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37 Graphs

The Roy-Floyd-Warshall algorithm [8, 14, 18] finds shortest paths in a weighted graph (with no cy-
cle with strictly negative weight). It is an abstract interpretation of a fixpoint path finding algorithm.

[2, 3, 6, 15] are introductions to graph theory.
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37.1 Graphs

A (directed) graph or digraph G = (V, E) is a pair of a set V of vertices (or nodes or points) and a set
E € p(V x V) of edges (or arcs). A (directed) edge (x, y) € V has origin x and end y collectively
called extremities (so the graphs we consider are always directed). Therefore E is a binary relation
of Section 2.2.2 on V. Conversely, a binary relation can be understood as a graph on its field [15].
A graph is finite when the set of V of vertices (hence E) is finite.
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Example 37.1

y
V = {x,52z}
N z G=| E = {{x, »),(x, 2),{y, x),
(> 2), (2, 2)}

37.2 Paths and cycles of a graph

A path 7t from y to z ina graph G = (V, E) is a finite sequence of vertices 7w = x; ... x,, € V", n > 1,
starting at origin y = x,, finishing at end z = x,,, and linked by edges (x;, x;,;) € E,i € [1,n[*". Let
V>t 2., V" be the sequences of vertices of length at least 2. Formally the set II(G) € (V") of
all paths of a graph G = (V, E) is

nG = |Jre (37.2)

n>1

ImG) £ {x;..x,eV"|Vie[ln].(x; x;,,) € E} n>1)

[I>

The length |7] of the path w = x, ... x,, € V" is the number of edges thatisn — 1 > 0. We do
not consider the case n = 1 of paths of length 0 with only one vertex since paths must have at least
one edge. A subpath is forming a strict part of another path (which, being strict, is not equal to that
path).

The vertices of a path w = x; ... x,, € IT*(G) of a graph G is the set V(1) = {x; ... x,,} of vertices
appearing in that path 7.

A cycleisapath x; ... x,, € II"(G) with x,, = x;,n > 1. Self-loops i.e. (x, x) € E yielda cycle x x
of length 1.

37.3 Fixpoint characterization of the paths of a graph
The concatenation of sets of finite paths is

POQ 2 {x..%,0 -Vl Xy ..., € PAX, Y, ... ¥,, € QL. (37.3)

We have the following fixpoint characterization of the paths of a graph [4, Sect. 4], which is well-
defined, by Tarski iterative fixpoint Theorem 13.18 .

411 order to consider infinite paths, we would have to introduce limits as in Section 7.2.
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Theorem 37.4 (Fixpoint characterization of the paths of a graph) The paths of a graph G =
(V, E) are . .

I(G) = Ifpc&, F(X) &2 EUXOE (37.4.a)
= Ifp &, F(X) & EUEO®X (37.4.b)
= Ip%F, F(X) & EuX®X (37.4.c)
= Ifps F, F(X) 2 XuXOeX (3744) o

Proof of Theorem 37.4 We observe that | ), ,(X; © E) = ;. x{mxy | mx € X; A(x, y) € E} =
{nxy | mx € U, XiN(x, ¥) € E} = (U;cp X;) ©E so that the transformer ?H preserves non-empty
joins so is upper continuous. Same for §H

Let (X;, i € N) be a C-increasing chain of elements of (V”!). @ is componentwise increasing
0 Uien (X © X)) € (Ujep Xi © Uy Xi)- Conversely if 7 € (U, X; © Uy Xi) then 7w = mx;
where 7;x € X;and x7r; € X;. Assumei < j. Because X; € X, mx € Xjsom = mxm; € X;@X; €
Uken Xi © X proving that | ;. (X; @ X;) 2 (U;cp Xi © U,y Xi). We conclude, by antisymmetry,
that ?H and @n are upper continuous.

It follows, by Kleene-Scott’s fixpoint Theorem 13.23, that the least fixpoints do exist.

We consider case (37.4.c). By upper continuity, we can apply Theorem 16.20. Let us calculate the
iterates (?Hk, k € N) of the fixpoint of transformer ?H from &.

%0 = &, by def. of the iterates from &.

@Hl = ﬁ{(?«no) = E = IT*(G) contains the paths of length 1 which are made of a single arc. If
the graph has no paths longer than mere arcs, all paths arekiovered after 1 iteration.

Assume, by recurrence hypothesis on k, that & ¥ = Ui:z IT"(G) contains exactly all paths of G
of length less than or equal to 27!, We have

F 2 GF(FF { def. iterates§
=EUF 0 Ff (def. F,§
= EU{X, XYy oo Y | X € TR AR Y .y, € FoF) {def. ©f

zkfl 2k71
=EU{x; .. Y | Xy ... %, € U M(G)AX,Yy ... Yy € U Im"(G)}
n=2 n=2
2k {ind. hyp.§
= EuJmG)
n=3

{ (<) the concatenation of two path of length at least 1 and at most 257! is at least of
length 2 and at most of length 2 x 251 = 2k,
(2) Conversely, any path of length at most 2% has either length 1 in E or can be
decomposed into two paths 7 = x, ... x,, and 7’ = x,¥, ... ¥, of length at most

k-
2k, By induction hypothesis, 77, 77’ € Uflzzl Im"(G) §



MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width October 23, 2019 9:38am

492 Ch. 37 Graphs

2k71
By recurrence on k, forallk € N7, gnk = U IT"(G) contains exactly all paths from x to y of length
less than or equal to 2571 n=2
Finally, we must prove that the limit Ifp© §H = U gnk is TI(G) that is contains exactly all paths
of G. keN
Any path in TI(G) has a length n > 0 such that n < 2"7! so belongs to i”(@) hence to the limit,
proving I1(G) ¢ Ifp© ﬁn
Conversely any path in Ifp© ?H = U §Hk belongs to some iterate gnk which contains exactly
keN
all paths of length less than or equal to 2¥ so belongs to 112" (G) hence to I1(G), proving Ifp© gﬂ c
I1(G). By antisymmetry II(G) = Ifp© gr;
The equivalent form EJ; follows from Exercises 13.7 and 13.8. The proofs for (37.4.a,b) are similar.
o

k
Exercise 37.5. Show that in cases (37.4.a) and (37.4.b), the k-iterate is U I(G). O

n=2

37.4 Abstraction of the paths of a graph

A path problem in a graph G = (V, E) consists in specifying/computing an abstraction «(I1(G)) of
its paths I1(G) defined by a Galois connection

(p(V7h), c, L) % (A, g, L).

