The Wild LIFE Handbook
(prepublication edition)

dliloli[tlall

PARIS RESEARCH LABORATORY

March 1994 Hassan Ait-Kaci
Bruno Dumant
Richard Meyer

Andreas Podelski
Peter Van Roy






The Wild LIFE Handbook
(prepublication edition)

Hassan Ait-Kaci
Bruno Dumant
Richard Meyer

Andreas Podelski
Peter Van Roy

March 1994




(© Digital Equipment Corporation 1994

Thiswork may not be copied or reproduced in wholeor in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that al such whole or partia copiesincludethefollowing: anoticethat such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Mamaison, France; an acknowledgement of the authors and individual contributorsto the work;
and al applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall requirealicense with payment of feeto the Paris Research Laboratory. All rightsreserved.



Abstract

This handbook provides a tutoria of the LIFE programming language as well as a complete
description of the capabilities of the Wild LIFE 1.0 system. Although we have attempted to
make the tutorial self-contained, it is preferable that the reader be familiar with Prolog. The
tutorial exposes gradually the main components of LIFE in a synthetic approach: its original
data structure—1)-term—and its use in predicates, functions, and sort (type) definitions. Along
the way, many useful examples are provided and some common pitfalls are discussed and
illustrated.

Résumé

Ce manuel fournit un cours d'initiation au langage de programmation LIFE, ainsi qu’'une
description détaillée des prédi cats et fonctions prédéfinis dans|’ interpréte Wild LIFE 1.0. C'est
la premiére fois que nous tentons d’ écrire une introduction pratique & la programmation en
LIFE. Bien que nousfassions|’ effort de n’ utiliser que des notions & émentaires ou prédefinies,
il est préférable que le lecteur ait dga une connaissance de base de Prolog. Le cours expose
graduellement et de fagon synthétique les principaes composantes de LIFE: sa structure de
données origina e—Ile 1) -terme—et son emploi dans | es clauses, les fonctions et |es définitions
de sortes (types). Beaucoup d' exemples utiles sont donnés tout au long du manuel et quelques
piéges courants sont illustrés et discutés.



Keywords

Constraint programming, logic programming, functional programming, object-oriented pro-
gramming, rapid prototyping, inheritance.

Acknowledgements

The Wild LIFE project has been very much ateam effort. The low-level X Window interface
was implemented by Jean-Claude Hervé. The graphica interface toolkit and accumulator
preprocessor were implemented by Bruno Dumant. We thank the other, past and present,
members and visitors of the Paradise project at PRL and its follow-on, the Proteus project, for
their suffering along with the final debugging of the design and delivery of Wild LIFE. We
appreciate their active and continuing participation giving many examples, bug reports, and
constructive criticisms. For thefinal haul on version 1.0 we especialy thank Arnaud Venet.



Contents

1 Introduction

2 Road map
3 Running Wild LIFE
3.1 Gettingstarted . . . .. ... e
3.2 lnputsyntax . . . . .. .. e
3.3 Incremental query extension . . . .. ... ... ..o
3.4 Loadingfiles . .. ... ...
3.5 Interrupting execution . . . . . . ... .. e
4 The basic data structure: ¢-terms
4.1 SOrtS . .. e
4.1.1 Defining sortinheritance . . . . . . . ... ..o L.
4.1.2 Built-insorts . . .. L
4.1.3 Greatestlowerbound (glb) . . . ... ... ...
4.2 Attributes . . ...
4.3 Variablesandtags . .. ... .. ... o
4.4 Unification . . .. ... . .
4.4.1 A step-by-step comparison with Prolog unification . . . . . . . ..
5 Predicates
5.1 Defining predicates . . . . . .. ... e
5.2 Executing predicates . . . . . ... Lo e
5.3 Pruning the search tree withcut . . . . .. ... ... ... ......
531 Thescopeofcut . ... ... .. ... ... ... ...,
5.3.2 Disjunctivetermsandcut . . . . ... ... L.
5.3.3 Negation-as-failure . . . . . .. ... oo oL,
6 Functions
6.1 Defining functions . . . ... ... ... e
6.2 Executingfunctions . . ... ... ... oo
6.3 Matching . . ... .. . . . . e
6.4 CUrmying . . . . . e e
6.5 Quoteandeval .. ... ... ...
6.6 Choosing between matching and unification . . . .. ... ... ...
7 Constrained sorts
7.1 Defining constrained sorts . . . . .. .. L oo
7.1.1 Sortattributes . . . .. Lo L
7.1.2 Constrainedsorts . . . . . . . ... e
7.2 Executing constrained sorts . . . .. ... oo
7.3 Constrained sortsasdaemons . . . . . .. ... ... ...

14
14
14
15
15
16
16

17
17
19
21
22
26
27



8 Basic built-in routines

8.1 Controlflow . . .. ... .. e
8.2 W-termmanipulation . . .. .. ...
8.3 Arithmetic . . . . . . . . .. e
8.3.1 Arithmeticcalculation . . . . .. ... ... ... ...,
8.3.2 Arithmeticcomparison . . . . . . .. ... .. Lo L.
8.3.3 Booleanarithmetic . . . . ... ... ... ... oL,
8.4 SOrts . ... e
8.4.1 Sortcalculation . . . . .. ... oo oL
8.4.2 Sortcomparison . . . .. ..o e e
85 Strings . . . ... e
8.5.1 Stringcalculation . . . .. ... ... o0 oL
8.5.2 Stringcomparison . . . .. ... Lo
86 Typechecking . ... ... ... ... ...
8.7 Input/output . . . . . ...
871 Reading . . ... ... .. ...
8.7.2 Writing . . . . . . . . e
8.7.3 Parsingastring . . . ... ... oo
8.7.4 Operatordeclarations . . . . . . . . . ... oL
875 Filesandstreams . . . . . ... ... o Lo,
8.8 System-related built-ins . . . .. ...
8.8.1 TheWildLIFEsystem . . ... ... ... ... ........
8.8.2 TheUnixsystem . . . .. ... . ... ... ...
8.8.3 Timekeeping . . . . . . . . ...
8.9 Loading files with term expansion . . . .. ... ... ... .. ...
8.9.1 Defining term expansionclauses . . . . .. ... ... ... ...
8.9.2 Using term expansion when loading files . . . . . .. ... ....
9 Global variables, persistent terms, and destructive assignment
9.1 Gilobalvariables . ... .. ... ... .
9.2 Persistentterms . . . . .. .. e
9.3 Persistentvariables . . .. ... oo
9.4 Destructive assignment . . . . . ... oo
9.4.1 Backtrackable destructive assignment . . . . . . . ... ...,
9.4.2 Nonbacktrackable destructive assignment . . . . . . ... . ...
9.5 Quoting . . . ... e
9.6 Summary of built-ins . . . . ... o
10 Modules
10.1 Standard modules . . . .. ...
10.2 Usingfeatures . . . . . . . . . . ...
10.3 Overloading . . . . . . . . . e
10.4 Summary of built-ins . . . . . ...

Vi

33
34
38
41
41
42
43
43
43
45
46
46
47
47
47
48
49
52
53
54
55
55
57
58
58
59
59

60
60
61
61
62
62
62
65
65



11 Rule-base management 71

11.1 Addingrules . .. ... e 71
11.2 Deletingrules . . . . . .. . . e 72
11.3 Inspectingrules . . . . ... . e 73
11.4 Function definitions . . . . . . . . ... e 73
11.5 Summary of built-ins . . . . . . ... 74
12 Example programs and programming techniques 75
12.1 Generating prime numbers . . . . .. . ... Lo 75
12.2 PERT scheduling . .. ... .. ... . . . ... .. ... 76
12.3 Cryptarithmetic: SEND+MORE=MONEY . ... ... ... ... ... 78
12.4 Concurrent programming . . . . . . . . . oot e e 80
12.5 Encapsulated programming . . . . . . . .. ... oo e 81
12.6 Classesandinstances . . . .. . .. ... ... ... 82
12.7 Using destructive assignment to calculate termsize . . . . .. .. .. 83
12.8 Usinga-termasanarray . . . . .. ... ... 84
12.9 Memoization . . . . . . . . . . e 85
12.10 Method inheritance in the graphical interface toolkit . . . . .. .. .. 86
12.11 Structural constraints and arithmetic constraints . . . . . . .. .. .. 87
13 Fine points for would-be wizards 88
13.1 Functional variables and apply . . . . ... ... ... ... . 88
13.2 Querylevels . . . . . e 89
13.3 Predicate and function positions . . . . .. .. ... oL 90
13.4 Compact sort definitions . . . . . .. ... ... L L. 92
13,5 Sortencoding . . . . . ... e 94
13.6 Printing convention . . . . . .. ... 94
14 Hints to write more efficient programs 95
14.1 Garbage collection . . . . . . .. ... ..o 95
14.2 Residuation . . . . . . . ... e 96
14.3 Partial evaluation . . . ... .o 97
15 Compatibility with Prolog 97
16 Conclusion: the experience of Wild LIFE 100
A LIFE versus Prolog 101
B Predefined operators 102
C Glossary 103
D Practical information about Wild LIFE 1.0 105

Vii



E Manpage
F The accumulator preprocessor
F1 Accumulators . . . . . . . . ..
F1.1 Basicexamplesandsyntax . . . . .. ... ... .. .......
F1.2 Accumulation . . . . ... ..o
F1.3 Otherfeatures . . . . . . . . . . s
F2 Operations onaccumulators . . . . . ... ... ... ... ......
F2.1 Contextof anexpansion . . . . ... ... ... .. .......
F2.2 Operations . . . . . . . . . . e
F3 TheDCGaccumulator . . ... ... ... ... ... ... ......
F3.1 Definition . . . . .. ...
F3.2 DCGsyntax . . . . . . . . . . i e e e
F.3.3 Implementationnotes . . . . . . . .. ... ...
F4 Passedarguments . . . . . ... ... ... ... ...
F5 Common problems and debugging . . . . . ... ... ... .. ....
F6 Termexpansion . . .. .. ... ... ...
G The X interface
G.1 Eventmaskvalues . .. .. ... . ... ...
G.2 Primitive control operations . . . . .. ... .. Lo
G.3 Primitive drawing operations . . . . . . .. ... . oo
H The graphical interface toolkit
H.1 Introduction . . . . .. . . . .. . . . ..
H.2 Boxes and their placement constraints . . . . . . ... ... ... ...
H.2.1 Boxesusedaspadding . ... ... ................
H.2.2 Positioning . . . . . . . . .. L
H.2.3 Lists . . . . . . o e e e e
H.2.4 Sizesofboxes . . . ... ... Lo L.
H.2.5 Creatingabox . . . . .. ... ... ... .. .
H.3 Mainconstructors . . . . . .. . .. . ...
H.3.1 Panels . . ... .. .. e
H3.2 Buttons . . . . . . . . . . e
H.3.3 Menus . . .. . . . . . e
H.3.4 Sliders . . . . . . . e e
H4 LOOKS . . . . . . e
H.4.1 Looktypes . . . . . . . . . .
H.4.2 Inheritanceoflooks . . . . . . . ... ...
H.4.3 Colorsandfonts . . . .. ... ... ... ..
H.5 The hierarchy of graphical interface objects . . . . .. .. ... .. ..
H.6 Screenobjects . . ... .. ... . ..

106

109
110
110
111
112
115
115
116
120
120
121
121
123
124
125

126
126
126
128



| The C-LIFE interface 140

.1 Description . . . . . . . . e 140
.2 Asimpleexample . .. ... ... ... 140
.3  Summary of functions and prototypes . . . . .. ... ... ... ... 140
.4 Memory management . . . . .. .. ... e 141
.5 Anexhaustiveexample . .. ... ... ... . ... .. . ... 141
References 145






Wild LIFE Handbook 1

... I’élément ne préexiste pasal’ensemble, il n’est ni plus
immédiat ni plus ancien, ce ne sont pas les &léments qui
déterminent I'ensemble, mais I’ensemble qui détermine

les &ééments.
Georces Perec La vie, mode d’ emploi.

1 Introduction

LIFE isaprogramming language originally conceived by Hassan Aiit-K aci and hiscolleagues
at MCC, inAustin, Texas[4, 5, 3]. Itisasynthesisof three different programming paradigms:
logic programming, functional programming and object-ori ented programming.? LIFE is a
declarative | ogic-based language that can be seen as a constraint language. It derivesits syntax
and resolution method from Prolog. Except for differences in built-ins, Prolog programs
can run unatered in LIFE if they follow the syntactic convention that each predicate and
functor symbol is used with one arity only. However, the addition of functions, approximation
structures (> -terms) and inheritance greatly enriches the language and allows one to formulate
efficient programs more easily, more concisely, and—in our opinion—more naturally [7, 8].

Wild LIFE 1.0 isan interpreter for LIFE writtenin C. The main design goalsfor Wild LIFE
are functionality and robustness. The interpreter implements most of the LIFE language and
is robust enough to support serious program development. To increase the system'’s general
usefulness, we have added alarge number of useful tools and example programs.

Asagenera rule, usersof Wild LIFE are encouraged to use LIFE’s uniquefeatures wherever
possible. They should not worry about low-level efficiency issues, but think only of using the
expressive power of the language. We are using Wild LIFE to develop a LIFE compiler. We
are making every effort to ensure that the compiler generates efficient code for well-written
programs. Its design goals are to be competitive in speed with the best implementations of
Prolog and to be usable for arbitrary large programs and data.

2 Road map

The purpose of this document is twofold: it isintended as atutorial to the LIFE language
as well as a programmer’s reference to the Wild LIFE system. Table 1 gives an outline of its
contents.

To aid in understanding Wild LIFE, we shall use a specia “watchful eyes’ sign, (9, to
highlight specific points where the behavior of Wild LIFE may run counter to conventions or
expectations. It will act as aconspicuousmarking device at the outset of a paragraph toindicate
that you should watch out for the observation to follow to avert potential trouble.

TheLIFE compiler will beas compatibleas possiblewith Wild LIFE 1.0. To ensurethat your
programs will be portable to the compiler, they should only make use of built-ins documented
in thishandbook. There exist other, undocumented built-ins. We strongly recommend that you
do not use undocumented built-ins. We do not make any guarantees that they will continue to
exist in the compiler.

1Life, auser manual.
20r rather, a particular view of object-oriented programming dealing essentially with inheritance.

Research Report Draft March 1994



2 Hassan Ait-Kaci et al.

Tutorid

Sections 1-3 (pages 1-7) The basic properties of the LIFE language and the
Wild LIFE system.

Sections 47 (pages 7-33) A genera introduction to the concepts of LIFE:
-terms(the datastructure), predicates, functions,
and sorts.

Reference

Section 8 (page 33) The core set of built-in routines.

Section 9 (page 60) Theimplementation of destructive assignment and
the concepts of global variables and persistent
terms.

Section 10 (page 66) The module system.

Section 11 (page 71) Rule-base primitives that have been kept for
compatibility with Prolog, but whose use is not
encouraged.

Programming techniques
Sections 12-14 (pages 75-97) Examples and useful information on how to write
good programs.

Section 15 (page 97) A full list of the differences between Wild LIFE
and Prolog.
Appendices

Appendix A (page 101) A short list of reasons why you should use LIFE
instead of Prolog.

Appendix B (page 102) The predefined operatorsin Wild LIFE.

Appendix C (page 103) A glossary of frequently-used terminology.

Appendix D (page 105) Information on what the system release contains,
how to get it, and how to get in touch with other
LIFE users.

Appendix E (page 106) The manpage for the system, describing the vari-

0us execution options.

Appendices F-I (pages 109-144) Documentation of four useful tools: the accumu-
lator preprocessor, the X interface, the graphical
interface toolkit, and the C-LIFE interface.

Table 1: Road map of the Wild LIFE handbook

March 1994 Digital PRL



Wild LIFE Handbook 3

3 Running Wild LIFE
3.1 Getting started

To start running the interpreter at the shell level, ssimply invoke thecommandwi | d_I i f e.
The program responds with the following message of identification, and the prompt > when it
isready to accept input:

WIld_Life Interpreter Version 1.0

Copyright (C 1991-93 DEC Paris Research Laboratory
No custom zing file | oaded.

>

At this point you may either make assertions, submit queries to be solved or exit by typing the
key sequence CTRL-D which closes the input stream. The query hal t ? can aso be used to
terminate Wild LIFE. (Note: throughout the handbook anyt hing written like this
issimulated input or output from the interpreter.)

Upon startup, Wild LIFE automatically loadsthefile. wi | d_I i f e. Thisisaconvenience
to allow you to customize your environment at each session. The customization file is first
looked for in the current directory, and if not found there, in your home directory. If noneis
found, then Wild LIFE prints the message No customi zing file | oaded asisdone
above.

3.2 Input syntax

Wild LIFE uses essentially the same syntax as |SO Standard Prolog, which is very close
to the Edinburgh syntax [10, 15, 19]. Unless specifically indicated to be different, the same
syntactic conventions apply. In particular, variables are capitalized (or start with an underscore
“_") whereas everything elseis not, = isthe unification predicate, : - definesaclause,! isthe
cut predicate, etc. When we depart from the familiar syntax, we will comment on the changes,
giving our justification for adopting them.

There are two kinds of user input to Wild LIFE: declarations and queries. A declaration
becomes part of the program and is not executed. A query is a question asked of the system.
The syntactic difference between the two is how they terminate:

e Declarations are terminated by a period: “. ”.
e Queries are terminated by a question mark: “?”.

Example 3.1
o Assart that chaplinisfunny: typef unny(chaplin). then(CR).3
e Ask who is funny: type funny( X) ? followed by (CR); this will yield the answer
X=chapl i n.
e Ask for another answer: type; followed by (CR); thereisno more answer since chaplin
isthe only funny thing around.

3we will use the notation (CR) to denote a carriage return.

Research Report Draft March 1994



4 Hassan Ait-Kaci et al.

Spaces, tabs, and line feeds appearing between tokens are ignored, so fedl free to indent
things as you wish or give input over several lines. When you do this, the prompt becomes “|
" after thefirst line. The system knows when the query or declaration has ended. Comments
are introduced by %and terminate at the end of theline.

System messages, warnings, and error messages al start with three stars * * * | which make
them easy to recognize. If the query can be satisfied then Wild LIFE will print the bindings of
the query variables followed by the message *** Yes. If the query cannot be satisfied, the
message * **  No will be printed.

Example 3.2 Let usassert afew facts defining a paternity relation:
> father(john, harry).

* % % Yes
> father(john,charles).

* k% Yes
> father(harry, mchael).

*** Yes
We assert that X isthe grandfather of Y if X isthefather of Z and Z isthe father of Y:
> grandfather(X, Y) :- father(X 2Z),father(Z,Y).
* % % Yes
We try aquery:
> grandfather (A B)?

* k% Yes
A = john, B = m chael.

3.3 Incremental query extension

Upon success of a query, the user is offered the possibility of extending it using the resulting
context. Thiscan be continued to any level of nesting. The query level isprinted in the form of
anumbered and indented prompt. At the prompt the user can take one of the following actions:

e Typeagoal followed by ? to extend the query.
¢ Type (CR) to abandon the last query increment and go back to the previouslevel.
e Type; to force backtracking and look for another answer.

e Typeaperiod. to pop up to thetop-level prompt from any depth.

March 1994 Digital PRL



Wild LIFE Handbook 5

e Makean assertion that usesthe variable-binding context by typing adeclaration followed
by aperiod“. ”.

Example 3.3 Continuing on the previous example, now enquiring about A’'s son C (where
A=j ohn):

--1> father(A O?

* % % Yes
A = john, B = michael, C = harry.

Let us check whether an alternative solution exists that is compatible with the context of the
previous level by forcing backtracking:

----2>;
* % % Yes
A = john, B = mchael, C = charles.

We are again at query level 2, but one that is independent from the previous level 2. Let us
again force backtracking:

- 2> ;
* % % I\b
A = john, B = nichael.

This query extension fails and brings the level back to 1; i.e, back to the answer to goa
gr andf at her ( A, B) ?. Observe that in this context, variable C no longer exists. Let us
proceed, asking for the father C of B (michagl):

--1> father(C B)?

* % % Yes
A = john, B = michael, C = harry.

And further, whether A (john) isthe father of C (harry):
----2> father(A Q?

* % % Yes

A = john, B = michael, C = harry.
To go back to level 2, we type (CR):

______ 3>

* % % I\b

A = john, B = michael, C = harry.

Research Report Draft March 1994



6 Hassan Ait-Kaci et al.

We now give up with. to go back to top level:

cee2>
>

We find incremental querying to be a powerful means of user interaction. It is particularly
useful for exploring solutions step by step or seeking further information. Fine points about
incremental querying are given in Section 13.2.

3.4 Loading files

A program file is atext file composed of definitions and queries. A query in afile behaves
as a directive does in Prolog. Any combination of definitions and queries that are entered
by the user may appear in a program file. To load a program file simply type the query
| oad("filename") ?. Thefilename must be astring, i.e., enclosed in double quotes. The
suffix “. | f " isadded automatically if necessary. If asyntax error occursin afile being |oaded,
it is reported along with the line number at which it was detected, and it causes Wild LIFE to
abort further processing and go back to thetop level.

For serious development work, it is recommended that you put your programs in modules

and load them with thecommand i nport ("fi | enane") ?. TheWild LIFE system comes
with a large number of example programs, each of which is defined in a separate module.
This allows example programs to be loaded in the same session without affecting each other
or any other programs that may be loaded. See for example the cryptarithmetic program of
Section 12.3.
(@@ | oad is neither Prolog's consul t nor reconsul t (although it comes closest to
consul t). If afile being loaded attempts to redefine an aready defined object whose
definition may not be extended, then an error is reported. As a result, you will have to exit
Wild LIFE and restart it when you need to reload afile.

3.5 Interrupting execution

If execution of a query goes into an infinite loop or takes too long to compute, you may
interrupt it by typing CTRL-C. There might be aslight delay if agarbage collection wastaking
place. When theinterrupt is dealt with, the following prompt appears:

*** Command (g,c,a,s,t,h)?

Each letter is a mnemonic shorthand for a command corresponding to a specific action to be
taken for Wild LIFE at thispoint. Hence, typing h (or ?) in response to this prompt will yield
the following to be printed:

*** JTQuit (qgq), Continue (c), Abort (a), Step (s, RETURN),
Trace (t), Help (h,?)]
*** Command (g,c,a,s,t,h)?

Typing g will make Wild LIFE exit the session; ¢ will make execution resume from where it
was interrupted; a will cause it to abort execution and return to top level; h will make Wild

March 1994 Digital PRL



Wild LIFE Handbook 7

LIFE print out areminder of the meaning of these abbreviations; t will turn trace mode on; s
(resp., (CR)) will turn single-stepping on. Both tracing and single-stepping are automatically
turned off by a and c.

4 The basic data structure: ¢ -terms

Just as Prolog is based on first-order (Herbrand) terms, LIFE is based on ¢-terms.* In
order to compare the two, one can say that «)-terms are to Prolog terms what flexible records
are to static arrays. Namely, instead of selecting subterms just by numeric positions, we can
use labels (i.e., symbolic keywords, aso caled features), and instead of fixing the number of
subterms beforehand, we can add more subterms to aterm at any time (even by user-input at
run time). We call a subterm together with itslabel an attribute of the ¢>-term. A label may be
any natural number or any symbol. The symbol must be single-quoted if it does not start with
alower-case letter or if it contains non-al phanumeric characters other than underscore.

Furthermore, instead of Prolog’s mutually incompatiblefunctor symbolswe use sort symbols
that the programmer putsinto a hierarchy (expressing hereby their relation, i.e,, their “degree
of compatibility”).

Finally, in order to express coreferences (“aiasing”) not just between leaves of the term, but
between any subterms, we may attach tags (i.e., variables) to any subterms of a ¢-term.  In
particular, this allows usto describe cyclic structures.

Example 4.1 Here are afew sample ¢-terms:
e 42 aspecific integer;

i nt, the sort that denotes all integers;

- 5. 66, aspecific floating point number;

2. 10776e- 8, aspecific floating point number in exponentia notation;

r eal , the sort that denotes al floating point numbers;

"a smal|l piece of rope", aspecificstring;

st ri ng, the sort that denotes all strings;

abc_def 1, asort;

"0 strange characters!’ asort whosenamecontainsstrangecharacters (note

the single quotes);

date(friday, "Xl I1"),ay-termwithimplicit numeric labels;

e date(1=>friday, 2=>"XI11"), thesame v -term with explicit numeric labels;

e date(2=>"XI11", 1=>friday), the same ¢-term yet again, showing that the
order of explicit labelsisirreevant;

e freddy(nails => long, face => ugly, filnms => 5), a ¢-term with
keyword labels;

erectangle(width => S:int, length => S), a-term with two attributes
that are aliased together, asindicated by thetag S,

e X: person(home => address(occupants => [X])),ay-teemwithacyclic
reference, asindicated by thetag X.

41 you substitute Prolog terms by LIFE’s ¢-terms the resulting languageis called Login [4].

Research Report Draft March 1994



8 Hassan Ait-Kaci et al.

A «-term describesa set of objects, which themsel vesmay berepresented asrecords. Hence,
the ¢ -term may be construed asarecord type. A 1-term with given attributes describes records
with at least the fields specified by the attributes, but possibly others. The valuesin the fields
are themselves records which are described by 1»-terms. Furthermore, the records must satisfy
the coreferences expressed by the tags of the -term.

4.1 Sorts

Sorts are the syntactic entities attached to the root of every «-term. In this sense, they take
over the role of type names in C and functors in Prolog. Sorts by themselves constitute the
most basic ¢-terms. The sort attached to the root of a -term is called its principal sort (or
root sort).

Any symbol that isintroduced in the text of a program or query is considered a sort unless
it is declared otherwise or it isalabel. A sort may be any integer or floating point number
or character sequence. The character sequence must be surrounded by single quotes if it
does not start with alower-case letter or if it contains non-alphanumeric characters other than
underscore. A character sequence surrounded by double quotesisalso alowed; it isan explicit
string.

No conceptua difference is made between values and sorts. This means that, for example,
thevalue 1 isspecified by the sort 1. Thefact that thisisan integer valueis specified by saying
that 1 isasubsort of the sort of all integers, which iswritteni nt .

4.1.1 Defining sort inheritance

Sorts are put in a hierarchy by specifying a partial order rel ation between sorts. The order
relation is declared by means of sort inheritance definitions, which arewrittenass1 <| s2.
Thisdeclaration can beread as“s1 is-as2” or “s1 isasubsortof s2.” ° Thetexts1 <| s2
is the programmer equivalent of the mathematical notation s; <'s,. Through this declaration,
s1 inherits al properties of s2. A sort may occur in several inheritance definitions if it has
more than one direct relative (i.e., parent or child).

Sorts denote sets, and the partial order between them amounts to the subset relation. Hence,
asort may be viewed asatype of records and the partial order astypeinheritance. Wewill later
see (in Section 7, page 29) that we can declare a definition for a sort; it then becomes a class
in the object-oriented sense.  The subsorts of a sort inherit al the properties defined for the
parent sort. Different sorts may have common subsorts, thus alowing multiple inheritance.

Example 4.2 Let us declare a small hierarchy that describes the relationships between trucks
and vehicles. We assume that any truck is aso a vehicle and that any property pertaining to
vehiclesalso appliesto trucks. That is, trucksinherit all propertiesof vehicles. Thisisspecified
in Wild LIFE by typingt ruck <| vehi cl e. Subsequently, Wild LIFE’s unification will
take the inheritance information into account.

> truck <| vehicle. %A truck is a vehicle

5Thismust not be confusedwith the predicatesubsor t that testswhether two sortsare rel ated (see Section 8.4).

March 1994 Digital PRL



Wild LIFE Handbook 9

* % % Yes

> mobi | e(vehicle). % A vehicle is nobile
* %k % Yes

> useful (truck). % A truck is useful
*** Yes

> mobil e(X), useful (X)? % Wat is nobile and useful ?

* % % Yes
X = truck.

A cyclewithin the hierarchy (suchasa <| b. b <| c. ¢ <| a.) isreported as
anerror. Thisenforces consistency of thesort ordering asitisspecified by the user. Consistency
checking becomes more complex when properties are attached to sorts (in Section 7). Wild
LIFE does not check consistency of properties attached to sorts.

4.1.2 Built-in sorts

At the summit of the hierarchy of sorts, there is a greatest sort, denoted by T, pronounced
“top.” That is, between any sort sand the sort T the order relation s<| T isaways specified.
In Wild LIFE the symbol @is used to represent T.°

Likewise, at the base of this hierarchy we find the sort L, pronounced “bottom”. That is,
between any sort sand the sort L the order relation L <| sisaways specified. In Wild LIFE
the symbol {} isused to represent L.

From now on, we will write @and {} to denote T and L. The sort @denotes the set of al
records. The sort {} denotes the empty set.

Besides @and { }, the other built-in sorts available to the user are:

e All integers, floating point numbers and the symbolsi nt and r eal , with the order
relationsn <| i nt (for al integers n), r <| real (for al non integral floating point
numbersr), andi nt <| real . For example, 0,- 5, and 3. O are subsortsof i nt and
thusof real ; 2. 5 and 26. 77 are subsortsof r eal but notof i nt .

e list,[] (empty list, which may bewrittenni | ) and cons (thelist constructor), with
theorder relations[] <| list andcons <| |i st. Listsmay bewrittenwiththe
same syntax as Prolog; e.g.:

[a,b,c] =T[abl[c]] =T[ab,c[[]] =T[al[bl[c[[]]]].

e All strings s and the symbol st ri ng, with the order relations s<| stri ng. Specific
strings appear within double quotesasin"this is a string".’

e bool , true and f al se with the order relationstrue <| bool andfal se <|
bool .

5Because T is not a standard ASCII character, we need an ASCII symbol to stand for it. Besides resembling a
looped-around a that could stand for anyt hi ng, the symbol @has a shape that is reminiscent of an embryo—a
perfect ideogram to denote the most primeval sort in LIFE!

" As opposed to other non-numeric sorts, strings are non-interned symbols, i.e., they are not put in the symbol
table.

Research Report Draft March 1994



10 Hassan Ait-Kaci et al.

e bui |l t_i n, a sort which is a supersort of al built-in sorts, with the order relations
list <| built.in,string <| built_.in,real <| built_inandbool
<| built_n.

To summarize, the system contains the following predefined declarations.

built _in <] @

list <| built_in.
string <| built_in.
real <| built_in.
bool <| built_in.

cons <| list.
[1 < list.

int < real.

true <| bool.
fal se <| bool .

When extending built-in sorts it is recommended to respect the following elementary prop-
erties.
int < real
gib(li st,real)={}
glb(string,real)={}
glb(l'i st,string)={}
glb(t rue, f al se) ={}
If these properties are not respected then the interpreter may behave in a strange manner: it
may crash or it may not recognize the built-in sorts for what they are.

4.1.3 Greatest lower bound (glb)

Theglb of two sortsr and sistheir largest common subsort. Since sorts denote sets, the glb
corresponds to set intersection.

There always exists at least one common subsort, namely {}. If {} isthe largest common
subsort, then we say that r and s are incompatible. We note that incompatibility is always
declared implicitly, i.e., two sorts are incompatible because the user has not declared any
common subsort, nor is there is a common built-in sort (except for {}, of course). Thisisin
contrast to other hierarchies used for knowledge representation or computational linguistics
where the incompatibility has to be declared explicitly.

Theglb of two sortsr and sisnot alwaysgiven by one sort which isdeclared in the hierarchy.

Namely, if there are several sorts s; ; . . . ; §, which are common subsorts of r and s and which
are not in an order relation among themselves, then the glb of r and sisgiven by thedigjunctive
sort {si;...;S}.

In Wild LIFE, if during execution a disjunctive sort is computed, then it is not created
or printed out as such. Instead, operationally it introduces a digunction, just as a predicate
definition with several clauses introduces a disjunction.

March 1994 Digital PRL



Wild LIFE Handbook 11

Example4.3 Say we defineahierarchy containingthesortst wo_wheel s andf our _wheel s
that represent classes of objects having respectively two and four wheels.
bi ke <| two_wheels.
bi ke <| vehicle.
truck <| four_wheels.
truck <| vehicle.
car <| four_wheels.
e car <| vehicle.
From this hierarchy we can deduce the following values for the glb:
glb(t wo_wheel s, vehi cl e) =bi ke
glb(f our _wheel s, vehi cl e) ={car; truck}
glb(t wo_wheel s, f our wheel s) ={}
glb(bi ke, vehi cl e) = bi ke
glb(bi ke, @ =bi ke
The digunctivesort {car ; t ruck} isimmediately enumerated.

4.2 Attributes

A -terminits basic form issimply a sort. A more complicated ¢»-term is constructed by
taking a sort and attaching attributes to it. An attribute is a pair consisting of a label and an
associated -term. For example, consider the -term:

show(title => "Bew tched",
genre => sitcom
where => tel evision,
nmot her _in_| aw => "Agnes Mor ehead")

This +-term describes the set of records with at least the four fieldsti t | e, genre, where
and not her _i n_| aw. Thisset includes records with other fields as well. The -term makes
no statement regarding the other fields, not even whether they exist or not.

W-terms are extensible record descriptions. This means that attributes may be added at
will at run-time, even by user-input. For example, a computation may start with the value
circle(origin => P), and this value can later be refined to circl e(origin =>
P, radius => R). Animportant application of this extensibility is the use of -terms as
hash tables.

For ease of use, Wild LIFE alows consecutive numeric labels to be implicit. For example,
thing(a, b,c) isequivdenttothing(1l => a, 2 => b, 3 => c). The order of
attributesis completely irrelevant and so this >-term can al'so bewrittenast hi ng(2 => b,
3=>¢ 1=>a).

4.3 Variables and tags

Variables start with _ (underscore) or an upper case letter. An anonymous variable may be
written with asingle _. Thisisin fact equivalent to @ the top sort. Variables can be used to
tag a v-term and then used as explicit handles for referencing the -term. The syntax used

Research Report Draft March 1994



12 Hassan Ait-Kaci et al.

to express the tagging of a i-term t by avariable X is X : t. These references may be cyclic;
i.e., avariable may occur within a «-term tagged by it. For example, X: [ 42| X] representsa
cyclic list with single element 42. If avariable occurs by itself, not tagging a > -term, thenit is
implicitly considered to be tagging @ exactly asiif it had been written X: @°
@@ Theterms s( X, X: t) and s(X: t, X) areidentical, i.e, the tagging construct “: " is
simply a syntactic device used to represent sharing and cyclesin the textual representation of a
term. It ispossibleto write any directed graph structure as linear text using variables and tags.
For example, when Wild LIFE sees X: f oo(bar => X), it creates a single cyclic structure
with name X.°

The tagging construct : is not exclusively reserved to be used in the form X: t. Other
sensibleformsaret : X (which isequivaent to X: t ), and more generaly, Xi: Xo: ... Xy,
(whichisequivalentto Xi: X, Xo: X3, ... » X(n=1)* X, for n variables X; through X,). At most
one of the X; may be aterm whose value is different from @

Example 4.4 Here are four examples of the use of tags.

e father(name => N string, son => boy(nane => N))
represents a father who has a son, such that the son shares the same name as his father.
Thetag N represents the name.

o [A A
isalist whose first and second elements are identical .

e L:[int,int,int|L]
isacycliclist of length three whose three elements are integers.

e Wwite(A), happy(A: person)?
printsthe output per son, then go on to prove thegoal happy( per son) , because the
tag A was bound to person globally for the whole query at parse time. This query is
equivalentin al respectstowr i t e( A: per son) , happy(A) ?.

4.4 Unification

Unifying two -terms consists in (1) computing the greatest lower bound glb of their root
sorts, (2) binding the root variables together, (3) attaching to them all the attributes of the two
parent «»-terms, and (4) unifying recursively the -termsin corresponding attributes. If during
this procedure aglb isfound to be {}, then the unification issaid to fail. Otherwiseitissaidto
succeed.

Example 4.5 Hereisaseriesof sample unifications that progressively illustrate the properties
of ¢-term unification. The last exampleis particularly interesting as it shows the unification of
two cyclic i-terms. Note that {} causes an immediate failure when executed.

8Theterm X: @ 1) isnotthesameas X( 1) . The latter isafunction application. See Section 6.4.
9The : is different from the unification predicate “=". The latter performs a calculation at run-time. For
example, in X = foo(bar => X) theterm on theright-hand side of = is not bound to X until run-time.

