Compiling Order-Sorted Feature
Term Unification

dliloli[tlall

PARIS RESEARCH LABORATORY

December 1993 Hassan Ait-Kaci
Roberto Di Cosmo

PRL TECHNICAL NOTE

v

Compiling Order-Sorted Feature
Term Unification

Hassan Ait-Kaci
Roberto Di Cosmo

December 1993

Publication Notes

The work reported, belatedly, in this technical note is the result of the authors' collaboration
from September 1992 until December 1992, while Roberto Di Cosmo was visiting PRL from
ENS to work as a student intern under the supervision of Hassan Ait-Kaci.

Current contact addresses of authors:

Hassan Ait-Kaci Roberto Di Cosmo
hak@s. sf u. ca di cosno@ns. ens. fr
School of Computing Science Ecole Normale Supérieure
Simon Fraser University Laboratoire d’ Informatique
Burnaby, British Columbia 45 rued'Ulm

V5A 1S6, Canada 75005 Paris, France

(© Digital Equipment Corporation 1993

Thiswork may not be copied or reproduced in whole or in part for any commercia purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such wholeor partia copiesincludethe following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributorsto the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall requirealicense with payment of feeto the Paris Research Laboratory. All rightsreserved.

Abstract

Order-sorted feature (OSF) terms generalize first-order rational terms: functors become
partialy ordered sorts, arity is unconstrained, and subterms are unordered, indicated by
explicit feature symbols rather than implicit positions. Thus, OSF terms provide a handy
data structure to represent objects in symbolic programming languages. LIFE is such an
experimental language extending Prolog by replacing its term data structure and unification
operation with OSF term and unification. In this paper, we present an abstract machine design
for OSF term unification. Thiscompiling scheme consistsof an alteration of recent refinements
of WAM technology for compiling Prolog’s unification. Our modifications account for
order-sortedness, symbolic features, and absence of arity. Then, we improve that design by
incorporating several immediate optimizations.

Résumé

Les termes a traits et a sortes ordonnées généralisent les termes rationnels de premier ordre :
les symboles fonctionnels deviennent des sortes partiellement ordonnées. Ils n'ont pas de
contrainted’ arité, et leurs sous-termes sont dans|edésordre, indiqués par dessymbolesdetraits
explicites plutot que par des positions implicites. Ainsi, ces termes offrent une structure de
données adéquate pour représenter des obj etsdans deslangages de programmation symbolique.
LIFE est un tel langage, étendant Prolog en remplagant sa structure de données de terme et son
opération d'unification par les termes a traits et sortes ordonnées et leur unification. Dans ce
papier, nous présentons une maguette de machine abstraite pour I’ unification de ces termes.
Ce schéma de compilation consiste en une atération de la technologie WAM pour compiler
I’ unification de Prolog. Nos modifications prennent en compte I’ ordre sur les sortes, les traits
symboliques, et I'absence d arité. Puis, nous améliorons cette maguette en y incorporant
plusi eurs optimisationsimmédi ates.

Keywords

Unification, Prolog, LIFE, Warren's abstract machine, Feature structures.

Contents

Heap representation
Compiling query terms

Compiling program terms
3.1 Thewite sequence
3.2 Theread sequence

Optimizations

4.1 Uneffective code
4.2 Unreachable code
4.3 Unreachable labels and redundant write tests
4.4 Compressing chains of write tests

References

10
11

12
12
17
17
17

20

Compiling Order-Sorted Feature Term Unification 1

Onthe other hand, if it istrue that regionsgradually merge
into one another, and this remains to be proved, then |
may well have left mine many times, thinking | was still
within it.

SamueL Beckert, Molloy

This document describes an abstract instruction set for compiling order-sorted feature (OSF)
term unification [4] asit isused in the LIFE language[2]. Thisset of instructionsis being used
as the basis for the compiler of LIFE currently under development at PRL [8].

For anintroduction to OSF terminol ogy and the unificationrules, thereader isreferred to[4, 3].