A path problem can be solved by a fixpoint definition/computation.

Theorem 37.6 (Fixpoint characterization of a path problem) Let G = (V, E) be a graph
with paths TI(G) and (@(V™), <, U) <=5 (4, €, L).
a(I(G)) = Ifp" F, F(X) £ aE)uX© «E) (37.6.)
= Ifp=F, Fi(X) 2 aE)ualE)© X (37.6.b)
= Ifp= &, Fi(X) & aB)UXOX (37.6.C)
= IfpS, F, Fi(X) 2 XuXoeX (37.6.d)
where (X @ Y) = a(X) ©® a(Y). O

Proof of Theorem 37.6 All cases are similar. Let us check the commutation for (37.6.c).

o Fy ()

a(EUX © X) {def. (37.4.c) of F.(X)S§
a(E)Ua(X © X)
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{by Lemma 11.33, the abstraction of Galois connections preserves existing joins§
a(E) Ua(X) @ a(X) (by hyp.§
FH (X)) {def. (37.6.c) of F!§

We conclude by Theorem 37.4 and exact least fixpoint abstraction Theorem 16.17. The equivalent
form &} follows from Exercises 13.7 and 13.8. o

37.5 Calculational design of the paths between any two vertices

As a direct application of Theorem 37.6, let us consider the abstraction of all paths II(G) into the
paths between any two vertices. This is p = a”*(II(G)) with the projection abstraction

a”(X) =2 ) {x..x,eX|y=xNx,=2z}

such that e
(P(V71), S, U) == (V xV - p(V7h), &, U) (37.7)
o
By (37.2) and Lemma 11.33 on existing join preservation, we have
P2 = | p"(n2) (37.8)
neN*

p'(y,z) £ {x;...x, €eIIG) | y=x,Ax, =2z}
= {x,..x,eV"| y=x,Ax,=zAVie[l,n[.{(x;, x;,,) € E}.

p(x, x) is empty if and only if there is no cycle from x to x (which requires, in particular, that the
graph has no self-loops i.e. Vx € V . (x, x) ¢ E). We define the concatenation of finite paths

X] oo X O Yy e Vi X1 ooe Xy Vs oo Vi ifx, =y, (37.9)

undefined otherwise

> >

As a direct application of the path problem Theorem 37.6, we have the following fixpoint charac-
terization of the paths of a graph between any two vertices [4, Sect. 5], which, by Tarski iterative
fixpoint Theorem 13.18 and its variants yields an iterative algorithm (converging in finitely many
iterations for graphs without infinite paths).
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Theorem 37.10 (Fixpoint characterization of the paths of a graph between any two vertices)
Let G = (V, E) be a graph. The paths between any two vertices of G are p = II(G) such that

p = Ip<Fr, Fo(p) 2 EUp BE (37.10.a)
= IfptFr, Fo(p) 2 EUEBp (37.10.b)
= Ifp<F, F-(p) = EUp o P (37.10.c)
= Ifpf Fy Fi(p) = pUpBp (37.10.d)
where E 2 x, y = (EN {(x, y)}) and p; @ p, 2 %,y = | ] py(x,2) @ py(2, ). o
z€eV

Proof of Theorem 37.10 We apply Theorem 37.6 with a™*(E) = x, y — (En {{x, y)}) = E and
a*(X@Y)
=(xy)—1{z,...2,e XOY | x=2,Az, =y} {def. (37.7) of ™ §
= y)-iz oz, e {x oy, v X o e XA Y, Y, €Y x =2 A2, = v}
(def. (37.3) of @
= (x, )~ L_J{xx2 e X 12y s YoV | X%y iz € XNZY, Y,y €Y

zeV
{def. € and U with x = x;, y,,, = y,and z = x;.§

= (x,y)— U{xx2 X 120ZYy YV | XXy X2 € XANZY, Y,y €Y
zeV
{def. (37.9) of 0

= () e (Jlpep I pea”X)(n2)Ap' € a™(Y)(z )}
zeV

{def. o (X) with p = xx, ... x;_;zand p' =zy, ... y,,_1 V5
= a”(X)©a™(Y)

bYdeﬁningX6Y 2 (x,y) - U{PGP' |peX(y,2)Ap' €Y(z, y)} = (x, ) — U X(y,2) ©
Y(z, y) by (37.3) and (37.9). v zeV .

We now equip graphs with weights e.g. to measure the distance between vertices.

37.6 Groups
A group (G, 0, +)¥ isaset Gwith 0 € Gand + € G x G — G such that

45 We call group both the algebraic structure (G, 0, +) and its support G.
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* Va,b,ceG.(a+b)+c=a+(b+c) (associativity)
* YVaeG.0+a=a+0=a (identity denoted 0)
* YaeG.IbeG.a+b=0 (inverse, b is denoted —a or a™.)

For example the scalars (F, 0, +) are a group where 0 is the null scalar and + is scalar addition.
Integers modulo # are a group under addition.

37.7 Weighted graphs

Let (G, 0, +) be a group. A (directed) graph G = (V, E, w) weighted on the group G is a finite
graph (V, E) equipped with a weight € E — G mapping arcs to their weight.

Example 37.11 Continuing Example 37.1,

) 2 o{x, ) =1 @((x, 2))=2
z o({x, 2)) =2 oy, x))=-1
x o((y, 2))=2 w((z, z))=1
2

37.8 Totally ordered groups
A totally (or linearly) ordered group (G, <, 0, +) isa group (G, 0, +) with a total order < on G such
that

* Va,b,ceG.(a<b)=> (a+c<b+o) (translation-invariance.)
An element x € G of a totally ordered group (G, <, 0, +) is said to be strictly negative if and only
ifx<O0Ax#0.

Following Section 10.3, if S € G then we define min S to be the greatest lower bound of S in G or
—00:

minS = m & meGANVxeS. m<x)AN(VyeS.y<x= y<m)
= -—00 & VxeS.dyeS.y<x (where —oo0 ¢ G)
= o0 © S=0 (where 0o ¢ G)

So if G has no infimum min G = max @ = —oo ¢ G. Similarly, max S is the least upper bound of S
in G. if any, —oo otherwise, with max G = min & = co ¢ G when G has no supremum.