March 1994 Digital PRL



Wild LIFE Handbook 13

Unifying with resultsin

U@ V: @ UuvVv. @

U: 100 V:int U V: 100

5.6 i nt {}

car (wheel s=>4) vehicl e(wheel s=>N:int) car(wheel s=>N: 4)

i nt(luck=>bad) 13(roman=>"XI11") 13(roman=>"XI 11", 1 uck=>bad)
[A B, C [1,2,3] [A1,B:2,C 3]

[HT] [a, b, c,d] [Ha|lT:[b,c,d]]

X:s(s(X) Y:s(s(s(Y))) X Y:s(X)

The unification of two -terms corresponds to testing whether the intersection of the two
sets of records described by the two -termsis empty. If it is nonempty, then the unification

yields

a -term that describes the intersection. The records in the intersection have all the

fields of both sets. This explains why the attributes of the unifier :-term form the “union” of
the ones of the two parent ¢-terms. Here union means the set of attributes that appear in at
least one of the two «-terms. The attribute for a common label has a v>-term describing the
intersection of the two corresponding -terms.

441

Uni
trated

1.

A step-by-step comparison with Prolog unification

fication of -terms generalizes unification of Prolog terms. Thisis progressively illus-
in the following cases.

Unifying two terms with same root sorts and arguments, e.g., X : f 0o(sy, ..., S and
Y :foo(ty,...,t), isdoneasin Prolog.

Unifying X : fo0o(sy,...,s) and Y : bar (ty,...,tn) leads to failure exactly as in
Prolog if f oo and bar are incompatiblein the sort hierarchy. This means that the user
has not declared any subsort which is below both f oo and bar. Whether n = mor
n # m has no effect on success or failure.

Unifying two -terms which have exactly the same set of labels and the same sort,
X:foo(ly =>s1,....Ih=>s)and Y : foo(ly => t1,...,lIh => ty), isasdlight
generalization of case (1); therethe numericfeatures|; = 1, ..., 1, = nareleft implicit.
The unification proceeds in direct extension of case (1).

Unifying two «-terms which have the same set of labels and two compatible sorts s1
ands2, X:sl(l1=>s,...,In=>s)and¥Y :s2(ly1 => t1,...,In=> ty), proceeds
likein case (3) with the only difference that the unifier has as root sort the glb of the sorts
sl ands2.

Unifying two ¢-terms which have any sets of |abels and two compatible root sorts s1
and s2. Some of the labels are common to both terms and others exist in only one
term. This proceeds asin case (4); the only difference is that the unifier v>-term has the
attributes obtained by unifying the terms at the common labels plus al the attributes that
exist in only one term.10

0T his allows one to program with hash tablesin LIFE.

Research Report Draft March 1994



14 Hassan Ait-Kaci et al.

6. Unifying two t-terms which have any sets of labels and two incompatible root sorts r
and s leadsto failureasin case (2).

5 Predicates

Predicates are defined and executed in Wild LIFE in the same manner asthey are in Prolog,
only -terms replace Herbrand terms. Thisis not a tutorial on Prolog, so—for information
going further than the explanati ons given bel ow—pl ease consult your local library [10, 15, 19].

Except for differencesin built-ins, Prolog programs can run unatered in LIFE if they follow
the syntactic convention that each predicate and functor symbol is used with one arity only.
See Section 15 for acompletelist of differences between LIFE and Prolog.

5.1 Defining predicates

A predicate definition consists of one or several definite clauses. Clauses are stored in the
assertion base in the same order as they will be entered during execution. A definite clause
iswritten in theform Head : - Body. where Head isan atomic goa and Body isanon-
empty segquence of atomic goals. An atomic goal is a -term whose root sort is defined as a
predicate in the program. The clause Head : - succeed. may be abbreviated as Head. .
It iscalled afact.!t

Once defined as a predicate name, an identifier may not be declared as a sort. However, a
predicate name may be used as data. It behaves as if it were a sort with single parent @and
singlechild {}.

5.2 Executing predicates

As in Prolog, Wild LIFE uses top-down/left-right SLD-resolution to execute a query. A
guery (or resolvent) is a sequence of atomic goals separated by acomma®, ”, exactly asin the
body of aclause.

Operationally, execution of aquery proceedsroughly inthe following manner. Theresolvent
issetinitially to the query, and it behaves as a stack of predicate calls:

1. If the resolvent is not empty, an atomic goa P is popped from the resolvent. If the
resolvent is empty, then the query succeeds. The result of the computation is given in
the variable bindings.

2. Thefirst clause Head : - Body defining P is chosen. If there are no more clauses,
then the query fails. A choice point is created to allow areturn to this execution state on
backtracking. The choice point contains the next clause defining P.

3. Head is unified with P and Body is pushed on the resolvent. The new resolvent is
the body Body followed by the remainder of the old resolvent. Execution continues at

step (1).

4. If theunificationin step (3) leads to failure, then execution backtracks to the most recent
choice point, and continues forward from there.

1LIFE usessucceed and f ai | as the predicates that are always satisfied and never satisfied, respectively.
LIFE usest r ue and f al se assorts that mean true and false.

March 1994 Digital PRL



Wild LIFE Handbook 15

The above execution issimilar to that of an imperativelanguage such as C except that parameter
passing is done by unification and execution may return to previous states by backtracking.

Example 5.1 Hereisatwo-clause program which will print the itemsin alist one per line:

print_list([]) :- !.

print_list([HT]) :-
wite(H), % Print the first el enent
nl, % Start a new line
print_list(T). %Print the rest of the |ist

Thistranglates in English to something like this:
e To print the empty list don’'t do anything.
e Toprintalist whosefirst element isH (therest being T) write H and start anew lineand
print thelist T.
And now we can try it out:

> print_list([a b,c])?
a
b
Cc

* k% Yes

5.3 Pruning the search tree with cut

The built-in predicate “! ” in Prolog or Wild LIFE, pronounced “cut”, allows the user to
control the searching behavior of a program by cutting out a ternatives from the search tree.
Executing acutislikeexecutingsucceed but withaside-effect: it removesall thealternatives
which occurred from the moment the rule was chosen to the moment the cut isreached. This
means that the next rulesin the predicate’'s definition will not be tried and any alternatives that
may have arisen during the proof of the current rule will not be explored either.

The Wild LIFE 1.0 interpreter does no clause indexing. This means that each clause of a
deterministic predicate should contain acut. The cut must be placed at the earliest point in the
clause body where you are surethat if execution reaches that point, that the correct clause has
been selected. No bindingsto variables visible outside of the predicate should be done before
the cut. Thiscondition ensures that the cut does not change the predicate’'s semantics, i.e, itis
agreen cut [15]. Theprint _| i st example given above contains a correct use of cut.

The cut predicate is useful because it allows one to reduce the number of aternatives,
especidly if you know for certain that all alternatives would fail. For theinteraction of cut and
functional evaluation (including residuation and coroutining), see Section 6.

5.3.1 The scope of cut

The choice-point associated to a cut is linked to the environment that existed when the cut
was first encountered by the interpreter. If a goal passed as an argument contains a cut, that

Research Report Draft March 1994



16 Hassan Ait-Kaci et al.

cut will remove choice points much further than expected. This behavior of cut should not be
relied upon, since it probably will change in the compiler. Cut should be used in Wild LIFE
only to guarantee that a predicate is deterministic, without changing its semantics.

5.3.2 Disjunctive terms and cut

If agoa contains digunctive terms in its arguments, then the choice-points for those are
created before arule to prove it is chosen. Hence, they do not lie in the scope of acut in the
body of therule.

Example 5.2 Supposethat the rule:
p(A) - !, wite(A).

has been asserted. The query p( X: {1; 2; 3}) ? will generate three solutions: X
the output 1, then (upon backtracking with ; ) X = 2 and the output 2, and then X
the output 3.

Since executing the cut removes alternatives relative to digunctive termsin the head of the
rule, the query gq( X) ? will only generate one solution: X=1 and write 1 if the rule:

g(A: {1;2;3}) - !, wite(A.
has been asserted.

1 and
3 and

5.3.3 Negation-as-failure

Aninteresting application of cut is negation-as-failure, just asin Prolog. Itiswritten*\ +”.
The symbol \ + was chosen in Prolog because it resembles atilted version of the mathematical
symbol for “not provable’, namely “H".

Example 5.3

\+(QG - G!,fail.
\+ .

The first rule uses the fact that goals use the same data structure as -terms. It first tries to
prove the goal G, then if there was a solution, cuts out all alternatives and fails. If there are no
solutionsto G then the next ruleis used for not and this aways succeeds.

Thisdoes not quite do what you expect because all the parameters of X have been evaluated
beforethey werepassed. 1nother words, functions, disjunctionsand sortsthat needed eval uating
have been dedlt with, so “\ +(write({a; b;c}))?” for example will print abc before
failing.

Example 5.4 This example shows the use of avariable name in aquery to replace agoal.

2Thisform of negation is often unsound. Functionsin LIFE provide sound negation for equalities.

March 1994 Digital PRL



Wild LIFE Handbook 17

> X=wite("Here | am")?

* % % Yes

X=wite("Here | am").
--1> X?

Here | am

* % % Yes

X=wite("Here | am").

For more information on using variables as predicates, see Section 13.3 (page 90).

6 Functions

InLIFE, afunctionisaroutinethat iscalled by matching and that returnsaresult. Functional
computationsare determinate, i.e., afunction call only fires once and isnever backtrackedto. A
function may be called before the values of itsarguments are known. In that case, the function
will suspend. Technically, a function that suspendsis said to residuate and the suspension is
called aresidual equation or residuation. The function will execute as soon as its arguments
are known. A function may also be curried, i.e., called with missing arguments. Residuation
and currying provide implicit coroutining.

An order-independent routineisone whoseresult depends only on thevalue of itsarguments,
and not on the order in which the argumentswere bound rel ative to when the routinewas call ed.
If al built-in routines called during the execution of a program are order-independent, then
the value of the final result is independent of the order in which the program’s functions and
predicates are executed. The order affects only the execution efficiency. See Section 13.3
(page 90) for more information on order-independence when functions and predicates are used
together.

Sincefunctions can becalled before their argument values are known, thisfrees the program-
mer from having to know what the data dependencies are. It provides a powerful search-space
pruning facility by letting “ generate-and-test” search be changed into daemon-controlled “test-
and-generate” search. A residuated function actslikeadaemon: it continuously checkswhether
its arguments are sufficiently instantiated. These checks implement a form of “data-driven”
synchronization. That is, the ability of functions to residuate yields a form of concurrent
programming.

M oreover, such non-declarative heresies as the is/2 predicate in Prolog and the freeze meta-
predicate in Prolog Il are not needed. Arithmetic functions in Wild LIFE residuate when
necessary. Functional residuation provides most of the abilities of MU-Prolog’s wait declara-
tions [13] and NU-Prolog's when declarations [14].

6.1 Defining functions

A function definition consists of one or more functionrules. These are stored in the assertion
base in the same order as they will be tried during execution. A function rule iswritten in the
form Head -> Expr. where Head isa t-term whose root-sort name f is the name of the
function being defined, and Expr isa-term. Theruleisread as“Head evaluatesto Expr ”.

Research Report Draft March 1994



18 Hassan Ait-Kaci et al.

Head may not contain any function calls.

Functions, declared sorts, and predicates share the same name space. That is, a given
identifier may only be used for one of the three. Attributelabels (features), however, havetheir
own independent name space.

Example 6.1 Thisexample defines the factoria functionn! = n(n L 1)(n L 2)...1. Theresult
expression of the second rule contains a call to the built-in function *, which is written as an
infix operator.

> fact(0) -> 1.

> fact(Nint) -> Nfact(N1).
> wite(fact(5))?

120

* % % Yes

Example6.2 Thisexampledefinesafunction! i st | en( L) that calculatesthelengthof alist.
It uses -terms to represent the natural numbers, O for 0, and s( T) for n+ 1if T represents
n. Thecal I'istlen(L) will residuate if L's value is unknown (usualy @. For example,
theresultof | i stlen([ -, .| .]) isthey-terms(s( @) whichrepresentsany n > 2. This
correctly represents what is known of thelengthof [ _, _| ] .

> listlen([]) -> O.

> listlen([_|L]) -> s(listlen(L)).
>wite(listlen([a,b,c]))? %A list of length 3
s(s(s(0)))

* % % Yes

>wite(listlen([_,_|_]))? %A list of length at |east 2
s(s(@)

*** Yes

The result of a function can be a -term that represents a predicate. For this result to be
executed as a predicate, it must be in a predicate position, i.e., in aplace where a predicate is
expected.

Theresult of afunction can be aboolean, i.e., aw-termwhoseroot sortist rue or f al se.
Such a function may be used in a predicate position. Theresult t r ue is executed as success
and theresult f al se isexecuted asfailure.

A functional expression is a -term whose root-sort name is a function name, say f. The
atributes of the ¢-term are its arguments. A specia case is the functiona expression that
constitutesthe head of afunction rule defining f; its attributes are called the formal arguments.
Otherwise, the functional expression represents a call to the function f; then, its attributes are
called the actual arguments.

March 1994 Digital PRL



Wild LIFE Handbook 19

6.2 Executing functions

A functiona expression F isevaluated in the following manner. All arguments of afunction
are evaluated before the function is evaluated. In what follows we assume that F contains no
evaluable expressionsin its subterms.

1. Choosethefirst ruleHead -> Expr defining F. If no such rule exists, then return { }.
Returning {} causes an instant failure to take place. Failure causes backtracking to the
most recent choice point.

2. Match F with Head.

3. If F matches Head then the rule fires and the body is evaluated and returned. We say F
matches Head if to make them equal, refinements have to be made only to Head and
notto F. That is, Head ismore general than F.

4. If F and Head are non-unifiable, then the rulefails. Pick the next rule in the definition
of F and go to step (2). If there are no more rules then return {}.

5. If neither step (3) nor step (4)'s conditions are true then residuate. This suspends the
execution of F and returns the temporary result @ If any of F’s arguments are refined
then resume execution at step (2). When the function fires, the actua result will be
unified with the temporary result. Therefore the temporary result may be used in further
function calsasif it were the actual result.

This execution mechanism corresponds to a simple formal logica specification [6]. Step (3)
corresponds to testing whether F implies Head. Step (4) corresponds to testing whether F
impliesthe negation of Head.

Operationally, the residuation is attached to each of the residuation variables. These are
the variables of the calling functional expression on which its comparison with the formal one
is still pending. More precisely, two conditions are guaranteed to hold for the residuation
variables. It is possibleto instantiate the set of residuation variables so that the rulefires. Itis
possibleto instantiate any one residuation variable so that the rule fails.

Multipleresiduations can be attached to asinglevariable if there are multiple function calls
with this variable in their arguments. If the variable is unified then all the residuations are
resumed. The order in which the functions are resumed is deli berately left unspecified.

As with clauses, the rules defining a function are looked up in the order they are entered.
The important difference is that functions are deterministic, i.e., functional computations are
determinate. That is, there is no backtracking once a rule has fired, so the first rule to fire
hides all those following it. In the jargon of committed-choice languages, matching is a
commit-condition; if the head of aruleis matched, the execution iscommitted to takethat rule.

Another way of seeing thisis that functional evaluation does not allow argument guessing
as would be non-deterministically possible by narrowing (i.e., using unification instead of
matching when calling functions). In order to unify the variables in the calling functional
expression, one has to use the built-in function “| ” (such-that).

Thebuilt-in arithmetic functionsextend the above schemein animportant way: they perform
all deterministiclocal propagations. That is, they infer the values of one or more arguments, if

Research Report Draft March 1994



20 Hassan Ait-Kaci et al.

that inference is unique. For example, the goal 0=B- C unifies B and C. The goal A=A* B does
nothing, since there are two possible solutions: A=0 or B=1. Thisisaform of narrowing.

Example 6.3 Hereis an example of residuation using the previously defined function f act .
First, we impose the constraint A = B!, i.e, Aisthe factoria of B, using the f act function
given earlier.

> A=fact (B)?

***  Yag
A=@ B=®d.

The expression f act ( B) residuates, yielding @as a temporary result. Thetilde ™ after @
means that B is aresiduation variable, i.e., a variable which, if its sort is made more precise
(moreinformation is known), will cause the residuated function to be re-eval uated.

--1> B=real ?

*** Yes
A=@ B=real”.

Thefunctionf act still residuates becausei nt <| real.
----2> B=5?

***  Yag
A = 120, B = 5.

5 <| int sofact(B:5) canbecaculated. Let usnow go back to the previous query level
by typing (CR):

* % % I\b
A=@ B=real”.
----2> A=123, B=67?

* % % I\b
A =123, B =real”.

We have now strengthened the constraint to 6! = 123, and of course this constraint always
fails.

Example 6.4 Thisexampleillustratesthe execution order of aresiduating functional evaluation
in interaction with acalling predicate.

March 1994 Digital PRL



Wild LIFE Handbook 21

>p(X) - wite("Fromp: ", X).
f(Xint) -> X | wite("Fromf:",X).

* % % Yes

> p(f(X)? % p's body is executed, f’'s is not
Fromp: @

* % % Yes

X=@a.

--1> X=17 % f’'s body is now executed

Fromf: 1

* % % Yes

X = 1.

Example 6.5 This example illustrates the execution order of functions in interaction with a
calling predicate (namely, unification =) and with predicates called by such-that.

> fact2(0) -> 1.
> fact2(N) -> Nfact2(N-1) | wite(N" ").

*** Yes

> 7=fact2(3)?
123

* k% I\b

6.3 Matching

We describe the problem of matching of two -terms as the problem whether the “actual
-term” (the caller) matches the “formal -term” (the definition). This avoids the potential
confusion about the direction of matching. The actual -term matches the formal one if it
describes a subset of the set described by the formal «-term.

Thisyields the following conditions for the actua «-term to match the formal «-term:

1. Theroot sort of the actual «-term is a subsort of the root sort of the formal -term.

2. The y-terms in the attributes of the formal «-term are matched by the -termsin the
corresponding attributes of the actual »-term (which must exist).

3. The coreferences (the variable aliases) of the actual -term express (at least) the coref-
erences of theformal -term.

The first condition is clear from the sort hierarchy. The two root sorts can be equal, since a
sort isa subsort of itself. The second condition means that if alabel together with its value t
forms an attribute of the formal v-term, then an attribute with the same label and avaluet’ has

Research Report Draft March 1994



22 Hassan Ait-Kaci et al.

to be present in the actua «-term, and t’ has to match t. The third condition meansthat if two
occurrences in the formal «-term are aliased (tagged with the same variable), then this has to
be true for the corresponding occurrences in the actua -term.

A successful match is possibleif the actual and the formal -terms can be unified so that
only formal variables are bound; i.e, the actual >-term remains untouched. To be precise,
this means that three conditions have to be met after the unification. First, a sort in the actual
p-termisintersected only with a supersort (higher in the hierarchy). Second, no subterminthe
actual 1-term gets attributes with new labels. Third, an actual variableis not bound to another
actual variable.

Example6.6 A cal tothefollowingfunctiondi f f ( X, Y) will fail if X andY havebeen unified
and succeed if X and Y are non-unifiable. Otherwiseit will residuate. Note that it residuates
on all common subterms of X and Y. Thisisnecessary to guarantee that non-unifiability isseen
immediately.

> diff(X, X) -> fail.
> diff(X Y) -> succeed.

> diff(XY)? % Thi s residuates

* % % Yes

X=a, Y=@.

--1> X=1, Y=1? % Thi s al so residuates
* % % Yes

X=1, Y=1".
----2> X=@int,foo), Y=@42,fo0)? % This al so residuates

* % % Yes

X =1(int7,foo™)", Y = 1(427,fo07)".

______ 3> X=Y? % This fails

* % % I\b

...... 3> X 1=237? % Thi s succeeds
*** Yes

X = 1(23,fo0), Y = 1(42,f00).

6.4 Currying

A functional expression iscurried if it has one or more missing arguments. A function may
be curried on any subset of its arguments, and the missing arguments may be applied in any
order. A curried functional expressionisitself afunction. It can be passed around and applied
several times.

March 1994 Digital PRL



Wild LIFE Handbook 23

Example 6.7 We define a function f on three arguments which are selected by the labels
eggs, bacon andt oast . It returnsthelist of itsthree arguments. We call it with only two
arguments. The function f returns a curried form which is bound to A. We can apply A any
number of times, by specifying a third argument (which isindexed by the labdl t oast ).

> f(eggs=>X, bacon=>Y, toast=>7) ->[XY,Z].

> A=f (eggs=>a, bacon=>b), wite(A)?

f(eggs => a, bacon=> b)

* % % Yes

--1> Rl=A(toast=>c), RR=A(toast=>d),wite(RL, R2),nl,wite(A?
[a, b, c][a,b,d]

f(eggs => a, bacon=> b)

The curried expression A is unchanged.

Currying is different from residuation. A residuated functiona expression returns its result,
which has the value @until the function fires. The result may be used in further cal culations
before the function hasfired. A curried functional expression A may only be used in functional
applications of theform A(l1=>Xg, ..., [/=>Xn).

Example 6.8 This example shows the difference between currying and residuation. We define
afunction in one argument, which is a «-term with three attributes. We call it with a ¢-term
with only two attributes. Hence, the functional expression residuates and returns @as itsvalue.
If its argument gets more instantiated by adding the missing attribute, the function fires. This
is possible only once.

> g(@eggs=>X, bacon=>Y, toast=>7)) -> [X Y, Z].
> A=g(B: @eggs=>a, bacon=>b)), wite(A)?

@

* % % Yes

--1> B=@toast=>c), wite(A? %Fire the function g
[a, b, c]

Example 6.9 We define the function h with labels 1, 2 and 3. Since these are consecutive
numeric labels, they do not have to be explicit. If the function is curried in the first two
arguments then we need to give the label 3 explicitly. If the function is curried in the third
argument then we can leave thelabels 1 and 2 implicit since they are consecutively numbered
from 1.

Research Report Draft March 1994



24 Hassan Ait-Kaci et al.

> h(A B, C ->[ABC.
> Xl=h(a, b), X2=h(3=>f)?

* % % Yes

X1 = h(a,b), X2 = h(3 => f).

--1> Y1=X1(3=>c), Y2=X2(d,e), wite(Yl), wite(Y2)?
[a,b,c][d,e,f]

(@@ Currying in Wild LIFE is not defined in the usual way because the list of required
arguments isindexed by labels which are not necessarily consecutive natural numbers. There-
fore, arguments are consumed by name, and not by position as in the A-calculus.'® The
usual way of defining currying would be to say: f(X,Y) = f(X)(Y). The definition im-
posed by labelsin Wild LIFE is: f(Xq, X2) = f(X1)(2 =>X2). We get the same result with:
f (Xl7 Xz) =f (2 I>X2) (Xl) .

Wild LIFE 1.0 cannot parse an expression of theform f (X1) (2 =>Xp). It must bewrittenin
twopartsasF(2 =>Xp) and F = f(Xy). A curried functional expression F lookslikea -term,
and indeed has the same syntax as a i-term. However, it isillegal to unify F with another
term. It is possible to inspect the arguments of F with the . (projection) or has f eat ur e
functions. Moreinformation about theimplementation of currying in Wild LIFE may befound
in Section 13.1 (page 88).

Example 6.10 In thisexample, the operator / (real division) is curried and inverted.
>A=FB), F=/(2=>A7?
* k% Yes

A=real”™, B=real™, F=/(2 = A).
--1> A =5?

***  Yes
A=5 B=25 F=/(2=A.

Example 6.11 The standard example of a higher-order function is the built-in function map.
It isdefined as follows:

mep(F, [1)->[].
mep(F, [H T])->[F(H [ map(F, T)].

It takesafunction, or avariablethat will beinstantiated to afunction (e.g., acurried functional
expression), and a list and applies the function to every element of the list. The following
execution fragment shows how to couple the function map with residuation.

B3 calculus handling currying with named arguments and consumption by position is presented in [2].

March 1994 Digital PRL



Wild LIFE Handbook 25

> fact(0) -> 1.
> fact(N) -> Nfact(N1).
> Remap(F,[4,5,6,7])7

*** Yes

F=0""", R=[QQQ@@.
--1> F=fact?

* % % Yes

F = fact, R = [24,120, 720, 5040] .

Example6.12 Thisexample defines afunction with two ruleswhere each rule has an argument
with a different label. The function will curry if arguments are missing relative to the rule
being matched against. Taking advantage of this behavior is bad programming style in Wild
LIFE and will probably be forbidden in the compiler.

> foo(a=>int) -> 1.
> foo(b=>int) -> 2.

> X=f oo( b=>0) ?

* % % Yes

X = foo(b => 0).
--1> Y=X(a=>string)?

* % % Yes
X =foo(b => 0), Y = 2.

Example 6.13 This example shows how residuation, currying, and functional variables can
be combined together: a constraint is generated which binds the variable R to the result of
applying F to A, where at that point both F and A are unknown. Later the argument A is
chosen by the predicate pi ck_ar g and the function F by the predicate pi ck_f uncti on.
Notethat * (2 => 4) isacurried function which multipliesits first argument by 4. Define
the following predicates in additionto f act seen before.

pi ck_arg({5;3;7}).

pi ck_func( *(2=>4) ).
pi ck_func( fact ).

test -

Research Report Draft March 1994



26 Hassan Ait-Kaci et al.

R=F(A), % Appl y an unknown function
% to an unknown ar gument
pi ck_arg(A), % Pick an argunent
pi ck_func(F), % Pick a function
wite("Function ", F,
" applied to argunment ", A

n I S II’ R),
nl,
fail. % For ce backtracki ng
and let ustry it.
> test?

Function *(2 => 4) applied to argunent 5 is 20
Function fact applied to argunment 5 is 120
Function *(2 => 4) applied to argunment 3 is 12
Function fact applied to argunent 3 is 6
Function *(2 => 4) applied to argunent 7 is 28
Function fact applied to argunent 7 is 5040

* k%% I\b

6.5 Quote and eval

Sincetermsare manipulated asdatain Wild LIFE, and sincefunctions are evaluated eagerly,
it is often necessary to prevent such an evauation to happen. Thisis done, quite similarly to
Lisp, by using a quoting operator. It iswritten as a prefix backquote * . Thisdistinguishes
it from the single quote ’ aready used to write symbols that contain non-alphanumeric
characters. A backquoted expression is a -term and may be manipulated like any >-term.

Example 6.14 Thisisan example of quoting afunctiona expression.
> X=1+27?

* % % Yes
X = 3.
—o1> Y= (1+42)?

*** Yag
X=3 Y=1+2

The following built-ins are related to quote.

e The function eval ( E) evaluates the result of the quoted expression E. It does not
modify E. For example, continuing the interaction above:

March 1994 Digital PRL



Wild LIFE Handbook 27

Example 6.15
----2> Z=eval (Y)?

*** Yes
X=3, Y=1+2, Z=3.

e The function eval i n(E) evauates in-place the quoted expression E. The quoted
expression E isreplaced by its result.

e Thepredicatenon_stri ct ( P) declaresthat the arguments of P are quoted, not evalu-
ated, when theroutineis called. This predicate should be used only asadeclaration, i.e.,
in aquery and not in a definition. This predicate is non-strict, i.e., it does not evaluate
its argument.

Example 6.16 Thisisan example of a non-strict predicate.

> non_strict(p)?
> p(X) - wite(X).
p(1+2)?

>
1+2
**% Yag

Cadling p(1+2) printsthe quoted term 1+2.

If an argument is shared between a strict and a non-strict routine, then it is considered
non-strict. That is, non-strict dominates over strict.

6.6 Choosing between matching and unification

How does a programmer choose between matching and unification as calling mechanisms?
Functions are called by matching and predicates are called by unification. Matching is one-
way, i.e, it does not modify its arguments, so it can act only as an input passing mechanism.
Unification is symmetric, i.e., it can act as both an input and an output passing mechanism.

To modify a function’s arguments, the built-in function E| G (pronounced “E such that G”)
can be used. It evaluates and returns the expression E, and then proves the predicate G. The
latter is called by unification, and hence if it is given one of the function’s arguments, that
argument will be unified.

We illustrate the differences between unification and matching as calling mechanisms by
means of a routineto append two lists. We give three definitions of thisroutine: as afunction,
apredicate, and using such-that. Here are the definitions:

Research Report Draft March 1994



28 Hassan Ait-Kaci et al.

% The standard functional version of append:
append1([],L) -> L.
appendl([ X|] L1],L2) -> [X] append1(L1,L2)].

% The standard predicate version of append:
append2([],L,L).
append2([ X] L1],L2,[ X] L3]) :- append2(L1,L2,L3).

% A variant that matches its first argunent

% and unifies its third:

append3([],L,R -> true | R=L.

append3([ X| L1] ,L2,R) -> true | R=[X| L3], append3(L1,L2,L3).

The append1l function waits until its first argument is a list before returning its result. The
append?2 predicate executes to completion immediately and unifies its result with its third
argument. Backtracking will provide aternate results. Theappend3 function uses such-that.
It waits until its first argument is a list (just like appendl) and unifies its result with its
third argument (just like append?2). The advantage of append3 over appendl isthat tal
recursion optimization is regained because the variable L3 is used as a place-holder for the
result. Here is an example execution showing that appendl1 and append?2 behave the same
if their arguments are instantiated:

> A=appendl([1,2],[3,4]), append2([1,2],[3,4],B)?

* % % Yes
A=101234, B=1[1234].

In thefollowing exampl e execution of append1, thearguments are not instantiated at thecall:

> A=appendl(B, ) ?

* % % Yes

A=@ B=@, C=@
--1> B=[1, 2] ?

* % % Yes

A=[_A 1, B 2/, B=[_A_B, C=@

The call residuates (which is marked by thetilde ™) until B is sufficiently instantiated. In the
following example execution of append?2, the arguments are not instantiated at the call:

> append2(B, C, A) ?

* % % Yes

A=@ B=[], C=A

--1>;

* % % Yes

A=[ AC, B=[ A, C=@
--1>;

March 1994 Digital PRL



Wild LIFE Handbook 29

*** Yag
A=[_A_BCd, B=[_A_B, C=@

In contrast to appendl, append?2 attempts to guess the right solution. It returns longer and
longer possible solutions on backtracking.

7 Constrained sorts

In Section 4.1.1 (page 8) we saw how to define a simple sort hierarchy. In practice, LIFE
has moreto offer: itis possibleto attach properties (attri butes or arbitrary constraints) to sorts.
These properties are verified during execution and are inherited by subsorts.

Example 7.1 This example ensures that all terms with sort per son have an age field whose
valueisan integer.

> :: person(age => int).
> man <| person.
> A=man?

*** Yes
A = man(age => int).

The sort man isasubsort of per son. It inheritsall attributes of per son.

Sorts, properties, and inheritance in LIFE resemble classes, class data, and inheritance in a
mai nstream obj ect-oriented language like C++. See Section 12.6 (page 82) for more details.

7.1 Defining constrained sorts

A sort that is given a sort declaration is called a declared sort. There are two independent
ways to declare a sort. First, it can be given a place in a hierarchy. Second, it can be given
properties to check.

By default, an uninterpreted identifier, i.e., a symbol that does not occur in a predicate,
function, or sort declaration, behaves like a sort whose only parent is @and whose only child
is{}. Itisaso known as an undeclared sort. Predicates and quoted functions also behave in
this way.

7.1.1 Sort attributes

A sort is given a -term property with a sort attribute declaration. Thisiswritten as : :
Head where Head isan arbitrary «-term. This attaches the property Head to the root sort of
Head. For example,: :  per son(age=>i nt) ensuresthat al instancesof per son have
the feature age whosevaueisani nt .

Example 7.2 This example defines two sorts with attributes. All vehicles have a make which
isastring, and a number of wheelswhich is an integer:

Research Report Draft March 1994



30 Hassan Ait-Kaci et al.

vehi cl e(make => string, wheels =>int).
All cars have 4 whesdls:
car (wheels => 4).

If the relation car <| vehi cl e is asserted then any properties attached to car must be
compatible with those attached to vehi cl e.

7.1.2 Constrained sorts

A sort is given an arbitrary predicate as property with a constrained sort declaration. This
iswrittenas:: Head | CGoal . For example, :: X person | X age=int adds
the property X. age=i nt to al instances of per son. This has the same effect as : :
person(age=>int).

A sort attribute declaration is a specia case of aconstrained sort declaration. Both attribute
declarationsand constrai ned sort decl arations may contai nfunctions. Theresemblancebetween
aconstrained sort definition and the built-infunction such-that isintentional . Such-that attaches
a predicate to afunction, and a constrained sort definition attaches a predicate to a sort.

Example 7.3 A rectangle has alength, width and area. A square is a rectangle with identical
length and width.

rectangl e(l ength=>L:real, wdth=>Wreal, area=>L*W.

square(l engt h=>S, wi dt h=>S, side=>S).
square <| rectangle.

Here isan example query:

> R=rectangle(area => 16, width => 4)?

* % % Yes

R = rectangl e(area => 16,
length => 4,
width => 4).

--1> R=square?

* % % Yes

R = square(area => 16,
length => _A: 4,
side => A
width = _A).

The system makes a distinction between a square and a rectangle with identical length and
width. The latter can be refined into the former.

March 1994 Digital PRL



Wild LIFE Handbook 31

Example7.4 Thisexampledefinesasubtypeof list,i nt _I i st, whichdefinesliststhat contain
only integers. This property is guaranteed to be true for an i nt _| i st. This definition does
not interfere in any way with existing code using lists. Ani nt _| i st will work with existing
list-based routines.

int_list <| list.
int_cons <| cons.
int_nil <] nil.

int_cons(int,int_list).
int_cons <| int_list.
int_nil < int_list.

Hereis an example query:

> X=[1,2,3]? % X is a standard |ist

*** Yes

X=11273].

--1> X=int_list? % Xis an int_list

*** Yes

X = int_cons(l,int_cons(2,int_cons(3,int_nil))).

----2> Y=length(X)? % Calculate the length of X

* % % Yes

X = int_cons(l,int_cons(2,int_cons(3,int_nil))), Y = 3.

7.2 Executing constrained sorts

The Wild LIFE system guarantees that all instances of a sort are consistent with all decla-
rations of that sort. For the inheritance hierarchy thisis guaranteed by -term unification (see
Section 4.1.3, page 10). Consistency with propertiesis guaranteed by a mechanism called sort
unfolding.

Sort unfolding makes a copy of the declaration and unifiesit with the term. Each declaration
is checked at most once for a given sort instance. This performs a kind of memoization, i.e.,
the solution of an intermediate problem is remembered and reused when encountered again.
An arbitrarily complex proof can be attached to asort. For agiven variable, the proof will only
be executed once: when the variable is refined to have that sort or alower sort. The fact that
the proof has been executed isimmediately available by inspecting the value of the variable's
root sort.

A recursive sort declaration is a declaration that has a compatiblesort in a subterm. That is,
adeclaration of s1 isrecursiveif it contains s2 such that glb(s1,s2)={}.

In the current implementation, a recursive sort definitionsuchas: :  per son(spouse
=> person) will go into an infinite loop because the definition of per son is expanded
indefinitely. To copewith such definitions, Wild LIFE usesthedeclaration del ay _check (A,

Research Report Draft March 1994



32 Hassan Ait-Kaci et al.

A, ...) where Aq, Ay, €tc., are sorts. This predicate is non-strict, i.e, it does not evaluate its
argument. del ay _check delays expanding aterm until it has at least one attribute.
With this declaration, the above definition of per son is:

del ay_check( person) ?
per son(spouse => person).

This delays the expansion of a term with sort per son until that term has at least one
atribute. Thedel ay_check declaration is propagated to all subsortsof per son.

Example 7.5 Thisisan example of how to use del ay_check. Given the following declara-
tions:

;. P:person(best_friend => Q person) | get_along(P, Q.
del ay_check( person) ?

cl eopatra <| person.
cl eopatra(nose => pretty, occupation => queen).

julius <| person.
julius(nose => big, |ast_nane => caesar).

get _along(cl eopatra,julius).
get _along(julius,cleopatra).

This explains the following behavior:

> A=person?

* k%% Yes
A = person.
--1> A=@nose => pretty)?

* k% Yes

A = cleopatra(best_friend => julius,
nose => pretty,
occupati on => queen).

The constraints attached to cl eopat r a, by inheritance from per son, are not checked until
an attribute becomes present. Having appeared as part of the structure of cl eopatra as
a result of checking cl eopat ra’s constraints, j ul i us, who is aso a per son, is left
unconstrained for the same reason.

Unfortunately, the del ay _check mechanism is not sufficient to guarantee completeness
and convergence in all cases. The LIFE compiler will have a consistent handling of recursive
sorts that does not need del ay_check. A complete and consistent agorithm to do lazy
attribute inheritance has been developed [9]. Thisalgorithm takes an attribute constrained in a
sort definition into consideration only if it appears in the resol vent.