1 Heap representation

We consider a simple language consisting of two kinds of entities, both OSF terms: a query
and a program. The operational semantics of thislanguage amountsto unifying the query term
with the program term. Asin the case for Prolog, instructions compiling the query will build
a representation for it in a memory area (called HEAP). However, the heap representation of
OSF terms, will be different from that used in the WAM, because we will need to take into
account the following additional elements that are specific of OSF terms:

¢ thereis no difference between a structure and a variable (in particular each node may be
dereferenced);

¢ every nodeinan OSF term hasa sort information in lieu of the functor information of Prolog
terms, and this information can be modified during unification;

¢ thearity of functorsisno longer fixed, and subterms are accessed by feature name, and not
just by position, as for the argument of a Prolog structure.

A consequence of the first and second points is that the distinction between structure and
variable made by the WAM heap representation is no longer appropriate: variables are just
sorted coreference tags virtually attached to any subterm of aterm and no longer restricted as
leaves only. In particular, variables such as Prolog’s are implicitly sorted with T, the greatest
sort. Also, order-sorted unification can refine structures; for example, if the sort ordering is
such that zero < zeropos and zero < zeroneg, them the terms zeropos and zeroneg can be
unified, refining their sorts to zero. This means that in our heap representation, everything
must be encoded uniformly.

The third point confronts us with the only rea difficulty: during OSF unification, subterms
identified by the same feature name must be unified. The problemisto perform thisefficiently.
This issue does not arise in Prolog because, there, subterms come with an associated natura
order: the n-th subterm is the one coming in position n, so unification of two terms proceeds
by structural decomposition: foo(first(a), second(int)) and foo(second(int), first(a)) are not
unifiable.

Technical Note No. 7 December 1993

2 Hassan Ait-Kaci and Roberto Di Cosmo

For OSF terms, on the contrary, subterms are identified by features names. So, for example,
the two OSF terms foo(first=-a, second=-int) and foo(second=int, first=>a) are not only
unifiable, but actually identical. Thus, subterms must be unified not in the order they come, but
asindicated by common feature names. What isworse, arity of OSF terms being unconstrained,
it can vary dynamically through the unification process. So it is not possibleto use a compile
time, as the WAM doesfor Prolog, afixed order for the feature names.

Thisfact causes amajor departure from the WAM heap term representation. It is necessary to
abandon the convention of having the references to the n arguments of afunctor stored exactly
after it in n consecutive locations. What is needed is an aternative representation of the set of
featured subterms that enjoys the following properties:

o fast associative access to, whether retrieval or insertion of, subterms viafeature names;

o fast iteration over a set of feature names and their associated reference subterms;

¢ eventually for backtracking purposes, a small overhead for trailing operations and undoing
them.

One immediate drawback of associative access to subtermsisthat it is slower (even if not by
much) than in the WAM where access is direct thanks to fixed arity constraints.! On the other
hand, the decoupling between the functor representation and the argument representation will
allow usto adopt more flexible code generation schemes. Hence, for simplicity and generdity,
we will use abstract operations dealing with associative feature access to subterms.

Asan illustration of our OSF term representation, Figure 1 shows a heap representation of the
OSF term:

X : person(name=id(first=-string,
last="Y : string),
spouse=>person(name=-id(last=Y),
spouse=-X)).

D

This representation is explained as follows. An OSF term is essentially alabeled sorted graph:
the nodes contain sort and structure-sharing information and the edges are |abel ed with feature
names. This justifies separating the conventiona single heap areain memory into two: HEAP
and FHEAP. The area HEAP is where nodes are stored and FHEAP contains tables associating
feature names to nodes. Therefore a HEAP cell consists of three fields:

o CREF: the coreference fidld, an index into HEAP. This determines whether this term is
unbound or bound to another. If it is unbound, the value of thisfield istheindex of its own
HEAP cdll.