Exercise 37.12 (min of a sum). Let (G, <, 0, +) be a totally ordered group, S, S, € p(G). Extend
+ with x + 00 = 00+ x = 00+ 00 = 00. Prove that min{x+ y | x € §, Ay € S,} = min§; + min §,.
]

37.9 Minimal weight of a set of paths
The weight of a path is
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n—-1

> (x> x;,1)) (37.13)

i=1

1>

o(x; ... x,)

n—-1

which is 0 when n < 1 and @({x;, x,)) + Z o({x;, x;,1)) when n > 1. The (minimal) weight of a
i=2

set of paths is 1

o(P) 2 min{w(n) | 7€ P}. (37.14)

We have w(U P;) = min w(P;) so a Galois connection

ich ieh
(| V", ©) == (GU{-00,00}, 2)
neN®
and the complete lattice (G U {—00, 00}, >, 00, —00, min, max).

Extending pointwise to V x V' — @({, )+ V") with @(p)(x, y) £ e(p(x, y)),d < d" 2 Vx, y.

d{x, y) <d'(x, y), and 2 is the inverse of <, we have
(VxV o)V & = (VxV - GU{-co,c0}, ). (37.15)

neN*

Example 37.16 (Graph with cycle of strictly negative weight) The following graph

has a cycle x, y, x of weight -1, x, y, x, ¥, x of weight -2, x, y, x, y, x, y, x of weight -3, etc. so that
the minimum distance between x and y is —co. O

37.10 Shortest distance along the graph paths

The distance d(x, y) between an origin x € V and an extremity y € V of a weighted finite graph
G = (V, E, w) ona totally ordered group (G, <, 0, +) is the length @(p(x, y)) of the shortest path
between these vertices

d 2 a(p)

where p has a fixpoint characterization given by Theorem 37.10.

37.11 Calculational design of the shortest distances between any two vertices

The shortest distance between vertices of a weighted graph is a path problem solved by Theo-
rem 37.6, the composition of the abstractions and (37.15) and (37.7), and the path abstraction The-
orem 37.6. Theorem 37.17 is based on (37.6.d), (37.6.a—c) provide three other solutions.
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Theorem 37.17 (Fixpoint characterization of the shortest distances of a graph) LetG = (V,
E, w) be a graph weighted on the totally ordered group (G, <, 0, +). Then the distances between
any two vertices are

d = a(p) = gfpt F  where (37.17)
E® 2 (x,y)— ({x, y) € E? a(x,y) s 00)
F2X) 2 (x,y) — min{X(x, »)min{X(x, 2) + X(z, y)} o

Proof of Theorem 37.17 We apply Theorem 37.6 with abstraction @ - & so that we have to ab-
stract the transformers in Theorem 37.10 using an exact fixpoint abstraction of Theorem 16.17. The
initialization and commutation condition yield the transformers by calculational design.

- e-a”(E)(x,y)

= w(ENn{{x, y)}) {as proved for Theorem 37.10 and def. @§
= ((x, y) € E? w(x, y) s min ) {def. N, conditional, and «§
= ({x, ) € E? w(x,y)300) {def. min§
- @ a”(XOY)xy)

= @@ (X) B e (V))(x, y) {as proved for Theorem 37.10
= o(a™(X) 5 a”(Y))(x, y)) { pointwise def. (37.15) of @
= w(U a”(X)(x,2) @ a”*(Y)(z, y))) {def. & in Theorem 37.10§

zeV
= m€1‘1/1 o(a™(X)(x,2) @ a(Y)(z, ))) { Galois connection (37.14) §

- gleixlzlw({xl e Xy Yy Y | X, € (X)X 2) A XYy Yy € @ (Y)(2, )1
(def. (37.3) of ®§
= 1;nei‘1/1{w(x1 e XYy V) L XX, € aT(X)(2) A X, Y el Yy € 07 (Y)(2, )1
{def. (37.14) of
= rzneig}{w(x1 X)) F@(X, Y V) | XX, € (X)X 2) AKX Y, Yy € (Y2, 9)))
(def. (37.13) of w§
= rznei\rll{w(x1 X)) @YYy V) | X, € (X)X 2) A Y1y s Y € T (Y)(2, 91
{def. a™* so that x; = x, x, = y; = z,and y,, = ¥
= I;}gi\glmin{w(xl X)) |oxpx, € a”(X)(x2)) + minfe(y Yy V) | Y2 Y €

a”(Y)(z, v)} {min of a sum in Exercise 37.12§
= 121‘1/1 minfe(r,) | 1, € a”(X)(x, 2)} + min{w(,) | 7, € (V) (2, ¥)}

Uletting 71y = x; ... x,, and 71, = Y1, - Yy,
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= mi&l (™ (X)(x,2)) + 0(a”™(Y)(2, y)) (def. (37.14) of w§
ze€

= Ingl\glw ca”(X)(x,2) +wea”(Y)(z, y) { pointwise def. (37.15) of @
z

By Theorem 37.6 and (37.10.d), we get the transformer 6.}'\(‘;5. i

Of course the greatest fixpoint in Theorem 37.17 is not computable for infinite graphs.

Exercise 37.18. Calculate shortest distances between vertices of the infinite weighted graph (N,
{(n, n+1) [ne N}, (n,m - 1). =

For finite graphs, there is a problem with cycles with strictly negative weights. As shown by Ex-
ample 37.16, the minimal distance between the extremities x and y of the cycle xyx is —co. It is
obtained as the limit of an infinite iteration for the greatest fixpoint in Theorem 37.17. Following
Roy-Floyd-Warshall, we will assume that the graph has no cycle with negative weight in which case
the iterative computation of the greatest fixpoint in Theorem 37.17 does converge to the shortest
distance between any two vertices.

For a finite graph of n vertices, the computation of gfp;, F2 in (37.17) has to consider all pairs
of vertices in #n?, for each such pair (x, y) the n vertices z € V, and n iterations may be necessary
to converge along a path going through all vertices, so would be in O(n*).

However, the iteration in Roy-Floyd-Warshall algorithm is much more efficient in O(%), since it
does not consider all paths in the graph but only simple paths that over-approximate paths with no
cycles (called elementary paths). Let us design the Roy-Floyd-Warshall algorithm by calculus.

37.12 Elementary paths and cycles

A cycle is elementary if and only if it contains no internal subcycle (i.e. subpath which is a cycle). A
path is elementary if and only if it contains no subpath which is an internal cycle (so an elementary
cycle is an elementary path). The only vertices that can have two occurrences in an elementary path
are its extremities in which case it is an elementary cycle.