March 1994 Digital PRL



Wild LIFE Handbook 33

7.3 Constrained sorts as daemons

A constraint that is attached to a sort declaration is checked at run-time during unification. It
can be used very effectively as a data-driven daemon—code whose execution is triggered upon
access to an object.

Constrained sorts can be used to help debugging, for example by printing al -terms of a
given sort each time they have their constraints checked.

Example 7.6 This example shows how attaching a constraint to i nt lets one trace all integer
calculations.

> lrint | wite(l," ).

* % % Yes

> A=5*7?

57 35

* k% Yes

A = 35.

--1> B=fact(5)?
51413121110112¢6 24 120
* % % Yes

A = 35, B = 120.

Example 7.7 This example shows how attaching a constraint to cons lets one trace all list
calculations.

>:: Ccons | wite(C 1), nl.

* % % Yes
> A=[a, b,c,d]?

DT O Q

* % % Yes
A =1a,b,c,d].

8 Basic built-in routines

This section summarizes the basic built-in functions and predicates of Wild LIFE.

Research Report Draft March 1994



34 Hassan Ait-Kaci et al.

8.1 Control flow

The following built-ins provide the ability to modify the execution flow of a program.

The predicate succeed aways succeeds.

The predicate f ai | awaysfails.

The predicate ( A, B) executes predicate A and then predicate B. It isalogical conjunc-
tion.

The predicate ( A; B) creates a choice point and then executes predicate A. If on back-
tracking execution returns to the disjunction, then predicate B is executed. ( A; B) isa
logical disunction.

The function { A; B} creates a choice point and then returns A as its result. If on
backtracking execution returns to the disjunction, then B isreturned asitsresult. { A; B}
is caled atype disjunction or adisunctiveterm. A “singleton” digunctiveterm {t } is
equivalenttot . Anempty digunctiveterm {} isequivalent to the bottom sort and causes
an immediate failure.

Example 8.1 Thisexample shows how disjunctive terms result in more compact code.
e A={1; 2; 3; 4}? isequivalentto A=1; A=2; A=3; A=47.
e p({a; b;c}). isequivaenttoassertingp(a). p(b). p(c).

Unifying U: {1; 2; 3; 4; 5} with V: {i nt; 2; 4; 6; 8} results in the disjunctive term
U V: {1; 2; 2; 3; 4; 4;5}. In theory, the above ought to be U: V: {1; 2; 3; 4; 5}
rather than U: V: {1, 2; 2; 3; 4; 4; 5} since a unifier does not contain redundant in-
formation. To perform this correctly, unification of digunctive terms should remove
any term in the resulting disjunction that is subsumed by another disjunct. Sincethisis
costly, Wild LIFE does not perform the compl ete operation.

e Thepredicate! ” (pronounced “cut”) removes al choice points up to and including the
choice point that was created when entering the predicate in which the cut occurs. See
Section 5.3 for adiscussion of cut.

e Thefunctioncond( B, T, F) isaconditiona that returns T or F depending on the result
of B. The conditiona returns T if B evaluatesto t r ue and F if B evaluatesto f al se.
If B isapredicate, then B is executed and the conditional returns T if B succeeds and F
if B fails. The conditional residuates otherwise. It does not evaluate its second or third
arguments until the first is known. At most one of the second and third arguments are
evaluated.

Example 8.2 This example defines an absolute value function using cond.

March 1994 Digital PRL



Wild LIFE Handbook 35

> absolute(V:real) -> cond(V>=0,V,-V).
> A=absol ute(X) ?

**% Yag
A=@ X=@.
--1> X= -347
**% Yag

A =34, X = -34.

e Thefunction E| P (called “such that”) takes an expression E and agoa P. It evaluates E
and proves P, and then returns the value of E asitsresult. No implicit cut is performed,
i.e, if either E or P returns more than one solution, then so will E| P. Thisis abridge
between functions and predicates.

Example 8.3 This example shows how the concatenation of two difference lists may
be written as a function. We use the sort - -, declared as an operator, to represent a
differencelist.

> op(500, xfy,--)?
> di ffappend(Al-- A2, B1--B2) -> Al--B2 | A2=Bl.

> A=[1,2|X]--X B=[3,4]|Y]--Y?
* % % Yes

A=112[X--X B=1[34Y]--Y X=@ Y=@
--1> C=di ffappend(A B)?

* % % Yes
A= A[L1,2/X--X B=X-Y, C= _A-Y, X=1[34Y],
Y=@

e Thefunctioncal | _.once( P) yiddst r ue if thegoal P can be proved (i.e., P succeeds),
andf al se if it cannot (P fails). Thecal cal | .once(P) alwayssucceeds. Thisisa
bridge between functionsand predicates. Thisfunction returns exactly one solution, i.e.,
it performs an implicit cut to remove al choice points created during the execution of P.
Thisfunction residuates until P is different from @

Example 8.4 Thisexampleillustratescal | _once.

Research Report Draft March 1994



36

Hassan Ait-Kaci et al.

> p(1).

> p(2).

> A=cal | _once(p(X))?
* % % Yes

A =true, X = 1.
--1> :

* k%% I\b

The second solution, X=2, is not returned.

The function bagof ( X, P) returns a list containing as many elements as there are
solutionsto P. This function is non-strict, i.e,, it does not evaluate its arguments. Each
element of thelist isthe value of X for one solution of P. Calls to bagof may be nested
to any level. Thereisno existential quantification such asin Prolog’s bagof.

Example 8.5 Thisexampleillustrates bagof .

> p(a).
> p(b).

> A=bagof (s(X), p(X))?

* % % Yes
A =[s(b),s(a)], X=@

The function best of ( X, Q P) returns the largest value of X for al solutions of P
according to the total order Q. This function is non-strict, i.e, it does not evaluate
its alguments. Calls to bagof may be nested to any level. There is no existential
quantification.

Example 8.6 Thisexampleillustratesbest of .
> p({1;-2;3;-4;5}).
> A=bestof (X, >, p(X))?
* % % Yes
A=5 X=@
--1> B=bestof (X, <, p(X))?

*** Yes
A=5 B=-4 X=@

March 1994 Digital PRL



Wild LIFE Handbook 37

e Thepredicater esi duat e( X, P) attachesthe predicate Pto theterm X. If X istouched
then P will be executed. Pis executed only once.

Example 8.7 Thisexampleillustratesr esi duat e.

> p(A) - wite(A, nl.
> residuate(A p(A))?

* % % Yes

A=@.

--1> A=B? % Touch A

@ % Wite the value of A
*** Yes

The predicate r esi duat e ishelpful to set breakpoints on variables when debugging,
i.e, to perform an action when a variable is touched.

e Thepredicatenr esi duat e(L: [ X1, X2, ...], P) atachesthe predicate Pto al the
termsinthelist L. If oneof thetermsistouched, then Pis executed. P isexecuted only
once, even if more than one of the termsis touched.

Example 8.8 Thisexampleillustratesnr esi duat e.

> p(A) - wite(A, nl.
> nresiduate([A Bl, (p(A),p(B)))?

* k% Yes

A=@, B=@d.

--1> A=2? % Touch A

2

@

* % % Yes

A=2 B=@ % All residuations are gone
----2> <CR> % Go back to previous |evel
* % % I\b

A= @, B= @. %Residuations reappear
--1> B=6? % Touch B

@

6

Research Report Draft March 1994



38

Hassan Ait-Kaci et al.

* % % Yes
A=@ B =6. % All residuations are gone

e Thepredicatei npl i es( G calsthegoa G using matching on the heads of the clauses

defining G. If thecalling argument impliesthe head of the clause, then thematch succeeds
and the clause body is called. Otherwise, the match fails, and the next clauseis called.
Backtracking to a successful i npl i es call will fall through to the following clauses,
just like a standard predicate call. Execution isidentical to that of a standard predicate
except that matching is used instead of unification to see whether a clause is entered.
See Section 12.10 for an illustration of the use of i npl i es in the graphical interface
toolkit.

Example 8.9 Thisexampleillustratesi npl i es.
> p(Xint) :- wite(’X=",X),nl.
*** Yes
> X={1;int;real}, inplies(p(X)), fail?
Xiilnt

* k%% I\b

8.2 W-term manipulation

These functions are useful for explicitly building and taking apart :-terms.

e The predicate A=B unifiesthetwo i-termsA and B. It succeeds if thetermsare unifiable

and failsif they are not. Writing X: s(...) =Y: s(...) amountsto the same as writing
the predicate cal eq( X: s(...), Y:s(...)) if the predicate eq is declared by the
clauseeq( U, U).

Thefunction A&B unifiesthetwo -termsA and B. It returnstheunified value. 1t succeeds
if thetermsareunifiableandfailsif they arenot. Writing X: s(...) &Y: s(...) amounts
to the same as writing the functional expression eqf un( X: s(...), Y:s(...)) ifthe
function eqf un isdeclared by theruleegf un(U, V) -> U | U=V.

The function A. F (project) selects feature F of -term A. F may be passed as a string,
an integer, or a sort. This generalizes record field selection of imperative languages. If
the field does not exist, then it is created. If F is @ then the function residuates until the
field name appears.

March 1994 Digital PRL



Wild LIFE Handbook 39

Example 8.10 Thisexampleillustrates project.
> A=s(a, b)? %A has two fields naned 1 and 2

***  Yes
A = s(a,b).
--1> B=A 2? % Sel ect the field 2

* % % Yes
A =s(a,B), B = b
----2> C=A B? % Create the field 'b’

* % % Yes
A=s(aBb=>0C, B=b C=@

e Thefunction has_f eat ur e(F, X) returnstr ue if the term X has the feature F and
f al se otherwise. Thisfunction does not residuate and hence must be used with caution.
F may be passed as a string, an integer, or asort.

e Thefunctionf eat ures( X, M stri ng) returns alist containing all the features at-
tached to the root of term X which are visible in module M (see Section 10, page 66).
The order of the features is unspecified. The module name M may be omitted; in that
case themoduleinwhich thecall tof eat ur es textually occursistaken. Thisfunction
does not residuate and hence must be used with caution.

Example8.11 Thisexampleillustratesf eat ur es.

> A=feat ures(thing(a,b,c,

| next => conputer,
| age => 16,

| appl e => worns))?

* %k % Yes
A =11, 2,3, age, appl e, next].

e Thefunctionr oot _sort (A) returnsthe root sort of the term A. The result is a copy
of A without arguments. This function does not residuate and hence must be used with
caution.

Example 8.12 Thisexampleillustratesr oot _sort .

Research Report Draft March 1994



40

Hassan Ait-Kaci et al.

> A=root _sort(abc(1, 2,3)),B=root_sort([a,b,c]),
| C=root _sort(5.67)?

***  Yes
A = abc, B = cons, C = 5.67.

Listsare represented with the sorts cons and ni | . Thelists[ Al B] and[] are parsed
identically tocons(A, B) andni | .

Thefunctionst ri p( X) yieldsa-termwhose sort is @and which has the attributes of
X. Theresult has the identically same attributes, i.e., the attributes are not copied. This
function does not residuate and hence must be used with caution.

Example 8.13 Thisexampleillustratesst ri p.

> A=strip(siren(noise => |oud,
| sound => unpl easant,db => 120))?

* % % Yes
A = @db => 120, noi se => |oud, sound => unpl easant).

Example8.14 Thisisan examplethat showsst ri p doesnot copy the arguments of the
stripped term.

> Y=strip(X foo(2=>bar))?

* % % Yes
Y=@2 => _A bar), X =1foo(2 => _A).

The function copy _poi nt er ( X) yieldsa-term whosesortisr oot _sort ( X) and
which has the attributes of X. The result has the identically same attributes, i.e., the
attributes are not copied. This function does not residuate and hence must be used with
caution.

The function copy_term(X) retuns a copy of the i-term X. The copy
has no subterms in common with X and has identical structure to X. So
copy-_term( X f (X)) =A:f(A). The copy is not persistent (see Section 9). This
function does not residuate and hence must be used with caution.

March 1994 Digital PRL



Wild LIFE Handbook 41

e Thefunction X===Y (identity) yieldst r ue if thearguments X and Y are the sameterm,
i.e, if they have been explicitly unified together. Otherwise it returns f al se. This
function does not residuate and hence must be used with caution.

e The function X\ ===Y yieldst r ue if the arguments X and Y are different terms, i.e,,
if they have not been unified together. Otherwiseit returns f al se. This function does
not residuate and hence must be used with caution.

8.3 Arithmetic

8.3.1 Arithmetic calculation

These functions coerce the sort of their arguments and results to real . Many of the
functions can be inverted. A local inversion is performed if theinversion is deterministic, i.e.,
if only one solutionis possible. For example, executing the goa A=A/ 5 binds A to 0. The bit
manipulation functions (A/ \ B, A\ / B, A>>B, A<<B, \ ( A) ) are not invertible. Executing the
goal 25=A* A residuates since there are two solutions 5 and 5. Applying a function followed
by itsinverse may not result in an identical value because of floating point roundoff error.

e Thefunction A+B returns the sum of A and B.

e The function A- B returns the difference of A and B. The function may aso be called
with asingleargument as - ( A) inwhich case it returns the negative of A. The function
does not curry in thiscase. The symbol - is defined as a unary operator which makes
parentheses unnecessary when called with a single argument.

e Thefunction A* B returns the product of A and B.
e Thefunction A/ B returns A divided by B. Thisisafloating point division.

e The function A/ / B returns the integer part of A divided by B, i.e, the integer between
0 and A/B that is closest to A/B. The arguments A and B must be integers.

e Thefunctionf | oor ( A) returnsthe largest integer less than or equal to A.
e Thefunctioncei I i ng( A) returns the smallest integer greater than or equal to A.

e Thefunction A/ \ B returnsthe bitwise “and” of A and B. The arguments A and B must
beintegers. The low word (32 hits) of theresult isvalid. Thisfunction is not invertible.

e Thefunction A\ / B returns the bitwise “or” of A and B. The arguments A and B must
beintegers. The low word (32 hits) of theresult isvalid. Thisfunction is not invertible.

e The function A>>B returns the arithmetic (signed) right shift of A by B places. The
arguments A and B must be integers. The low word (32 bits) of theresult isvalid. This
function isnot invertible.

e The function A<<B returns the arithmetic (signed) left shift of A by B places. The
arguments A and B must be integers. The low word (32 bits) of theresult isvalid. This
function isnot invertible.

Research Report Draft March 1994



42 Hassan Ait-Kaci et al.

e Thefunction\ A returns the bitwise negation of A. The argument A must be an integer.
The bitwise negation of the low word of A (32 bits) istaken and is sign-extended for the
result. Thisfunctionisnot invertible.

e Thefunctionsqrt (A) returnsthe positive square root of A. It isinvertible between the
domain 0O, oo[ and the range ]0, oof.

e The function exp( A) returns €* where e is the base of the natural logarithms. It is
invertible between the domain] Loo, oo and therange ]0, oof.

e Thefunction| og( A) returnsthe natural logarithm of A. It istheinverse of exp( A) . It
isinvertible between the domain ]O, oo and therange ] Loo, oof.

e Thefunctionsi n( A) returnsthe sine of the angle A, where A is expressed in radians.
It isinvertible between thedomain [ L7 /2, 7 /2] and therange [ L1, 1].

e Thefunctioncos( A) returnsthecosine of theangle A, where A isexpressed in radi ans.
It isinvertible between the domain [0, ] and therange [ L1, 1].

e Thefunctiont an( A) returnsthetangent of theangle A, where A isexpressed inradians.
It isinvertible between thedomain] L= /2, = /2[ and the range ] Loo, oof.

e The function randon({N:int) returns a pseudo-random integer in the range
0,1,...,(N L 1), where N is a positive integer. This function residuates if N is not
aspecific integer.

e Thepredicatei ni t randon( S: r eal ) initiaizesthe pseudo-random number genera-
tor with the seed S. Thisis useful when it is necessary to generate the same sequence of
pseudo-random numbers repeatedly. Upon system startup, the pseudo-random number
generator isinitialized by calling i ni t r andomwith the current time.

e The function geni nt returns a new nonnegative integer each time it is called. It is
guaranteed that al calls to geni nt during a run of Wild LIFE will return different
integers.

8.3.2 Arithmetic comparison

These functions narrow the sort of their arguments to r eal and the sort of their result to
bool . Their names are identical to Prolog’s arithmetic comparisons. They will residuate if
their arguments are not actual numbers in the sort hierarchy. They can be reversed in a few
simple cases.

e Thefunction A>B returnst r ue if A isgreater than B.
e Thefunction A>=B returnst r ue if A isgreater than or equal to B.
e Thefunction A<B returnst r ue if A islessthan B.

e Thefunction A=<B returnst r ue if A islessthan or equal to B.

March 1994 Digital PRL



Wild LIFE Handbook 43

e The function A=: =B returnst r ue if A isequa to B. Thisis different from = (the
unification predicate) or & (the unification function). The comparison =: = is an arith-
metic function which does not unify its arguments, always succeeds and returnst r ue
or f al se. Nevertheless, constraint lifting entailsthat if ( A=: =5) =t r ue then A=5.

e Thefunction A=\ =B returnst r ue if A isnot equa to B. Thisfunction unifiesvalues
inonecase: ( A=\ =5) =f al se, where A will be unified with 5.

8.3.3 Boolean arithmetic

These functions perform cal cul ations on boolean terms, i.e., termswhose val ues are the sorts
true orf al se. Thefunctions perform al possiblelocal propagations. For example, calling
B=A and f al se will cause B to be unified withf al se and callingB=A and true will
cause B to be unified with A. The functionsresiduate if a unique result cannot be determined.

e Thefunction A and Breturnsthelogical “and” of A and B.

Thefunction A or Breturnsthelogica “or” of A and B.

Thefunction A xor B returnsthe logica “exclusive or’ of A and B.

Thefunctionnot Areturnsthelogica “not” of A. Itreturnst rue if Aisfal se and
fal seisAistrue.

8.4 Sorts

8.4.1 Sort calculation

These routines provide the meansto cal culate with sortsin the sort hierarchy and to navigate
in the sort hierarchy. All functions that return sorts will return them in quoted form, so that
properties attached to them are not executed.

e Thefunction gl b( A, B) returns the greatest lower bound of the root sorts of A and B
in the current sort hierarchy. This function does not residuate and hence must be used
with caution. See Section 4.1.3 for afull presentation of the glb operation.

e Thefunction| ub( A, B) returns the least upper bound of the root sorts of A and B in
the current sort hierarchy. The lub is the dual operation to the glb. This function does
not residuate and hence must be used with caution.

Example 8.15 Thisexample illustrates the glb and lub built-in functions. It shows that
both glb and lub create a digunctionif the result is a digunctive sort.

> a <| c.
>a < d
>b < c.
> b < d

> A=gl b(c,d)? % Result is disjunctive sort {a;b}

Research Report Draft March 1994



44 Hassan Ait-Kaci et al.

* % % Yes

A = a. % Fi rst solution
--1> ;

* % % Yes

A = b. % Second sol ution
--1> ;

* % % I\b

> A=l ub(a,b)? %Result is disjunctive sort {c;d}
***  Yes

A = cC. % Fi rst solution
--1> ;

* % % Yes

A = d. % Second sol ution
--1> ;

* % % I\b

e Thepredicatesubsort ( A, B) continuously enforcestherelation A: =<B. It guarantees
that the root sort of A isless than or equal to the root sort of B. subsort checks the
relation when it is called, and then attaches itself as a residuation to B. Whenever the
sort of B isrefined, it ischecked to be not lower than A.

e The function chi | dren(S) returns alist of the declared sorts that are immediately
below S in the current sort hierarchy. The order of the sortsin the list is unspecified.
Three built-in sorts (i nt, real , and stri ng) have an infinite number of children.
These are not enumerated, i.e, chil dren(int)=[], children(real)=[int],
and chil dren(string)=[]. Thisfunction does not residuate and hence must be
used with caution.

e The function par ent s(S) returns a list of the declared sorts that are immediately
above Sin the current sort hierarchy. The order of the sorts in the list is unspecified.
This function does not residuate and hence must be used with caution.

Example 8.16 Thisexampleillustratesthe parents and children built-in functions.

>a<| c.
> a <| d.
>b < c.
> b < d

March 1994 Digital PRL



Wild LIFE Handbook 45

> X=parents(a), Y=children(c)?

*** Yeag
X =[c,d, Y =/[ab].
--1>

* % % I\b
> X=parents(c), Y=children(a)?

* k%% Yes

X=1@, Y=1[I.

e Thefunction| east _sort s returnsalist of the sortsthat are immediately above {} in
the current sort hierarchy. The order of the sortsin the list is unspecified.
8.4.2 Sort comparison

These functions perform sort comparisonsandreturn t r ue or f al se. Thecomparisonsare
done with the root sorts of the arguments. Because the sort hierarchy is amathematical lattice,
sort comparisons do not satisfy trichotomy (i.e, it is possible for none of A: <B, A: ==B, and
A: >B to betrue). Asaresult, there are more than six possible comparisons. Twelve of the 30
possible comparisons have been given a name.

Thenamesof all sort comparisonsstart witha“: ”. The namesare consistent with the names
of the arithmetic comparisons, except for sort equality and nonequality which use==and \ ==
instead of =: = and =\ =.

These functions do not residuate and hence must be used with caution. They can be made
order-independent by wrapping them in another function definition.

e Thefunction A: >Breturnst r ue if A isgreater than B in the sort hierarchy.

e Thefunction A: >=B returnst r ue if A isgreater than or equal to B inthe sort hierarchy.
e Thefunction A: <Breturnst r ue if A islessthan B in the sort hierarchy.

e Thefunction A: =<Breturnst r ue if A islessthan or equal to B in the sort hierarchy.
e Thefunction A ==Breturnst r ue if A isequal to B in the sort hierarchy.

e The function A: ><B returns t r ue if A is comparable to B in the sort hierarchy, i.e.,
their intersection is non-empty.

e Thefunction A: \ >Breturnst r ue if A isnot greater than B in the sort hierarchy.

e The function A: \ >=B returns t r ue if A is not greater than or equal to B in the sort
hierarchy.

e Thefunction A: \ <Breturnst r ue if A isnot lessthan B in the sort hierarchy.

Research Report Draft March 1994



46

Hassan Ait-Kaci et al.

The function A: \ =<B returns t r ue if A is not less than or equal to B in the sort
hierarchy.

Thefunction A: \ ==B returnst r ue if A isnot equal to B in the sort hierarchy.

The function A: \ ><B returns t r ue if A isnot comparable to B in the sort hierarchy,
i.e, their intersection is empty.

8.5 Strings

A string is a sequence of characters. Strings are provided as a separate sort in Wild LIFE.
Compared to storing character sequences as root sorts of new 1-terms, strings use less memory
and they arenot interned in the symbol table. Thefollowing built-insare provided to manipulate
strings.

8.5.1 String calculation

The function strl en(S: string) returns the length of S. S must be a string. So
strlen("abcdef ") =6. Thisfunction residuateson S, i.e, it waitsuntil Sis bound
to a specific string.

The function substr (S: string, P:int, N int) (substring or string extraction)
extracts N characters from string S starting from the character at position P. So
substr("abcdef", 2,4) yields"bcde". It truncates the output if it would go
beyond theend of S. Sosubstr ("abcdef ", 5, 4) =" ed" . Thisfunction residuates
onS, B and N.

The function strcon(S1:string, S2:string) (string concatenation) re-
turns the string obtained by appending S2 to the end of Si. So
strcon("abc", "def")="abcdef". Thisfunction residuates on S1 and S2.

The function str 2psi (S: string, M string) (string to -term conversion) re-
turns the «-term whose name consists of the same sequence of characters as S, and
which is current to module M (see Section 10, page 66). The module name M may
be omitted; in that case the module in which the call to st r 2psi textualy occurs is
taken. Sostr2psi ("fo0")=foo andstr2psi ("34")="34". Thelatter is not
theinteger 34, but a symbol. Thisfunction residuateson S.

Thefunctionpsi 2st r ( X) (¢-termto string conversion) returnsthe string whose name
consists of the same sequence of characters as the root sort of X. So psi 2str (i nt)
="int". This function never residuates. Hence, it is order-dependent and should
be used with caution. It can be made order-independent by wrapping it in an-
other function definition. The following definition waits until X:=<foo before firing:
psi 2str _foo( X foo) -> psi2str(X).

The function asc( S: stri ng) returns the ASCII code of the first character of the
string S. An error message isreported if Sisnot astring. Thisfunction residuateson S.

March 1994 Digital PRL



Wild LIFE Handbook 47

e The function chr (1:int) returns a string of length one containing the character
whose ASCII codeis|. An error messageisreported if | isnot an integer. This function
residuateson |.

8.5.2 String comparison

Thefollowing functions perform string comparisonsand return t r ue or f al se. They will
residuate if their arguments are not below st ri ng in the sort hierarchy. The names of al
string comparisons start with “$”. The names are consistent with the names of the arithmetic
comparisons, except for string equality and nonequality which use== and\ == instead of =: =
and =\ =,

e Thefunction A$>B returnst r ue if A isgreater than B.
e Thefunction A$3>=B returnst r ue if A isgreater than or equal to B.

The function A$<B returnst r ue if A islessthan B.

The function A3=<B returnst r ue if A islessthan or equal to B.

The function A3==B returnst r ue if A isequal toB.
e Thefunction A$\ ==B returnst r ue if A isnot equal to B.

8.6 Type checking

These boolean functions test whether an identifier is of a particular kind. These functions
never residuate. Hence, they are order-dependent and should be used with caution. They can
be made order-independent by wrapping them in another function definition.

e Thefunctioni s_f uncti on(X) returnstr ue if X isafunction.
e Thefunctioni s_pr edi cat e( X) returnst r ue if X isa predicate.

e Thefunctioni s_sort ( X) returnst r ue if X isadeclared sort. A declared sort isone
that has occurredina: : or <| declaration.

e Thefunctionvar ( X) returnstrue if X is @with no arguments.
e Thefunction nonvar ( X) returnstrue if X isnot @or it has arguments, or both.

e Thefunctioni s_persi stent (X) returnstrue if X isa persistent term. See Sec-
tion 9.

8.7 Input/output

In Wild LIFE, asin Prolog, input and output operations are extra-logical in that they have
side-effects. Namely, Wild LIFE does not, upon backtracking, retrieve information that has
been sent to an output port, or put back characters read from an input stream. Therefore good
style dictates that input/output be avoided in the main body of a program.

Research Report Draft March 1994



48 Hassan Ait-Kaci et al.

Unless explicitly set otherwise by the user, all reading and writing is done from and to
streams bound to the standard Unix I/O file descriptors st di n and st dout . Wefirst describe
the built-ins for reading and writing on the currently selected 1/0 stream. Then we describe
how to modify the current stream.

8.7.1 Reading
Thefollowing built-ins are provided for reading from the current stream.

e Thepredicateget ( C) readsthenext character off the current input stream and unifiesits
ASCII code (an unsignedinteger) withitsargument C. If that next character isthe end-of -
file character CTRL- D, then get unifiesits argument with the symbol end_of fi | e.
Be mindful of the fact that if the argument passed has a sort other than @then when the
end of file marker is reached, the predicate will simply fail (as end_of fi | e cannot
unify with st ri ng for instance).

e Thepredicater ead( X) readsa)-term off theinput stream, quotesit, and unifiesit with
itsargument X. The «-term being read must be properly terminated. The ¢-term being
read must be consistent with the current set of operator declarations. Variable names
appearing in the input stream are ignored.

Example 8.17 Thisexampleillustratesr ead.

> read(R)?
f(Xa(Y,X)). % Typed in by the user

* k% Yes
R=1f(_Ag(@_A).

e Thepredicater ead_t oken( X) reads one syntactic token from theinput stream, quotes
it, and unifies it with X. A token is either a symbol, a number, a string, a variable, any
non-a phanumeric built-in or declared operator, or delimiters (parenthesis, bracket, brace,
period, etc.). Variable names appearing in the input stream are ignored.

Example 8.18 Thisexampleillustratesr ead_t oken.

> read_t oken(S)?

f oo % Typed in by the user
* % % Yes

S = foo.

--1> read_token(T)?

S % Typed in by the user

March 1994 Digital PRL



Wild LIFE Handbook 49

**% Yeg
S=foo, T=@

e The predicate | oad(Aq, Ay, ...) loads al the definitions in the files A1, Ay, etc., in the
order they appear. This predicate is non-strict, i.e., it does not evaluate its arguments.
Queries appearing in the files being loaded are proved as they are encountered and
therefore take into account only definitions that textually occur before them. If onefile
is not found, then the remaining files are not loaded, an error message is reported, and
thel oad fails. Anerror-free load always succeeds, even if queriesin theloaded filefail.
If a query appearing in afile fails then the remainder of the file following it is loaded
anyway. A file being loaded may itself contain al oad query. The outermost | oad is
then momentarily “set aside” and the nested one is executed in the context reached thus
far. If no error occurs, the outermost | oad is then resumed in the augmented context.
Cyclic loadings are ignored, i.e,, afileis only loaded once during the scope of al oad,
even if it occursin more than onel oad query.

e The function | oad_pat h may be defined by the user to return a directory name or
a disiunctive term containing directory names. A directory name is given as a string,
eg., "/usr/lib/include" isavalid directory name. During al oad or i nport
command, the current directory is searched first, followed by the directories returned by
| oad_pat h, followed by the Lib, Tools, and Examples directories.

8.7.2 Writing
The following built-ins are provided for writing to the current stream.

e Thepredicate put (C: i nt) takestheinteger ASCII code C of acharacter and outputs
it to the current output stream. It isadual to the get predicate.

e Thepredicateswri t e(Ar, Ay, ..) andpretty_wite(As, Ay, ...) print the ¢-terms
A1, A, etc., according to the current operator declarations. The arguments are printed
in lexicographical order of feature names, where all integer features are considered to
be less than al non-integer features. The difference between the two predicates is that
pretty wite will break up and indent a ¢>-term if the output does not fit on asingle
line.!* No linefeed isissued after either of these two predicates.

e Thepredicateswr i t eq(A1, Ay, ...) andpretty_witeq(Ar, Ay, ...) printthe-terms
Ay, Ay, etc., according to the current operator declarations. The -termsare printed with
al necessary single and double quotes so that the -terms may be read in again with
read.

e Thepredicatewr i t e_canoni cal ( X) printsitsargumentsin acanonical form. with-
out operator declarations, and adding single and double quotes where necessary so that

“Thismakespretty_writ e run marginally slower and use more memory.

Research Report Draft March 1994



50 Hassan Ait-Kaci et al.

the arguments may be read in again with read. This predicate is useful for infor-
mation interchange between programs that do not necessarily have the same operator
declarations.

e The predicate nl goes to the beginning of the next line, i.e,, it has the effect of printing
acarriage return and line feed.

e The predicate page_w dt h(N) changes the default page width to N. By default,
the pretty-printer invoked by pretty_write uses a constant page width set to 80
characters. This value is changed dynamically to the number of characters max(0, N).
The pretty-printer is also used by the user interface to show the bindings of variables
when agoal succeeds. N must be a nonnegative integer or an unbound variable. If N is
an unbound variable, it is bound to the current page width.

e Thepredicatepri nt _dept h(N) changes the default maximum print depth to N. Only
thefirst N levels of a-term will be printed entirely. Therestisprintedas®. . . ” (three
dots). N must be a nonnegative integer or an unbound variable. If N is an unbound
variable, it isbound to the current print depth.

Since a >-term to be written may contain cycles, the Wild LIFE printer exploresit entirely to
detect any cycles encountered. It then prints the term, generating new tag names to reference
identical terms which appear severa times (and thus cycles, in particular). The tags generated
are local to each call of the printer and are of the form _« where « is a capita letter, or a
sequence of same, generated in alphabetical order; thatis, A, _B, C,...,_Z, AA, _AB, €c.

Example 8.19 Thisexampleillustratespage_wi dt h.
> page_wi dt h(60) ?
* k% Yes

> bi g(one(abc, X: def,fgh(a, b,c,d),ijk,Im(e,f,g(h,i,j),
| h,i (12, 23,34,45)),[a, b,c,d],[a, b] (3=>10000),[X] X])).

* % % Yes
> big(A,nl,wite(A),nl,nl,pretty wite(A),fail?

one(abc, A:def,fgh(a,b,c,d),ijk,Im(e,f,g(h,i,j),h,i(12,23,3
4,45)),[4a, b,c,d], cons(a,[b],10000),[_A _A])

one( abc,
_A def,
fgh(a, b, c,d),
ik,
Im(e, f,g(h,i,j),h,i(12,23,34,45)),
[a, b, c,d],
cons(a, [ b], 10000),
[_Al_A)
* % % I\b

March 1994 Digital PRL



Wild LIFE Handbook 51

Example 8.20 Thisexampleillustratespr i nt _dept h.
> print_depth(0)?

* k%% Yes
> X=t(f(f(f(a))))?

* % % Yes

X=f(...).

--1> print_depth(1)?
* % % Yes
X=f(f(...)).

--1> print_depth(2)?

* k%% Yes

X=f(f(f(...))).
--1> print_depth(3)?

* % % Yes
X=f(F(f(f(...))))
--1> print_depth(4)?

* k%% Yes

X = f(i(f(f(a)))).

Example 8.21 This example illustrates the difference between wite and witeq. The
former prints terms without quotes, the latter keeps all single and double quotes.

>wite('f o0)?
f oo

* % % Yes
>witeq('f oo0)?
'f oo

* % % Yes

>wite("f oo0")?
f oo

* % % Yes

> witeq("f o 0")?
Ilf O OII

* % % Yes

Research Report Draft March 1994



52 Hassan Ait-Kaci et al.

Example 8.22 Thisisan example of aself-reproducing query. It useswiteq andwite to
reproduce its input exactly.

> =X, witeg(X),wite(X)? =X, witeq(X),wite(X)?
"=EXwiteq(X),wite(X)? =X, witeq(X),wite(X)?

* % % Yes

X="=X,witeq(X),wite(X)? .

Example 8.23 Thisisashorter self-reproducing query.

> X (wite(X), put(63))?
X (wite(X), put(63))~?

*** Yes

X = (wite(X), put(63)).

This works because the query isitself a -term, and hence may be cyclic. A question for the
reader: isan even shorter self-reproducing query possible? ¥

8.7.3 Parsing a string

The function par se(S: string, X, V) returns the «-term resulting from parsing the
string S according to the current operator declarations. It sets the flag X to either query,
decl aration, or error depending on the status of the parse. It sets the flag V set
to t rue if the parsed form contains variables, and f al se otherwise. Parse never fails.
Variable namesthat appear in S are significant and interpreted in the current context. The call
parse("1+2.") returnsthe quoted y>-term 1+2. The string S must be properly terminated,
i.e, it must end with“?" or“.”.

Example 8.24 Thisexampleillustrates par se.
> X=17?

* % % Yes
X =1
--1> F=parse("X+3.",S), G=eval (F)?

BThe answer isyes; findit!

March 1994 Digital PRL



Wild LIFE Handbook 53

*** Yes
F=X+3, G=4 S = declaration, X = 1.
- 2>

* % % I\b
X = 1.
--1> F=parse("X+3",S,V)?

* % % Yes
F=X+3, S=error, V=1true, X =1.

The first call to par se correctly returns the >-term 1+3. In the second call to par se, the
binding S=er r or isduetothe missing period at the end of the string " X+3" . Thatis, par se
reports a syntactic error, not a semantic one.

8.7.4 Operator declarations

In the same manner as Prolog, Wild LIFE alows run-time modification of input/output
syntax through operator declarations. The predicate op( P, K, N) declares that the operator
named N exists with precedence P and kind K. This predicate is non-strict, i.e., it does not
evaluate its arguments. The precedence must be an integer from 1 to 1200. The kind must be
oneof xf ,yf,fx,fy,xfx,xfy,andyf x. Thispredicate may be used to inspect or to create
new operators. See appendix B (page 102) for alist of all predefined operators in the system.
The predefined operators are as compatible with | SO Standard Prolog as the language allows.

Example 8.25 Thisexampleillustrates user-defined operators.

> op( 1000, fx,if)?

op( 900, xfx, t hen) ?
op(500, fx, go)?
op(600, fx, the)?

op( 700, xfx,is)?
op(1200, xf, qui ckl y)?

VVVVYV

> wite(if the weather is nice then go swi nmm ng quickly)?
if the weather is nice then go sw mming quickly
* % % Yes

Example 8.26 Return the list of all operators whose precedence is less than the precedence of
* i.e, which bind tighter than * .

> A=bagof (Z, (op(X, 3=>(*)),op(Y, 3=>2),Y<X))"?