'However, many optimizations are possible, that will not be discussed here, whereby global analysis, explicit

pragmas, together with clever indexing techniques such as perfect hashing and/or cached feature access can provide
for Prolog terms to be compiled virtually as efficiently asin Prolog [8].

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 3

HEAP FHEAP
CREF SORT FTAB FEAT TERM
1| 1 |person| t1 t1 | name 2
2] 2 |id to spouse| 5
3| 3 |sdring | NIL :
4| 4 |string | NI L t, [first 3
5/ 5 |peason| t3 last 2
6| 6 |id ts
t3 | name 6
spouse| 1

[l] 4|

Figure 1 Heap representation of OSF term (1)

¢ SORT: the sort field, a (representation of) the sort symbol of the root of thisterm.

¢ FTAB: thefeaturetablefield, an index into FHEAP containing the association table between
feature symbols and the node address in HEAP of the subterms. If there are no subterms,
thisfiddissetto NI L.

Similarly, the feature heap FHEAP consists of tables whose entries are cells made out of two
fields:

o FEAT: thefeaturefied.
o TERM theterm fidld. Thisisaindex into HEAP.

In the following sections we will first see how to generate efficient code to build such
representations and to perform unification on them, and then we will discuss some simple
immediate improvements.

2 Compiling query terms

Compiling aquery term consists of generating a sequence of instructionsthat, when executed,
will build its representation on the heap, ready to be used later for unification with a program
term.

Asin Prolog, we start by flattening an OSF term into alist of smpletokens. Then, we choose
an appropriate ordering for the tokens from which well-founded code may be generated. The
tokenswill no longer refer to the user level names of thevariables, but only to interna variables

Technical Note No. 7 December 1993

4 Hassan Ait-Kaci and Roberto Di Cosmo

known asregisters. Those will play exactly the samerole as the WAM' s so-called temporary
registers and similarly denoted as X;, Xz, etc. Asin the WAM, X; is always used for the root
of the outermost term.

The tokens making up an OSF term’ s flattened form are of two kinds:

o X :s(X hassorts);
o Xi.L =X (X hasfeature (and it correspondsto X;).

For example, the flattened form of OSF term (1) is given by the following sequence of tokens:

Xz @ person, Xg.name= Xp, Xy :id, Xp.first = X3, X3 : string,
Xo.last = X4, X4 @ string, Xp.spouse = Xs, X5 : person, Xs.name = Xg,
Xe 1 1d, Xg.last = X4, Xs.gpouse = X;.

If onefollows the WAM approach, each token yields an abstract machine instruction building
the corresponding piece of term on the heap. Namely:

e set cell X,s
Thiscorrespondsto thetoken X; : sand hasfor effect to create acell onthe heap, set register
X; to itsaddress, and set the sort field of this newly created cell to s.

o set feature X,(,X
This corresponds to the token X;./ = X; and has for effect to create an entry in the feature
table of X; for feature ¢ and set it to point to the address contained in register X;.

Note that set _cel | X, s corresponds in fact to the combination of two WAM instructions:
put _structure X,sand set _vari abl e X.? Thisis due to the fact that structures and
variables are now just one same thing. Similarly, set _f eat ure X;,{, X corresponds to
set _val ue X for the WAM, but with the need to declare explicitly which feature of which
register we are setting, since the contiguouspositiona convention of WAM term representation
is no longer sound.

However, it is important to recognize that the set _cel | X, s instruction is actualy built
out of two simpler instructions, which can used to produce better code. Theset cel | X, s
instruction really does two different things:

e push_cel | X: it pusheson the heap anew cell and reservesit to register X;
e set sort X, s itinitidizesthe sort fidd of thisnew cell to s.

Now, if wekeeptheset cel | X;, sinstruction, thismeans that new heap cells are generated
only in correspondence with atoken X; : s, whileif we decomposeit into push_cel I X; and

2Strictly speaking, using original WAM instructions, we should say uni fy_vari abl e X inw it e mode,
rather than set _vari abl e X;. However, we follow [1] using set instructions for queries rather than uni fy
instructions with a systematic uselesswr i t € mode test asdonein [9].