Example 37.19 In Example 37.1, xyz and xz are elementary paths (zz is a path of length 1). The
path xyx is an elementary cycle (zz is a cycle of length 1). The paths xyzz and xyxyxz and the
cycles yxyxy and zzz are not elementary. We do not consider infinite paths such as xyxyx .... O

Lemma 37.20 (elementary path) A path x, ... x,, € IT"(G) is elementary if and only if

elem?(x;...x,) = (Vijel[lLn].(i+j) = (x+ xj)) \Y (37.20)

(x; = x, Nelem?(x; ... x,_,)) (case of a cycle)
is true. o
Proof of Lemma 37.20 —  The necessary condition (x; ... x,, € II"(G) is elementary implies that

elem?(x, ... x,,)) is proved contrapositively.
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—(elem?(x, ... x,))
=(Vi,jellLn].(i#j)=(x;# xj)) V(% = x, Aelem?(x, ... x,)))) { def. elem?§
=3i,jell,n].i+jAx =xj)/\((x1 =x,)=>i,jellnl.i# jAx; # xj))

{De Morgan laws §
By 3i,j € [1,n] . i # jAx; = x; the path x, ... x,, must have a cycle, but this is not forbidden if
X, = x,,. In that case, the second condition (x; = x,) = (3i,j € [Ln[ .i # jAx; # xj) implies
that there is a subcycle within x; ... x,_;, so the cycle x; ... x,,_; x; is not elementary.

— Conversely, the sufficient condition (elem?(x; ... x,) = x; ... x,, € II"(G) is elementary) is
proved by reductio ad absurdum. Assume elem?(x; ... x,) and x; ... x,, € IT"(G) is not elementary
so has an internal subcycle.

* Ifx; = x,, the internal subcycle is x, ... x,,_; = mamyany so 3, j € [Ln[ . i # jAx; # x;in
contradiction with elem?(x; ... x,,).

* Otherwise x; # x,, and the internal subcycle has the form x; ... x,, = m,am,am; where, possibly
M@ = x| Or amy = X, but not both, so i, j € [1,n] . i # jAx; # x; in contradiction with
elem?(xy ... x,,). i

37.13 Calculational design of the elementary paths between any two vertices

Restricting paths to elementary ones is the abstraction

a’(P) = {meP|elem?(m)}.

Notice that, by (37.20), cycles (such as x, x for a self-loop (x, x) € E) are not excluded, provided it
is through the path extremities. By Exercise 11.2, this exclusion abstraction is a Galois connection.

V1), <) l<—_> V1), <)

which extends pointwise to

]

(V XV = @V, €) == (VX V - p(V>1), €)

The following Lemma 37.21 provides a necessary and sufficient condition for the concatenation of
two elementary paths to be elementary.

Lemma 37.21 (concatenation of elementary paths) If x7r,z and z7m, y are elementary paths then
their concatenation 7r; © m, = x7, 27,y is elementary if and only if
elem-conc?(xm,z,zmyy) £ (M(xmz) NV(m,y) = D)V (37.21)
(x=y#zAV(mz)NV(1,) = D)

is true. m]
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Example 37.22 Assume x, ¥, z, a, and b are all different vertices. xaz ® zbx = xazbx of the form
xmz © zmyy with x = y # z AV(az) N V(b) = T is elementary. xyz © zay = xyzay with
x # yAV(xyz)NV(ay) = {y} # & is not elementary. xx © xx = xxx and xax © xbx = xaxbx of
the form x7,z ©® zm, y with x = z = y are not elementary. xz © zz = xzz of the form xm,z © zm, y
with y = zisnot. o

Proof of Lemma 37.21 Assuming x77,z and 27, y to be elementary, we must prove that elem-conc?(r;,
7,) is true & 7, © 7, is elementary.
— We prove the necessary condition (7, ® m, is elementary = elem-conc?(m,,m,)) by contra-
position (—elem-conc?(mr;, m,) = 7, © 7, has an internal cycle). We have
A((V(xmz) NV (myy) =B)Vix=yAx+zAy +zAV(m2z)NV(1,) = &)
= (V(xmz)NV(myy) #+ )N (x+#+ yVx=2zVy=2zVV(rz)NV(r,) + D)) {de Morgan laws §
o Ifx = ythen x € (V(xm,2) N V(m,y)) # D so
— Eitherx =z or y =zand m, © 7w, = xm,2m,y = x7m, x7m,x has two internal cycles x7,x and
X71,X 50, by (37.20), is not elementary;
- OrV(mz)NV(m,) # & with
- either V() N V(m,) # @ son, = mjan'l and m, = mhan') and therefore 1, © m, =
xm,zm,y = xmjan'{zrwhan)x has an internal cycle an'/zm}a,
- orz € V(m,) so m, = mhzn'y and therefore 7, © m, = xmzm,y = xm,zmyzmx has an
internal cycle zr)z;
* Otherwise x # y and we have V(xm,2) N V(r,y) # &. By cases.
— If x appears in 7,y that is in 7, since x # y we have m, = mhx7’) and then 7, © 7, =
X727,y = X7, 27y X7 y has an internal cycle x7, 27} x;
— Else, if V(1) N V(m,y) # O then
- Either V() N V(r,) # @ so m; = mjan'| and m, = mhan) and therefore m, © 7, =
xm 2,y = xmlan'|znban!) x has an internal cycle an'{zm)a,
- Ory € V(m)som, = n}yn'| and then 1, © 7, = x7,2m,y = x7} yn'|zr, y has an internal
cycle yr'lzm, y;
— Otherwise, z € V(1,y) # & and then
- Either z € V(r,) so m, = m)zn) and m, ©@ 7, = xm,2M,y = X7, Zmyz7 y has an internal
cycle zm)z,

- Orz = yandm; ©m, = xm,2m,y = X127,z has an internal cycle zm,z.

— We prove that the condition is sufficient (elem-conc?(rr;,7,) = 7, © 7, is elementary) by
reductio ad absurdum. Assume x7,z, and z7m,y are elementary, elem-conc?(xrm,z, zm, y) holds,
but that x,z © zm, y = xm,zm, y is not elementary. By hypothesis, the internal cycle can neither
be in x7,z nor in zm, y so V(xm,z) N V(m,y) + &. Since elem-conc?(m,, 7r,) holds, it follows that
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x =y # zAV(mz) NV(n,) = @ in contradiction with the existence of an internal cycle an" 7}a
requiring 77,z = n'an” and 7, = whan’ soa € V(n'an") nV(nlan’) = V(m,2) NV(r,) + D. 0

We have the following fixpoint characterization of the elementary paths of a graph (converging in
finitely many iterations for graphs without infinite paths).

