
next issues of the game, in the same formal manner as if the frequency of success were to 
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converge whenever the number of experiments increases more and more.17 The “law of 
large numbers” shows how, by adding this subjective judgment of indifference in the order 
of successes, probabilistic reasoning constrains one to assign to the probability a value that 
is closer and closer to the observed frequency whenever the number of experiments 
increases. 

What to retain from this discussion? First of all that beyond a vague idea of convergence of 
frequencies toward the probability, the formulations of the law of large numbers turn out 
to be more and more subtle. In particular they allow to estimate the number of 
experiments that must be realized so that it becomes very probable that the observed 
frequency of realization of an event be close to its probability, which information is 
extremely useful to know up to what precision the frequencies approach the probabilities. 
However, sooner or later, this argument becomes circular, since we must explain why in 
practice, we must behave as if an event that is very probable occurs for sure, which is 
explained by neither the classical nor the subjective conceptions from their internal 
structure alone. The subjectivist conception is in a sense built to address this very question, 
and it can also afford the luxury of explaining why, and in which conditions, it is rational to 
behave as if the frequencies were to converge as the number of realizations of similar 
experiments augments. But the problem that remains is that if we do that, this rejects all 
notions of statistical regularities of phenomena that could be objectively described since the 
probabilities exist only in our mind. 

Conclusion 
How could be reconcile these different visions? Rather than counting points to designate a 
“winner” way that is the best manner to assign probabilities, it is without a doubt more 
useful to see the study of these irreconcilable viewpoints as an exploration of what is 
possible.18 Each of these conceptions thoroughly explores a specific viewpoint on 
probabilities, exhibits the questions to which the viewpoint can respond, the main 
advantages as well as the problems that it gives rise to, aspects that are ungraspable. For 
                                                        
17 For the connoisseurs, this formulation is not precise enough. The result of de Finetti (for a modern 
presentation one can consult J. F. C. Kingman’s article, “Uses of exchangeability” in the The annals of 
Probability, 1978, Vol. 6, No. 2, 183–197) can be formulated as follows: if 𝑋1,𝑋2,  … are random variables 
taking values 0 (“failure”) or 1 (“success”) so that for any permutation 𝜎 of {1,2, … } the law for 
(𝑋1,𝑋2, … ,𝑋𝑛) is the same as the one for �𝑋𝜎(1),𝑋𝜎(2), … ,𝑋𝜎(𝑛)� (order indifference), then the law of 
the random process (𝑋𝑛)𝑛≥1 is a convex combination of laws of i.i.d. Bernoulli processes. This means 
that there exists a measure 𝜇 of probability over [0,1], such that the probability of having 𝑟 successes 
and 𝑛 − 𝑟 failures among (𝑋1,𝑋2, … ,𝑋𝑛) be equal to ∫ �𝑛𝑟� 𝑝

𝑟1
0 (1 − 𝑝)𝑛−𝑟dμ(p). Thus, the hypothesis of 

order indifference does not imply that the process is independent; rather, it is a “mixture” of 
independent processes. The empirical frequency 1

𝑛
𝛴𝑘=1𝑛 𝑋𝑘 converges then toward a random variable 

observing the 𝜇 law. 

18 This idea was heard in a conference given by Soazig le Bihan. 

https://projecteuclid.org/download/pdf_1/euclid.aop/1176995566
http://www.soaziglebihan.org/
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example, if the objective probabilities are well-defined attributes of phenomena, just as 
lengths, they come amiss when it is needed to capture singular events and in particular 
cannot directly catch the unique law of chance which helps determine our decisions. Only a 
rigourous analysis of the concepts being used, which we hope to have sketched in this 
document, will allow reaching such conclusions and in particular to differentiate the real 
insufficiency from that which only has the appearance of it. 

It is neither a static analysis, a viewpoint settled into fixed positions: all the interest of 
having several interpretations is to be able to navigate from one to the other. Indeed, one 
must not forget that probabilities can serve an argumentative scheme and feed a rhetorical 
network. It is precisely their hermeneutic character that has made them be used by such 
diverse actors as casino gamblers, physicists, sociologists, betting addicts, etc.,… To 
illustrate this diversity of uses, let us look at climate sciences. Climatologists must manage 
three kinds of uncertainty: the one linked to the natural variability of climate, which can be 
said to describe itself objectively with the analysis of the frequencies of the phenomena; the 
one linked to the imperfection of our knowledge of the climatic system; and, the one linked 
to human behavior, since it is difficult to predict the future state of our civilization and 
therefore of our emissions of greenhouse gases. The magic provided by probabilities 
allows, in the reports intended for the general public or decision-makers, to combine these 
fundamentally different uncertainties into a unique number that can be remembered and 
used outside the scientific sphere. 

A better knowledge of the interpretations of probabilities enables better clarifying their 
role in an argumentation, notably by pointing out possible slips of meaning: how many 
times an objective probability, based on statistical observations, is identified to the 
individual propensity of an individual. How many times games of chance are used to give a 
meaning to a probability when the context is not appropriate? Such a powerful and 
polysemic tool as the calculus of probabilities deserves better than just being used without 
questioning the meaning of the answers it provides. 

  

https://en.oxforddictionaries.com/definition/rhetorical
https://en.oxforddictionaries.com/definition/hermeneutic
https://en.oxforddictionaries.com/definition/polysemy
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