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 5

set _sort X,s wehavethe possibility to create new cells at a different time.

This is not only more natura, it simplifies code generation as no particular order must be
imposed on the token sequence. Moreover, this gives the additional freedom to commute
instructions, atechnique that is often yielding rel evant optimizations---we shall seelater some
examples.

Our abstract instructionswill be generated as follows from the token sequence:

e push cell X
This corresponds to afirst seen X; in atoken (either an X : soraX.{ = X oraX.(= X;)
and has for effect to push on the heap anew cell and stored its addressin X;. It is generated
before any other instruction coming from the same token.

e set sort X.,s
This corresponds to the token X; and has for effect to set the sort field of the cell pointed to
by X tos.

o set feature X,(,X
This corresponds to the token X;./ = X; and has for effect to create an entry in the feature
table of X; for feature ¢ and set it to point to the address contained in register X;.

The main advantage of this code generation schema is that it will produce correct code
irrespective of the order of the tokens: indeed, it ensures that a set f eature X, (, X
istruction will be generated only after a push_cel | X and a push_cel | X have been
generated, and similarly for set _sort X, s instructions. Furthermore, this advantage is
obtained at no cost: the operations performed by a push _cel | X and aset sort X,s
instructions amount exactly to the same work done by one set _cel | X, sinstruction. We
are now free to choose the token ordering that best suits our compilation needs.

Let us now consider the advantages of this compilation schema on the simple example of the
OSF term X : loop(a(X)). Itsflattened form is:

X1 |00p, X1.1= Xz, X5 a, X2.1=X;.

Let us suppose that we want to follow the WAM compilation schema: it is clear that we must
first generate the code to build the subterms of X3, and then the code to build X;. But doing
so, we are forced to generate the code for X, first, which requires in turn that X; be aready
available. So we are apparently stuck here: it seems impossible to generate the code for a
cyclic OSF term in one pass.

Suppose now that we adopt the decoupling of representation of nodes and edges and we take
theset cel | X, sinstruction (and not its componentspush _cel | X andset sort X;,s)
as primitive: it is then possible to generate the code in one single pass. Indeed, when features
(arguments) of a sort (functor) are no longer required to be contiguous following that sort in
the heap, one can reorgani ze the code generation for an OSF term of theform X : s(tl, e, tn)
asfollows:

Technical Note No. 7 December 1993

6 Hassan Ait-Kaci and Roberto Di Cosmo

set cel | X, loop % X : loop,
set cell X;,a % X;:a,

set feature Xy, 1, Xy % Xp.1= Xy,
set feature X, 1, X % Xi.1=X,.

Figure2 Codewithset cel | for query OSF term X : loop(a(X))

push_cel |l X; % X : loop,
set sort X, loop % X : loop,
push_cell X; % X;:a,
set feature Xy, 1, Xy % Xp.1= Xy,
set sort Xy, a % Xo:a,

set feature X, 1, X % X;.1=X,.

Figure3 Codewithpush_cel | andset _sort for query OSF term X : loop(a(X))

o first, build the structurefor X : s at address Hin the heap and save it in aregister X;:3

¢ then, build the representation of the subterms ty, already knowing the address X; of X : s
(which can be used even with cyclic references);

o findly, build the feature table of X : s, already knowing the addresses of each of the
subterms.

Hence, it is necessary to use the flattened token sequence in a specific order. This or-
der must generate a set _f eat ure X, £, X instruction only after the pair of instructions
set _sort X,sandset _sort X, s havebeen generated. For instance, the tokensfor query
in our previous example must be reordered thus:

X1 |00p, X5 a, X.1= X]_, X1.1=X,

and the corresponding abstract machine code for it is then shown in Figure 2.