Theorem 37.23 (Fixpoint characterization of the elementary paths of a graph) LetG = (V,
E) be a graph. The elementary paths between any two vertices of G are p° £ a” - o’ (II(G))
such that

P’ = IfpcF>, Fop) &2 EUp®E (37.23.a)
= 1T, Fop) 2 EUE®p (37.23.b)
= It T, Fop) £ EUp@®p (37.23.0)
= Ifp; Fo, Fip) = pUP@p (37.23.d)

where p; ©°p, = x, y U{rrl om, | m, € py(x,2) Am, € p,(z, y) Aelem-conc?(m,, ,)}

zeV
O

Proof of Theorem 37.23 We apply Theorem 37.6 with abstraction & - a”” so that we have to ab-
stract the transformers in Theorem 37.10 using an exact fixpoint abstraction of Theorem 16.17. The
commutation condition yields the transformers by calculational design.

&’ (p, 6 P2)

=& (x,y - U p1(x,2) © p,y(2, ¥)) { def. & in Theorem 37.10§
=%y “Q(Ejvpl(x, z) © py(z,y)) { pointwise def. & §
=Xy Uzoj;/(pl(x, z) © p,(z, ¥)) {join preservation of the abstraction in a Galois connection §
=Xy Zﬁj ’({my om, | my € pi(x,2) AT, € pyl(z, ¥)}) {def. (37.3) of © and (37.9) of ©§
=Xy ZE);“S({”] om, | m €a’(py(x,2)) Am, € a’(p,y(2, ¥))})

z€

{since if 77, or 7, are not elementary so is their concatenation 77, © 77, §

=Xy U{ﬂ1 om, | m; € &®(py(x,2)) Ay € &(p,(z, ¥)) A elem-conc?(my, 7,)}
zeV
{since, by Lemma 37.21, 77, and 7, being elementary, their concatenation 77; © 7, is ele-
mentary if and only if elem-conc?(mr,, 71,) is true§
=xy— U{ﬂ1 o, | my € &(py)(x,2) Am, € 6°(py)(z, ¥) A elem-conc?(ry, 7,)}
v { pointwise def. & §

= &°(p;) © &°(py) {def. @ in Theorem 37.23§ O
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37.14 Calculational design of the elementary paths between vertices of finite graphs

In finite graphs G = (V, E) with |[V| = n > 0 vertices, elementary paths in are of length at most n+1
(for a cycle that would go through all vertices of the graph). This ensures that the fixpoint iterates
in Theorem 37.23 starting from & do converge in at most n + 2 iterates.

Moreover, if V = {z, ...z,} is finite, then the elementary paths of the k + 2°¢ iterate can be

restricted to {z, ..., z;}. This yields an iterative algorithm by application of the exact iterates multi-
abstraction Theorem 16.27 with*®
adp) = p (37.24)
aqp) 2 xy—{meplxy) | Vn) ciz,....z}Ulx yl), kell,n]
a(p) = p, k>mn

By the exclusion abstraction of Exercise 11.2 and pointwise extension of Exercise 11.17, these are
Galois connections
5 n+l
VXV = (V™)) &) = (VxV - | VK <. (37.25)
Xk k=2
Applying Theorem 16.27, we get the following iterative characterization of the elementary paths of a
finite graph. Notice that @, in (37.26.a) and (37.26.b) does not require to test that the concatenation
of two elementary paths is elementary while @2 in (37.26.c) and (37.26.d) definitely does (since the
concatenated elementary paths may have vertices in common). Notice also that the iteration (?f,k ,
k € [0,n + 2]) in (37.26.a) is not the same as the iterates (?ﬁk(é), k € N) of §§ from &, since
using @Z or @2 instead of ©°? is the key to efficiency. This is also the case for (37.26.b—d).

Theorem 37.26 (Iterative characterization of the elementary paths of a finite graph) Let
G = (V, E) be a finite graph with V = {z,, ..., z,}, n > 0. Then

p° = Ifps F2 = For+? (37.26.2)
where F3° 2 g, Fl 2B FF? 2 EUFHR O, E kelon]

Fokl o Fk kxn+2

Ifp¢ F2 = For+? (37.26.b)
where F30 2 @, F 2 E FF? 2 EUES,  FF, kelon]

Fol Gk k>n+2

46 This is for case (37.26.d). For cases (a-c), we also have o3 (p) = p while the second definition is for k € [2,7 + 2].
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= Ifp* &2 = For? (37.26.c)
where F0 2 g, Fl 2 p Gk 2 puFklel FkL kelon
k+1 k
9*',9, * =9*';°, , kzn+2
= Ifps F2 = Fom! (37.26.d)

GEa0 2 7 Grok+l a2 Ggak 'y Ggok A° Ggok
where F2° = E, F' = FUFT O,  Fr kelon]
Fokl =Gk kzn+2

PLO,p, 2 Xy {mon, | n ep(xz) A, € pyz, ¥) Az ¢ {x,y}}, and p, @ p,
x,y - {m om, | m €p(x,z) Am, € py(z, y) A elem-conc?(;, m,)}. O

Proof of Theorem 37.26 — The proofs in cases (37.26.c) and (37.26.d) are similar. Let us con-
sider (37.26.d). Assume V' = {z, ... z,,} and let 99"“ 93(99") be the iterates ofc'e from 990
Ein (37.23.d). To apply Theorem 16.27, we consider the concrete cpo (C, £) and the abstract cpo (4,
S tobe (C, &, E, U) withC £ x € V><y eV - {xmy | xmy € EUUZZ; Vk/\xrty is elementary},
and the functions & (X) £ XUX@ X k € [1,n],and 9 «(X) £ X,k = 0ork > nwhich iter-
ates from the 1nﬁmum E are precisely (gsk, i € Z U{w}) where 99“’ = U /9\;’ = 9”’“ 991{
iz
k>n.
— For the infimum 9710 = E which paths xy € E(x, y) are elementary and have all intermediate
states of 1 in & = {z,, ..., 2y} since 77 is empty.