* % % Yes
A=[",&md‘,:,.], X=@ Y=@ Z=@

Research Report Draft March 1994



54 Hassan Ait-Kaci et al.

@@ The op  predicate recognizes  keywords, and therefore  the
three cals op( X, Y, Z), op(precedence => X, kind => Y, functor => 2),
andop( X, Y, Z, precedence => X, kind => Y, functor => Z) areequivaent.
Because the head isa)-term, any mixed or incompl etelist of arguments may be specified, even
op(precedence => X, 3 => Z).In addition, unlike Prolog’s op, which is a declara-
tion, Wild LIFE’s op can be dually, and indifferently, used in both assertion and query mode.
Thus, op( precedence => X, kind => xfy, functor => Z) will successively
bind X and Y to al pairs of precedence weights and functor symbols of kind xfy. Thisis
quite handy to define new operators precedences relatively to known ones as functions (or
constrained by) the defined values, all without being aware of their actual specific (and often
arbitrary) values.

8.7.5 Files and streams

Filel/O operationsin Wild LIFE are reduced to asimpleform: files may be opened in either
read or write mode and closed. It is possible to open several files for input and/or output with
open.i n and open_out , and to switch between them with set _i nput and set _out put .

For consistency, all trace messages are alwaysoutput to " st dout ", all errors and warnings
to"stderr", and al program output to the stream selected by the user. The default initial
selectionsare " st di n" forinputand " st dout " for output.

The following built-in predicates provide file 1/O operations.

e The predicate exi st s_fi |l e(F) succeedsif and only if the file F can be opened for
input. Thisisquiet and so can be used for testing the presence of afile.

e Thepredicateopen.i n(F, S: st r eam) opensthefileF for input and selectsthe stream
Sascurrent input. Theargument Sis set to at-termwhoseroot sort symbol isst r eam
containing al information relative to the status of reading from thisfile. This predicate
failswith an error message if file F cannot be opened.

e The predicate open_out (F, S: st rean) opensthefile F for output and selects the
stream S as current output. The argument Sis set to a-term containing all information
relative to the status of writing into thisfile. This predicate fails with an error message
if file F cannot be opened.

e Thepredicateset _i nput ( S: stream setstheinput streamto S. The stream S must
have been initialized by open_i n.

e The predicate set _out put ( S: st rean) setsthe output stream to S. The stream S
must have been initialized by open_out .

e Thepredicatecl ose( S: st r eam closesthestream Swhich must havebeeninitialized
by open_i n or open_out . It aso flushes the corresponding 1/0O buffer. If S was an
input stream, cl ose(S) automatically selects st di n as current input stream. It
behaves analogously for output streamsand st dout . All streams are closed on normal
termination of Wild LIFE.

March 1994 Digital PRL



Wild LIFE Handbook

55

All file handling built-ins (I oad,
require a string as filename argument.

i mport,

open.i n, open_out,

exists file)

Example 8.27 Thisexample gives a short program for copying files.

copy_file(Fl,F2) :-
open_in(F1, S1),

open_out (F2, S2),
open_out (stdout, S3),
wite("Copying from""",
set _out put (S2),
r epeat,
get (X),
( X=end_of file,

cl ose(Sl), close(S2),

wite("done."),
!

% Open file F1
% Select it for input
% Open the target file

% Set output stream to stdout
Fl, mon t O mon , F2, mon L n ) ,
% Set the output to file F

% Read a character

%If end of file F1 is reached
% then close both files

% (output is reset to stdout)

% and cut out the repeat |oop
% el se

put (X), % out put the character
).fall % and fail to repeat |oop
Hereisan example of itsuse.
> copy_fil e(xxxo00, junk)?
Copying from’xxxo00 to ’'junk’ done.

* k%% Yes

8.8 System-related built-ins
8.8.1 The Wild LIFE system

This section summarizes the built-ins that allow inspection and modification of Wild LIFE

system-related properties.

e Thepredicatel i sti ng(A1, Ay, ...) liststhedefinitionsof theidentifiersAq, Ay, etc.. This
predicateisnon-strict, i.e, it doesnot evaluateitsarguments. Thisbuilt-inisquiteuseful
toinspect aloaded program. It knowsabout functions, sorts (including thesort hierarchy),
predicates, and global variables. For example, try thequery | i sti ng(23) ?.

e The predicate ver bose toggles the Wild LIFE interpreter between two modes, quiet
and verbose. The interpreter starts up in quiet mode. Verbose mode gives execution
time statistics about each query and shows the garbage collectionswhen they occur. The
statistics given in verbose mode are the following.

Research Report Draft

March 1994



56 Hassan Ait-Kaci et al.

Name Meaning
cpu CPU time of the query in seconds.
goals Number of internal goals executed by the query.
stack Size of backtrackable stack in bytes.
heap Size of nonbacktrackable stack in bytes.
goals Number of internal goals on goal stack.
choice points | Number of entries on choice point stack.
trail entries Number of entrieson trail stack.

Example8.28 Thisexample showshow to declare afunction with variable arity, i.e., the
number of argumentsis determined by each call.

> Xisum -> sumal | (features(X), X).
> sumall ([F|FL],X) -> X F+sum.all (FL, X).
> sumall([]) -> 0.

* % % Yes
> verbose, A=sum(l,2,3,4,5)7?
*** \erbose node is turned on.

*** Yes [0.000s cpu, 80 goals, 7916 stack, 196624 heap]
*** Stack depths [0 goals, O choice points, 1 trail entry]
A = 15.

e Thepredicatest ati sti cs printsinformation about the current memory usage of the
system.

e Thepredicatet r ace( X) isused toenter and exit trace mode. In trace mode, all internal
godsareprintedto stdout. If X isf al se thentrace modeisdisabled. Thisisthedefault.
If X ist r ue then trace modeisenabled. If X does not exist, then trace modeistoggled.

e Thepredicatest ep( X) isusedtoenter and exit single-step mode. In single-step mode,
aninternal goa isprinted and then the system waits for user input to continue. Pressing
(CR) will execute oneinternal goal. Pressing aninteger N followed by (CR) will execute
N internal gods. If X isf al se then single-step modeisdisabled. Thisisthe default. If
X ist r ue then single-step mode is enabled. If X does not exist, then single-step mode
istoggled. In single-step mode, type h to get online help.

e Thepredicate abor t forces an immediate return to the Wild LIFE top level.
e Thepredicate hal t forces an immediate termination of the Wild LIFE process.

e The predicate gc forces an immediate garbage collection. No messages are printed
unless verbose modeis active.

March 1994 Digital PRL



Wild LIFE Handbook 57

8.8.2 The Unix system

Thissection summarizesthebuilt-insthat allow Wild LIFE tointeract with the Unix operating
system.

e Thefunction systen(S: stri ng) executes the command S under the shell sh and
returns the resulting exit code. The function failswith an error message if a shell could
not be created or if Sisnot astring.

e The function get env(S: string) returns a string that contains the value of the
environment variable S. The function failsif and only if the environment variable does
not exist. The function fails with an error messageif Sisnot a string.

Example 8.29 Thisexampleillustratessyst em

> A=systen("ls")?
DEMOS_README  dictionary.|f flowers.|f prime.|f

FI oner s. doc display_terns.|f gauss.|f queens. | f
Gauss. doc f1 o_README hanm ng. c schedul e. | f
Schedul e. doc flo_custom|f hanmm ng. | f sinple.|f
Super Li nt/ flo_flowerdef.If machine.If soap. | f
all _denos. | f flo_gramlf magi c. | f solve. | f
boxes. | f flo utils.If nl.If XXX000. | f
dictionary.c flo_xtools.|f palette.|f

* % % Yes

A =0.

--1>

* k% I\b

> A=systen("core")?
sh: core: cannot execute

*** Yag
A = 256.

e Thefunction ar gv returnsalist of the command line arguments given as strings.

Example 8.30 Thisexampleillustratesar gv.

%wldlife apple pie

WIld_Life Interpreter Version 1.0

Copyright (C 1991-93 DEC Paris Research Laboratory
No custom zing file | oaded.

Research Report Draft March 1994



58 Hassan Ait-Kaci et al.

> A=argv?

* % % Yes
A=1["/udir/rmeyer/LI FEf MODULE/ Wi I d_Iife", "apple", "pie"].

8.8.3 Timekeeping
The following functions provide an interface to the flow of time.

e Thefunction cpu_t i me returns the amount of user CPU time in seconds that the Wild
LIFE process has used so far.

e Thefunctionr eal _ti me returns the amount of wall clock time (in seconds) that has
elapsed since a particular moment of time in the past. The location of this moment
of timeis fixed for any given Unix system. The date of this moment depends on the
particular Unix system.

e The function | ocal _ti nme returns a y-term that represents the local time. For ex-
ample, the goa write(local _tinme) will writetinme(day => 14, hour =>
18, m nute => 9, nonth => 10, second =>
35, weekday => 3,year => 1992) if the date is Wednesday, Oct. 14, 1992,
6:09:35 pm. The month field ranges from 0 to 11, where O represents January. The day
field givesthe day of the month and ranges from 1 to 31. The weekday field ranges from
0 to 6, with O representing Sunday. The hour field ranges from 0 to 23 (24-hour clock),
where 0 represents midnight. The minute and second fields range from 0 to 59. This
function is based on the underlying Unix date and time library.

8.9 Loading files with term expansion

The standard way in Wild LIFE to run a preprocessor on program rules is to define the
preprocessor as a predicate. Program rules are written as queries to the preprocessor. For
example, aDCG (Definite Clause Grammar) expander could be written by defining a predicate
named - - >, declaring it as an operator, and then writing clauses as callsto - - >, namely as
queries Head --> Body?.16

Because it is awkward to treat program rules as queries in this way, Wild LIFE provides
atermexpansi on facility. It generalizes the similarly named facility of Prolog. Term
expansion is useful to expand terms into facts without having to write these terms as queries
and without having to define their main functor as a predicate or afunction. Term expansion
is done only when loading files.

Example 8.31 Thisexampleillustrates how to use term expansion to provide a simpletracing
facility.

8 A preprocessor that does DCG expansion and much more isincluded in the system and described in appendix F.

March 1994 Digital PRL



Wild LIFE Handbook 59

> expand_| oad(true)?

> termexpansion((H-B), (H-wite(root_sort(H),nl,B)) :- !.
> | oad("/tnp/x")?

*** Loading File "/tnp/x.If"

> listing(third)?

third(_A _B) :-
wite(third),
nl,

A=[@@_B Q.
*** Yes

Thiswill trace the execution of t hi r d. Thefile/ t np/ x. | f containsthe single clause:
third(L, X) :- L=[_, ,X _].

8.9.1 Defining term expansion clauses

The predicatet er m_expansi on( A, B) expandstheterm A into theterm or list of terms
B. Theterm A may be anything at all, including a predicate declaration, afunction declaration,
or asort declaration. The predicatet er m_expansi on isdynamic and may be extended by
the programmer.

Example 8.32 Thisexample showstheinitial definition of t er mexpansi on.

WIld_Life Interpreter Version 1.0

Copyright (C 1991-93 DEC Paris Research Laboratory
No custom zing file |oaded.

> |isting(termexpansion)?

dynam c(t er m_expansi on) ?
% ' termexpansion’ is a user-defined predicate
with an enpty definition.

* k% % Yes

8.9.2 Using term expansion when loading files

The predicate expand_| oad( A, W modifies the behavior of the | oad command with
respect to term expansion. The default is not to do term expansion. expand_| oad has no
effect on interactive input. The options A and W have the following effect:

e If theoptionAist r ue, then expand thetermsand assert them. If Aistrue orf al se,
thefirst optionisset tothevalueof A. If A isafreevariablethenitisbound to the current
value of the option.

Research Report Draft March 1994



60 Hassan Ait-Kaci et al.

e |f theoption W ist r ue, then write the expanded rules and queriesin afile with suffix
“. exp”. Thisfile can later be loaded to avoid re-expanding al therules. If Wistrue
or f al se, the second option is set to the value of W. If W is afree variable then it is
bound to the current value of the option.

These options are recursive: if fil el is loaded with some options, and loads fi | e2,
then fil e2 will be loaded with the same options. If the second option is set, the
load(fil e2) query in filel will be rewritten as | oad_exp("fil e2.exp") in
filel. exp. | oad_exp never doesterm expansion.

9 Global variables, persistent terms, and destructive assignment

This section covers three new concepts. global variables, persistent terms, and destructive
assignment. These concepts are designed to provide clean and efficient replacements for most
usesof assert andretract.

Globa and persistent variable names are part of the name space that contains predicates,
functions, and sorts. The same symbol cannot denote both a predicate and a globa variable.

9.1 Global variables

A global variable is alogica variable whose name is visible throughout the program. To
be precise, it isvisible from all clauses within its defining module or any module to which it
is exported. A global variable behaves exactly as if it were an extra parameter passed to all
predicates, functions, and sorts. Global variables must be declared.

Example 9.1 Thisexampleillustrates global variables.
> gl obal (warfare)? % Decl are a gl obal variable

* k% Yes
> war f ar e=34? % Unify the variable with 34

* % % Yes

--1> wite(warfare)? % Wite the val ue

34

* % % Yes

----2> .

> wite(warfare)? % Backtracki ng undoes the unification
@

*** Yes

Global variables are essentialy syntactic sugar and a programming convenience. They
should be used sparsely as program maintai nability may suffer otherwise. Other than having a
larger scope for its name, aglobal variable acts exactly like aloca variable.

March 1994 Digital PRL



Wild LIFE Handbook 61

A good example of the use of a globa variable (possibly combined with backtrackable
destructive assignment) is to keep track of the reasoning used in some expert system, without
having to explicitly pass an extra parameter around to all the predicates or functions used.

9.2 Persistent terms

A persistent termisa-term that does not changeitsval ue on backtracking. Itis*“read-only.”
It may not be modified through unification and functions may not residuate on it. It can be
modified only through explicit calls to nonbacktrackable assignment <<- (see Section 9.4.2).
This can be viewed as having a global database (a set of graphs) with named entry points on
certain nodes. All subterms of apersistent term are also persistent. Information may be shared
between persistent terms.

Persistent terms are stored on the heap, just like clauses (see Section 8.8.1). Persistent terms
cannot be unified together. They can be modified only through destructive assignment. All
interaction between local terms and persistent terms is through matching. An error is reported
if the match fails. Any attempt at unifying two persistent terms yields an error.

A persistent term may be stored in a standard variable. Modifications of the term are
unaffected by backtracking. Access to the term through the standard variable is affected by
backtracking: if one backtracks before the point in which the standard variabl e obtains access
to the persistent term, then the standard variable getsits original value back and the persistent
term becomes inaccessible. Its spaceis recovered by garbage collection.

9.3 Persistent variables

A persistent term may be stored in aglobal variable. The variableisthen caled a persistent
variable. In this case, the value never becomes inaccessible. Parts of persistent terms may
be shared between variables. Persistent variables must be declared. Thel i sti ng predicate
knows about global variables, but it does not (currently) differentiate between persistent and
global variables.

Example 9.2 Thisexampleillustrates persistent variables.
> persistent(trouble)? % Decl are a persistent variable

* % % Yes

> trouble <<- with_harry? 9% Assign a value to the variable
% w th destructive assignment

* k% Yes

--1> wite(trouble)? % Wite the val ue

with_harry

* % % Yes

----2> .

> wite(trouble)? % Backtracki ng has no effect

with_harry

* % % Yes

Research Report Draft March 1994



62 Hassan Ait-Kaci et al.

(@(® The following commands:

> gl obal (tactics)?
> tactics <<- retreat?

are not sufficient to maket act i cs apersistent variable because when backtracking beyond
thepointwheret act i ¢cs wasboundto thepersistent term thebindingwill belost (in particular
when returning to the top-level command line).

9.4 Destructive assignment

Wild LIFE provides a clean integration of destructive assignment in a single-assignment
language. Theintegration is based on two kinds of terms: normal and persistent terms.  The
former are backtrackable, i.e., they regain their former values on backtracking. The latter are
nonbacktrackable, i.e., changesto them are not undone on backtracking. Normal and persistent
terms may be matched together. This results in a flow of information from the persistent to
the normal term, never in the other direction. Any attempt to modify a persistent term except
through its destructive assignment operation resultsin failure.

Normal and persi stent termseach havetheir own destructive assignment operation. Therefore
there are two kinds of destructive assignment: backtrackable and nonbacktrackable. Both of
these are useful in real programs. See Section 12.7 (page 83) for anon-trivial example of the
correct use of these two built-ins.

9.4.1 Backtrackable destructive assignment

The predicate X<- 'Y overwrites X with Y. X and Y are standard (backtrackable) 1)-terms.
Backtracking past this statement will restore the original value of X. For example:

> X=5, (X<-6; X<-7; succeed), wite(X), nl, fail?

This predicate is very useful for building “black boxes’ that have clean logical behavior when
viewed from the outside but that need destructive assignment to be implemented efficiently.

9.4.2 Nonbacktrackable destructive assignment

The predicate X<<-'Y overwrites X with a persistent copy of Y. Modificationsto X after it
has been made persistent are not backtrackable. If you backtrack to a point before X is made
persistent, then X isrestored to its origina (backtrackable) value. For example:

> X=57?

* % % Yes

X = 5.

--1> X <<- 107 % Make X persistent, with value 10

*** Yes

March 1994 Digital PRL



Wild LIFE Handbook 63

X = 10.

----2> X <<- 20?7 % X gets value 20, nonbacktrackably
* % % Yes

X = 20.

------ 3> % Type <CR> to go back

* % % I\b

X = 20.

----2> % X i s nonbacktrackably 20!

* % % I\b

X = 5. % X is restored to backtrackable 5

(@(@ It is important not to confuse <- and <<-. The former can be used on the standard data
structuresin a program. The latter creates a specia kind of data structure, the persistent term,
whichisuseful for managing information that must not go away on backtracking. For example,
theimplementation of bagof uses persistent terms. Attempting to use <- on persistent terms
resultsin an error.

Theuseof A <<- BwhereA isalocal variableallowsthe creation of “temporary” persistent
terms. They aretemporary because thebinding tothemislost on backtracking before theinstant
in which the variable became persistent.

Example 9.3 This example illustrates nonbacktrackabl e destructive assignment.

> persistent(this)?

>p:- wite(this). %'this’ is '@ when 'p’ is defined
>this <<- qg(a,b,c)? %Assign a value to "this’

> p? % Call 'p’

g(a, b, c) % which prints the value of 'this’

* % % Yes

> this=q(D E F)? % Unify the persistent term’q(a,b,c)’
*** Yes %with the local term’'q(D@QE @QF: @’

D=a E=b, F=¢c, this =q(DEF).
% Succeeds since 'g(a,b,c) < q(@@ @’
% D, E and F contain persistent terns

Example 9.4 Thisexampleillustratesthat subterms of a persistent term are persistent.

> persistent (that)?

> that <<- thing(int)?

> that =t hing(5)?

*** No % Fails since "int |> 5

Research Report Draft March 1994



64 Hassan Ait-Kaci et al.

> that=thing(X)?
*** Yes % Succeeds since 'int < @
X =int, that = thing(X).

--1> X=57?
*** No % Subterm int’ of persistent term
%is persistent and 'int |> 5

Example 9.5 This example defines an efficient version of bagof using <<-. It is efficient
because <<- doesincremental copying to the heap. That is, parts of the term that are already
on the heap are not copied.

non_strict (Il ocal _bagof)?

| ocal _bagof (X, G -> M|

L<<-[],

( evalin(Q, % Prove G
L<<-[evalin(X)| copy_pointer(L)], % Record X binding
fail % For ce backtracki ng

M<- copy_tern(L) % Copy persistent term
. % Back onto the stack

Both bagof and| ocal _bagof executein linear time.

Example 9.6 Thisexampleillustrates that on a persistent term, the function “.” (project) will
nonbacktrackably create a new feature if the required one was not present.

> persistent(this)?

> this<<-q(a,b,c), wite(this)?
q(a, b, c)

* % % Yes

--1> this.2=B?

* % % Yes
B = b. % B is bound to a persistent term
- 2>

* % % I\b

--1> this.new=B, wite(this)? %’ 'new feature is added
g(a, b,c,new => @

* % % Yes

B=@ this =q(a,b,c,new => B).

March 1994 Digital PRL



Wild LIFE Handbook 65

----2> %Bis bound to a persistent term

* % % I\b

--1> wite(this)?

g(a,b,c,new => @ %B no |onger exists, but the
%' new feature still does

9.5 Quoting

Global and persistent variables can be quoted like functions (see Section 6.5, page 26). A
guoted variable is not dereferenced. This allows global and persistent variables to be part of
asserted predicates and functions.

Example 9.7 This example illustrates the use of quoting global variables when asserting a
clause.

> global (it)?

> it=one_two_three, P=p(it), Q=q('it),

| assert(P), assert(Q?

*** Yes

P = p(one_two_three), Q= q(it).

--1>

*** No % Now "it’ is worth '@
> p(X).q(Y), Z=it?

* % % Yes

X = one_two three, Y=@ Z =Y.
A listing shows the difference:

> listing(p,q)?

p(one_two_three) :- succeed.

g(it) :- succeed.

The same applies for persistent variables. Of course, for the difference to be obvious their
value must be changed, and this can only be done with <<- .

9.6 Summary of built-ins

Thefollowing built-ins are provided for global variables and persistent terms.

Research Report Draft March 1994



66 Hassan Ait-Kaci et al.

e The predicate gl obal (A1, Ay, ...) declares A1, Ay, €tc., as global variables. This
predicate isnon-strict, i.e., it does not evaluate its arguments. Each argument A iseither
an uninterpreted identifier or a ¢>-term of theformV <- EwhereV isan uninterpreted
identifier and E an expression. The latter form initializes V with the evaluated result of
E. If thereis an error in any A; then none of the A are declared. This predicate should
be used only as adeclaration, i.e., in aquery and not in a definition.

e The predicate per si st ent (A1, Ay, ...) declares A;, Ay, €tc., as persistent variables.
This predicate is non-strict, i.e, it does not evaluate its arguments. Each argument A;
must be an uninterpreted identifier. If thereisan error in any A; then none of the A; are
declared. This predicate should be used only as adeclaration, i.e., in a query and not in
a definition.

e The predicates A<- B and A<<- B implement backtrackable and nonbacktrackable de-
structive assignment.

e Thefunctioni s_persi stent ( X) returnstrue if X isapersistentterm and f al se
if X isanormal term, i.e., X isbacktrackable.

e The predicate di spl ay_per si st ent ( X) isused to enter and exit a mode in which
persistent terms are displayed differently from normal terms. This built-in is intended
for debugging purposes. If X isf al se then persistent terms are displayed in the same
manner as normal terms. Thisis the default. If X ist r ue then persistent terms are
preceded by adollar sign“$”. If X does not exist, then the display mode is toggled.

10 Modules

The module system creates an entirely separate set of symbolsfor each module. By symbol
we mean any identifier (i.e., apredicate, function, or sort) or feature name. The symbol name
spaceis partitioned into three subspaces for predicate, function, and sort names. Feature names
are in an independent space: a symbol may aways be used as a feature name.

By current module we mean the module that determines the scope of the symbols at a
particular timeduring execution. A current moduleexistsat all timesduring program execution,
both interactively and in a program.

A mechanism is provided which alows symbols to be accessed across modules. For a
symbol to be visible outside of its defining module, it must be declared public in the module.

The syntax for an explicit reference to a given symbol defined in another module is
nmodul e#synbol . Following standard terminology, we call this a qualified reference. For
example, the syntax bui | t _i ns#wri t e islega if you are within module” bui | t _i ns",
orif writ eisdeclared publicin module" bui | t _i ns" (whichitis). If the symbol contains
non-al phanumeric characters, then the reference becomes ' nodul e#synbol * .

It is not necessary to specify the module if the symbol you want to access is known in the
current module. The standard way of doing thisis to open the module you are interested in,
with the built-in open. At that point, all public symbols appearing in the module are visible
in your current module.

March 1994 Digital PRL



Wild LIFE Handbook 67

10.1 Standard modules
Four standard modul es are defined:

e Module" bui | t _i ns". Thisdefinesall built-in operations, including predicates, func-
tions, and sorts.

e Module "synt ax". This defines the minimal symbols required for parsing LIFE
files. This comprises operator declarations, the operator symbols themselves, and al
non-al phabetic symbolsrelated to parsing (suchas[,],{,}, ?, and so forth).

e Module" x". This contains all of the built-ins related to the X interface. A program
using the X interface must first load and open it with the commandi nport (" x") . For
an example of its use, seethe X toolkit presented in appendix H.

e Module" user". Thisisthe current module at system startup. It isthe default module
for interactive input to the system.

Currently themodules” synt ax" and" bui | t _i ns" are alwaysopen, so their symbolsmay
be accessed without specifying a module name. There is no means to override this.

10.2 Using features

To make things easier for the LIFE programmer, features are public by default. If you
want to have private features, then the predicate pr i vat e_f eat ur e can be used in the same
way as private. Itispossible (but unwise) to define a feature as being private while the
corresponding symboal is public.

The function f eat ur es will only return those features which are visible from within the
modul e the call appearsin.

Example 10.1

nmodul e("secret")?
public(prison)?
private_feature(entrance)?
prison(entrance => tunnel).

V V VYV

\%

nmodul e("user")?
open("secret")?

\%

\%

P: pri son(door => guarded)?

* % % Yes
P = prison(door => guarded, entrance => tunnel).
--1> display_nodul es(true)?

*** Yes

P = secret#prison(door => user#guarded,
secret#entrance => secret#tunnel).

Research Report Draft March 1994



68 Hassan Ait-Kaci et al.

--1> F=features(P)?

* % % Yes
F [ user #door],
P = secret#prison(door => user#guarded,
secret #entrance => secret#tunnel).

The feature ent r ance is private to secr et and so when in module user the function
f eat ur es only seesthedoor . Thisistruefor al built-insthat manipul ate features.

10.3 Overloading

The module system allows symbols to be overloaded. This works because modules allow
the distinction to be made between the new symbol and the old (typically built-in) definition.

Example 10.2

WIld_Life Interpreter Version 1.0
Copyright (C 1991-93 DEC Paris Research Laboratory
No custom zing file | oaded.
> private(+)?
*** WArning: |ocal definition of '+
overrides ’syntax#+’

> op(X Y, syntax#+ ),op(X Y, +)?

> Alist + B:list -> append(A, B).
> Arstring + B:string -> strcon(A B).
> A real + B:real -> A ’'syntax#+ B.
* % % Yes

> wite([a,b,c]+d,e, f]),nl?
[a,b,c,d, e f]

* % % Yes

> wite("abc"+"def"), nl?

abcdef

* k% Yes

> wite(3+4),nl?

-

*** Yes

Thisworks but is only usable from within asingle module. If you try to export the overloaded
definition of +, a clash results between synt ax#+ and the exported +.

March 1994 Digital PRL



Wild LIFE Handbook 69

The following technique gets around the problem:

Example 10.3

> nodul e("overl oad")?
> public(+)?
(and so forth)

nmodul e("charley")? % Al so opens ’syntax’ and 'built_in’
private(+)? % Override 'syntax#+ locally
open(overl oad) ?

alias(+,’' overl oad#+)?

V V VYV

10.4 Summary of built-ins

e The predicate nodul e(M stri ng) sets the current module to M. The argument M
must be a string.Y” Typically, this predicate is put at the beginning of a file to create
anew module. Setting the current module to the same module twice (or more) has no
further effect. Whenever afileisloaded which switchesto adifferent module, the current
modulerevertsto what it used to be once thefileisclosed. This predicate should be used
only asadeclaration, i.e., in aquery and not in adefinition.

e Thefunctioncur r ent _nodul e returnsthe name of the current module. Upon startup,
the current moduleis” user ™.

Example 10.4
> X=current nodul e?

* k% Yes

X = "user".

--1> .

> nodul e("charl ey")?

*** Yes
charl ey> X=current_nodul e?

* % % Yes
X = "charley".
charl ey--1> nodul e("user")?

* % % Yes
X = "charley".

YThereis a good reason for this: if the argument were allowed to be any symbol, then the symbol is created in
the module which was previously current. Thisis undesired behavior.

Research Report Draft March 1994



70

Hassan Ait-Kaci et al.

The prompt always shows the name of the current module, except if this module is
"user".

The predicate i nport (A1, Az, ...) loads and opens the modules Az, Ay, etc., which
are assumed to be in the files of the same name (modulo suffix and search path). This
predicate is non-strict, i.e., it does not evaluate its arguments. The arguments must be
strings.'® For example, i nport works correctly if thefileiscaled "/ t np/ f 0o. | f "
and the moduleiscaled " f 00" . If one of the files or modules does not exist, then the
remaining files are not loaded, an error message is reported, and i npor t fails. Cyclic
loadingsareignored, i.e., afileisonly loaded once during the scope of ani nport, even
if it occursin morethan onei nport query. This predicate should be used only as a
declaration, i.e., in aquery and not in adefinition.

The predicate publ i c(Aq, Ay, ...) declares the symbols A, Ay, €tc., as public. This
predicateisnon-strict, i.e., it does not eval uate itsarguments. They may then be accessed
by other modules, either by a qualified reference (as nodul e#synbol ) or, if opened
in the other module, simply as synbol . Typicaly, the publ i ¢ declarations are placed
just after the nodul e declaration, at the beginning of amodule. This predicate should
be used only as adeclaration, i.e., in aquery and not in a definition.

(@(® It is not possible to tamper with another modul€’s private components. The call
publ i c(built_i ns#very_private_part)? fromwithin moduleuser results
in an error message.

The predicate pri vat e(Ag, Ay, ...) declares the symbols Aq, Ay, €tc., as private. That
is, from now on they are only accessible by qualified reference (as modul e#synbol ).
Thepri vat e declaration istypically used to implement overl oading (see Section 10.3).
Thispredicate should be used only asadeclaration, i.e., in aquery and not in adefinition.

The predicate pri vat e_f eat ur e(A1, Ay, ...) declares the feature names A, Ay, €etc.,
asprivate. Thisisimportant because feature names are public by default. This predicate
should be used only as a declaration, i.e., in aquery and not in adefinition.

The predicate open(Ag, Ay, ...) makesall the public symbolsfrom the modules A1, A,
etc., visible from within the current module without having to explicitly qualify them.
The arguments must strings.

Example 10.5 Thisexample illustrates opening a module.

> open("built_ins")?
> wite("hello")?
hell o

*** Yes

8Thisis necessary to prevent the filename symbol from being defined in more than one module.

March 1994 Digital PRL



Wild LIFE Handbook 71

Herethe symbol wr i t e references bui | t _i ns#write.

e The predicate di spl ay _nodul es( X) toggles or switches the module display mode.
If X isfal se then terms are displayed without module names. in the same manner
as normal terms. Thisisthe default. If X ist r ue then terms are displayed with their
module names. The system will then display nodul e#xxx instead of xxx. Thisis
very useful for debugging Wild LIFE programs, using the | i sti ng predicate. If X
does not exist, then the module display mode is toggled.

Example 10.6 Thisexampleillustratesdi spl ay_nodul es.
> di spl ay_nodul es(true), A=hell 0?

*** Yes
A = user#hell o.

11 Rule-base management

The predicates in this section have been added for compatibility with Prolog. They may
not be supported in the compiler. They should be used only when it is necessary to create or
modify a program during execution. They should not be used for storing data (i.e., ¥>-terms).
They should not be used if the program requires a global name to store aterm, and/or if itis
required that a term continue to exist on backtracking. Section 9 provides better solutionsfor
both of these cases.

It is strongly discouraged to modify a routine during that routine's execution. The current
release of Wild LIFE providesfor immediate update semanticsin certain cases (as given bel ow).
It does not implement the defensible semantics of [11].

11.1 Adding rules

The built-in predicates assert (C) and assert a(C) add the clause C to the program.
The argument C may be of two forms, (Head : - Body) or simply Head, the latter be-
ing equivalent to (Head :- succeed). The Head must be a dynamic predicate. With
assert, the clause C will be added as the last rule to be tried for that predicate. With
assert a, itisadded asthefirst rule.

Example11.1 Thisexampleillustratesassert .

> assert(q :- wite(rulel)),assert(q :- wite(rule2))?

Research Report Draft March 1994



72 Hassan Ait-Kaci et al.

* % % Yes
> Qq?
rul el
*** Yes
--1> :
rul e2
* % % Yes

When the last rule for agoal is being used, Wild LIFE does not create a choice-point for that
goal, so if you add anew clause, it will not take effect, thisis shown in the following example:

> p(1).

* % % Yes
> p(A),wite(A), assert(p(2)),fail?
1

* k% I\b

The aternative, p( 2) , was not considered because when the rule p( 1) was used, there was
no alternative clause at that time.

11.2 Deleting rules

Thepredicater et r act ( C) removesthefirst clause which unifieswith C. If there are more
than one, then backtracking will successively remove the others.

Example11.2 It ispossibleto writethe function geni nt which returnsanew distinct symbol
each timeit iscaled in the following manner:

geni nt _counter (0).

genint(N) | retract(genint_counter(N)), M=N+1,
assert(genint_counter(M).

Thisis not the best way to writegeni nt . A better way iSto use a persistent term:

per si st ent (geni nt _counter) ?

geni nt _count er <<-0?

genint -> copy_term(geni nt_counter) |
geni nt _count er <<- geni nt _count er +1.

Example 11.3 Wild LIFE supportsimmediate update semantics. If you retract a clause which
is currently being used then any currently active clause (one which isin the process of being
executed or one which isreachable by backtracking) will not see the clause.

March 1994 Digital PRL



Wild LIFE Handbook 73

>p:- wite(aha), retract(p:-B), retract(p:-0.
>p :- wite(boo).

> p?

aha

* % % Yes

--1> % There are no further solutions to p

* k%% I\b

11.3 Inspecting rules

The predicate cl ause( C) unifies C with the first clause in the program that is unifiable
with C. On backtracking, it will be unified with all successive clauses that are unifiable with
C.

Example 11.4
> p(1).

* % % Yes
> p(2) :- wite(hello).

* % % Yes
> clause(Ap :- B)?

*** Yag
A=p(l), B
--1> ;

succeed.

* k%% Yes
A=p(2), B

wite(hello).

11.4 Function definitions

It ispossibleto usethe above predicates (assert, r et ract, andcl ause) with function
declarations. The argument is of the form (Head -> Result). Agan you have to be
careful with choice-points, and new definitions will not modify previously existing «-terms
which had aready been evaluated.

Example 11.5

Research Report Draft March 1994



74 Hassan Ait-Kaci et al.

> A=f, assert (f->sdsd), B=f?

***  Yag
A=f, B=1T.

The fact that predicates and functions are represented with -terms makes it easy to write
meta-interpreters. But the differences between various possibleimplementations of assert
andretract arejust areminder of the inherent pitfalls of using self-modifying code. This
codeisvery difficult to debug and is compiled much less efficiently. If you use these predicates
often, you will find that Wild LIFE will spend quitealot of its time collecting garbage.

11.5 Summary of built-ins

e The predicate dynam c(Aq, Ay, ...) makestheroutines A;, Ay, tc., dynamic, i.e., they
may be modified during execution. This predicate should be used only as a declaration,
i.e, inaquery and not inadefinition. Thispredicateisnon-strict, i.e., it doesnot evaluate
its argument.

Example11.6 Attemptingto proveagoal of apredicate without clause definitionsresults
in an error, unless the predicate has been declared dynanmi ¢, in which case it simply
fails.

> foo?
*** Error: 'foo’ is not a predicate or a function.

***  Abort
> dynam c(foo0)?

* % % Yes
> fo00?

* k% I\b

e Thepredicate st at i c(Aq, Ay, ...) makestheroutines Aq, Ay, etc., static, i.e., they may
not be modified during execution. Any attempt to do so results in an error. To modify
them, they must be made dynamic with a dynamic declaration. This predicate should
be used only as a declaration, i.e., in a query and not in a definition. This predicate is
non-strict, i.e., it does not evaluate its argument.

e The predicate assert (C) asserts the clause C (of the form (H: - B) or H) or the
function rule C (of the form ( H >B) ) at the end of the current definition. H should be
instantiated to alegal function or predicate name.

March 1994 Digital PRL



Wild LIFE Handbook 75

12

Thepredicate assert a( C) asserts C at the beginning of the current definition. Other-
wiseit behavesidentically toassert .

The predicate cl ause( C) unifies C with the first rule or clause that is unifiable with
it. On backtracking, unify C with the successive rules or clauses that unify with it. C
should haveroot sort - > or : - .

The predicater et r act ( C) unifies C with thefirst rule or clause that is unifiable with
it. Remove this item from the program database. On backtracking, unify and remove
with the successive rules or clauses that unify with C.