Finally, if we take push_cel | X; and set _sort X;,s as primitive instructions, the code
generation proceeds flawlessly without any need to reorder the token stream. For instance, the
code generated for the original token stream of the previous exampleis shownin Figure 3, and
the code for the reordered token stream is shown in Figure 4: they are both valid and they both
build the same structure on the heap. Notice that thislast abstract instruction sequence will be
tranglated in the very same pseudo--code as the sequence in Figure 2.

3As in the WAM, we shall use a global register H to indicate the first free cell in HEAP. Similarly, a global
register FHwill indicate the first free addressin FHEAP.

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 7

push_cel |l X; % X : loop,
set sort X, loop % X : loop,
push_cell X; % X;:a,
set sort Xy, a % Xo:a,

set feature Xy, 1, X; % Xp.1= Xy,
set feature X, 1, X % X;.1=X,.

Figure4 Codefor query OSF term X : loop(a(X))

Going back to our OSF term 1, its flattened form can be directly trandated into the abstract
machine code shown in Figure 5.

The effect of these instruction is described in Figure 6, so that, when executed, the code of
Figure 5 will build the heap representation shown in Figure 1. The add_feature operation
(Figure 7) installsa new feature in atable, allocating anew table if necessary.

3 Compiling program terms

Now that we know how to compile an OSF term query into executable code that will build
its correct representation in memory, we can tackle the problem of generating code for a
program; i.e., another OSF term to be unified with the query aready built. Let usrecall briefly
the instructions used in the WAM to compile a program term. For simplicity, we will just
focus on the general purpose instructions get _st ruct ure f/n, X, uni fy_vari abl e X
and uni fy_val ue X;, and not worry about their specialized versions for constants and lists.

These basic instructions can work essentially in two modes:

¢ 1 ead mode---thisisthe default mode, in which the instructions check that the term on the
heap matches the program term;

e Wit e mode--thisis the mode in which the instructions build on the heap a copy of (a
portion of) the program term, binding avariable in the query term.

Taking advantage of the sequential and contiguous representation of the argument of a functor
in memory, these instructions use a specialized register S (next subterm) together with aglobal
mode flag to switch back and forth from one modeto the other. Theget _structure f/n, X
instruction is in charge of this switching: it always checks if the memory location indicated
by X contains a structure or a variable. If it finds a structure, it sets the mode flag tor ead
and initializes S to the first subterm in the heap. Theinstructionsfollowing it in sequence, one
uni fy instruction per subterm in the order they come, will then unify what S pointsto in the
heap with the portion of the program term encoded by the instruction, and then increment S.
If, on the other hand, get _st r uct ur e f/n, X finds a variable on the heap, it switches the

Technical Note No. 7 December 1993

Hassan Ait-Kaci and Roberto Di Cosmo

push_cel |l X;

set _sort X, person

push_cell X;

%
%
%

set feature X;,name X, %

set _sort X, id
push_cel |l X3

%
%

set feature X, firg, X3 %
set _sort Xs, string

push_cell X4

%
%

set feature X;, last, X4 %
set _sort Xy, string

pushcell Xs

%
%

set feature X, spouse, X5 %

set _sort Xs, person

push_cell Xg

%
%

set feature Xs,name, Xg %

set _sort Xg,id

%

set feature Xg, last, X4 %
set feature Xs, spouse, X; %

X1 : person
X1 : person
X5 id
Xi.name= X,
X5 id

X3 : string
Xz.firﬂ = X3
X3 : string

Xq : string
Xo.last = X4
Xq : string

Xs : person
X1.spouse = Xs
X5 : person
Xs :id
Xs.name = Xg
Xs :id
Xg.last = X4

Xs.Spouse = Xj.