— For the commutation, the case k > n is trivial. Otherwise let X € A so xmy € X(x,y) is

elementary and has all states of 7w in {z,, ..., z;}

oGt (F00)
= 0, (XUX © X) {def. (37.23.d) of F
= g, (X)Ua}, (X ©° X) {7, preserves joins in (37.25) §

= (X)) Ul (X © X)
(def. (37.24) of aj,, and hypothesis that all paths in X have all intermediate states in
{z1, ..., z1}§ .
=ap(X)Ux,y—~ {me X X(x,y) | V(n) C{z),..., 211} U {x, y}} {def. o, in (37.24)§

= o(X)Ux,y - {re U{n1 on, | m € X(x,z) Am, € X(z, y) Aelem-conc?(m,, m,)} | V() €

zeV
{z1, oz U {x, v {def. © in Theorem 37.23§
= ap(X)Ux, y LJ{H1 om, | 1, € X(x,2) A, € X(z, y) Aelem-conc?(rry, m,) AV(, ©71,) €
zeV

{z1, szt U i yH {def. €§



MITPress NewMath.cls IATEX Book Style Size: 7x9 32pc text width October 23, 2019 9:38am

504 Ch. 37 Graphs

=apX)Ux,y— U{xﬂlznzy | xm,z € X(x,2) ANzm,y € X(z, y) Aelem-conc?(xm,z, zm, y) A
zeV
V() UV(m,) Ulz} S {zp, .. 25 F U X, v} {def. ®, V, and ind. hyp.§
= qX) Ux,y = {xmzeamy | xmze, € ag(X)(%20) A 2y € 0@ (X) (2 y) A
elem-conc?(x7, 25, 1> Zg 17 9)}

{ () follows from taking z = z;,1; (37.27)

(S) For z € {zy, ..., z;}, the paths in &} (X) are elementary through {z,, ..., z;},

so if there exist paths x7,z € X(x,z) and zm, y € X(z, y) then either xm,z7m,x is

also elementary through {z,, ..., z;} and already therefore belongs to a},(X) or it

is not elementary and then does not pass the test elem-conc? (X7, 2y, 1> Zjs 1 72 V);
Otherwise, if z € {z;,,,...,%,}, then the path xm, 2,7,y is eliminated by

V(m,) UV(m,) Uizl C{zy, ..., 21 U {x v}

Finally, the only possibility is z = z;,, in which case all paths have the form
X012, T, Y, are elementary, and with V(7) € {z,, ..., 2, ,}, as required by the

def. of 4. It also holds for o (X) which is equal to aj.,; (X). §

= (X)) Ux,y = {xm12141 © 2y | X7012501 € QXD (X, 23 A 212 Y € 0@ (XD (Zprs ¥) A
elem-conc?(x7, 21> Zkr T2 0)} {def. @f

= a(X)Ux,y— {m om, | m € aQ(X)(xX, 2pyy) ATy € A (X) (2541 ¥) A elem-conc?(my, ,)}

{by ind. hyp. all paths in X(x, y) have the form xmy§

= (X)) Uag(X) @] a}(X) (def. @7, _in (37.26.d)§
= F@(X) 1(37.26.4)S

We conclude by Corollary 16.28.

— In cases (37.26.a) and (37.26.b), ©zk+1 can be replaced by ©zk+1 since in this cases the paths
are elementary by construction. To see this, observe that for (37.26.a), the iterates (?;k(g), k €
N U {w}) are those of the functions F2(X) = &, F2,(X) 2 E,and F2.(X) 2 EU X ©zk—1 E,

k € [2,n+ 2], and &F(X) £ X, k > n, so that we can consider the iterates from 1 to apply
Theorem 16.27.

— By (37.23.a), the initialization is ?ﬁ(@) 2 EU @ ©° E = E such that all paths x7y in E(x, y)
are elementary with 7 empty so V() € & = {zy, ..., z;}.

— For the commutation, let X € 4 such that all x7y € X(x, y) are elementary and have all states

of min {z,,...,2}. Then
a} H(F2(X)) { def. iterates§
= (EUX®E) {def. (37.23.a) of F2§

= a},(E)Ua} 1, (X © E) {od ., preserves joins in (37.25)§
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=EUx,y> {mne X@ E|V(n) C{z},...,Z1n} Ufx, y}} {def. of,, in (37.24)§
=EUx,y {me U{nl on, | m € X(x,2) A, € E(z, y) A elem-conc?(mr;,7,)} | V(m) €
zeV
{21y oo Ziaa U {x, 1} {def. @ in Theorem 37.23§
=EUx,y - U{rrl o, | m; € X(x,2) Am, € E(z, y) A elem-conc?(;, 7,) AV(m; ©71,) €
zeV
{z1, ooz U {x, v} {def. €§
= EUx,y — U{xnlzy | xm,z € X(x,2)Azy € E(z, y) Aelem-conc?(xm,z, zy) AV(m;) U{z} €
z€eV
{z1s oo Zipa U {x, 1} {def. ®, V, E in Theorem 37.10, and ind. hyp. §

=EUxy = {312k, © 5epmy | M2k, € 00X 2k0) A Zpnyy € E(Zigp ) A
elem-conc?(x7, 212> Zk125 )} (by an argument similar to (37.27) §
=EUxy & {2z, 0 5y | omzy € (X620 A (2 ¥) € E A
elem-conc?(x7, 2,2, Zki2 ¥) } {def. (37.24) of &, and E in Theorem 37.107§

= EUX, y = (%7125 © 210y | 711213 € 03,1 (X)(X, Zes2) A (2psr ) € B}
(since z;.,, ¢ V(7;) by induction hypothesis path so that the path x71,z;,, y is elementary §

=EUa},(X) O, E { def. ©2k+2 in Theorem 37.26§
= Fra(0f, (X)) 1(37.26.2)§ O

37.15 Calculational design of an over-approximation of the elementary paths between
vertices of finite graphs

Since shortest paths are necessarily elementary, one could expect that Roy-Floyd-Warshall algo-
rithm simply abstracts the elementary paths by their length. This is not the case, because the it-
erations in (37.26.c) and (37.26.d) for elementary paths are too expensive. They require to check
elem-conc? in © to make sure that the concatenation of elementary paths does yield an elemen-
tary path. But we can over-approximate by replacing ©° by © since the length of the shortest paths
in the graph is the same as the length of the shortest paths in any subset of the graph paths provided
this subset contains all elementary paths.
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Corollary 37.28 (Iterative characterization of an over-approximation of the elementary
paths of a finite graph) Let G = (V, E) be a finite graph with V' = {z,...,z,},n > 0.
Then

p’ = Ifpe F; & §7nt+2 (37.28.¢)
where §2 z g, gi 2 E, §,’§+2 2 EU §,I§+l @Zk+1 §7l§+1