Thepredicateset q( H, E) replacesthedefinition of function H by afunction containing
the single rule H >V where V is the result of evaluating the expression E. If H is a
predicate name or adeclared sort then an error message is given.

(@(® set q is obsolete and will not be supported in the compiler. Persistent variables
provide the same ability in a cleaner fashion and should be used instead (see Section 9,

page 60).

Example programs and programming techniques

This section illustrates programming techniques in LIFE through interesting example pro-
grams. For many more examples, look at the Examples and Tools directoriesin the Wild LIFE
1.0 release package.

12.1 Generating prime numbers

Enumerating all positive integers can be done in an elegant manner by using the definition
natural -> {0; 1+nat ural }. Defining prime numbers can be done by declaring a sort
pri me and attaching a prime-testing routine to the sort. This allows the fact of being prime
to be remembered by the number itself. Thisisagood illustration of the expressive power of
the sort hierarchy.

prime :=1:int | length(factors(l))=1.

factors(N:int) -> cond(N<O,

{},
factorize(N, 2)).

factorize(N, P) -> cond(P*P>N,

cond(R (N P) =: =f 1 oor (R),
[Plfactorize(R P)],
factorize(N, P+1))).

Thefirst rulereads as: “aprimeisan integer, |, such as the number of dividersof | is1”. The
function “factors’ yields a list containing the factorization of its argument. Let's have alook
at what this program does:

Research Report Draft March 1994



76 Hassan Ait-Kaci et al.

> wite(factors(6450)),nl,wite(factors(127))?
[2,3, _A5,_A 43]

[ 127]

* % % Yes

> 6=prinme?

* k%% I\b
> 43=prinme?

*** Yes
> P=prinme?

* % % Yes
P = prine™.
--1> P=297?

*** Yes
P = 29: prine.

--2> repeat,wite(pri me&natural ,” "),fail?

O:prime l:prine 2:prime 3:prime S:prime 7:prime 11:prine
13:prime 17:prinme 19:prime 23:prime 29:prine 31:prine
37:prime 4l:prime 43:prinme 47:prime 53:prinme ...

A number of sort pri me will not be checked twice. AsP: pri me has no value, the function
f act or s residuates, which causes | engt h to residuate too, then the instant an integer with
avaueisunified with P, these two expressions are released, and succeed or fail. By coupling
pri me and nat ur al itispossibleto generate al prime numbers.

12.2 PERT scheduling

This section presents an algorithm for PERT scheduling that illustrates the advantages of
out-of-order execution and of object-arientation. The program callsthe functionsthat cal culate
the scheduling information before their arguments are known. The functions are attached to
the declared sort t ask, providing for a clean data encapsulation.

PERT (Program Evaluation and Review Technique) is a methodology for planning big
projects. In particular, it isused to schedul e subtasksthat comprise abigger task. For example,
the big task of building a house can be divided up into many smaller tasks: architectural
design, buying a plot of land, contracting for the building, the plumbing, the electricity, interior
decorating, and so forth. Each of these subtasks is dependent on a given set of other subtasks
to start. Each of the subtasks has a duration. An important problem isto find the earliest and
latest starting times of each task such that the big task is completed as soon as possible. If
there is no limit on the number of tasks that may be done in parallel, then this problem has a
linear-time solution. A Wild LIFE program to solve this problem can be written as follows.
This program is one of the examples provided with the release. First, define asort t ask that
represents the information relevant to a task:

A:task( duration => D:real,
earlyStart => earlyCal c(R),

March 1994 Digital PRL



Wild LIFE Handbook 77

|ateStart => {1e500;real},
prerequisites => R {[];list} )
| !, lateCalc(A R).

This sort has attached to it thefunctions ear | yCal ¢ and | at eCal ¢ to do the calculations.
Function ear | yCal ¢ determinesthe earliest time that task A can start:

earlyCalc([]) -> O.
earlyCal c([B| ListOf Acts]) ->
max(B. earlyStart +B. duration, earlyCal c(ListOf Acts)).

Function| at eCal c determines the latest timethat A's prerequisites can start and still finish
before A starts:

lateCal c(A []) -> succeed.
| ateCal c(A [ B:task]| ListOFf Acts]) ->
| ateCal c( A Li stOf Acts) |
assign(LSB: (B.lateStart),
m n(LSB, A earlyStart-B.duration)).

% Wait until B is an integer before doing the assignnent:
assign(A B:int) -> succeed | A<-B.

Taken together, the above definitions form a self-contained program. This program does &l
the calculation necessary to determine the earliest and latest start time of each task, given the
dependencies and the durations. For example, apossible sessionis:

> inport ("schedul e")?
*** Fj|le "schedule.lf" | oaded

* % % Yes

> Al=t ask(duration=>10),

| A2=t ask(durati on=>20),

| A3=t ask(durati on=>30, prerequisites=>[Al, A2])?

* % % Yes
Al = task(duration => 10,
earlyStart => 0,
|ateStart => 10,
prerequisites =>1[]),
A2 = task(duration => 20,
earlyStart => 0,
lateStart => 0,
prerequisites =>1[]),
task(duration => 30,
earlyStart => 20,
lateStart => Infinity,
prerequisites => [Al, A2]).

This says that task A3 can start the earliest at time 20. Activity Al has a slack of 10: it can
start as early as time 0 and as |ate as time 10 without slowing down the project. Activity A2
must start at time O; it cannot start |ater without slowing down the project.

&

Research Report Draft March 1994



78 Hassan Ait-Kaci et al.

The problem may be described mathematically as follows. Given n tasks numbered 1, 2,
..., N. For each task i itsduration is denoted d; (dur at i on) its earliest and latest start times
aredenoted ¢ and |; (earl yStart andl at eSt art ), and the set of tasks it dependsonis
denoted P; (pr er equi si t es). Givenareall valuesof d; and P;. The problemisto calculate
the values of g and I;. Thisreduces to the following set of equations:

§ = mXp(g+d) (
|i = minier(qJ—di) (

Both the maximum and the minimum operations run over al values of j that satisfy their
condition. Thefirst equation means that task i cannot start until all the tasksthat it depends on
have finished. The second equation means that task i must end before the earliest start time of
all the tasksthat depend on it.

A great advantage of writing the program in LIFE is the order-independence. The program
can bewritten in astraightforward way by exactly following the equations. Thegiveninforma-
tion (values of d; and P;) may be given in any order. If sufficient information is given to solve
the equations, the result will always be correct. Since each function invocation is calcul ated
only once, the result is calculated in linear time, regardless of the amount of sharing in the
dependency graph. It isin genera difficult to predict when the different calculations will be
done, but thisisirrelevant because it is not necessary.

12.3 Cryptarithmetic.: SEND+MORE=MONEY

This example shows an efficient way of solving the standard benchmark test
“SEND+MORE=MONEY” where each letter codes one digit and no two letters code the
same digit. The algorithm is based on test-and-generate. That is, a series of function callsis
done which all suspend. Then the variables are instantiated to all possible digits. The sus-
pended functions act as passive constraints to prune the search.  The computation terminates
successfully only when an assignment of digitsto variables isfound that is consistent with al
the passive constraints.

sol ve : -
% Sol utions with MO are uninteresting:
M=1,
% The arithnetic constraints:
G +S+M=0+ 10*M
C2 + E+ O=N+ 10*C3,
Cl+ N+ R=E+ 10*C2,
D+ E=Y + 10*C1,

% The all-di stinct constraints:
diff list([S ENDMORY]),

% CGenerating binary digits:
Cl=carry, Q=carry, C3=carry,

% Cenerating decinmal digits:

March 1994 Digital PRL



Wild LIFE Handbook 79

S=deci mal , E=deci mal, N=deci mal, D=deci nal,
O=deci mal , R=deci mal , Y=deci mal,

% Print the result:

nl,

wite(’ SEND ", S, E,N D), nl,
wite(’ +MORE +, MORE,nl,
wite("----- ----- ), nl,
wite(’ MONEY ",MONEY),nl,
nl, fail.

decimal -> {0;1;2;3;4;5;6;7;8;9}.
carry -> {0;1}.

diff_list([]).
diff_list([HT]) :-
generate_diffs(H T), diff_list(T), H=<9, H>=0.

generate_diffs(H[]).
generate_diffs(H [A]T]) :- generate_diffs(H T), A=\=H

This program solves the problem very quickly, despite the fact that Wild LIFE is only an
interpreter. It isinteresting that this solutionis of the same order of efficiency as one based on
finite domains.'®

> inport("solve")?
*** File "solve.lIf" |oaded

* % % Yes
> sol ve?

SEND 9567
+MORE +1085

In less than a second on a DECstation 3100,° Wild LIFE prints a solution and proves it is
unique. Just to get an idea of the power of constraints, we wrote a program in C which solves
the same problem using a generate and test method. It has seven nested loops in which the
program explicitly tests the difference constraints by marking those digits already used. On
the same machine, its CPU timeis 1.0 seconds.

Notice aso that Wild LIFE does no special preprocessing of constraints or static analysis
(other than sort encoding which isn't used here) except for local propagation.*

¥There are presently no finite domainsin Wild LIFE as such, although sorts allow a similar kind of filtering.
A DECstation 3100 has speed similar to a SPARCstation 1.
1See Section 12.11.

Research Report Draft March 1994



80 Hassan Ait-Kaci et al.

12.4 Concurrent programming

Here is a little program that shows how a committed-choice programming style can be
imitated in Wild LIFE. The program is trandliterated from an FCP (Flat Concurrent Prolog)
example in Shapiro’s survey article on concurrent logic programming [18].

LIFE’s function suspension mechanism (i.e., residuation) is used to communicate between
functions. In the terminology of concurrency: a recursive function acts like a process. Com-
muni cation between processesis done through unification of shared variables. Synchronization
isdonethroughresiduation. Task switchingiscompletely data-driven and hence the scheduling
policy is non-fair.

Here is a sample session:

> A=nsift([2,3,4,5/L])?

*** Yes
A=12,35@, L=3. % The systemwaits on L
--1> L=[6,7,8,9|L2]? % Refining L resumes
% the conputation
*** Yes

A=12,35 _A7@, L=1[6,_A089 L2, L2 =3@.
% Now it waits on L2

----2> 12=[10,11,12,13|L3]? % Refining L2 resunes
% the conputation

* % % Yes

A=12,35 A7 B1ll, C131 @,

[6, _A 8,9|L2],

[10, B, 12, _CL3],

@.

L
L
L

2
3 % Now it is waiting on L3
Thelist A contains only prime numbers. Shared objects are given system-generated names;

eg., the variable _A that marks the instance of 7 which occursin both the listsA and L. The
function nprimes passes alist of integersto nsift:

> A=nprinmes(100) ?

* k% Yes
A=1235711,13,17,19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73,79, 83, 89, 97] .

Since the complete list is passed to npri mes (see its definition), a complete answer can be
generated. Hereisthe source code of nsi ft .

nprinmes(N) -> nsift(integers(2,N)).

% Create a stream of integers:
i ntegers(From To) -> cond(From > To,

(1,

[From | integers(Fromtl, To)]).

March 1994 Digital PRL



Wild LIFE Handbook 81

% Renove multiples of P:

filter([1) ->11.

filter([X/In],P) -> cond((X nod P =\= 0),
[X | filter(In,P)],
filter(In,P)).

% Filter out multiples of each elenent:
nsift([]) ->1[].
nsift([P[Ns]) ->[P|nsift(filter(Ns,P))].

As an optimization, here is amodified version that passes a maximum sift value equal to the
square root of the maximum input. Thisismuch more efficient than the first version.

primes(N) -> sift(integers(2,N,sqrt(N)).

% Filter out nultiples of each elenent:

sift([]) ->[]. |

sift([P|Ns],Max) -> [P | sift(cond(P =< Max,
filter(Ns, P),Ns),
Max) ] .

12.5 Encapsulated programming

This example shows how you can create a routine that behaves like a process with encapsu-
lated data. The caller cannot access theroutine's local data except through the access functions
(“methods”) provided by the routine.

% Encapsul at ed object-oriented process w thout streans

% Ilnitialization:
new _counter(C) :- counter(C, 0).

% Access predicate:
access(X, Q :- CX C], C-C2.

% The counter:
counter([inc|S], V) -> counter(S, V+1).
counter([set(X)|S],V) -> counter(S, X).
counter([see(X)|S],V) -> counter(S,V) | X=V.
counter([stop| S, V) ->

true | wite("Counter closed with stop."), nl.
counter([_| 9], V) ->

counter(S,V) | wite("Message not understood."), nl.
counter([], V) ->

true | wite("Counter closed with end-of-stream™").

This defines acount er process. Access to the process is by the variable C. The interna
state of the process is the value of the counter, which is held in V, the second argument of
count er. The use of backtrackable destructive assignment is essential. What happens is
that count er creates a new object (the residuated recursive call) through its execution, and

Research Report Draft March 1994



82 Hassan Ait-Kaci et al.

backtrackable destructive assignment gives this object the same name as the origina object
which has disappeared. Thisisvery closeto Actor semantics. Hereis an example of its use:

> new_counter(Q) ? % Initialize new counter object

* % % Yes
C=@.
--1> access(inc,Q? % I ncrenent the counter

* k% Yes
C=@.
----2> access(inc,CQ? % I ncrenent the counter

* % % Yes
C=@.
------ 3> access(see(X),C)? % CGet the counter’s val ue

***  Yag
C=@, X=2.

This creates a new counter object (with initial value 0) which is accessed through C. The
counter isincremented twice and then its value is accessed.

12.6 Classes and instances

To teach LIFE to non-LIFE users or even non-Prolog users, it is very important to tie its
concepts to concepts that are widely known. Two such concepts “class’ and “instance”, which
are common in object-oriented languages such as C++ and Smalltalk. The declaration and use
of sorts can be described precisely in terms of the latter two concepts by the following rules:

1. A class corresponds to a sort. Classes are declared by sort definitions, of which the two
basic ones are:

% Li ke a 'struct’,
%this adds fields to a class definition:
class(fieldl=>val uel, field2=>value2, ...).

% d assl inherits all properties of class2:
classl <| class2.

2. Instances are created by mentioning the class name during execution. For example,
executing:

> X=int?

will create an instance of the classi nt . Each mention of i nt creates afresh instance.
Therefore, executing:

> X=int, Y=int?

March 1994 Digital PRL



Wild LIFE Handbook 83

creates two different instances of theclassi nt in X and Y. We can do:
> X=int, Y=int, X=56, Y=23?

We can refine X to 56 and Y to 23. Obviously, thiswould not be possibleif X and Y
were the same instance.

3. The Wild LIFE system assumes that mentioning a class name during execution always
creates afresh instance that isdifferent from all other instances of theclass. For example:

> X=23, Y=23?
creates two different instances of the class 23. With the function f defined as:
> f(AA -> 1.

thecal f (X, Y) will not fire, since X and Y are different instances. To make it fire, X
and Y must be the sameinstance. In Wild LIFE, the only way to do thisisto unify them
explicitly by doing X=Y. For example:

> X=23, Y=23, X=Y, write(f(X Y))?

will write 1, i.e, thefunctionf will fire.

4. Sometimesit would be useful to have classes that only have one instance. For example,
it would beniceif al the instances of theclass ‘23’ were the sameinteger 23, i.e,, if the
class 23 had auniqueinstance 23. Thisisnot possiblein Wild LIFE 1.0.

12.7 Using destructive assignment to calculate term size

This section defines the function t er msi ze( T) which calculates the size of a -term.
The agorithm for calculating the size is a good example of the correct use of destructive
assignment. It demonstrates the use of both backtrackable and nonbacktrackable destructive
assignment (<- and <<-). See Section 9.4 for a discussion of these two built-ins.

The size of ay-term is defined as the number of nodes it contains. The algorithm counts
the nodes by traversing the ¢-term and using backtrackable destructive assignment to mark
nodes that have already been visited. The mark is the «-term Seen, which is created locally
tot er msi ze, and hence is guaranteed not to occur in the term being explored.

After the traversal is finished, the algorithm backtracks to unmark al the marked nodes
and to recover all memory used during the traversal. The result is retained by storing it in
an anonymous persistent term  with nonbacktrackable destructive assignment. The persistent
term is created before the choice point so that it is unaffected by the backtracking.

% Return a |list containing the values of all features of X
feature_val ues(X) -> map(project(2=>X),features(X)).

% Sum all the elements in a list:

Research Report Draft March 1994



84 Hassan Ait-Kaci et al.

sun([ V| Vs]) -> V+sun(Vs).
sum([]) -> 0.

termsize(X) -> N|
V<<- @ % Create an anonynous persi st ent
%termfor the result
( V<<-term.expl ore(X, Seen), % Cal cul ate the size
fail % Renove effects of calculation
N=copy_term V) % Copy the result back to
. % a normal |ogical term

term expl ore(X, Seen) -> V|
( X===Seen, % Ski p al ready-count ed nodes
|

V=0
Fv=feature_values(X), % Get the features of X
X<- Seen, % Mark X as havi ng been counted

V=1+sun({map(t er m expl ore(2=>Seen), FV))
).

Here isa sample execution:

> A=termsize(p(a,b,c,d))?

*** Yag
A = 5.
--1>

* % % I\b
> A=termsize(B:[a, b|B])?

***  Yes
A=4, B=[ab|B.

12.8 Using a «-term as an array

This section presents a Sieve of Eratosthenes program that cal cul ates the sequence of primes
up to agivenlimit. It usesa-term asan array to store the primality information. The features
of the ¢>-term are the integers whose primality are being checked.

gl obal (si eve) ?
global (limt)?

main :-
wite("N=?"),
read_token(limt & int),
next _prine(2),
nl.

March 1994 Digital PRL



Wild LIFE Handbook

85

renmove_mul tiples(P,M :-
cond(MWlimt,

(sieve.Mc-mul tiple_of (P), renove_mnul tiples(P, MtP))).

next _prinme(P) :-
P<limt,
L,
SP=si eve. P,
( SP=prime(P),
I

wite(P," '),

renmove_mul ti pl es(P, 2*P)

),

next _prinme(P+1).

succeed

next _prime(P).

Here is a sample execution:

> main,nl,nl,pretty_witeq(sieve)?

N=?20
2357 11 13 17 19
@2 => prime(_A 2),
= prinme(_B: 3),
=> mul tiple_of(_A),
= prime(_C. 5),
=> mul tiple_of(_B),
= prime(_D 7),
=> multiple_of(_A),
=> mul tiple_of(_B),
10 => multiple_of (_O),
11 => prinme(11),
12 => nul tiple_of (_B),
13 => prinme(13),
14 => nul tiple_of (_D),
15 => nul tiple_of (_O),
16 => nultiple_of (_A),
17 => prinme(17),
18 => nul tiple_of (_B),
19 => prinme(19))
* % % Yes

O©CoOoO~NOUORWN

12.9 Memoization

This example shows how asser t a may be used to implement an efficient way of finding
the list of moves needed to solve the Hanoi towers problem. This example is adapted from

“The Art of Prolog” [19].

Research Report Draft

March 1994



86 Hassan Ait-Kaci et al.

hanoi (1, A B, C [[A B]]).

hanoi (N i nt, A B, C, Moves: append( Movesl, [[ A B] | Moves2]))
N>1,
hanoi (N-1, A C, B, Movesl),
hanoi (N-1, C, B, A, Moves?2),

asserta(hanoi (N, A B, C, Mves) :- 1),
wite("Solved problemfor N=" N,
nl.

The effect of using assert a is that solutions of intermediate problems are remembered.

Thistechniqueis often called “memoization”.

> hanoi (3, _, _, _,M?
Solved problem for N
Sol ved problem for N

*** Yag

M=T[_A_B.,[_A_C,[ B _Cd,[_A_B,[_C_A,
. [_.C_Bl.[_A_B]].

--1>

* % % I\b
> |isting(hanoi)?

hanoi (3, _A, _B, _C,
[[_A_Bl.[_A_C,[_B_C.[_A_B.[_C_A,
| [_.C_Bl.[_A_Bl]) :-

hanoi (2, A B, CI[[_A C.[_A B.[.C _Bl]) :-
|

hanoi (1, _A, _B, @[[_A _B]]) :-
succeed.
hanoi (_A: int, B, _C _D _E append(_F[[_B _C|_QG)) :-
A > 1,
hanoi (_A - 1, B, _D, _C _F),
hanoi (_A - 1, D, _C B, _QG,

asserta((hanoi (_A, _B, _C D, _E :- 1)),
wite("Solved problemfor N=" _A),
nl.

* % % Yes

Because hanoi isfirst called with “ " (the most genera sort) for the tower names, it stores

the most general solution for each value of N.

12.10 Method inheritance in the graphical interface toolkit

In the graphical interface toolkit supplied with Wild LIFE (see appendix H), i npl i es is

used to perform “method inheritance”. Consider the following sort hierarchy:

March 1994 Digital PRL



Wild LIFE Handbook 87

f < d
f < e
d < ¢
e < ¢
c < a.
b < a.

and a predicate p which has one definition per sort:

p(Xa) :- pa(X). %pais a nethod of sort a
p(X:b) :- pb(X). %pb is a nethod of sort b

p(X:c) :- pc(X). %pc is a nethod of sort c

With i npl i es we can cal all methods of p that are supersorts of the argument X. Thisis
done by means of the following predicate:

all _p(X) :-
( p(X,

fail

).

Forany X, al | _p( X) will executeall the clausesof p defined for supersortsof X. For instance,
all _p(X:e) will execute pa( X), pc(X), pe(X). Intheterminology of the graphical
interface toolkit, imagine now that the sorts are look sorts, and p isa drawing routine, and you
see how looks are inherited. In thetoolkit, the inheritance from boxes, looks, and constructors
(i.e, multipleinheritance) is handled using this technique.

succeed

12.11 Structural constraints and arithmetic constraints

Wild LIFE does not do any global constraint solving. It does purely local constraint solving.
In that sense, it is more like Prolog than like CLP(R). Calling a function adds a matching
(implication) constraint, and calling a predicate adds a unification (equality) constraint.

Arithmeticfunctionsin Wild LIFE do local propagation. That is, they handleall caseswhere
the value of one or more arguments can be determined uniquely from the others. For example:

> 23=10+X?

*** Yes
X = 13.

Another example:
> A=A+C?

* % % Yes
A=real, C=0.

Research Report Draft March 1994



88 Hassan Ait-Kaci et al.

This example residuates (i.e., suspends):

> A=A*B?

* % % Yes
A=real”, B=real".

(note the tildes) since there are two solutions: A=0 or B=1.

For real numbers CLP(R) does more: in addition to local propagation, it does global con-
straint solving with linear equalitiesand linear inequalitieson real numbers (using incremental
Gaussian elimination and incremental Simplex, based on Fourier elimination). On the other
hand, Wild LIFE doeslocal constraint solving on i>-terms, which are rooted graphsthat liveina
hierarchy. So for example, Wild LIFE can check structural constraintslike graph subsumption,
which CLP(R) cannot.

Example 12.1 Thisexampleillustratesthe use of graph subsumption as a constraint.

> f(Xs(a=>t(b=>X))) ->true. %Define a function

* % % Yes
> A=f(Q? % Check if graph Ginplies
%the cyclic graph X s(a=>t(b=>X))
* % % Yes
A=@ G=@d.
--1> G=s(a=>t (b=>X))? % Make G an acyclic graph
%It doesn't fire yet!
* % % Yes

A=@ G=s(a=>t(b=>X)", X=@.

----2> GX? % Addi ng the cycle fires the function
% (The function result is A = true)

* % % Yes

A=true, G=s(a=>t(b=>0), X=0G

13 Fine points for would-be wizards

13.1 Functional variables and apply

When a functiona expression F(A) is evaluated whose function symbol is a variable F,
it looks as if the expression’s root sort is a variable and applied to the arguments. In fact,
thisis not what happens in Wild LIFE. The syntax F( a, b, ¢) is simply syntactic sugar for
apply(functor => F,1 => a,2 => b,3 => c). Itisconverted into thisinternal
form by the parser. If the feature f unct or occursin Fitisignored. The function appl y
is transparent to the user. But you should virtually never need to resort to using it explicitly.
Only inrare cases isit unavoidable to useit, as shown in the following example.

March 1994 Digital PRL



Wild LIFE Handbook 89

Example 13.1 Let us define afunction mapkey that issimilar to map except that it does not
apply the mapped function on itsfirst argument but on aspecified positionlabel. AsWild LIFE
stands now, there is no way to do this without explicitly using appl y asfollows.

mapkey(A F, []1) ->[].

mapkey(A F, [H T]) ->
[ FAH appl y(functor => F)| mapkey(A F, T)]
| H= FAH A

We can use thisto compute the values of an integer (say, 10) in cyclic groups Z/pZ where the
valuesof paregiveninalist:

> L=mapkey(2, nod(10),[1,2,3,4,5,6,7,8,9])?

* % % Yes
L =[0,0,1,2,0,4, 3,2, 1].

13.2 Query levels

The observant user will notice that the query level (shown by the prompt) is not aways
systematically incremented after every query extension. | n fact, the specific rule for increasing
the query level is the following: if the query extension (1) contains at least one variable or
creates a choice-point or creates an X window, and (2) succeeds, then the level is increased.
Otherwise, the level stays the same (viz, if the query extension fails, or contains no variable
and succeeds with no choice-point). Each timeinteraction goes back to aprevious query level,
the variable bindings corresponding to that level are displ ayed.

Example 13.2 Thisexampleillustratesthe fine points of query level incrementing.
> X=a?

***  Yes
X = a.

The query level isincremented because X appears in the query.

--1> a=a?

* % % Yes
X = a.

Despite success, the query level is unchanged because no variable appearsin the query and no
choice point is created.

--1> a=a ; b=b?

* % % Yes
X = a.

Research Report Draft March 1994



90 Hassan Ait-Kaci et al.

Thequery level isincremented because achoi ce-point was created proving thisquery extension.

- 2> ;
* % % Yes
X = a.

The level goes back to 1 because the second disjunct b=b succeeds without containing a
variable nor creating a choice-point.

--1> a=a ; b=b ; c=c?

* % % Yes
X = a.

Thequery level isincremented because achoi ce-point was created proving thisquery extension.

- 2> :
* % % Yes
X = a.

Level stays at 2 because the second disjunct b=b; c=c succeeds but creates a choice-point.
Finally, wetype. to pop to top level.

ceea2>
>

13.3 Predicate and function positions

Wild LIFE makes asyntactic distinction between a predi cate position and afunction position.
A predicate positionis any placein aprogram where the interpreter expects to find a predicate.
This includes at the query prompt, in a clause body, and certain arguments of the built-ins
cal | _once, | (such-that), and cond. Similarly, afunction position is where the interpreter
expects to find a function. This includes all arguments of predicates and functions and al
function bodies.

In the simplest case, predicates are used only in predicate positions and functions are used
only in function positions.

In general, a predicate position may contain any term that will eventually be bound to a
predicate or to one of the sortst r ue or f al se. When the term is bound to a predicate, then
that predicate is executed. When the term isbound to t r ue then execution succeeds. When
theterm isbound to f al se then execution fails. If the term isincompatible with these three
possibilities, then an error is reported. If the term is compatible with these three possibilities,
but it is not yet known which holds, then the predicate position residuates. It follows that
predicate execution is order-independent: the same result is obtained for a pure program that
terminates no matter in what order the predicates in its predicate positions become known.

March 1994 Digital PRL



Wild LIFE Handbook 91

Example 13.3 This example illustrates that the same result is obtained no matter when the
predicate is known in a predicate position.

> p(a). % Define a single fact

> Fp(X), Q@ % The predicate is known i mediately

* % % Yes

Q=p(X), X=a.

--1>

* % % I\b

> Q &Ep(X)? % The predicate is known with a del ay
* % % Yes

Q=p(X), X=a

--1>

In general, afunction position may contain any term. If theterm isafunction, then theterm
isevaluated. If the term is a predicate, then the term is considered as a sort with only parent
@ and only child {}. If theterm is a -term, then it is left unchanged. The arguments of a
term are considered to be function positions, and hence are evaluated if they themselves are
functions.

A predicate position may contain a predicate itself, a function that eventualy returns a
predicate, or aterm that is eventually bound to a predicate. The predicate position does not
have to be bound immediately.

Example 13.4 Thisexamplesillustrates afunction in a predicate position.
>f(AiInt) -> wite(A). %Wt until Ais an integer

> f(23)? % Wite 23
23

* % % Yes

> X, X=f(Y), Y=237? % Wite 23
23

* % % Yes

X=wite(Y), Y = 23.

The order of predicate evaluation, function evaluation, and unification makes no difference; in
a pure program that terminates the result is aways the same.

A functioninafunction positionisawayseval uated unlessthe function positionisnon-strict,
in which case the function is returned unchanged. A predicate or function can be declared to
have non-strict arguments through the non_st ri ct declaration.

Research Report Draft March 1994



92 Hassan Ait-Kaci et al.

13.4 Compact sort definitions
A complete facility for sort declarations must alow any combination of:
e Attaching attributesto a sort. Thisisdeclared with the operator : : .

e Declaring single or multipleinheritance relationships from supersorts. Thisis declared
with the operator <| . Multipleinheritance from several supersortsis specified by using
more than one declaration or by writing the supersorts as a di gunction.

e Attaching aconstraint to asort. Thisis declared with the such-that operator | .

The above comprise the base primitivesthat alow all sort declarations possiblein Wild LIFE.
A sort that is declared with one of these primitives is called a declared sort. In this section
we introduce the built-in : = that often permits declarations with a suggestive relationship
to mathematical notation. This built-in provides no additiona expressive power. It is pure
Syntactic sugar.

Table 2 summarizesal the possible combinationsof sort declarationsallowed in Wild LIFE.
Notation: t, u, v, wdenotesortsymbols; (attr) followingasort denotes either anon
empty attribute list or nothing (i.e., not () but simply absence of an attribute list altogether);
const represents a constraint of the same form asis allowed in the body of a definite clause.

The declaration marked (8) is syntactic sugar for:

t(attr) | const.

t < u.
t <l v.
t < w

The declaration marked (10) is syntactic sugar for:

u(attrl) | const.
v(attr2) | const.
wattr3) | const.

u <l t.

v < t.

w<| t.
(@(® Please note the asymmetry of behavior of : =. Ononehand,t := u. declarest asa
subsort of u; but on the other hand, t : = {u; v; w}. declarest asasupersort of u, v, and
w. An annoying consequence of thisisthatt : = {u}. isequivalenttou <| t.,whereas
t := u. isequivdenttot <| u.. Smilarly, whilet := u. meansthesameast <|
u.,itisnotthecasethatt := {u;v;w}. meanst <| {u;v;w}., butinstead meansu

< t. v < t. w<| t..Weareawarethatthese anomaliesmay not be palatableto
all (not even to some of us!). However, one can systematically use the consistently behaving
<| and avoid ever using : =. Nevertheless, : = still offers a conveniently simple shorthand to
define such sorts such as:

tree := { leaf ; node(left =>tree, right =>tree) }.

which declaresthat atreeisaleaf or anodewhoseleft isatree, and whoserightisatree. Some
may indeed argue that thislooks like amore direct and natural translation than writing:

March 1994 Digital PRL



Wild LIFE Handbook 93

(1) co o t(attr).

2 :: t(attr) | const.

3 t(attr) <| u.

4 t(attr) <| u | const.

5) t u(attr).

(6) t u(attr) | const.

@) t(attr) <| {u;v;w.

(8) t(attr) <| {u;v;w} | const.

9) t ;= {u(attrl);v(attr2);wattr3)}.

20) t := {u(attrl);v(attr2);wattr3)} | const.

(1) [attributes]
(2) [attributes,] constraint

(3) [attributes] inheritance
(4) [attributes,] inheritance, constraint

(5) samemeaning as(3)
(6) samemeaning as (4)

(7) [attributes,] multipleinheritance
(8) [attributes,] multipleinheritance, constraint

(9)  [attributes,] multipleinheritance
(10) [attributes,] multipleinheritance, constraint

Table 2: Possible sort declarations

Research Report Draft March 1994



94 Hassan Ait-Kaci et al.

| eaf <| tree.
node <| tree.
node(left => tree, right => tree).

or even the equivalent shorter form:

| eaf <| tree.
node(left =>tree, right => tree) <| tree.

Be that as it may, we leave it to your taste to choose what fits you best.

13.5 Sort encoding

Wild LIFE usesaspecial binary encoding of thedeclared sortsso that a glb can bequickly and
efficiently calculated even if the hierarchy contains a very large number of sort definitions[1].
Each declared sort is assigned one bit vector with a value that reflects its place in the hierarchy.
The value of the bit vectors is irrelevant to the programmer, but for the curious, the query
print_codes? will show them.?> The upshot of this is that there is an encoding phase
which can be likened to compilation. Thisisinvisibleto the user.

A constant without any definitions (i.e., an uninterpreted identifier) is considered to be aone
initsclass, i.e, it can only be unified with @or itself. It is not encoded.

13.6 Printing convention

Wild LIFE uses a systematic convention for printing the arguments in the body of a term.
First the arguments of numeric positionsare printed using the natural number ordering, thenthe
arguments corresponding to word attributes using the lexicographic ordering on the attribute
labels. All symbolic attribute labels are printed explicitly. A numeric positionis printed only
if necessary. Namely, position 1 is never printed explicitly; and any other position is printed
explicitly only if alower position is missing.

Example 13.5
> X=f(2=>t2,a=>ta,tl, @4=>t4, b=>tb, ab=>tab)?

* % % Yes
X=1f(t1,t2,4 =>t4,a => ta,ab => tab,b => th).

Other important pointsif you are interested in parsing input are that:
e parentheses are removed from expressions wherever they are unnecessary,
e a op bwhereop isaninfix operatorissyntactic sugar forop(1 => a, 2 => b),

e Oop a whereop isaprefix operator is syntactic sugar for op(1 => a),

2For example, executethe query i nport ("x"), pri nt _codes?.

March 1994 Digital PRL



Wild LIFE Handbook 95

e likewisea op where op isapostfix operator is syntactic sugar for op(1 => a).

Infix notation is respected by the printer if the term has exactly two subterms. Otherwise,
prefix notation is used. Prefix notation can aways be used, even for infix or postfix sort
symbols.

14 Hints to write more efficient programs

14.1 Garbage collection

Garbage collection is expensive. The best way to write aprogram is certainly to avoid using
it, which means that memory should be recovered automatical ly when possible.

Using backtracking enables the program to recover memory space without garbage collec-
tion, simply because nearly all the space used between the creation of the choice-point and the
failure that causes the backtrack is recovered.

Consider the following example:

foo(0) :- !.

foo(X) :-
X >0,
foo(R (X-1)), foo(R), foo(R, foo(R).

foo(N)? % Conputes foo(0) 4"N tines

Duringthequery f oo( 7) ? Wild LIFE will garbage collect severa timesbefore succeeding.
A way to avoid garbage collection is to force backtracking:

foo2(0) :- !.

foo2(X) :-
X >0,
( foo2(R (X-1)), foo2(R, foo2(R, foo2(R, fail
; succeed

).

The modified predicate f 002( 7) does not need garbage collection and runs 30% faster.
Thistechnique may beused if thereis no need to keep track of what has been done between the
creation of a choice point and the failure. Nonbacktrackabl e assignment to persistent variables
can be used to keep information while backtracking. For example, we could compute 4N with
the following program:

persistent(result)?

foo3(0) :- result<<-result+1.
foo3(X) :-
X >0,
( foo3(R (X-1)), foo3(R, foo3(R, foo3(R, fail
; succeed
).
power3(N) :- result<<-0, foo3(N), X=result, wite(X).

Research Report Draft March 1994



96 Hassan Ait-Kaci et al.

Calling power 3( 8) writes 65536. The remaining garbage collections can be avoided if
<<- isusedlessoften. Thefollowing program uses<<- four timeslessoften than the previous
one, and runs about 45% faster:

persistent(result)?

foo4(0, Counter, X, X+1) :- I.
foo4(N O, ,Y) :- I,
N > 0,
( food(R (N1), 3, result, X1),
foo4(R, 3, X1, X2),
foo4(R, 3, X2, X3),
foo4(R, 3, X3, X4),
resul t <<- X4,
fail
; Y=result

).
food4(N P, X Y) :-
N > 0,
food(R (N-1),C (P-1), X X1),
foo4(R C, X1, X2),
foo4(R C, X2, X3),
foo4(R C X3,).

power4(N) :- result<<-0, foo4(N, _,0,X), wite(X).

Thistechnique can alwaysbe used when the program’sresult i s given through nonbacktrackabl e
operations (such as writing, drawing, or asserting).