Figure5 Codefor query OSF term (1)

push_cel | X

set sort X,s

set feature X, X

HEAP[H] .CREF — H;
HEAP[H .FTAB — NI L;

X —H,

increment(H)

HEAP[X] .SORT — s;

add_feature(HEAP[X;] .FTAB, ¢, X))

Figure 6 Instructionsfor query terms

December 1993

Digital PRL

Compiling Order-Sorted Feature Term Unification 9

procedure add_feature(table : address, feature : symbol, value : address);
begin
if table = NI L
then
begin
FHEAP[FH] — new_table
table — FH;
increment(FH)
end;
put_feature(table, feature, value)
end add_feature;

Figure 7 The add feature operation

modeflagtowr i t e, and the sameuni f y instructionswill then build on the heap the portion
of the program term that must occur at that corresponding position (i.e., behave exactly as for
aquery term). Hence, theseuni f y instructionstest the mode flag to see if they have to match
or build their bit of information on the heap.

It isclear that for thisto work, two conventions must be obeyed: (1) subterm cells must follow
contiguously a functor cell on the heap and in the right order; and (2) exactly one uni fy
instruction per subterm must be generated, contiguously and in the same order. Neither of
these two conventions are observed in our representation and code generation. Nevertheless,
it would not be difficult to adapt the basic ideato our setting, although at a cost.

Recently, another scheme for compiling unification was devised which does not rely on
contiguity conventions, and has the advantage of being more efficient than the origina
contiguity scheme. The gist of this method relies on the fact, as described in [7],* that
the originad WAM contiguity scheme generates redundant work and, therefore, inefficiency.
Indeed, every execution of aget _st ruct ur e f/n, X; performs a complex test to determine
if the machine must proceed inr ead or wr i t e mode. Namely, it always dereferences X; and
tests whether it is a variable or a structure, no matter where and when it is executed. As a
result, thismeans that if the machine enterswr i t e modeto build alarge term on the heap, it
will continually and uselessly test the mode flag and dereference newly built variables just to
discover that it hasto keep on writing.

To avoid this unnecessary overhead an optimization can remove redundant mode tests from
the instructions. Rather than processing terms breadth-first as done by the WAM contiguity
conventions, it is advantageous to proceed through a term depth-first. In this way, the mode
flag need not bereset for aterm once set towr i t e at itsroot. Two streams of instructions, a

4This method was in fact originally discovered as early as 1988 by Mohamed Amraoui, a doctoral student at
Rennes, France [5]. Amraoui’s idea, since unpublished, seems to have gone unnoticed until it was apparently
rediscovered independently by MichaMeier [7] and later optimized further by André Marién and Bart Demoen [6].
It is the latter scheme that we shall adapt to our layout.

Technical Note No. 7 December 1993

10 Hassan Ait-Kaci and Roberto Di Cosmo

witetest Leve,Label = if D > Level then goto Label

Figure 8 Conditiona jump out of wr i t e mode

read streamandawr i t e stream arethusgenerated, each adequately peppered by conditiona
jumps from one to the other depending upon whether the term since the last jump into the
stream has been completely processed. A consequence of thisisthat different instructionsmust
be used for different (r ead or wr i t) modes. This entails using more, abeit lighter-weight,
instructions. Moreover, these can further be arranged in such away as to reduce testsfor mode
switching to the minimum necessary. This approach can be smoothly adapted to our case, and
we will follow it in our design of the abstract machine.

A program term will be compiled into two sequences of instructions: awr i t e segquence
consisting of exactly the sameinstructionsused to compileaquery term, and ar ead sequence
consisting of instruction to perform appropriate unification with the heap. The problem posed
by the depth-first organization of instructions is to insert tests and jumps properly in each
sequence. Clearly, these must be placed at the boundaries marking the code for each subterm.
They are logicaly where it is necessary to decide whether to carry on in the current mode
(read orwr it e), or jump to the other stream.

Micha Meier’s instructions keep track of term boundaries using a rather complicated scheme.
André Marién and Bart Demoen proposed a simpler and better means to do the same. Their
idea uses information given by the nesting depth of a term inside the outermost term being
compiled. A global register D will be used to indicate, at execution time, the least depth
encountered since the last stream jump. Thus, instructions ‘‘recognize’’ term boundaries by a
simple comparison test of their own (statically known) depth and the depth register D.