= Ifps /97; ¢ g;ﬂ (37.28.d)

where Ej\g 2 E, EJ\!;“ S /9\71; U /9\71; ©Zk /y\fi U

Proof of Corollary 37.28 Obviously @2 € ©, so the iterates (?,’;, k € [0,n + 2]) of (37.28.c)

over-approximate those (?f,k, k € [0,n + 2]) of (37.26.c). Same for (37.26.d). ]
Exercise 37.29. Show that in (37.28.d), the subset inclusion can be strict. O

37.16 The Roy-Floyd-Warshall algorithm over-approximating the elementary paths of a
finite graph

The Roy-Floyd-Warshall algorithm does not computes elementary paths in (37.26.d) but the over-
approximation of the set of elementary paths in (37.28.d), thus avoiding the potentially costly test
in Theorem 37.26 that the concatenation of elementary paths in @, is elementary.

Proof of Algorithm ?? The first for iteration computes ?_;?2 £ Ein (37.28.d). Then, the second for
iteration should compute /9\’7:“ £ @,’i V] /%\’; @Zk EJ\!; in (37.28.d) since p; ©, p, = & in (37.26.d)
when z € {x, y}, in which case, EJ\,’;“ = E.f,’;, which is similar to the Jacobi iterative method in
Section 20.2. However, similar to the Gauss-Seidel iteration method in Section 20.2, we reuse the
last computed p(x, z) and p(z, y), not necessarily those of the previous iterate. For the convergence
of the first n iterates of the second for iteration of the algorithm, the justification is similar to the

convergence Corollary 20.6 for chaotic iterations in Definition 20.2. o

37.17 Calculational design of the Roy-Floyd-Warshall shortest path algorithm

The shortest path algorithm of Bernard Roy [14], Bob Floyd [8], and Steve Warshall [18] for finite
graphs is based on the assumption that the graph has no cycles with strictly negative weights i.e.
Vx € V.V € p(x,x) . @) = 0. In that case the shortest paths are all elementary since adding
a cycle of weight 0 leaves the distance unchanged while a cycle of positive weight would strictly
increase the distance on the path. Otherwise, as shown by Example 37.16, if the graph has cycle
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with strictly negative weights, the convergence between two vertices containing a cycle with strictly
negative weights is infinite to the limit —oo.

The essential consequence is that we don’t have to consider all paths as in Theorem 37.10 but
instead we can consider any subset provided that it contains all elementary paths. Therefore we can
base the design of the shortest path algorithm on Corollary 37.28. Observe that, although p may
contain paths that are not elementary, d is precisely the minimal path lengths and not some strict
over-approximation since

* p contains all elementary paths (so non-elementary paths are longer than the elementary path
between their extremities), and
* no arc has a strictly negative weight (so path lengths are always positive and therefore the ele-
mentary paths are the shortest ones).
We derive the Roy-Floyd-Warshall algorithm by a calculation design applying Exercise 22 for finite
iterates to (37.28.d) with the abstraction @ (or a variant when considering (37.28.c)).

— for the infimum E in (37.28.d), we have

w(E)(x, y)
= w(E(x, y)) { pointwise def. @
= w(((x, y) €E? {{x, )} : D)) {def. E in Theorem 37.10§
= ({x, ) € E? o({{x, y)}) e (D)) { def. conditional §
= ((x, ¥) € E? min{w(r) | m € {(x, y)}} s 00) {(37.14)§
= ((x, ¥) € E? w(x,y)300) {(37.13)§

— for the commutation with &, (X)
O(F e CO)x, 3)

= o(XUXQ, X){x, y) 1(37.28.d)§

= min(e(X)(x, y),@(X @, X){x, y))

{ the abstraction @ of Galois connection (37.15) preserves existing joins§

XUX @Zk X, we have

Let us evaluate

(X ©, X)(x, y)

= o((X ©Zk X)(x,y)) {pointwise def. @}
= o({m om, | 1y € X(x,2,) Ay € X(21 ¥) A2y ¢ {x, y}}) {def. ©,, in Theorem 37.26§
= min{w(m, ©m,) | 7, € X(x,2,) A7, € X(23, y) A2t € {x, y}} ((37.14)§

= min{w(m,) + o(m,) | 7, € X(x,2,) A7, € X(230 ¥) A 2t £ {x, 3} {def. (37.13) of @}
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= (z; € {x, y} ? 00 s min{w(m,) | 7; € X(x,2;)} + minfw(r,) | 7, € X(x,2,) A7, € X(24, ¥)})
{def. min§

= (2 € {x, ¥} ? 00 ¢ min(@(X)(x, z)) + min(e(X)(z;, ¥))) {(37.14) and pointwise def. 6§

50 that @(F 1,1 (X)) = Far(@(X)) with F (X)(x, ) 2 (24 € {x, ¥} 2 X(x, y) ¢ min(X(x, ),

X(x, Zk) + X(Zk, )/)) D

We have proved

Theorem 37.30 (Iterative characterization of the shortest path length of a graph) LetG =
(V, E, w) be afinite graph with V = {z,, ..., 2, }, n > 0 weighted on the totally ordered group
(G, <, 0, +) with no strictly negative weight. Then the distances between any two vertices are
d = a(p) = FI' where (37.30)
Fx,y) 2 ((x, y) € E? alx,y):00),
FEL (%, y) 2 (2 € {x y} ? FE(x, y) s min(FE(x, y), FE(x, z) + Fh(z ) O

and directly get the Roy-Floyd-Warshall distances algorithm.

| |

géﬁ—l

Proof of Algorithm ?? Instead of calculating the next iterate
one 93; (a la Jacobi), we reuse the latest assigned values (a la Gauss-Seidel), as authorized by the
chaotic iteration Corollary 20.6. o

as a function of the previous

Exercise 37.31. Show that the Roy-Floyd-Warshall would be incorrect for the longest elementary
path length of a graph. Which elementary path fixpoint computation would you recommend for
this problem? Design the algorithm by calculus. o

Exercise 37.32 (Irreflexive transitive closure). Consider the abstraction er, (P) 2 [ J{(x, y) € v
IeN.3z ...z, € V" . x,2,...2,y € PL. Define E* £ a,(J{p(x, ») | {x, y) € V}). Prove
that E* = Ifp€ X — E U X § X using Theorem 37.10 and Theorem 16.17. o

Exercise 37.33 (Reflexive transitive closure). Continuing Exercise 37.32 prove that the reflexive
transitive closure is E* 2 «, (E*) = Ifp* X — 1, UEU X § X where o, (R) 2 1, U Rand 1y, is the
identity relation on V. o

37.18 Adjacency matrix

The boolean adjacency matrix of a finite graph G = ([1,n], E),n € N"isG = (((i, j) € E? 13
0)) “n € {0, 1} ™", see Example 37.1.

i
J
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For a graph G = (V, E, w) weighted on the group G, the adjacency matrixis G = (((i, j) € E?
o(i, j) ¢ OOD): 1 € (G U {oo}) ™", see Example 37.11.