14.2 Residuation

Residuation is a very useful tool to write efficient programs when a kind of coroutining
behavior isexpected. In many “generate and test” programs (such as eight queens), residuation
enabl es the programmer to put the test predicates before the generation predicates: this means
that all constraints are set before any generation is done, and thus the satisfaction of the
constraints is checked at every generation step. This greatly decreases the complexity of the
program.

Residuation can be used to mimic the behavior of delaying primitives such as when or wait
declarations and freeze. Here again, residuation is used to increase efficiency or to avoid the
non-termination of programs.

Nevertheless, residuation should be avoided when possible, since it is a complex and ex-
pensive operation. In many cases, the programmer knows quite accurately how the variables
in arule are instantiated, and can rewrite these so as to avoid as many useless residuations as
possible. For example:

z(V1+V2*2"(-L)) :- r(V1),p(Vv2,L)?
should be rewritten:
zZ(V) - r(Vvl), p(V2,L), V = V1+V2*2"(-L).

March 1994 Digital PRL



Wild LIFE Handbook 97

if you know that the values of V1, V2 and L are computed by r and p.

14.3 Partial evaluation

In programs where functions are used to denote constants, it is sometimes possible to do a
bit of partial evaluation, to avoid computing these constants at runtime. For example:

char Hei ght Logo -> 60.

y0 -> 0.

cel | Hei ght -> 20.

yLogo -> yO+char Hei ght Logo.
yTitle -> yLogo+2*cel | Hei ght
unit -> 10.

scale(X) -> X*unit.

side -> scal e(50).

should be rewritten:
setConst (X, Y) :- assert(X->Y).

char Hei ght Logo -> 60.

y0o -> 0.

cel | Hei ght -> 20.

set Const (yLogo, yO+char Hei ght Logo) ?
set Const (yTitl e, yLogo+2*cell Hei ght)?
unit -> 10.

scale(X) -> X-unit.

set Const (si de, scal e(50))7?

In this way, the values of yLogo, yTitl e, and si de are computed at load time, and will
not have to be recomputed at runtime. This technique can of course not be used with dynamic
“constants,” but may be really useful if the evaluated constants are used often.

15 Compatibility with Prolog

It isbut asmall step for a Prolog programmer to start programming in LIFE. If he staysin
the Prolog-like subset of LIFE, then he can start immediately. The followingisacompletelist
of the differences that can cause problems porting Prolog programsto LIFE.

e W-terms have no arity. They can have an arbitrary number of arguments and arguments
may beadded at will at run-time. Thereforearity can not beused to distinguish predicates.
In Prolog, afunctor is a pair F/N, where F is the functor name and N is the arity. In
Prolog, two functors are unifiable if and only if they have both the same name and the
same arity. Many Prolog programmers take advantage of this and use the same symbol
with different arities to name distinct predicates. Clearly, thispracticeisno longer valid
in Wild LIFE.?® Indeed, two ¢-terms with the same principal sort symbol but different
numbers of arguments, or with different subterm attributes altogether, can very well

BThisisnot avery seriouslimitation of compatibility asthis practiceis generally considered abad one by serious
Prolog programmers, and Prolog programs can usually be rewritten in a straightforward way to avoid it.

Research Report Draft March 1994



98 Hassan Ait-Kaci et al.

unify. In fact, they may unify even with distinct root sorts, as long as these have a
non-bottom glb, and a «)-term may acquire new attributes as a problemis solved (i.e, as
moreinformation islearned about the object).

Example 15.1 Consider the following predicate definition:
pred(A, B,C :- wite(A), wite(B), wite(C).

Thisis how Prolog and Wild LIFE behave when confronted with the same queries: In
SICStus Prolog:

?- pred(1,2,3).

123

?- pred(A B O.

_26_60_94

?- pred(A B, C D).

WARNI NG predicate 'pred/ 4 undefined.
?- pred(A B).

WARNI NG predicate 'pred/ 2" undefined.

In Wild LIFE:

> pred(1,2,3)?
123

*** Yes

> pred(A B Q7
@

*%% Yag
A=@ B=@ C=0@

> pred(A B, C,D)?

March 1994 Digital PRL



Wild LIFE Handbook 99

e Terms may be cyclic. LIFE’s -terms may be cyclic (they are rationa trees). They
are unified correctly, matched correctly, read correctly, written correctly, and asserted
correctly. Terms are read and written as linear text using the operator “: " to represent
sharing and cycles.

e Theinteractive user interface is different. Additionsto the rule-base are terminated with
“.” and queries are terminated with “?”. Thereisno dummy user file. Queries may
be extended incrementally. See Section 3.2 (page 3) for an example.

e Symbols that represent functions behave differently from Prolog. For example, A=( +)
in Prolog will bind A to theatom’ +' . In Wild LIFE it will create the curried function
"+ . Touse’ + asan uninterpreted symbol in Wild LIFE it must be quoted, eg., as
A= (+) (with backquote). When manipulating arbitrary sequences of characters, for
example, textual output, one should use a string instead of a single-quoted symbol. For
example, call wi te("+") towritethe character +.

e Strings are represented differently. In Prolog, astringis a short-hand for alist of integer
ASCII codes. In Wild LIFE, astring is sort in its own right. All strings are subsorts of
thebuilt-insort st ri ng. Thisalowsarepresentation for stringsin Wild LIFE that uses
much less space.

e Some built-ins are different. See the chapters on built-in predicates and functions for a
full list of Wild LIFE’s built-ins. Hereisashort list of the important differences.

e functor/ 3 and ar g/ 3 do not exist. The latter is replaced by “. ”, which is
called “project”. For more information see Section 8.2 (page 38).

e i s/ 2 doesnot exist because it has become superfluous. The LIFE query A=B+4
ismoreflexiblethan theProlog version A i s B+4. TheLIFE version workswith
any instantiation pattern of its arguments.

e Prologusestrue/0 andfail /O to represent success and failure. Wild LIFE
makes a more consistent choice by using succeed and f ai | for success and
failure, and reserving t r ue andf al se for the boolean sorts returned as val ues of
boolean functions.

e Thestandard order comparisons==/ 2,\ ==/ 2, @/ 2, @</ 2, @/ 2 and @=/ 2
do not exist. These are made obsolete by -terms.

e The“univ” built-in=. . / 2 does not exist. It is made obsolete by -terms.

e bagof inWild LIFE does no existential quantification and set of is not imple-
mented. See Section 8.1 (page 36).

e wite/1landwiteq/ 1l mayhaveany number of argumentsin Wild LIFE.

e Lists are represented with the sort cons instead of the dot functor . / 2. The dot isa
built-in function used for field selection. For example, A. f 00 accesses thefield f oo of
theterm A.

e Thereisnoif-then-elseoperator - >/ 2. Itisreplaced by thecond function. See Section
8.1 (page 34). The symbol - > isused to define function rules.

Research Report Draft March 1994



100 Hassan Ait-Kaci et al.

e Operator declarations are kept as compatibl e as possiblewi th the 1 SO standard for Prolog
(see appendix B, page 102). The following differences exist. The operator precedence
for - > is1200 (instead of 1050) since it is used to declare function rules. The operator
precedence for arithmetic comparisonsis 600 (instead of 700) since comparisons occur
in expressions. No operator declarations are givenfor i s,\ =, =..,** ?-, remand
the standard order comparisons (==, \ ==, @, @<, @ and @=).

¢ Digiunctions are the same as in Prolog. In addition to these, there is also a kind of
disjunction, the type disjunction, which returns avalue. Type disjunctions may be used
inside terms. They alow compacter code. They are written with braces { and } instead
of parentheses. For example, the following two queries are equiva ent:

> (A=[1] ] AS[2]_]: A=[3]_]: A=[4]_]: A=[5]_])7
> A=[{1;2;3;4;5}] _]7?

¢ Negation-as-failure does not work exactly asyou might expect if functionsare involved.
See Section 5.3.3 (page 16).

e DCG expansion in Wild LIFE adds arguments with labelsi n_dcg and out _dcg. See
appendix F (page 109).

16 Conclusion: the experience of Wild LIFE

We hope that this short handbook will incite readers to program in LIFE. Theinterpreter we
describe, Wild LIFE version 1.0, has been stable for almost a year in its present state. It has
been used and tested extensively, and we are confident of its robustness and usefulness. It has
most of the functionality of the complete language.

Getting to gripswith LIFE isnot hard if you are familiar with Prolog. For Prolog program-
mers, the extra power of -terms, sorts and functions is awelcome addition that often makes
programs more readable, more concise and more efficient.

We are using the Wild LIFE interpreter as a foundation to build a compiled system. The
emphasisin the compiler istwofold: efficiency and scalability. We are building a streamlined
and powerful system that will make LIFE into alanguage that is every bit as fast and usable
as the best existing implementations of Prolog [12]. To help usin this endeavor, please send
us your comments and your Wild LIFE programs, so we can use them as fuel for the compiler
design.

March 1994 Digital PRL



Wild LIFE Handbook 101

A LIFE versus Prolog

It is our experience that once you have used LIFE you will not fedl like ever using Prolog
again. Thereasonissimple: LIFE provides clean and el egant solutionsto a number of Prolog’s
most glaring deficiencies. Hereisalist:

1. Functions, including correct arithmetic
Object-orientation

C-like records

Expandable data-structures: arrays and hash-tables
Types and multipleinheritance

Correct manipulation of cyclic structures
Coroutining and constraints

Global variables

© ©®© N oo g &~ W D

Clean destructive assignment
10. Persistent data structures

Semantically, most of the above features are consequences of the two ways in which LIFE
extends Prolog:

e Herbrand terms are replaced by -terms.
e Call-by-matching isadded (Prolog only has call-by-unification).

Most Prolog programs can be easily converted to run under LIFE. Section 15 (page 97) lists
the differences between Prolog and LIFE.

Research Report Draft March 1994



102 Hassan Ait-Kaci et al.

B Predefined operators

Thissectionlistsall the predefined operator declarationsinWild LIFE 1.0. Asfar aspossible,
the declarations have been kept compatiblewith the 1 SO Prol og standard, whichissubstantially
embodied in most current Edinburgh-style Prolog systems.

Precedence Kind Operators
1200 xfx <| - -> :=
1200 fx
1150  xfx |
1100 xfy
1000 xfy
900 fy \+
700 xfx = <- <<-

675 yfx xor or
650 yfx and

625 fy not
600 XfX <=<>>==/==\====\ === $< $=< $> $>= $==

P\==:<:i=<:>:>=:==:><:\<:\=<:\>:\>=
\==1\><

500 yfx + - \/ /\

400 yfx mod * [ /] << >>

200 xfy

200 fy -\

150 yfx .

100 xfy &
75 fy * (backquote)
50 xfy

March 1994 Digital PRL



Wild LIFE Handbook 103

C Glossary

Attribute An attribute is a pair consisting of alabel (or field name or feature) and an
associated -term. See Section 4.2 (page 11).

Bottom The sort that denotes the empty set. The occurrence of bottom in a calculation
causes an immediate failure and backtracking to the most recent choice point. It is
written as{ }.

o Class See declared sort.
e Constrained sort A declared sort that has aroutine attached to it. Thisroutine behaves

as adaemon or dynamic constraint. See Section 7.1.2 (page 30).

Constraint A constraint is arelation between variables. For example, A=B+4 isanu-
meric constraint between A and B, and A=per son( age=>B) isastructural constraint
between A and B. The semantics of LIFE can be explained simply in terms of primitive
constraints[6].

e Declaration See definition.
e Declared sort A sort that hasbeen definedina: : or <| declaration. Thisdeclaration

correspondsto a class definition in an object-oriented language. Declared sortshave data
and/or routines attached to them and they are part of a hierarchy.

Definition An assertion that is added to the program. It is terminated with aperiod “. ”.
Also known as a declaration. Assertions are predicate clauses, function rules, or sort
declarations.

e Directive A query that occursin afile.
e Dynamic routine A routine that may be modified during program execution. The use

of dynamic routines should be extremely rare. In most cases, persistent terms should
be used instead. For more information on persistent terms see Section 9 (page 60). For
more information on dynamic routines see Section 11 (page 71).

Feature A feature is the field name of an attribute. For example, in the -term
per son(age=>25), age isafeature. See Section 4.2 (page 11).

Function A routine that is called by matching and that returns a value. Functions do
not guess their answer; they wait until their arguments are sufficiently instantiated to
execute. See also matching and Section 6 (page 17).

e Hierarchy Seeinheritance hierarchy.
e |dentifier An identifier is any integer or floating point number or character sequence.

The character sequence must be surrounded by single quotes if it does not start with
alower-case letter or if it contains non-al phanumeric characters other than underscore.
The character sequence may be surrounded by double quotes. A quote character inside
a quoted sequence is represented by two quotes. An identifier is either a declared
sort, afunction, a predicate, or an uninterpreted identifier. Thefirst definition of an
uninterpreted identifier as function, declared sort, or predicate, meansthat identifier will
alwaysbe in that category.

Inheritance hierarchy The partially ordered set of al sorts. It corresponds to the
inheritance hierarchy in an object-oriented language. It has a top element (which
represents the set of all possible abjects) and a bottom element (which represents the

Research Report Draft March 1994



104

Hassan Ait-Kaci et al.

empty Set).

e Label Seefeature.
e LIFE (Logic, Inheritance, Functions, Equations) A programming language that uses

PY-termsasitsbasic data structure and unification and matching asits basic operations.
Matching Checking whether one object implies the other. For example,
worman( age=>25) implies worman, so the match succeeds. Matching corresponds
to logical implication. See Section 6.2 (page 19).

Predicate A routine that iscalled by unification and does not return avalue. Predicates
may guess an answer; if thisanswer isincorrect later on, control flow will return to the
predicate (by backtracking) and it may produce other answers. See Section 5 (page 14).
W-term Thebasic datastructureof LIFE. W-termsaregeneraized Prologterms. They are
extensiblerecords that are part of ahierarchy. They have a root sort (which corresponds
to the type of the record) and attributes (fields with values which themselves are -
terms). Fields may be added at will and the record’s root sort may be refined at will. See
Section 4 (page 7).

Query A question that is asked of the system. It ends with a question mark “?’. Unless
aroutinewith side effects is called, this does not modify the program.

Residuation What happenswith afunction call when thereisnot enough informationin
the arguments to fire the function nor to fail. The function suspends, or residuates, until
there is enough information to decide one way or the other.

Root sort The principal sort of a -teem.  For example, the root sort of
worman( age=>25) iswoman. It correspondsto the main functor in Prolog.

e Routine A function or a predicate.
e Sort An identifier that represents a set of objects. A sort corresponds intuitively to a

type or class. Sorts may be refined, for example r eal may berefined toi nt . See also
declared sort, undeclared sort and Sections 4.1 (page 8) and 7 (page 29).

Static routine A routinethat cannot be modified during program execution. Attempting
to do so resultsin an error. See Section 11 (page 71).

e Symbol Seeidentifier.
e Top The sort that denotes the set of all records. It corresponds to an unbound variable

in Prolog. It iswritten as @

e Type Seesort.
e Undeclared sort An identifier that is an uninterpreted identifier, a predicate, or a

quoted function. It istreated as a sort whose only parent is top and whose only childis
bottom (see also inheritance hierarchy).

Unification Making two objects equal by restricting the valuesof each. For example, the
unification of per son(age=>25) and worran iswonan(age=>25) . Unification
corresponds to logical equality. See Section 4.4 (page 12).

Uninterpreted identifier An identifier that is not a function, predicate, or declared
sort. Itistreated asa sort whose only parent istop and whose only child isbottom (see
also inheritance hierarchy).

March 1994 Digital PRL



Wild LIFE Handbook 105

D Practical information about Wild LIFE 1.0

The system is available by anonymous ftp from gatekeeper.dec.com. After logging in, enter
the command cd pub/ pl an, and then the command bi n to enable binary transfer mode.
Then enter the command get Lifel. 0. tar. Z to get the system. Uncompress and untar
thisfileto obtain the Lifel.0 directory. See the README file for further instructions.

The Wild LIFE 1.0 system release contains the following.

The license agreement.

The C and LIFE source code of Wild LIFE 1.0.

Documentation. This includes this handbook, a manpage, and documentation files for
the tools and example programs. It also includes alist of known bugs and information
about porting Wild LIFE 1.0 to various platforms.

A set of tools written in LIFE. This includes the X interface, the graphical interface
toolkit, the accumulator preprocessor, a debugger, a profil er, an extended user interface
shell, and a LIFE tokenizer and parser.

A set of libraries written in LIFE. This provides collections of useful routines that are
organized in modulesto be imported when needed.

A set of example programs writtenin LIFE. Thisincludes SuperLint, alint-like checker
for C with user-customizabl e checking rules, aflower drawing program with an extensive
X interface, an incremental Gaussian equation solver, a program to graphically display
-terms, and a simulator of the PRL snack machine. It also includes various smaller
programs (queens, boxes, PERT scheduler, Hamming problem, magic squares, natural
language parsing, etc.), some of which use the X interface.

A test suite. Thisisaset of morethan three hundred programs contai ning morethan 30000
lines of LIFE code. These programs contain exhaustive tests of the capabilities of Wild
LIFE aong with code fragments from real programs. The programs are accompanied
with their inputs and correct outputs and two scripts, check and check_al |, which
can be used to test the correctness of the implementation.

The following email addresses are relevant to the LIFE language and the Wild LIFE system:

i fe-users@rl .dec. com Thisisamailinglist of peopleusingLIFE orinterested
in specific aspects of LIFE, whether theory, implementation, or applications. It is meant
as a public forum to answer questions and share programs and ideas. It is not meant to
report bugs, although it may be used to ask public opinions about surprising behavior of
Wild LIFE that may turn out to be a bug and to warn others against confirmed bugs.
l'ife-request @rl.dec.com or |ife-users-request @rl.dec.com
These addresses are used to request to be put on, or removed from, the life-users mailing
list.

l'i fe-bugs@r! . dec. com Whenyou strongly suspect abug (i.e., after reading the
handbook and polling life-users's opinion about the symptoms), try to find the smallest
self-contained program that illustrates the bug and mail it to this address together with a
script that shows the bug.

Research Report Draft March 1994



106 Hassan Ait-Kaci et al.

E Manpage
wild life(1)
NANE
wild life - interpreter for the LIFE | anguage
SYNTAX

wild life [ options ] [ argunents ]

DESCRI PTI ON
LI FE (Logic, Inheritance, Functions, Equations) is an experinental
progranm ng | anguage with a powerful facility for structured type
i nheritance. LIFE reconciles styles from Functional Programm ng
and Logic Progranming by inplicitly delegating control to an
automati c suspensi on nechanism This allows interleaving
interpretation of relational and functional expressions which
speci fy structural dependenci es on objects.

The WId_Life interpreter is a fully functional inplenentation of
the LIFE language. It has a confortable user interface with
incremental query extension ability. |t contains an extensive set
of built-in operations as well as an X Wndows interface.

The WId_Life interpreter is especially suited for rapid prototyping
of applications dealing with conplex data. It contains a tool for
rapid building of interactive wi ndow based interfaces and a powerf ul
preprocessor. The WIld Life interpreter was originally devel oped as
part of the Paradi se project at the DEC Paris Research Laboratory.
Its devel opnent is continuing in the Proteus project.

OPTI ONS

-q Qui et node. Forces conpletely silent operation, i.e., no user
interface information (pronpts, variable val ues, Yes/No
nessages, startup banner, exit banner) will be printed. This
allows WId_Life to be used as an elenent of a Unix pipe with
m ni mal hassle. FErrors, warnings, trace nessages, program
output (with the wite statement etc.), and file I/O are still
output. As always, errors and warnings are output to stderr
trace information to stdout. |In ’'verbose nopde the quiet node
i s disabled, which allows the user to inspect a m sbehaving
Wld_Life when it is being used as a pipe el enent.

-menor yN

- menor y=N
Start up the systemwith N words of available menory. This
menory is shared between data and prograns. Virtual nenory
usage is close to 2*N because of the hal f-space garbage

March 1994 Digital PRL



Wild LIFE Handbook

107

col lection algorithmused. The default value of N is 2000000.

ar gunent s

Al'l command |ine argunents are available to the LIFE program
The function argv returns a list of strings, where each string
is one command |ine argunent. For exanple, if the systemis
started with "wild_life -g foo" then argv returns the [i st

["wild_ life",
FI LES
Li fel. 0/ Doc
Li fel. O/ Exanpl es
Lifel.O/Lib

Lifel. 0/ Tool s
Lifel.0/CLife
Lifel. 0/ Tests
Li fel. 0/ Source

EXAMPLES

-q", "foo"].

(docunent ati on)

(exanpl e prograrns)
(libraries)

(progranmi ng tools)
(wild_life as Clibrary)
(test suite)

(source code)

The directory Lifel. 0/ Exanpl es contains a set of exanple prograns.
Each of these prograns is in its own nodul e and can be | oaded
directly into the interpreter with the 'inport’ conmmand.

The foll owi ng exanpl e shows how to run a programthat solves the
SEND+MORE=MONEY puzzl e:

Y%wildlife

Wld_Life Interpreter Version 1.0

Copyright (C) 1991-93 DEC Paris Research Laboratory

No custom zing file | oaded.

> inport("solve")?

*** File "/udir/rmeyer/LlI FE/ PUBLI C/ Exanpl es/sol ve. | f" | oaded

* % % Yes
> sol ve?

SEND 9567
+MORE +1085

MONEY 10652

* k% l\k)
> |isting(solve#solve)? %In nodule "solve", list predicate ’solve'.
sol ve : -

A =1,

B+ C+ A= _D+ 10 * _A

_E+ F+ D=_G+ 10 * _B,

_H+ G+ | = _F+ 10 * _E,

J+ F=_K+ 10 * _H,

Research Report Draft

March 1994



108 Hassan Ait-Kaci et al.

diff _list([_C _F,_G_J,_A _D_l,_K]),
_H = carry,
_E = carry,
_B = carry,
_C = deci nal,
_F = deci mal,
G = deci nal,
~J = decinal,
_D = deci mal ,
_|I = deci mal,
_K = deci mal ,
nl,
wite(" SEND ",_C _F _G_J)),
nl,
write("+MORE +',_A _D _I,_F),
nl,
wite("-----  ----- "),
nl,
write(" MONEY ",_A _D _G _F, _K),
nl,
nl,
fail.
* Kk * Yes
> halt?

*** Exiting Wld_ Life [1.850s cpu, 0.000s gc (0.0%]
%

BUGS
See the installation’s README file for a list of known bugs.

CURRENT OWNERS
rmeyer @rl .dec. com (R chard Meyer)
vanroy@r! . dec. com (Peter Van Roy)

AUTHORS OF OBJECT
Ri chard Meyer
Peter Van Roy
Bruno Dunmant (grammar preprocessor, graphical interface toolkit)
Jean- Cl aude Herve (X Wndows interface)
Hassan Ait-Kaci, Seth Copen Gol dstein, Abder Aggoun (contributions)

AUTHORS OF DOCUMENTATI ON
Hassan Ait - Kaci
Bruno Dumant
Ri chard Meyer
Andr eas Podel ski
Peter Van Roy

March 1994 Digital PRL



Wild LIFE Handbook 109

F The accumulator preprocessor

The accumulator preprocessor is a powerful tool to simplify the development of large pro-
grams. The preprocessor does a source-to-source transformation that adds accumulators to
predicates. An accumulator provides ameans of calculating avaueincrementaly. For exam-
ple, the incremental calculation could be the building of alist. Implementing an accumulator
consistsin adding two arguments to each predicate and chaining the arguments between goals
inside each clause. This passes the intermediate values around during the calculation. The
preprocessor can aso expand single arguments (called “passed arguments’ below) which is
useful to pass global information to procedures.

To speed up Wild LIFE’s start up time, the preprocessor is not loaded by default. Any
program using it must first import (i.e, load and open) the preprocessor module with the
commandi nport ("accumul at ors").

Example F.1 Thisexample showshow to use the accumulator preprocessor to write aprogram
mai n(N, L) that takes an input N and generates a list L of integers from 1 to N. The
accumulator myacc isused to accumul ate the elements of thelist. Thisexampleisshown here
inits entirety to show how to use the preprocessor and to give aflavor of itsthe abilities.

> inport("accunul ators") ?

*** |l oading File "Tool s/accumul ators. | f"

*** |l oading File "Tool s/std_expander.|f"

*** |l oading File "Tool s/acc_decl arations.[f"

> acc_i nfo(nyacc, X, I n, Qut, acc_pred=>(Qut=[X|In]))?

> pred_info(loop, myacc) ?
> |oop(0) :-- I?
> |l oop(N) :-- Ntnyacc, |oop(N1)?
> main(N, L) :-- loop(N with nyacc([],L)?
> |isting(loop, main)?
| oop(0, in_nyacc=>A, out_nyacc=>A) :- !, succeed.
| oop(A, in_nyacc=>B, out_nyacc=>C) :- D[ A B],
| oop(A-1, in_nyacc=>D, out_nyacc=>C).
mai n(A, B) :- loop(A in_nmyacc=>[], out_nyacc=>B).

> mai n(10, L) ?

* % % Yes
L =1[1,234,5,6,78,9,10].

The declaration acc_i nf o declares the accumulator myacc. The declaration pr ed_i nf o
declares that predicate | oop usesmmyacc. Thepredicates| oop and mai n are defined using

Research Report Draft March 1994



110 Hassan Ait-Kaci et al.

querieswithroot : - - (i.e, terminated with ?) instead of definitionswith root : - . Thelisting
of | oop and mai n shows how the accumulator nyacc is added. Complete explanations of
al these items are given below.

The accumulator preprocessor does ageneralization of the DCG (Definite Clause Grammar)
expansion of Prolog. Definite Clause Grammars (DCGs) are the standard example of a
preprocessor for asingle accumulator, whichisin this case adifferencelist. Thisisastandard
technique, described in Prolog textbooks, for example in Sterling and Shapiro’s Art of Prolog
[19]. The Wild LIFE preprocessor replaces Prolog terms by -terms.

The generalized technique, called EDCG (Extended Definite Clause Grammar), was devel -
oped and implemented for the Aquarius compiler [16, 17]. It has proven extremely useful
in the development of large Prolog programs. It has been used by the authors and others to
develop various compilers, simulators, analyzers and test generators.

TheWild LIFE preprocessor jointly devel oped by Dumant and Van Roy provides much extra
functionality over the EDCG preprocessor. It is being used in the development of the LIFE
compiler.

F1 Accumulators

F1.1 Basic examples and syntax
Therules to be expanded are written:

Head :-- Body?

Head islike any clause head; Body islike any predicate definition body except that some
special symbolsmay appear in predicate places (see below: accumulation and other features).

The predicates occurring inthe rule are expanded according tothepr ed_i nf o declarations
attached to them, that tell the preprocessor which arguments have to be added.

pred_i nfo(p, castor)?

Thisdeclaration statesthat the accumulator cast or should be expanded when p isencoun-
tered. The arguments of pr ed_i nf 0 may also be lists, to relate a set of predicates and a set
of accumulators.

(@(@ If you use named features, be careful that there are no conflicts with the features added by
the preprocessor. These features aways start with i n_or out _.

Example F.2 (adapted from Van Roy)

pred_info([p,q],[castor, pollux])?
pred_info(r, castor)?

Theclausep :-- p, g, r, s? istrandatedinto:

p(in_castor => A/in_pollux => B,
out _castor => C out_pollux => D) :-

March 1994 Digital PRL



Wild LIFE Handbook 111

p(in_castor => A/in_pollux => B,
out _castor => E,out_pollux => F),
g(in_castor => E,in_pollux => F,
out _castor => Gout_pollux => D),
r(in_castor => Gout_castor => Q),
S.

F1.2 Accumulation

The principal operation performed by an accumulator isto accumulate! The way accumula-
tion isperformed for agiven accumulator is specified throughacc_i nf o declarations. These
declarations usualy contain a predicate (or a sequence of predicates) used for accumulation,
that may take three external arguments:

¢ thetwo terms implementing the accumulator (I n, Qut );
o thedatato be accumulated (X).

An acc_i nf o declaration contains the name of the accumulator, references to these three
terms, and the accumulation predicate:

acc_i nfo(AccName, X, I n, Qut, acc_pred => AccPred)?

There are d so other optional argumentsto acc_i nf o declarationswhichwill beintroduced
later. The syntax for accumulationin aruleisthe following:

X + Acc: accumulate X in accumulator Acc.

Example F.3

acc_info(fwd, X, I n,Qut,acc_pred => (Qut =1[X1In]))?
pred_i nfo(foo, fwd)?

foo :-- 4+fwd, foo0?
istrandated into:
foo(in_fwd => A out_fwd => B) :-

C =T[4 A,
foo(in_fwd => C out_fwd => B).

The expression in acc_pr ed just replaces the X + Acc goal, with the proper arguments
instanti ated.

Research Report Draft March 1994



112 Hassan Ait-Kaci et al.

F1.3 Other features
o Initidization.

An accumulator that has to be expanded and doesn’'t appear in the head of the clause, is
initialized (this happenswhenwi t h isused, see below). Initialization information may
be givenintheacc_i nf o declaration (i n_st art andout _st art features).

Example F.4

acc_info(einstein, in_start=>nc2, out_start=>energy)?
pred_info(t, einstein)?

S 1-- t?
istrandated into:
s ;- t(in_einstein => nt2,out_einstein => energy).

asei nst ei n doesn't appear in the head.

(@@ If acc_i nf o is used several times to define the same accumulator, only the last
declaration is taken into account. The system gives awarning.

e X i s Acc unifies X with the current value of the accumulator Acc.

Example 5 (with the previous declarations)

p:--p, Xis castor, wite(X), Yis pollux, wite(Y), p?
The obtained clause is:

p(in_castor => A/in_pollux => B,
out _castor => C out_pollux => D) :-

p(in_castor => A/in_pollux => B,
out _castor => E,out_pollux => F),

G=E

wite(Q,

H=F,

wite(H),

p(in_castor => E,in_pollux => F,
out _castor => C out_pollux => D).

March 1994 Digital PRL



Wild LIFE Handbook 113

Itisalso possibleto write:

— Acc is X:samemeaningasX i s Acc
— Accl is Acc2: unify current value of Acc1 with current value of Acc2

Warning: the expansion failsif none of the argumentsof i s isan accumulator supposed
to be expanded.

e insert(X Y, Acc) insertsX and Y inthe chain implementing Acc. Thisprimitiveis
provided as an escape to standard LIFE code. It should not be needed in most cases.

Example F.6 (with the previous declarations)
r :-- r, insert(a,b,castor), r?
The obtained clause is:

r(in_castor => A out_castor => B) :-
r(in_castor => A out_castor => O,
a = (C
b =D
r(in_castor => D, out_castor => B).

e cond and disjunctions.
Expansionis performed inside cond and disjunctions.

e Codeinsertion.

The preprocessor may be told not to expand a piece of code by inserting it between
brackets.

Example F.7 (with the previous declarations)
p:--qg, {p}?
The obtained clause is:
p(in_castor => A/in_pollux => B,
out _castor => C out_pollux => D) :-
g(in_castor => A/ in_pollux => B,

out _castor => C out_pollux => D),
p.

Research Report Draft March 1994



114 Hassan Ait-Kaci et al.

e Useof cut.
Cuts may be used anywhere and are never expanded. “! ” isin fact syntactic sugar for
“{ryr.

e Meta-programming.
Variables may be used as symbolsin the body of the rules:

Example F.8 (with the declarations above)
p(xX) :-- X?
istrandated into:

P(X,
in_castor => B,in_pollux => C,
out _castor => D,out_pollux => E) :-
i nterpret_synbol s(X,

@castor => B,pollux => O,
@castor => D, pollux => E),
@
cname => default_C,
gram => fal se).

The features of i nt er pr et _synbol s contain the necessary information to interpret
X when it gets bound; i nt er pr et _synbol s will residuate until X is no longer @.
Thisway, if Xisinstantiated to some symbol f 00, thefirst rule will behave exactly like:

p :-- foo?

A warning is given at expansion time to indicate that variables are expanded using
i nterpret _synbol s.

(@@ i nt er pret _synbol s isanon-strict predicate.

e Changing the argument names.

If you want special names to be given to the arguments implementing an accumulator,
you may specify themintheacc_i nf o declaration:

acc_i nfo(box,in_name => "input", out _nanme => "output")

With this declaration, box will be expanded using i nput and out put instead of
i n_box and out _box.

March 1994 Digital PRL



Wild LIFE Handbook 115

F.2 Operations on accumulators

F.2.1 Context of an expansion

Thetool swe have described above don't give good answersto some practical questionssuch
as.

e How can we specify ruleslike:

head :- bodyl(in => In,out => Inter),
body2(in => Inter,out => Qut).

The problem hereis that the accumulator is not expanded in the head of the clause.

e How can we link different accumulators together? There is no reason why different
accumulators always have to be isolated from each other.

In fact, the accumul ators expanded in the head of the clause are very important in the expan-
sion of the clause, because only these accumulators are linked (the others are just initialized).
Thew t h operator has been designed to let other sets of accumulators play the samerole.

An expansion is characterized by two concepts:

e Itsscope: the set of terms affected by the expansion.
e Itscontext: the set of accumulators that will be linked together during the expansion.

Until now, the scope of an expansion was alwaysthe whole clause, and its context the set of
accumulators expanded inthe head. W t h enables the programmer to define the scope and the
context of an expansion. W t h is defined as an infix operator of precedence 800 and kind xfy,
i.e, it binds tighter than the control operators used in clauses (“, 7, “; 7, “: - ", and so on), but
looser than functional expressions.

Example F.9 Let us consider the following program:

pred_i nfo([ head, body1, body2?], accl) ?
pred_i nfo([ bodyl, body2, body3], acc2) ?

head :-- bodyl, (body2, body3) with acc2.

The initia scope of the expansion is the whole clause, with context {acc1}: This means
that acc1 will be expanded and linked in head,body1,body2.

W t h defines a new context, {acc2}, with scope (body2, body3): this means that
acc2 will be expanded and linked in body?2 and body 3, but not linked with the arguments
of body1 sincebody1 doesn’t belong to the scope of this expansion.

Thismay be represented thisway: The scopes are represented by the big rectangles, withthe
corresponding contexts on their upper edge. Each pair of expanded arguments is represented
by aterm acc( _, ) where the first argument is the input, and the second the output. The
arrows represent the unified arguments.

Research Report Draft March 1994



116 Hassan Ait-Kaci et al.

head accl(_,_ )
—— - acc2(_, ) @ m—m———— |
| A /\ |
| /// \\\ I
_____ ~ |
I o NN I
[ Yy Yy
bodyl accl(_,_) acc2(_,_) ‘ : body2 accl(_,_ )acc2(_,_) ‘ body3 acc2(_, ) |
|
L ]

The clause is thus expanded to:

head(i n_acc1=>A, out _accl=>B) -
body1(i n_accl=>A out _accl=>C,i n_acc2=>@ out _acc2=>@,
body2(i n_accl1=>C, out _accl=>B,i n_acc2=>@ out _acc2=>D),
body3( i n_acc2=>D, out _acc2=>@.

When an accumul ator appearsin theright hand side of awi t h andin the parent context, the
expansion of the accumulator inside and outsidethe scope of thewi t h are totally independent:
arguments appearing inside the scope of thewi t h won't be linked with arguments appearing
outside.

Example F.10
p:--r, qwth castor?
istrandated into:

p(in_castor => A/in_pollux => B,
out _castor => C out_pollux => D) :-
r(in_castor => A out_castor => Q),
g(in_castor => E,in_pollux => B,
out _castor => F,out_pollux => D).

The arguments implementing the accumulator cast or in q are not linked with the others.
pol | ux isregularly expanded.

F.2.2 Operations

The notion of context gives the possibility to perform operations on accumulators. In a
context, an accumulator is represented by a pair of arguments (I n, Qut) . In the example
above, the castor accumulator is represented by the pair (A, C) in the head context, and the
pair ( E, F) inthe context defined by thewi t h operator.

We define three operations on these pairs of arguments. composition, inversion, equality.

March 1994 Digital PRL



Wild LIFE Handbook 117

e Composition: =>
(A B) => (C D) returns(A, D) ; Band Careunified.

e Inversion: i nv
inv((A B)) returns(B, A

e Equality: =
(A, B) = (C, D) unifiesAandC, and B and D.

Moreover, direct access to the pairs of arguments is given, which allows the accumul ators to
beinitialized in a convenient way.

Theright hand side of thewi t h operator contains a conjunction of constraintsto be applied
to the new context: either smple constraints meaning: “expand this accumulator locally” or
more complex like: “compose these two accumulators’, or “make these accumulators equal”.
What followsis a set of example clauses and their translations.

es !-- qwth castor([],[1,2,3])?