The 1nﬁmum is the empty graph (&, &) encoded with the empty matrix &. The supremum is

(OO)i:l,n .
j=Ln

There is a Galois isomorphism between G and (i, j) — @(E N {(i, j)}) and similarly the distance
d can be encoded, up to an isomorphism into D = (d(i, j))i=1.n € (G U {oo}) ™", so that by an
j=Ln

abstraction of (37.23.c) similar to Theorem 37.17, it follows that
Corollary 37.34 (Shortest distances in a weighted graph with adjacency matrix) Let G = (V,

E, w) be a finite graph weighted on the totally ordered group (G, <, 0, +). Then the ma-
trix of distances between any two vertices is D = Ifp” F, = gfp* F, where 9MG(D),~J~ 2

mm(G,], m1n (D it Dk])) O
oco 1 2
Example 37.35 The iterates for Example 37.11 starting from G are 9’41 =| -1 o0 2 |, 9}3 =
co oo 1
0 1 2
-1 0 1 |=%=D. O
oo oo 1

Example 37.36 (Graph with cycle of strictly negative weight) Continuing Example 37.16, the it-

co 0 2 -1 0 2
erates of Corollary 37.34 starting from G are 9!40 =] -1 o 2 ,9”1 =l -1 -1 1 |,
o oo 1 oo oo 1
-2 -1 1 -3 -3 -1 -7 =7 =5
Fi=| -2 20 [[F=| 4 4 2 [[F'=| -8 -8 -6 |,....and passingto the
oo oo 1 o oo 1 o oo 1
-0 -0 -0
limit, 9‘;" =| -0 -0 -00 |. O

0 (o) 1

An eflicient iteration is obtained by abstracting (37.28.d).

Corollary 37.37 (Shortest distances in a weighted graph with adjacency matrix iteration)
Let G = (V, E, w) be a finite graph with V = {z,, ..., z,,}, n > 0 weighted on the totally ordered
group (G, <, 0, +) with no strictly negative weight. Then the matrix of distances between any

two vertices is D = G'H"“ where &, M =Gand & G"EJ{JI— min(&, # i) mm ( A L+ F A kj)) |

Exercise 37.38. Continue Exercise 37.32 using the boolean adjacency matrix of the finite graph (to
get the original Roy-Warshall iterative algorithm [14, 18]). o
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Exercise 37.39. Program the Roy-Floyd-Warshall algorithm of Exercise 37.38 in the programming
language of your choice. o

37.19 Conclusion

Graph theory originates from Leonhard Euler’s work on the so-called “Seven Bridges of Kénigsberg”
problem [7]. Graphs are used to model many types of relations and processes in physical, biological,
social, and information systems.

[1,5,9, 12, 13] observed that various path algorithms can be designed and proved correct based
on a common algebraic structure and then instantiated to various path problems up to homomor-
phisms. The explanation of this observation originates from the fixpoint characterization of graph
paths in Theorem 37.4 based on the primitives E, U and © on sets of paths. Then Theorem 37.6
shows that any path problem formalized by an abstraction « can be expressed in terms of abstract
operations «(E), LI, and © derived from the primitives E, U and © by calculational design. This is
the case for the shortest path problem for which the composition of successive abstractions (which
is not an homomorphism) allows us to formally derive the classical Roy-Floyd-Warshall algorithm
(which therefore need not be postulated out of similarity observations, e.g. [13, Sect. 1] and [3,
Ch. 3]). The derivation of Roy-Floyd-Warshall algorithm was tricky since it is based on the abstrac-
tion of an over-approximation of the elementary paths which is an under-approximation of all graph
paths.

For comments on the Roy-Floyd-Warshall algorithm, see [10, p. 26-29], [11] and [16, p. 129].
The calculational design of the transitive closure by abstraction of a fixpoint path semantics is in
[4]. See [17] for the calculational design of dominance and shortest graph algorithms by abstract
interpretation (based on exact abstractions of (37.4.a)).

37.20 Answers to selected exercises

0 1 2
Answer of exercise 37.29. Consider the following graph , Initially 12 € FY(1,2),

13 € ’9?2(1, 3)and 21 € 6.}'\2(2, 1). The next iterate is identical since there is no path through 0. The
next iterate through 1 ¢ {2,3} adds21 ©13 = 213 ¢ 9,2,(2, 3). The next iterate through 2 ¢ {1, 3}
adds 120213 = 1213 € 5‘73(1, 3) which is not elementary and so does not belong to p°(1,3). O

Answer of exercise 37.39.

$ cat rfw.c
#include <limits.h>
#include <stdio.h>
int main () {
#define N 3
#define INF INT_MAX
int D[N]J[N] = {{INF, 1, 2}, {-1, INF, 2}, {INF, INF, 1}};
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int i,j,k,dikj,negativecycle;

for (i=0; i<N; d++) { D[i][i] = o0; }
for (k=0j; k<Nj; k++)

for (i=0; i<Nj; i++)
for (3=0; j<N; j++) {
dikj = (D[i1[k]==INF | D[k][j]==INF ? INF : D[i][k]+D[k][j]1);
if (dikj < D[i1[j])
D[i1[]j] = dikj;
}

negativecycle = 0;
for (i=0; i<Nj; i++) {

}

if (D[i]1[i1<0) negativecycle = 1;

if (negativecycle) printf("cycle of strictly negative length"); else

}

for (i=0; i<Nj; i++) {
for (j=0; j<N; j++)
(D[i][j]==INF ? printf("oo ") : printf("%i ", D[i1[j]1));
printf ("\n");
}

$ gcc rfw.c
$ ./a.out

012

-1 $0$ 1
oo oo $0$%

37.21
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