When arguments are given to accumulatorsin ascope of awi t h, thefirst oneisunified
with the input of the accumulator, the second with the output. The above clause is
translated into:

s :- g(in_castor =>[],in_pollux => @
out _castor =>1]1,2,3],out_pollux => @.

This may be represented graphically by:

I _____ Caﬂor( [] 1 [112!3] ) _____ 1
[ b l
I I/ !
I I/ I
I |/ |
| B | :
: q castor(_,_) pollux(_,_) |
L _______1
esS :-- g wth castor => pollux?

“=>" is the composition operator. It links the output of its |eft hand side with the input
of itsright hand side:

S :- q(in_castor => @out_castor => A
in_pollux => A out_pollux => @.

The same clause could have been specified in the following way:

S :-- gwth (castor(\_, X),pol lux(X\_)).

Research Report Draft March 1994



118 Hassan Ait-Kaci et al.

Graphicaly:

————— castor(_, ) pollux(_,
h
|
|
|
¥

(S le ——— = L

A
[
|1
[
Yy
(., ) pollux(_,

g castor

The constraintsimposed by the right argument are represented by solid arrows, the other
links by dashed arrows.
esS :-- gwth inv(castor) => pollux?

“i nv” inverts input and output arguments. In this example, you may notice that both
inputs are linked together.

s :- g(in_castor => A/in_pollux => A
out _castor => @out_pollux => @.

esS :-- g wth castor = pollux?
Equality of accumulators means unification of both input and output.

s :- qg(in_castor => A/in_pollux => A
out _castor => B, out_pol lux => B).

ep :-- g wth glob(castor) = castor => pollux?

gl ob(cast or) is areference to the cast or accumulator appearing in the parent
context.

p(in_castor => A/in_pollux => B,
out _castor => C out_pollux => B) :-
g(in_castor => A/ in_pollux => D,
out _castor => D,out_pollux = Q.

Graphicaly:

March 1994 Digital PRL



Wild LIFE Handbook 119

p castor(_,_) pollux(_, ) —_—

——— ———— ]

e All these things may be used together.
pi-- (a1, s)
with inv(glob(castor)) =
castor(begin) => pollux(2 => end)?
istrandated into:
p(in_castor => A end,in_pollux => B,
out _castor => C begin,out_pollux => B) :-
g(in_castor => C,in_pollux => D,
out _castor => E, out_pol lux => A),

r(in_castor => E out_castor => D),
s.

e |nitialization may aso be performed at the context level.

Theinitialization rule given above should be rewritten: An accumulator isinitiaized if
it doesn’t appear in the context of the expansion. But it ispossibleto force initialization,
usingi nit.

acc_i nfo(einstein,in_start=>nc2, out_start=>energy)?
pred_info(t, einstein)?

S :--t with init(einstein)?
istrandated into:
s :- t(in_einstein => nt2,out_einstein => energy).

You may specify which argument has to be initialized by giving a second argument to
init:inorout. For example, thisclause:

S :--t with init(einstein,in)?

istranslated into:

Research Report Draft March 1994



120 Hassan Ait-Kaci et al.

S ;- t(in_einstein => nt2,out_einstein => @.
Thisclause:
S :--t with init(einstein,out)?

is translated into:
S - t(in_einstein => @out_einstein => energy).
If the second argument of i ni t isn'ti n or out , then both are initialized.

F3 The DCG accumulator

The accumul ator preprocessor provides built-in definitions that mimic Prolog’'s DCG trans-
lation. There are a few differences with Prolog DCGs, mainly due to the use of -terms
instead of Herbrand terms. The main differences are that the arguments added have features
i n_dcg and out _dcg and that declarations given interactively must be terminated with ?. If
expand_| oad(true) iscaled, then declarationsin afile may be terminated with “. .

Example F.11 Thisexample showshow to use DCGsin Wild LIFE.

> inport("accunul ators") ?

*** |l oading File "Tool s/accumul ators. | f"

*** |l oading File "Tool s/std_expander.|f"

*** |l oading File "Tool s/acc_decl arations.[f"

>a-->b, c?

> |isting(a)?

a(in_dcg => _A, out_dcg => _B) :-
b(in_dcg => _A out_dcg => _Q),
c(in_dcg => _C, out_dcg => _B).

*** Yes

F.3.1 Definition
The DCG accumulator is predefined as follows:

acc.info( dcg, Term Xs, Ys, accpred =>'C (Termfalse, Xs,Ys))?

The' C (Terns, Fol dCk, Xs, Ys) function is used for accumulation. Its arguments
have the following meaning:

March 1994 Digital PRL



Wild LIFE Handbook 121

e Ter ns: thelist representing the non-terminalsto be recognized;
e Fol dCk : aboolean telling whether Ter ns may be folded into the program or not;
e Xs: theinput stream of non-terminals;

e Ys: the output stream of non-terminals.

You may replace the’ C function by your own version:

set_C(ny_QC°?

" C isonly used during the expansion of your grammar in LIFE clauses, so you can (and
should) reset itsvalue to the default after translation (with the query r eset _C?) Thetokenizer
and parser written in LIFE (see Tools directory) redefine’ C for their own needs.

F.3.2 DCG syntax
The standard DCG syntax is supported by this preprocessor:

Head --> Body?

will expand the DCG accumulator in all predicates of Head and Body even if there is
no pred.i nf o declaration. The other accumulators will be expanded according to the
declarations.

Accumulation in the DCG may be specified either with the above notation ( X + dcg), or
using the standard list notation of DCGs:

foo --> [3], bar?
istrandated into:

foo(in_dcg => [3| Al,out_dcg => B) :-
bar (i n_dcg => A out_dcg => B).
F.3.3 Implementation notes
¢ Folding Terminals.

The DCG accumulator has been optimized to allow the folding of terminals (i.e., terms
to be accumulated in the DCG accumulator).

A trandation of: foo --> bar, [1]? could be:
foo(in_dcg => A out_dcg => B) :-
bar(in_dcg => A out_dcg => O,
C=1[1]8].
The last statement may be folded into the bar predicate, yielding:

foo(in_dcg => A out_dcg => B) :-
bar (in_dcg => A out_dcg => [1]|B]).

Research Report Draft March 1994



122 Hassan Ait-Kaci et al.

This tranglation is more efficient than the previous one, and the meaning of the two
clauses areidentical, aslong as the bar predicate does not contain things like destructive
assignmentson itsout _dcg festure.

When code is inserted — for instance a cut — we have to make sure that this folding
does not bind variables occurring before the insertion. Consider the following clause:

foo -->1, [1]~7
Thisfirst trandation of it (with folding):
foo(in_dcg => [1| A],out_dcg => A) :-
I,

does not have the same behavior as this one (without folding):
foo(in_dcg => A out_dcg => B) :-
L,
A=1[18.

The first trandation is not correct w.r.t. the usual meaning of cut. The translator we
propose here deals with thisin avery ssmpleway: no folding is performed after acut or
acodeinsertion. Fol dCk isthevariable used in the translator telling whether folding is
authorized or not .

e Code Insertion.
There are two ways of tranglating arulelike:

foo --> {pred}?
Either as:

foo(in_dcg => A out_dcg => B) :- pred, A =B
or as:

foo(in_dcg => A out_dcg => A) :- pred.

In most cases, those two translations will have exactly the same behavior, but if some
side-effect is expected from pr ed, they may differ. Thisisthe caseif pr ed isacut for
instance. The translation used here is the second one, namely:

foo --> {pred}?

is equivalent to:
foo --> [], {pred}?

The other alternative may be obtained by writing:
foo --> {pred}, []?

March 1994 Digital PRL



Wild LIFE Handbook 123

F.4 Passed arguments

A passed argument is just an extra feature added to a predicate, according to some
pred_i nf o declaration. The use of passed arguments is less interesting since the intro-
duction of global variablesin LIFE.

pass_i nfo(ball)?

declaresbal | asapassed argument. There are other optional argumentsto this declaration
that will be explained later.

To declare that a predicate uses this argument, just add ball to thelist in pr ed_i nf o.

pred.i nf o( basket,[ball])?

The expansion will add abal | feature to all occurrences of basket. If it is not present in
the head of the definition, it may be initiaized: if thepass_i nf o hasast art feature, its
value will be used to initialize the passed argument.

Example F.12

pass_i nfo(ki ck,start => quick)?
pass_i nfo(ball)?

pred_i nfo(foot,[ball,kick])?
pred_i nf o(basket, bal 1) ?

basket :-- foot, basket?

istranslated into:

basket (ball => A) :-
foot (ball => A kick => quick),
basket (bal |l => A).

All rules related to expansion of digunctions, cond, cuts, and insertion of code still hold.
Thei s primitive may be aso used with passed arguments. Passed arguments may be used
in the left hand side of wi t h operators, but no operations may be performed on them. Their
value may be initialized by giving them an argument, but not (yet) usingi ni t .

pass_i nf o declaration may also specify an “accumulation” predicate. This predicate
can of course only take two arguments, the value to accumulate, and the value of the passed
argument.

Example F.13

pass_i nf o( hash, X, Pass, acc_pred => (Pass. X = true))?
pred_i nfo(store, hash)?

store(X) :-- X+hash?

Research Report Draft March 1994



124 Hassan Ait-Kaci et al.

istranslated into

store(A hash => B) :-
B.A = true.

F5 Common problems and debugging

Debugging a program written using the accumulator expander is not an easy task. One of
the most common mistakes is to forget the expansion of facts or to type : - instead of : - - .
To help the programmer, a directive may be added to the programs so that warnings are given
each time a predicate with an associated pr ed_i nf o declaration occurs in a non expanded
rule. Thisdirectiveis

check_expansi on?

It only workswith expand_l oad(t rue), and for rules ending with a period.

Example F.14 Consider afile with the following declarations:

acc_info(acc)?
pred_i nfo(pred, acc) ?

pred :-- pred.
pred.
pred :- pred.

other_pred :- pred.

A warning will be generated for each of the last three clauses.

Example 15 Thisexampleillustrates acommon problem when mixing DCG predicates with
non-DCG predicates. The problem occurs when the predicates contain other accumulatorsin
addition to the DCG accumulator. The problem is solved through judicious use of thewi t h
operator. Consider the following definition of predicates a and c:

> inport("accunul ators")?
acc_info(acc)?
pred_info([a,b,c,d],acc)?

vV V

>cCc :--r,s,t? % Non-DCG predicate
>a -->b,c,d? % DCG predicate

The expansion of a adds the two DCG argumentsto b, ¢, and d:

March 1994 Digital PRL



Wild LIFE Handbook 125

> |isting(a)?

a( in_acc => _A in_dcg => _B,
out _acc => _C,out_dcg => _D :-
b( in_acc == _A, in_dcg => _B,
out _acc => _E,out_dcg => _F),
c( in_acc => _E, in_dcg => _F,
out _acc => _Gout_dcg => _H),
d( in_acc => _G in_dcg => _H,
out _acc => _C,out_dcg => _D).

The problem isthat ¢ isnot a DCG predicate, hence it does not know what to do with the two
DCG arguments! Thefix isto insulate ¢ from the DCG accumulator by usingwi t h:

>a-->b, ¢c with dcg, d? % Correct definition
> |isting(a)?

a( in_acc => _A in_dcg => _B,
out _acc => _Cyout_dcg => _D :-

b( in_acc == _A, in_dcg => _B,
out _acc => _E,out_dcg => _F),

c( in_acc => _E, in_dcg => @ %c is bypassed
out _acc => _Gout_dcg => @,

d( in_acc => _G in_dcg => _F,
out _acc => _C,out_dcg => _D).

The DCG arguments are now correctly chained between b and d, bypassing c.

F.6 Term expansion

The preprocessor includes term expansion clausesfor : - -, - - >, pred.i nf o, acc.i nfo
and pass_i nfo. This means that if you execute expand_l oad(true), then al rules
loaded from files may be written as definitionsinstead of as queries, i.e., ending with a period
instead of a question mark.

Research Report Draft March 1994



126 Hassan Ait-Kaci et al.

G The Xinterface

Wild LIFE provides an X interface that allows programming X applications at the LIFE
level. To speed up Wild LIFE’s start up time, the X library is not loaded by default. Any
program using X must first import (load and open) the X interface module with the command
i mport ("x") . For examples of how these routines are used, look at the sample programs
provided with the Wild LIFE release.

A “+” before a variable name means the field isan input, and a“- ” means it is an output.
Arguments mentioned as default may be left out; in that case the default values are used.
Certain arguments may not be changed by the LIFE programmer; they may only be created by
X routinesand passed into X routines. Thisincludesthe Display, Window, and Font arguments.
A few arguments must be strings; these are indicated by the notation “: st ri ng”.

For additional functionality that makes it very easy to create interactive window-based
applications(with buttons, menus, and so on) the graphical interfacetoolkit should beimported.
See appendix H for more information.

G.1 Event mask values
The named event mask types are:

xNoEvent Mask, xKeyPressMask, xKeyRel easeMask,

xBut t onPressMask, xButtonRel easeMask, xEnter W ndowMask,
xLeaveW ndowvask, xPoi nter Mdti onMask, xPointerMtionH nt Mask,
xButt on1Mbt i onMask, xButton2Mti onMask, xButton3MotionMask,
xBut t on4Mot i onMask, xButton5Mti onMask, xButtonMti onMask,
xKeymapSt at eMask, xExposureMask, xVisibilityChangeMask,
xStructureNotifyMask, xResizeRedirectMask,

xSubstructureNot i f yMask, xSubstructureRedirect Mask,
xFocusChangeMask, xPropertyChangeMask, xCol or mapChangeMask,
xOmner G abBut t onMask.

G.2 Primitive control operations

e xOpenConnection (-Display, +Screen:string)

Open an X connection on the specified screen. The default value of Scr een is the
contents of the environment variable DI SPLAY. The field containing this value may be
omitted.

e xCl oseConnection (+Di spl ay)
Close the connection opened by axOpenConnect i on.
e xCreat eW ndow (+Di splay, +X, +Y, +Wdth, +Height,
-Wndow, color => +Color, windowtitle => +WndowTitl e,
icontitle => +lconTitle, eventnmask => +Event Mask)
Open a window on the specified display a (X Y) with the given width
and height, and with the given background color. Event Mask contains

March 1994 Digital PRL



Wild LIFE Handbook 127

a bitwise or of the accepted events. The default values are Col or:
xWhite, WndowTitle: "Life", lconTitle: "Life", eventmask:
xKeyPr essMask\ / xBut t onPr essMask\ / xExposur eMask (where\/ isthe
bitwise or function). The fields containing these values may be omitted.

e XShoww ndow (+W ndow)
Show the window. There are no default values.

e xHi deW ndow (+W ndow)
Hide the window. There are no default values.

e xRef reshW ndow (+W ndow)
Refresh the window. There are no default values.

e xPost Scri pt Wndow (+W ndow, +Fil enane: string)

Output the window in a PostScript file. The default value of Fi | enane is" X. ps".

e xGet WndowCeonetry (+W ndow, -X0, -YO, -Wdth, -Height)
Return the geometry of the window. There are no default values.

e xSet W ndowCeonetry (+W ndow, +X0, +YO, +Wdth, +Height)
Modify the geometry of the window. There are no default values.

e xSet W ndowCol or (+W ndow, +Col or)
Modify the background color of the window. There are no default values.

e xDestroyW ndow (+W ndow)
Destroy the window. There are no default values.

e xRequest Col or (+W ndow, +Red, +Green, +Blue, -Color)

Return acolor entry in the color map of thewindow with the closest RGB. The arguments
Red, Green, and Blue must be integers in the range 0 through 255. There are no default
values.

e xRequest NamedCol or (+W ndow, +Name, - Col or)

Return the color entry in the color map of the window of the named color. The argument
Name must be a string recognized by the X system; alist of these is given through the
interactive X command Xco.

e xFreeCol or (+W ndow, +Col or)

Free a color alocated by xRequest Col or or xRequest NanmedCol or . There are
no default values.

Research Report Draft March 1994



128

Hassan Ait-Kaci et al.

G.3 Primitive drawing operations

xDrawLi ne (+W ndow, +XO0, +YO, +X1, +Y1, function =>

+Function, color => +Col or, linew dth => +Li neW dt h)

Draw thelinefrom ( X0, YO) to( X1, Y1) onthewindow withthegivenfunction, color,
and linewidth. The default values are Funct i on: xCopy, Col or: xBl ack, and
Li neW dt h: xThi nLi ne. The possiblevalues of Functi on are: xC ear, xAnd,
xAndRever se, xCopy, xAndl nverted, xNoop, xXor, xO ,xNor, xEqui v,
xI nvert, xO Rever se, xCopyl nvert ed, xO | nverted, xNand, xSet .

xDr awRect angl e (+W ndow, +X0, +YO0, +Wdth, +Hei ght,

function => +Function, color => +Color, |inewidth =>

+Li neW dt h)

Draw the rectangle starting at upper-left corner ( X0, YO) of specified width and height
on thewindow. The default valuesand possiblevalues are the same asfor xDr awLi ne.

xDrawArc (+W ndow, +X0, +YO, +Wdth, +Height,

+Start Angl e, +ArcAngle, function => +Function, color =>

+Col or, linew dth => +Li neWdt h)

Draw an arc in the rectangle (X0, YO, Wdth, Hei ght), starting a angle
St ar t Angl e relativeto the 3-0’clock position and extent Ar cAngl e, anglesgivenin
degrees. The default values and possible values are the same asfor xDr awLi ne.

xDrawOval (+W ndow, +X0, +YO, +Wdth, +Height, function

=> +Function, color => +Color, |linew dth => +Li neWdt h)
Draw an oval in therectangle ( X0, YO, W dt h, Hei ght) onthewindow. The default
values and possiblevalues are the same asfor xDr awLi ne.

xFi |l Rectangl e (+W ndow, +X0, +YO, +Wdth, +Height,
function => +Function, color => +Col or)

Same as xDr awRect angl e but filled with a given color.

xFill Arc (+Wndow, +X0, +YO, +Wdth, +Height,
+Start Angl e, +ArcAngle, function => +Function, color =>
+Col or)

Same as xDr awAr ¢ but filled with agiven color.

xFill Oval (+W ndow, +XO, +YO, +Wdth, +Height, function
=> +Function, color => +Col or)

Same as xDr awOval but filled with a given color.

xFi I'l Pol ygon (+W ndow, +PointsList, +Function, +Col or)

Fill a polygon described by a list of points (eg., [ (100, 100), (200, 300),
(300, 100) ]). Thepolygonisclosed automatically if the last point of thelist does not
coincide with thefirst point.

March 1994 Digital PRL



Wild LIFE Handbook 129

e xLoadFont (+Display, -Font, +FontName:string)

Load the specified font name. Valid font names are system-dependent. They may be
foundin/usr/li b/ X11/fonts. Thedefault font nameis" 9x15" .

e xDrawString (+W ndow, +X0, +YO, +String, font => +Font,
function => +Function, color => +Col or)
Draw astring a ( X0, YO) with the specified font on the window. The font has to be
loaded with xLoadFont . This function does not affect the background pixels of the
bounding box of the string. Note: ( X0, YO) isthe lower left coordinates of the string.
The default values and possible values are the same as for xDr awLi ne.

e xDrawl nmageString (+Wndow, +X0, +YO, +String, font =>
+Font, function => +Function, color => +Col or)
Draw astring at ( X0, YO) with the specified font on the window. The font has to be
loaded with xLoadFont . The background pixels of the bounding box of the string
are filled with the background color of the window. Again, ( X0, YO) isthe lower left
coordinates of the string. The default values and possible values are the same as for
xDr awLi ne.

e Event = xCet Event (+W ndow, eventnmask => +Event Mask)

Return an event in thewindow which matchesthegiven mask. Thecurrently implemented
eventsare nouse_event , keyboar d_event , and expose_event such that:

E: nmouse_button button => B:bool, x=>Xint, y=>Y:int)
E: keyboard_event (keycode=>K, char=>C. int)
E: expose_event

For alist of the default values and possiblevalues of EventM ask seexCr eat eW ndow.
If thereis no event available, the function residuates (waits) until oneis. Multiplecals
to xCGet Event , on the same window and/or on multiple windows, may be pending at
the sametime.

Research Report Draft March 1994



130 Hassan Ait-Kaci et al.

H The graphical interface toolkit

H.1 Introduction

xt ool s isasimpletoolkit to build interactive window-based X applicationsin Wild LIFE.
It provides the user with the basic functionality of bigger toolkits, in short the ability to
use buttons, text fields, menus, and sliders. Composite objects containing these primitives
can be created arbitrarily at run-time. The toolkit is built on top of the basic X interface
described in the previous section. Thetoolkit moduleis|oaded and opened with the command
i mport (" xtools").

Thetoolkit is organized around three concepts, namely boxes, 1ooks, and constructors.

e boxes are used to compute the sizes and positions of objects on the screen. All screen
objects manipulated by the toolkit are subsorts of box.

e constructors are used to build and initialize screen objects. All objects that have a
behavior (i.e. not simplegraphical objects, but real widgets) inherit from one constructor
type. Ten of them are predefined.

o |ooks are used to describe the appearance of screen objects. An object may be a subsort
of several look types (four such subsorts are predefined), and will inherit the appearance
of these “looks’.

These three concepts are defined as sorts and are organized in the following inheritance
hierarchy (multipleinheritanceis possible from looks):

Boxes

The next sections give detail sabout boxes, constructors, |0oks, and the predefined objectsin-
heriting from these. An exampleprogram isprovided withthe system (infileex_t ool s. | f)
and should help the user to get started.

H.2 Boxes and their placement constraints

All the objects manipulated by the toolkit are boxes. A box is defined by the following type
declaration:

box(X, Y, wi dth => DX hei ght => DY,

March 1994 Digital PRL



Wild LIFE Handbook 131

border => B,
nother => M.

X and Y are integers giving the coordinates of the top left corner of the box, DX and DY
are integers giving the dimensions of the box. Boxes may contain other boxes: the not her
feature of a box pointsto the box that containsit, if any. The bor der feature is the width of
reserved space on each side of abox. It hasadefault valued_bor der .

The following sections list the placement constraints on boxes that are implemented in
the toolkit. These constraints may be accumulated and imposed in any order. The loca
constraint propagation of Wild LIFE guarantees that if the constraints are consistent and
enough information exists to determine a placing, it will be determined. If the constraints are
inconsistent, then they will fail and cause backtracking.

H.2.1 Boxes used as padding
Some boxes are only used to reserve space between objects:

e h_box(W isafunction that returns a box of width W
e vV_box(H) isafunction that returns a box of height H.

e nul | _box isabox of zero size. It isthe sort:

nul | _box <| box.
nul | _box(w dth => 0, height => 0).

Thevauesinh_box(W andv_box(H) may be negative.

H.2.2 Positioning
¢ Relative positioning
Thetoolkit offers a number of primitivesto place boxes:

| _above c_above r _above

| _bel ow c_bel ow r _bel ow

t _left_of cleft _of b_l ef t _of
t_right_of cright_of b.right_of

The letter prefixes have the following meaning: | standsfor left, r for right, t for top,
b for bottom, and c for center.

Each of these primitives is a function returning the smallest box containing its two
arguments; for instance, Box1 | _above Box2 returns the smallest box containing
Box1 and Box2, such that:

— Box1 isabove Box2, and
— their left sides are aligned.

These primitives will set and try to resolve the placement constraints.

Research Report Draft March 1994



132 Hassan Ait-Kaci et al.

¢ Containment
Thetoolkit offers two primitives to express that one box contains another:
contains containing
Syntax:

Box1 contai ns Box2
Box = Box1l contai ni ng Box2

Both of these primitives express the same containment constraint. The difference isthat
cont ai ns isapredicateand cont ai ni ng afunction. If no sizeisspecified for Box1,
it will be given the same size as that of Box2. The function call cont ai ni ng returns
the containing box, in this case Box 1.

If Box1 hasabor der feature worth Bor der (in pixels), it will be used to reserve a
space of that width around the box. In thiscase, Box1 will be larger than Box 2.

¢ Refined positioning
There are also some primitivesthat set finer constraints:

[l _aligned [ r_aligned Icaligned rr_aligned rc.aligned
tt_aligned tb_al i gned tcaligned bb.aligned bc_aligned
ccv_aligned cc_h.aligned

These are predicates. Thefirst |etter of the predicate name applies to the first argument,
the second to the second argument. As before, | standsfor left, r for right, t for top, b
for bottom, and c for center.

For instance:
Box1 I r_aligned Box2

will force the left side of Box 1 to be aligned with the right side of Box2.
Box1l cc_v_aligned Box2

will force the centers of Box1 and Box2 to be verticaly (v) aligned.

H.2.3 Lists

Lists are just syntactic sugar to express the vertical or horizontal alignment of boxes. The
following list-handling primitives are provided:

vl _|ist velist wvrist
ht i st hclist hb.list
menu_l i st
All these functions are defined as prefix operators. Thecal vl _|i st Li st_of _Boxes

returns the box containing all the boxes of thelist, such that each of themis| _above the next
oneinthelist. Asbefore, | standsfor left, r forright, t fortop, b for bottom, and ¢ for center.
Thecal menu_I i st List_of _Boxes first constrains all the boxes of thelist to be of the
samesize, thenreturnsvl _| i st Li st _of _Boxes. Itisvery easy to make your own kind
of list, using the implementation of these as an inspiration.

March 1994 Digital PRL



Wild LIFE Handbook 133

H.2.4 Sizes of boxes

A very useful constraint predicate is sanme_si ze. sane_si ze(Li st _of _Boxes)
will force all the boxes of the list to have the same height and width. In the same way,
sanme_hei ght (Li st _of _Boxes) will force all the boxes of the list to have the same
height, and sane_wi dt h( Li st _of _Boxes) will forceall the boxes of thelist to have the
same width.

Sizes of boxes are computed on the fly, using a subsort of box: t _box. It hasthefollowing
features:

t _box(h_space => HSpace,
vV_space => VSpace,
text => Text,
font_id => Fid)

Text The text appearing in the box.
VSpace Thetotal amount of vertical space reserved around the text.
HSpace Thetotal anount of horizontal space reserved around the text.
Fi d The font ID used. Default is bold (see below for an explanation of font
IDs).
If nosizeisalreat)jy givenfor abox, andif itisasubtypeof t _box, thenitssizeiscomputed
according to Text , Fi d, VSpace and HSpace.

H.2.5 Creating a box

In order to be displayed and to work, a box hasto be created.
creat e_box( Box) calstheconstructor of Box (if it isasubsort of aconstructor) and the
drawing routine (if the box is a subsort of alook sort). If abox contains other boxes, you only
need to call cr eat e_box for the parent box: the cal is propagated to the boxes children.
creat e_box must be called only after al positioning constraints have been declared. It
isinfact possibleto separate compl etely the positioning and the creation. cr eat e_box may
be called several times with the same argument. Later calls than thefirst will have no effect.
H.3 Main constructors
H.3.1 Panels
e panel _c
A panel _c consistsof atop-level window containing widgets.
Features. (optional)

panel _c(title => Title)

Ti t e: title of thewindow and icon
Beware: the positionsof top-level windowsare usually modified by thewindow manager.

e sub_panel _c
A simple sub-window that deals with refresh events. It isused by slide bars.

Research Report Draft March 1994



134 Hassan Ait-Kaci et al.

H.3.2 Buttons
The following button types are provided, listed with the rel evant features:

push_c(action => Action)
on_off_c(on => On, action => Action)
text _field_c(action => Action)

menu_butt on_c(nenu => Menu)

Action Buttons of sort on_of f _c, push_c, text _fiel d_c have afeature
acti on that describes the action activated by the button. The default
action issucceed. If thebuttonisanon_of f _c orapush_c, theaction
is activated each time the mouseis pressed and rel eased inside the button.
If the buttonisatext fiel d_c, the action is activated each time the
return key is pressed and the button active.

On Buttons of typeon_of f _c have aboolean feature on that describestheir
state. On isapersistent term.
Menu A nmenu_but t on has a feature menu that must contain a term of sort

menu_panel _c.
To distinguish between the mouse buttons, a persistent variable but t on_pr essed is

modified each timeamouse buttonis pressed. Itsvalueis1 for thefirst button, 2 for the second
button, etc.
H.3.3 Menus
e Nenu_panel _c
A menu_panel _c isessentidly apanel _c withadifferent kind of window. A menu
panel is aways positioned under its associated menu button. In fact, a menu panel may
contain any object, exactly likeapandl.
eitemc
Features:

itemc(action => Action)
Acti on The action associated with the item.

H.3.4 Sliders

A dliderisjust amoving button. It may moveeither vertically (v_sl i der _c) orhorizontally
(h_sl i der _c), insidethe box that containsiit.

Features:

* glider_c(mn => Mn,max => Max, val ue => Val ue, action => Action)

M n, Max, Val ue The position of the slider is associated with a real vaue that is
constrained to stay between M n and Max. M n and Max must be
given by the user. Val ue isapersistent term.

Acti on Each time the value of the dlider is updated by moving the slider,
Act i on isexecuted.

March 1994 Digital PRL



Wild LIFE Handbook 135

H.4 Looks
H.4.1 Look types
e text _box
Atext_box appearsastext. t ext _box isof courseasubsort of t _box.
Features:

text _box(text => Text,
text _state => State,
text color_id => Tid,
true text color_id => TTid,
font id => Fid,
offset => Ofset).

(at ext _box asohasthefeatures of t _box)

Text The text appearing in the box.

O fset Default valueisd_of f set .

O fset = 0 Thetextiscentered in the box.

O fset > 0 Thetextisflushed left, and Of f set isthe distance between the

left border of the box and the beginning of the text.
O fset < 0 Thetextisflushedright,and O f set isthe distance between the
right border of the box and the end of the text.

State A boolean describing the state of the button. St at e isapersistent
term.
Tid The color ID used when State isfase. The color valueisfound in
mai n_col or s (see Colors below). Default valueisd_t ext .
TTid Thecolor ID used when St at e istrue. Default valueisd_t ext .
Fid Thefont ID used. Defaultisbol d.
o frane

A f r ame corresponds to the 3D border of a button.
Features:

frame(frame_state => State,
flat => Flat,
color_id => G d)

State If State istrue, the frame is sunken, otherwise it is raised. State is a

persistent term.

Fl at If Fl at istrue, then thereisno raised position: When St at e isfase, the
frame appearsflat.

Gd The color ID used. The actual color values are found in the persistent

variableshi ghl i ght _col or s andshade_col ors.

Research Report Draft March 1994



136 Hassan Ait-Kaci et al.

o field
A field isa colored rectangle.
Features:

field(field_state => State,
color_id => G d,
true_field_color_id => TFid)

St at e A boolean describing the state of the button. St at e isapersistent term.

Gd The color ID used when St at e is false. The color vaue is found in
mai n_col or s (see Colors below). Defaultisd_fi el d.

TFid  ThecolorID usedwhen St at e istrue. Defaultisd_sel ect ed_fi el d.

e | ed
Anledisjust likean LED, i.e, itisasmall light that can be on or off.
Features:

| ed(l ed_state => State,
led_on_color_id => LedOn,
led _off_color_id => LedOf)

State A boolean describing the state of theled. St at e isa persistent term.

LedOn  The color ID used when St at e is true. The color values are found in
mai n_col ors, hi ghl i ght _col ors andshade_col or s, depend-
ing on the part of the led (see Colors below). Defaultisd_| ed_on.

LedOrf  Thecolor ID used when St at e isfase. Defaultisd_| ed_of f .

H.4.2 Inheritance of looks

Looks are inherited through subtyping. For instance, on_of f _but t on is a subsort of
text _box, | ed and franme. Note that the col or _i d feature appears in f ranme and
fi el d. Therefore, they should be compatible.

H.4.3 Colors and fonts

Colors and fonts are stored in tables. There are three tables for colors (mai n_col or s,
hi ghl i ght _col ors, shade_col ors) and one table for fonts. Colors and fonts are
accessed through identifiers that may be any atom. All objects have default colors (stored in
xt ool s_const ant s). To change the color of an object, you have to:

e Store a color in the appropriate table, with the ID you have chosen, using the predicate
def _col or (Tabl e, I d, Col or) (forafont: def _font (Id, Font)).

e Set the appropriate color 1D of the object to Id.

ExampleH.1 To have aclass of text boxes with red text:

March 1994 Digital PRL



Wild LIFE Handbook 137

def _col or (main_colors, ny_id, red)?

ny_txt <| text_box.
nmy_txt(text_color_id => ny_id)

Asthesamecol or _i d feature appearsinfi el d andf r ane, if acolor isdefined for the
IDI1 inmai n_col or s, thenthecorresponding colors (forthesamelD | ) inshade_col or s
and hi ghl i ght _col or s should be respectively adark and light version of the same color.

To load a hew color, usenew_col or:

Example H.2 To add to the color table, the color with RGB values 180,190,190, type:
X = new_col or (180, 190, 190) ?
new_col or returnsthe color corresponding to the RGB values.

Example H.3 To load anew font, usenew_f ont :
X = new_font("hel vetica_bol d18") ?

new_f ont returnsthefont corresponding to the string. The string must be one of the names
obtained by typing xIsfonts (Unix command).

All widgets (objects with their own window, in short all subsorts of constructors) have a
col or _i d feature to set the background color of the window.
Two font IDs are predefined:

bold : "-*-helvetica-bold-r-*-*-14-*-*_*_*_*x_x_x=
medium "-*-helvetica-nmedi umr-*-*-14-*-*_*_*_*_%_xu

Thefollowing colors are |oaded by default:
aquanari ne, black, blue, "blue violet’, brown, ’'cadet blue’,

coral, ’'cornflower blue', cyan, 'dark green’, 'dark olive green’
"dark orchid, ’dark slate blue’, 'dark slate grey’,

"dark turquoise’, 'dimgrey’, firebrick, ’'forest green’, gold,
gol denrod, green, ’'green yellow , grey, 'indian red , khaki,
"light blue’, "light grey’, "light steel blue', 'line green
magent a, maroon, ’'nedi um aquanmarine’, 'medium blue’, ’medi um orchid’
"medi um sea green’, 'medium slate blue’, ’'nedium spring green’
"medi um turquoise’, 'nmediumviolet red , ’'mdnight blue

"navy blue', orange, 'orange red , 'orchid , ’'pale green’, pink
plum red, salnmon, 'sea green’, sienna, 'sky blue’, ’'slate blue’
"spring green’, ’'steel blue’, 'light brown’, thistle, turquoise,

violet, "violet red , wheat, white, yellow, ’yellow green’.

Research Report Draft March 1994



138 Hassan Ait-Kaci et al.

These are |oaded when the X toolkit isloaded, and may be used wherever a Col or parameter
isindicated.

H.5 The hierarchy of graphical interface objects

Hereisthe object hierarchy of the graphical interface tool kit.
e Panels:

panel <| panel _c.
panel <| frane.

menu_panel <| menu_panel _c.
menu_panel <| frane.

slide_bar <| sub_panel c.
slide_bar <| frane.

v_slide_bar <| sub_panel _c.
v_slide_bar <| v_slide_l.

h_slide_bar <| sub_panel _c.
h_slide_bar <| h_slide_l.

e Buttons

push_button <| push_c.
push_button <| text_box.
push_button <| frane.

on_of f_button <| on_off_c.
on_off_button <| Ied.
on_of f_button <| text_box.
on_off_button <| frane.

text _field button <| text _field_c.
text _field button < field.

text _field button < frane.

text _field button <| text_box.

menu_button <| nenu_button_c.
menu_button <| frane.
menu_button <| text_box.
menu_item <| itemc.

menu_item <| frane.
menu_item <| text_box.

The complete definition isin Tool/xtools.If.

March 1994 Digital PRL



Wild LIFE Handbook 139

H.6 Screen objects

The screen objects manipulated by the X toolkit are subsorts of 1ooks and/or constructors.
They usually have an additiona feature that stipul ates how the states of the look and that of the
constructor are linked (change_st at e).

Research Report Draft March 1994



140 Hassan Ait-Kaci et al.

| The C-LIFE interface

I.1 Description

This interface provides a simple but powerful means of caling the Wild LIFE interpreter
from within C programs. Routines are provided to:
state facts,
issue queries,
recover results,
extract datafrom -terms,
mani pul ate the current query status of Wild LIFE:

e generate more solutions,

e reset the system.
Theinterface behavesin pretty much the ssmeway asthetop-level of theWild LIFE interpreter,
so being familiar with the interpreter (and needless to say, the LIFE programming language)
is necessary. This also makes the interface very easy to use. No means are provided to build
p-terms directly other than through successive queries.

[.2 A simple example
Thefollowingisasimple C program that calls Wild LIFE toprint"Hel | o Worl d!'!".

#include "c_life.h"
mai n(int argc, char *argv[])

WFI ni t (argc, argv);
WFProve("wite(\"Hello World!!\")?");
}

One can compileit with:
>cc -0 hello hello.c c_life.a -Im-1X11
and execute it:

> hello
Hello Worl d!!

.3 Summary of functions and prototypes

¢ InitializeWild LIFE
void WFlnit(int argc,char *argv[])
e Submit aquery:
i nt Wl nput (char *query);
e Getavariable'svaue:
Psi Term WFCet Var (char *nane);
e Get the type of a-term:
char *WFType(Psi Term psi);

March 1994 Digital PRL



Wild LIFE Handbook 141

Get the vaue of ay-termif it'sa double:

doubl e WFGet Doubl e(Psi Term psi, int *ok);
Get the value of a-termiif it'sastring:

char *WFGet Stri ng(Psi Term psi, int *ok);
Count the features of a -term:

i nt WFFeat ur eCount ( Psi Term psi);
Get the value of afeature:

Psi Ter m WFGet Feat ur e( Psi Term psi, char *featureNane);
e Get all the feature names as a NUL L-terminated array of strings:

char **WFFeat ur es(Psi Term psi);
Prove agoal and report an error (to stderr) on failure:

WFPr ove(char *goal);

.4 Memory management

As LIFE is a non-deterministic programming language, it is best to view it as a coroutine
running in tandem with the C program, and which is queried by the C program. Its execution
state may be very different from the calling C program.

Wild LIFE uses its own memory management scheme (with garbage collection). At each
cal toWFl nput theinterpreter changes state, and may compl etely re-map its memory layout,
thus rendering obsolete any C variables pointing into the LIFE memory space. Hereis an
example of dangerous programming:

Psi Term a;

doubl e n;

WFPr ove(" A=123?");

a=WFGet Var ("A");

WFProve("B=fact (A)?"); /* Mght cause a call to the GC */
n=WFGet Doubl e(a, NULL); /* Random resul ts-m ght even crash */

To avoid this problem, do not keep values of type PsiTerm in C variables across callsto Wild
LIFE.

The other side of the coin is that thanks to the garbage collector, it is not necessary for the
C program to worry about freeing memory in LIFE’s memory space (in fact, doing so would
corrupt the integrity of the system). Currently the only function requiring the C programmer to
free memory is WFFeat ur es which alocates a string array with mal | oc. The array hasto
be freed with f r ee. The stringswithin it should be |eft alone since they are in LIFE’s space.

I.5 An exhaustive example

The following exampl e displays the correct (and short-cut) use of al the current features of

the interface. Read it carefully as some of these are not documented el sewhere.
The program generates the following outpult:

> cc -g -0 denp deno.c /udir/rmeyer/LI FEf MODULE/c_life.a -1 m-1X11
> deno

Wl cone to W1 d-LIFE!!

WFI nput succeeded and there may be nore answers

true=fal se? failed (denmo.c, |ine 51)

Cc=4

Research Report Draft March 1994



142 Hassan Ait-Kaci et al.

A WNPE

failed (denmp.c, line 69)

~N o~

nmessage(t hree+f our, equal s => 7)

The type of A is user#nmessage

A has 2 features

sum=7

the first feature is: ’'three+four’
feature 1 => built_in#string

feature equal s => built_in#int

Linking X library...

ok

% Here it runs the 'queens’ program..

The program isinthefile" deno. c", hereisalisting:

/* Example C programcalling WId-LIFE */
#include "../Source/c life.h"

mai n( argc, ar gv)
int argc;

char *argv[];

{

i nt ans;

Psi Term a;
Psi Term sum
char **features;

int i;
doubl e val ue;
i nt ok;

[*** |nitialize WId-LIFE ***/
WFl nit(argc,argv); /* Currently doesn’'t use the argunents */

[*** Submt a query ***/
/* \042 is a quote sign (") */
ans=Wl nput ("write(\042Wel come to WId-LIFE'!\042),nl?");

/* Deal with WId-LIFE response */
switch(ans) {

case WFno:
printf("WIlnput failed\n");
br eak;

case Wryes :

March 1994 Digital PRL



Wild LIFE Handbook 143

printf ("Wl nput succeeded\n");
br eak;

case WFnore:
printf ("Wl nput succeeded and there nay be nore answers\n");
br eak;

}

/[*** This query fails and so prints an error nessage ***/
WFPr ove("true=fal se?");

[*** Solve a sinple constraint ***/
WFPr ove(" A=B+C?");

WFProve(" B=1?");

WFPr ove(" A=57");
WFProve("wite(’C=",Q,nl?");
WFProve(".");

/*** Backtrack over 4 solutions ***/
WFProve("A={1;2;3;4},wite(A),nl?");

WFProve(";");
WFProve(";");
WEProve(";");
WEProve(";"); /* No nore at this point */

[*** Backtrack over only the first 2 solutions ***/
WFProve("A={6;7;8},wite(A),nl?");

WEProve(";");

WFProve("."); /* Return to top level */

[*** Build a psi-termand query it ***/
WFPr ove(
"A=nessage(\ 042t hr ee+f our\ 042, equal s=>3+4) ,wite(A),nl ?");

/* Read the variable "A */

a=WFGet Var ("A");

if(la) { /* Error checking, here for denonstration only */
fprintf(stderr,"Couldn’t read variable "A'\n");
exit(1);

}

/* Print the type of "A */
printf("The type of Ais %\n", WType(a));

/* Get the nunmber of features of "A */
printf("A has %l features\n", WFeat ureCount (a));

/* Get the feature 'equals’ */

sumeWFGet Feat ur e( a, "equal s");
if(!sum { /* Error checking, here for denpnstration only */

Research Report Draft March 1994



144 Hassan Ait-Kaci et al.

fprintf(stderr,"Couldn’t read feature 'equals’'\n");
exit(1);
}

[* CGet the value of 'sumi */

val ue=WrGet Doubl e( sum &ok) ;

if(lok) { /* Error checking, here for denonstration only */
fprintf(stderr,” sum is not a real nunber\n");
exit(1);

}

printf("sum=% g\ n", val ue);

/[* Cet the first feature */
/* You can use NULL in WGet Double and WFGet String if you are */
/* sure the psi-termcontains a value of the correct type. */
printf("the first feature is: "%’ \n",

WFGet St ri ng( WFGet Feat ure(a, "1"), NULL) ) ;

/[* Cet the features as a NULL termi nated string array */
f eat ur es=WrFeat ures(a) ;
i f(features) {
for(i=0;features[i];i++) {
printf("feature % => %\n",
features[i],
WFType( WFGet Feat ure(a, features[i])));
}
free(features); /* Recommended */
}
else { /* Error checking, here for denonstration only */
fprintf(stderr," A" has no features\n");
exit(1);
}

/* Run the queens program */
WFPr ove("i nmport (\ 042queens\ 042) ?");
WFPr ove( " queens?");

/* Loop over each solution */

do {
sl eep(l);
printf("retrying\n");
ans=Wl nput (";");
printf("ans=%\n", ans);

} while(ans);

March 1994 Digital PRL



Wild LIFE Handbook 145

References

1

10.

11.

12.

Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementa-
tion of lattice operations. ACM Transactions on Programming Languages and Systems,
11(1):115-146 (January 1989).

. Hassan Ait-Kaci and Jacques Garrigue. Label-selective A-calculus. PRL Research Re-

port 31, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Mamaison,
France (1993).

Hassan Ait-Kaci and Patrick Lincoln. LIFE—A natural language for natural language.
T.A. Informations, 30(1-2):37-67 (1989). Association pour le Traitement Automatique
des Langues, Paris, France.

Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185-215 (1986).

Hassan Ait-Kaci and Roger Nasr. Integrating logic and functional programming. Lisp and
Symbolic Computation, 2:51-89 (1989).

Hassan Ait-Kaci and Andreas Podelski. Functions as passive constraintsin LIFE. PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory, Rueil-
Ma maison, France (1991).

Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research L aboratory, Rueil-Ma maison,
France (1991).

Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. In Jan Maluszyfski
and Martin Wirsing, editors, Proceedings of the 3rd International Symposium on Pro-
gramming Language Implementation and Logic Programming (Passau, Germany), pages
255-274. Springer-Verlag, LNCS 528 (August 1991).

Hassan Ait-Kaci and Andreas Podelski. Order-sorted feature theory unification. PRL
Research Report 32, Digital Equipment Corporation, Paris Research Laboratory, Rueil-
Mamaison, France (May 1993).

William F. Clocksinand Christopher S. Mellish. Programmingin Prolog. Springer-Verlag,
Berlin, Germany, 2nd edition (1984).

TimLindholmandRichard A. O’ Keefe. Efficient implementation of adefensiblesemantics
for dynamic Prolog code. In Proceedings of the Fourth International Conference on Logic
Programming, pages 21-39. MIT Press (May 1987).

Richard Meyer. Compiling LIFE. Technical Report 8, Digital Equipment Corporation,
Paris Research Laboratory (September 1993).

Research Report Draft March 1994



146

Hassan Ait-Kaci et al.

13.
14.

15.
16.

17.

18.

19.

Lee Naish. Negation and Control in Prolog. Springer-Verlag, LNCS 238 (1986).

LeeNaish. Negation and quantifiersin NU-Prolog. In Proceedingsof the 3rd International
Symposium on Logic Programming, pages 624-634. Springer-Verlag, LNCS 225 (July
1986).

Richard O’'Keefe. The Craft of Prolog. MIT Press, Cambridge, MA (1990).

Peter Van Roy. A useful extension to Prolog’s Definite Clause Grammar notation. ACM
SIGPLAN Notices, pages 132-134 (November 1989).

Peter Van Roy. Can Logic Programming Execute as Fast as Imperative Programming?
PhD thesis, Department of Computer Science, University of California at Berkeley (De-
cember 1990).

Ehud Shapiro. The family of concurrent logic programming languages. ACM Computing
Surveys, 21(3):412-510 (1989).

Leon Sterling and Ehud Shapiro. The Art of Prolog. Seriesin Logic Programming. MIT
Press, Cambridge, MA (1986).

March 1994 Digital PRL



Wild LIFE Handbook

147

Index

L (built-in function), 41

1 1> (seeaccumulator), 121
L > (function definition), 17
< (built-in function), 42

< L (built-in predicate), 66
<< (built-in function), 41
<< L (built-in predicate), 66

<| (inheritance declaration), 8

> (built-in function), 42
>> (built-in function), 41
>= (built-in function), 42

\ (built-in function), 41

\+ (built-in predicate), 16
\/ (built-in function), 41
\=== (built-in function), 41
1 (bottom sort), 9
A-calculus, 24

| (constrained sort), 30

| (such-that), 27, 35

T (top sort), 9

* (built-in function), 41

+ (built-in function), 41

, (conjunction), 34

. (project), 38

. (projection), 64
wild_lifefile, 3

/ (built-in function), 41

/\ (built-infunction), 41

/I (built-in function), 41

. (variabletag), 11

: L (predicate definition), 14
:< (built-in function), 45
:> (built-in function), 45
:>< (built-in function), 45
:>= (built-in function), 45
:\< (built-in function), 45
:\> (built-in function), 45
:\>< (built-in function), 46
:\>= (built-in function), 45
:\=< (built-in function), 45
:\== (built-in function), 46
:— (accumulator clause), 110
.. (attribute definition), 29
Research Report Draft

:=< (built-in function), 45
:== (built-in function), 45
; (digunction), 34
; (type digunction), 34
= (see accumulator), 117
= (unification predicate), 38
=< (built-in function), 42
=> (see accumulator), 117
=\= (built-in function), 43
=../12 built-in (Prolog), 99
=:= (built-in function), 43
=== (built-in function), 40
$< (built-infunction), 47
$> (built-infunction), 47
$>= (built-in function), 47
$\== (built-in function), 47
$=< (built-in function), 47
$== (built-in function), 47
& (unification function), 38
{} (built-in sort), 9
I' (built-in predicate), 15, 34
Wy-term, 7

diasing, 7

arity, 97

as array, 84

as hash table, 11, 13

atribute, 11

canonical form, 49

coreference, 7

cycles, 12

directed graph, 12

feature, 7

flexible record, 7

label, 7,11

matching, 21

normal term, 62, 66

persistent term, 61, 62

record, 7

sharing, 12

tag (:), 7, 11

unification, 12

variable, 7, 11

March 1994



148

Hassan Ait-Kaci et al.

(tilde), 20
@ (built-in sort), 9
* (backquote built-in), 26

abort (built-in predicate), 56
acc_info declaration, 111
accumulator, 109
acc_info declaration, 111
clause (:-), 110
composition (=>), 117
context, 115
DCG, 100, 120
declaration, 110, 123
EDCG, 110
equality (=), 117
example program, 109
initialization, 112, 119
interpret_symbols, 114
inversion (inv), 117
meta-programming, 114
pass_info declaration, 123
passed argument, 123
pred_info declaration, 110
preprocessor, 109
primitive
init, 119
insert, 113
is, 112
with, 115
rule(LL1>), 121
scope, 115
use of term expansion, 125
Actor semantics, 82
addition (+), 41
diasing, 7
and (built-in function), 43
appending two lists (example program), 27
apply (built-in function), 88
Aquarius compiler, 110
argv (built-in function), 57
arithmetic
calculation
addition (+), 41
bitwiseand (/\), 41

March 1994

bitwisenot (\), 41
bitwiseor (\/), 41
floating point division (/), 41
integer division (//), 41
lower integer part (floor), 41
multiplication (*), 41
right shift (<<), 41
right shift (>>), 41
subtraction (L), 41
upper integer part (ceiling), 41
comparison
equa (=:=), 43
greater than (>), 42
greater than or equa (>=), 42
lessthan (<), 42
less than or equal (=<), 42
not equa (=\=), 43
invertibility, 19, 87
arity, 97
array, 84
asc (built-in function), 46
ASCII code, 46, 48, 49
assert (built-in predicate), 74
asserta (built-in predicate), 74
attribute, 11
attribute |abel
name space, 18

backquote ('), 26
backtrackable destructive assignment, 62
backtracking, 14, 34
bagof (built-in function), 36
bagof (example program), 64
bestof (built-in function), 36
bool (built-in sort), 9
boolean arithmetic, 43
boolean function, 18
boolean functions

<,42

>, 42

>=,42

\===,41

1<, 45

>, 45

Digital PRL



Wild LIFE Handbook

149

><, 45

>=,45

\<, 45

\>, 45

A\><, 46

A\>=, 45

\=<, 45

\==, 46

=<, 45

==,45

=<, 42

=\=, 43

=:=43

===, 40

$<, 47

$>, 47

$>=, 47

$\==, 47

$=<,47

$==, 47

and, 43

cal_once, 35

has feature, 39

is_function, 47

is_persistent, 47, 66

is_predicate, 47

is_sort, 47

nonvar, 47

not, 43

or, 43

var, 47

xor, 43
bottom sort ({}), 9
box (see graphica interface toolkit), 130
breakpoints, 37
built-in routines

1,41

1> (function definition), 17

<,42

<1, 66

<<,41

<< L1, 66

<| (inheritance declaration), 8

>, 42

Research Report Draft

>>,41

>=, 42

\,41

\+, 16

\/, 41

\===,41

| (such-that), 27, 35
*, 41

+,41

, (conjunction), 34

. (project), 38

. (projection), 64
/,41

N\, 41

/1,41

.1 (predicate definition), 14
i<, 45

>, 45

><,45

:>=,45

\<, 45

\>, 45

A\><, 46
\>=,45

\=<, 45

\==, 46

.. (attribute definition), 29
=<,45

; (digunction), 34

; (type digunction), 34
= 38

=<, 42

:\:, 43

March 1994



150

Hassan Ait-Kaci et al.

‘ (backquote), 26
abort, 56

and, 43

apply, 83
argv, 57

asc, 46

assert, 74
asserta, 74
bagof, 36
bestof, 36

call _once, 35
ceiling, 41
children, 44
chr, 46
clause, 75
close, 54
cond, 34

copy _pointer, 40
copy-_term, 40
Ccos, 42
cpu_time, 58

current_module, 69

delay_check, 31

display_modules, 71
display_persistent, 66

dynamic, 74
eval, 26
evain, 27
exists file, 54
exp, 42
expand_load, 59
fail, 34
features, 39
floor, 41

gc, 56

genint, 42

Oet, 48

getenv, 57

glb, 43

global, 65

halt, 56

has feature, 39
implies, 38
import, 6, 70

March 1994

initrandom, 42
is_function, 47
is_persistent, 47, 66
is_predicate, 47
is_sort, 47
least_sorts, 45
listing, 55

load, 6, 49
load_path, 49
local time, 58
log, 42

lub, 43

map, 24
module, 66, 69
mresiduate, 37
nl, 50
non_strict, 27
nonvar, 47

not, 43

op, 53

open, 70
open.in, 54
open_out, 54
or, 43
page_width, 50
parents, 44
parse, 52
persistent, 66
pretty_write, 49
pretty_writeq, 49
print_codes, 94
print_depth, 50
private, 70
private feature, 70
psi2str, 46
public, 70

put, 49

random, 42
read, 48
read_token, 48
real _time, 58
residuate, 37
retract, 75
root_sort, 39

Digital PRL



Wild LIFE Handbook

151

set_input, 54
set_output, 54

setq, 75

sin, 42

sart, 42

stetic, 74

statistics, 56

step, 56

str2psi, 46

strcon, 46

strip, 40

strlen, 46

subsort, 44

substr, 46

succeed, 34

system, 57

tan, 42
term_expansion, 59
trace, 56

var, 47

verbose, 55

write, 49
write_canonical, 49
writeg, 49
xCloseConnection, 126
XCreateWindow, 126
xDrawArc, 128
xDrawlmageString, 129
xDrawLine, 128
xDrawOval, 128
xDrawRectangle, 128
xDrawsString, 129
xFillArc, 128
xFillOval, 128
xFillPolygon, 128
xFillRectangle, 128
xFreeColor, 127
xGetEvent, 129
xGetWindowGeometry, 127
xHideWindow, 127
xLoadFont, 129
xOpenConnection, 126
xor, 43
xPostScriptWindow, 127

Research Report Draft

xRefreshWindow, 127
xRequestNamedColor, 127
xSetWindowColor, 127
xSetWindowGeometry, 127
xShowWindow, 127

built-in sort hierarchy, 10

built_in (built-in sort), 9

button (see graphical interface toolkit), 134

C language, 15

interface, 140

memory management, 141

C++ language, 29, 82
call_once (built-in function), 35
canonical form, 49
ceiling (built-in function), 41
children (built-in function), 44
chr (built-in function), 46
class, 8

example program, 82
clause, 14
clause (built-in predicate), 75
clause declaration, 14
close (built-in predicate), 54
CLP(R) language, 87
colors, 137
committed-choice, 19
compatibility with Prolog, 97
compiler (for LIFE), 1, 16, 32, 100, 110

compatibility with Wild LIFE 1.0, 1,

25,71,75

self-modifying code, 74
concurrent programming, 17
concurrent programming (example pro-

gram), 80

cond (built-in function), 34
conjunction, 34
cons (built-in sort), 9
consistent sort ordering, 9
constrained sort

definition, 30

example, 76

resemblance to such-that, 30

March 1994



152

Hassan Ait-Kaci et al.

constructor (seegraphical interfacetoolkit),
133
context
accumulator, 115
variable-binding, 4, 52
copy_pointer (built-in function), 40
copy_term (built-in function), 40
coreference, 7
coroutining, 17
cos (built-in function), 42
cosine, 42
cpu_time (built-in function), 58
cryptarithmetic, 78
current module, 66
current_module (built-in predicate), 69
currying, 17, 22
argument consumption, 24
difference with residuation, 23
customization file, 3
cut (1), 15, 34
green cut, 15
scope, 15
cycles (in term), 12
cyclic hierarchy, 9

daemon, 17, 33
data-driven programming, 17
DCG accumulator, 100, 120
debugging
abort to top level, 6, 56
accumulators, 124
breakpoints, 37
debugger (tool in version 1.0), 105
incremental query, 4
interrupting execution, 6
listing a program, 55
pitfalls of self-modifying code, 74
run-time statistics, 56
single-stepping, 6, 56
tracing execution, 6, 54, 56
use of constrained sorts, 33
use of daemons, 33
use of display_modules, 71
use of display persistent, 66

March 1994

use of residuate, 37
verbose mode, 55
declarative language, 1
declared sort, 14, 29, 47, 92, 94
name space, 18
Definite Clause Grammar (DCG), 58, 110
Definite Clause Grammar (example pro-
gram), 120
definition
compact sort definition (:=), 92
constrained sort (]), 30
function rule (L>), 17
predicate clause (: L), 14
sort attribute (::), 29
sort inheritance (<|), 8
delay _check (built-in predicate), 31
destructive assignment, 62
backtrackable, 62
example program, 83
nonbacktrackable, 62
normal term, 62
persistent term, 62
use in memory management, 95
determinate computation, 19
difference (1), 41
differencelist, 35, 110
directed graph, 12
directive, 6
disjunction, 34
digunctive sort, 10, 43
disunctiveterm, 34
interaction with cut, 16
redundancy, 34
display_modules (built-in predicate), 71
display _persistent (built-in predicate), 66
division
floating point (/), 41
integer (//), 41
dynamic (built-in predicate), 74

Edinburgh syntax, 102

email addresses
life-bugs, 105
life-request, 105

Digital PRL



Wild LIFE Handbook

153

life-users, 105
encapsulated programming (example pro-
gram), 81
error, 4, 54, 90
eva (built-in function), 26
evalin (built-in function), 27
event handling, 129
event mask, 126
example programs
accumulator preprocessor, 109
appending two lists, 27
bagof, 64
class, 82
concurrent programming, 80
communication, 80
process, 80
synchronization, 80
Definite Clause Grammar (DCG), 120
destructive assignment, 83
encapsulated programming, 81
Hanoi, towers of, 85
instance, 82
matching and unification, 27
memoi zation, 86
method inheritance, 86
multipleinheritance, 87
PERT scheduling, 76
prime numbers, 75
SEND+MORE=MONEY, 78
sieve of Eratosthenes, 84
subtyping of lists, 30
term size calculation, 83
using a persistent term, 83
exclusiveor, 43
execution order, 19
exists file (built-in predicate), 54
exp (built-in function), 42
expand_load (built-in predicate), 59
expander (see accumulator), 109
exponential, 42
expose_event, 129
Extended DCG (EDCG), 110
extending built-in sorts, 10
gyes ((909), 1

Research Report Draft

factorial, 18
fail (built-in predicate), 34
false (built-in sort), 9
FCP (Fat Concurrent Prolog), 80
feature, 7
name space, 18
selection, 38
features (built-in function), 39
finite domains, 79
first-order term, 7
flexible record, 7
floor (built-in function), 41
freeze, 17, 96
function, 17
actual arguments, 18
boolean function, 18
currying, 22
definition, 17
formal arguments, 18
in a predicate position, 18
matching, 21
missing arguments, 22
modify calling arguments, 27
name space, 18, 60, 66
operationa semantics, 19
passive constraint, 78
position, 90
programming style, 25
quoting, 26
use as sort, 29
result is a predicate, 18
rule, 17
variable-arity, 56
functional expression, 18
functional variable, 88

garbage collection, 56, 61, 74, 95
Gaussian eimination, 88

gc (built-in predicate), 56
generate-and-test, 17

genint (built-in function), 42

get (built-in predicate), 48
getenv (built-in function), 57

glb (built-in function), 43

March 1994



154

Hassan Ait-Kaci et al.

global (built-in predicate), 65
global constraint solving, 87
global variable, 60
guoting, 65
glossary, 103
grammar, 58, 110
graph subsumption, 838
graphical interface toolkit, 130
box, 130
button, 134
colors, 137
constructor, 133
examplefile (ex_tools.If), 130
look, 135
menu, 134
object hierarchy, 138
panel, 133
dider, 134
widget, 137
greatest lower bound (glb), 10, 43, 94
green cut, 15

halt (built-in predicate), 56
Hanoi, towers of (example program), 85
has_feature (built-in function), 39
hash table, 11, 13
Herbrand term, 7, 14, 101, 120
heresy, 17
hierarchy, 8
consistency, 9
cyclic, 9
of built-in sorts, 10
of graphical interface objects, 138
highlighting ((®#(e), 1

immediate update (with assert), 71, 72
implicit position, 11
implies (built-in predicate), 38
import (built-in predicate), 6, 70
incompatible sorts, 10
incremental query, 4
inheritance, 8, 92

multiple, 8, 87, 92, 130
init (see accumulator), 119
initialization file, 3

March 1994

initrandom (built-in predicate), 42
insert (see accumulator), 113
instance (example program), 82
int (built-in sort), 9
integer part (floor), 41
interpret_symbols (see accumulator), 114
interrupting execution, 6
inv (see accumulator), 117
invertibility of functions, 19, 87
is (see accumulator), 112
i/2 built-in (Prolog), 17
is_function (built-in function), 47
is_persistent (built-in function), 47, 66
is_predicate (built-in function), 47
is_sort (built-in function), 47
I SO standard Prolog

operators, 53, 99, 102

syntax, 3

keyboard_event, 129

label, 7,11
name space, 18
language
C 15
C++, 29, 82
CLP(R), 87
Lisp, 26
Login, 7
MU-Prolog, 17
NU-Prolog, 17
Prolog, 1, 7, 13, 14, 100
Prolog 1, 17
Smalltalk, 82
lattice, 45
least upper bound (lub), 43
least_sorts (built-in function), 45
LIFE language
compatibility between compiler and
interpreter, 1, 25, 71, 75
compatibility with Prolog, 97
compiler, 1, 16, 32, 71, 100, 110
Edinburgh syntax, 102
history, 1
life-bugs email address, 105

Digital PRL



Wild LIFE Handbook

155

life-request email address, 105
life-users mailing list, 105

Lisp language, 26

list (built-in sort), 9

listing (built-in predicate), 55
load (built-in predicate), 6, 49
load_exp (internal built-in), 60
load_path (built-in function), 49
loading, 6

local propagation, 19, 43, 79, 87
local _time (built-in function), 58
log (built-in function), 42
logarithm, 42

Login language, 7

look (see graphical interface toolkit), 135
lower integer part (floor), 41

[ub (built-in function), 43

mailing list, 105
manpage, 106
map (built-in function), 24
matching, 21
choosing between matching and unifi-
cation, 27
matching and unification (example pro-
gram), 27
memoization, 31
example program, 86
memory management, 56, 95, 141
menu (see graphical interface toolkit), 134
meta-programming
with accumulators, 114
method inheritance (example program), 86
methods, 81
module (built-in predicate), 66, 69
modul es (standard)
" built_ins", 67
" syntax" , 67
"user, 67
"x", 67
mouse_event, 129
mresiduate (built-in predicate), 37
MU-Prolog language, 17
multipleinheritance, 8, 92, 130

Research Report Draft

example program, 87
multiplication (*), 41

name space, 18, 60, 66
narrowing, 19
natural logarithm, 42
navigating the sort hierarchy, 43
negation-as-failure, 16
nil (built-in sort), 9
nl (built-in predicate), 50
non-interned symbol, 9, 46
non-strict built-in routines

‘ (backquote), 26

bagof, 36

bestof, 36

delay_check, 31

dynamic, 74

global, 65

import, 70

listing, 55

load, 49

non_strict, 27

op, 53

persistent, 66

public, 70

static, 74
non_strict (built-in predicate), 27
nonbacktrackable destructive assignment,

62

nonvar (built-in function), 47
normal term, 62, 66
not (built-in function), 43
NU-Prolog language, 17

object-orientation, 76
object-oriented, 29, 81, 103
op (built-in predicate), 53
open (built-in predicate), 70
open.in (built-in predicate), 54
open_out (built-in predicate), 54
operator
declaration, 53
predefined, 102
or (built-in function), 43
order of execution, 19

March 1994



156

Hassan Ait-Kaci et al.

order relation, 8

order-independent execution, 17, 78, 90
out-of-order execution, 76

overloading, 68

page width, 50
page_width (built-in predicate), 50
panel (see graphical interface toolkit), 133
parents (built-in function), 44
parse (built-in function), 52
parser, 105
curried expression, 24
partial evaluation, 97
partial order, 8
pass._info declaration, 123
passed argument, 123
passive constraint, 78
persistent (built-in predicate), 66
persistent term, 61, 62
example program, 83
persistent variable, 61
guoting, 65
PERT scheduling (example program), 76
position
function, 90
predicate, 90
pred_info declaration, 110
predefined sort hierarchy, 10
predicate, 14
definition, 14
name space, 18, 60, 66
operationa semantics, 14
position, 18, 90
unification, 12
use as sort, 29
use of cut (1), 15
preprocessor (see accumulator), 109
pretty_write (built-in predicate), 49
pretty_writeq, 49
prime numbers (example program), 75
principal sort, 8
print depth, 50
print_codes (built-in predicate), 94
print_depth (built-in predicate), 50

March 1994

private (built-in predicate), 70
private_feature (built-in predicate), 70
product (*), 41
profiler (tool in version 1.0), 105
program file, 6
project, 38
projection, 64
Prolog Il language, 17
Prolog language, 1, 7, 13, 14, 100
compatibility with LIFE, 97
Edinburgh syntax, 102
is/2 built-in, 17
I SO standard operators, 53, 99, 102
I SO standard syntax, 3
standard order comparisons, 99
univ built-in (=../2), 99
pseudo-random numbers, 42
psi-term (see ¢-term), 7
psi2str (built-in function), 46
public (built-in predicate), 70
put (built-in predicate), 49

qualified reference, 66
query, 3
execution, 14
extension, 4
level, 4, 89
self-reproducing, 52
quoting
functions, 26
global variables, 65
persistent variables, 65

random (built-in function), 42
random numbers, 42

rational tree, 99

read (built-in predicate), 48
read_token (built-in predicate), 48
rea (built-in sort), 9

real _time (built-in function), 58
record, 7

recursive sort, 31

redundancy, 34

residuate (built-in predicate), 37
residuation, 17, 96

Digital PRL



Wild LIFE Handbook

157

difference with currying, 23
example, 76
passive constraint, 78
use in debugging, 37
variable, 19
residuation variable, 19
resolution, 14
resolvent, 14
retract (built-in predicate), 75
root sort, 8
root_sort (built-in function), 39
roundoff error, 41
routine
variable-arity, 56
rule, 17
rule declaration, 17
rule-base management, 71

scope (see accumulator), 115
self-modifying code, 71
self-reproducing query, 52
SEND+MORE=MONEY (example pro-
gram), 78
set_input (built-in predicate), 54
set_output (built-in predicate), 54
setq (built-in predicate), 75
sh (Unix shell), 57
sharing (in term), 12
sieve of Eratosthenes (example program),
84
Simplex algorithm, 88
sin (built-in function), 42
sine, 42
single-stepping, 6, 56
SLD-resolution, 14
dlider (see graphica interface toolkit), 134
Smalltalk language, 82
sort, 7, 8, 29
bottom ({}), 9
built-in
{} (bottom), 9
@ (top), 9
boal, 9
builtiin, 9

Research Report Draft

cons, 9
fase, 9
int,9
list, 9
nil, 9
real, 9
string, 9
true, 9
calculation
children, 44
greatest lower bound (glb), 43
least upper bound (lub), 43
least_sorts, 45
parents, 44
subsort, 44
class, 8, 82
comparison
comparable (:><), 45
equa (:==), 45
greater than (:>), 45
greater than or equal (:>=), 45
lessthan (:<), 45
lessthan or equal (:=<), 45
not comparable (:\ ><), 46
not equal (:\==), 46
not greater than (:\>), 45
not greater than or equal (:\>=), 45
not lessthan (:\ <), 45
not lessthan or equa (:\=<), 45
consistency, 9
constrained, 30, 76
declared sort, 14, 29, 47, 92, 94
definition
atribute, 29
inheritance, 8
disunctive sort, 10, 43
encoding, 94
extending built-in sorts, 10
greatest lower bound (glb), 10, 94
hierarchy, 10
incompatibility, 10
inheritance, 8
name space, 18, 60, 66
navigating the hierarchy, 43

March 1994



158

Hassan Ait-Kaci et al.

property, 29
recursive, 31
syntax, 8, 29
top (@), 9
type, 8
undeclared, 29
sound negation, 16
sgrt (built-in function), 42
square root, 42
standard order comparisons, 99
static (built-in predicate), 74
statistics (built-in predicate), 56
step (built-in predicate), 56
str2psi (built-in function), 46
strcon (built-in function), 46
string
calculation
concatenation (strcon), 46
conversion from «-term (psi2str), 46
conversion from ASCII (chr), 46
conversion to «-term (str2psi), 46
conversion to ASCII (asc), 46
extraction (substr), 46
length (strlen), 46
parsing (parse), 52
comparison
equa ($==), 47
greater than ($>), 47
greater than or equal ($>=), 47
lessthan ($<), 47
less than or equal ($=<), 47
not equal ($\==), 47
string (built-in sort), 9
strip (built-in function), 40
strlen (built-in function), 46
subsort (built-in predicate), 44
substr (built-in function), 46
substring extraction, 46
subtraction (L), 41
subtyping of lists (example program), 30
succeed (built-in predicate), 34
such-that, 27, 35
resembl ance to constrained sort defini-
tion, 30

March 1994

sum (+), 41

suspension, 17

symbol, 66

synchronization, 17

syntax error, 6

system (built-in function), 57

tag (:), 7, 11

tan (built-in function), 42

tangent, 42

term (see -term), 7

term expansion (use in preprocessor), 125

term size calculation (example program),
83

term_expansion (built-in predicate), 59

test suite, 105

test-and-generate, 17, 78

tilde( ), 20

time measurement, 58

tokenizer, 105

top sort (@), 9

top-level interface, 4

trace (built-in predicate), 56

tracing execution, 6

trichotomy, 45

true (built-in sort), 9

type, 8

type disunction, 34

undeclared sort, 29
undocumented built-ins, 1
unification, 12

built-in function (&), 38

built-in predicate (=), 38

choosing between matching and unifi-

cation, 27

unification function, 38
unification predicate, 38
uninterpreted identifier, 29, 94
unique integer generation, 42
univ built-in (Prolog), 99
Unix built-ins

argv, 57

getenv, 57

system, 57

Digital PRL



Wild LIFE Handbook

159

upper integer part (ceiling), 41

var (built-in function), 47
variable, 7, 11

binding context, 4, 52

global, 60

persistent, 61
variable-arity routine, 56
verbose (built-in predicate), 55

wait declaration (MU-Prolog), 17, 96
warning, 4, 54
watchful eyes ((9(9), 1
when declaration (NU-Prolog), 17, 96
widget (seegraphical interfacetoolkit), 137
Wild LIFE 1.0 system
Cinterface, 140
compatibility with compiler, 1, 25, 71,
75
how to get the system, 105
undocumented built-ins, 1
with (see accumulator), 115
write (built-in predicate), 49
write_canonical (built-in predicate), 49
writeq (built-in predicate), 49

X event, 126
X interface, 126
xCloseConnection (built-in predicate), 126
xco (X command), 127
xCreateWindow (built-in predicate), 126
xDrawArc (built-in predicate), 128
xDrawlmageString (built-in predicate), 129
xDrawLine (built-in predicate), 128
xDrawOval (built-in predicate), 128
xDrawRectangle (built-in predicate), 128
xDrawString (built-in predicate), 129
xFillArc (built-in predicate), 128
xFillOval (built-in predicate), 128
xFillPolygon (built-in predicate), 128
xFillRectangle (built-in predicate), 128
xFreeColor (built-in predicate), 127
xGetEvent (built-in function), 129
xGetWindowGeometry (built-in predicate),
127

Research Report Draft

xHideWindow (built-in predicate), 127

xL oadFont (built-in predicate), 129

xOpenConnection (built-in predicate), 126

xor (built-in function), 43

xPostScriptWindow (built-in  predicate),
127

xRefreshWindow (built-in predicate), 127

xRequestNamedColor (built-in predicate),
127

xSetWindowColor (built-in predicate), 127

xSetWindowGeometry (built-in predicate),
127

xShowWindow (built-in predicate), 127

xtools (graphical interface toolkit), 130

March 1994









The Wild LIFE Handbook (prepublication edition)

Hassan Ait-Kaci, Bruno Dumant, Richard Meyer, Andreas Podelski, and Peter Van Roy

dliloli[tlall

PARIS RESEARCH LABORATORY

85, Avenue Victor Hugo

92563 RUEIL MALMAISON CEDEX

FRANCE