3.1 Thewite sequence

Thew i t e sequence is the simpler of the two; and this, for two reasons. Firstly, itswriting
instructions are exactly the same as the code produced for compiling a query. Secondly, once
w it e modeis set, for a subterm this holds for al subterms underneath it. The ideais that
execution of a program term starts in r ead mode. Whenever, at a given depth, it is found
there that a subterm must be built, the register D is set to that depth and control jumps to
the wr i t e subsequence corresponding to that term. Control will know when to return to
ther ead sequence as soon as it reaches wr i t e instructions pertaining to alesser level than
the one indicated by D. Therefore, the appropriate place to test for ajump out of awri te
sequence isimmediately after thelast instruction corresponding to asubterm. Thisis achieved
by placingtheinstructionwr i t e_t est Level, Label shown in Figure 8 at the end of the code
sequence for each subterm of depth Level. Thelabel Label isthe address of the first instruction
in the code of ther ead stream which corresponds to the next appropriate subterm where to
resumeinr ead mode. Namely, that of the next subterm of depth lower or equd to that of the

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 11

subterm just written.

3.2 Theread sequence

Now, regarding the r ead sequence of a program term, its instructions will need to perform
the following operations on the representation on the term built on the heap, depending on the
information found on the heap:

¢ refine the sort of a HEAP cdll;
e access afeature in the feature table of a HEAP cdll; or,
¢ perform unification on two terms.

In addition, it will need to test when and where to jump to the wri t e sequence. Jumping
out of the r ead sequence to the wr i t e sequence must be done whenever it is found that a
subterm must be built. Therefore these jump tests must be carried out befor e entering the code
seguence corresponding to a subterm.

To understand the instructions that perform this, it is important to remember that the Prolog
term’s distinction between a variable and a structure is no longer appropriate for OSF terms.
Here, aterm is made of uniform structures, al built of nodes (the cells in HEAP) and edges
(the tables in FHEAP). So, while Prolog code for the program must build a subterm on the
heap if the corresponding HEAP cell is a variable, in the case OSF terms, the program must
enter wr i t e mode only if the feature leading to that subterm is undefined. Thisisindeed the
only time where anew structure must be created.

Now, testing the existence of afeature is as expensive as accessing it. Therefore, thereis no
point in using a single abstract instruction to perform the test: it is more effective to embed
such test in all the instructionsthat access a feature.

Under these considerations, the instructions used by an OSF program term inr ead mode are
the following:

e intersect _sort X,s
o test feature X,(,X,Level, Label
o unify feature X,/ X

Thei nt er sect _sort X, sinstruction attemptsto refine the sort of the HEAP cell indicated
by X by intersecting it with s.

Thet est _feature X, /,X, Level, Label instruction checkswhether the HEAP cell indicated
by X has feature (. If it does, then X is set to point to its value. Otherwisg, it causes ajump
tothewri t e sequence at the appropriate Label and with the appropriate Level to build the
corresponding subterm (i.e., waysaset _sort X,s). Therefore, when the write sequence
terminates, X; will point to theroot of this newly built subterm.

Technical Note No. 7 December 1993

12 Hassan Ait-Kaci and Roberto Di Cosmo

Theuni fy_f eat ure X, £, X instruction also testsfor the existence of feature { in thefeature
table of X;. However, whereas t est _f eat ur e initializes X; with a jump to thew ite
sequence and back, uni fy_f eat ur e assumes that X aready points to a structure on the
heap. Hence, thisinstructionisusedrather thant est _f eat ur e if and only if X is guaranteed
to beinitialized (i.e., if it has aready occurred in a preceding instruction in this sequence). If
feature (is not part of those of X;, then it is added with the cell pointed to by X; as value.
Otherwisg, if ¢ does exist for X;, it calls afull OSF unification procedure on X; and X;.

As for an example, refer to Figure 9. It shows the code generated using the method we just
described for the OSF term (1) when compiled as a program. There is a subtle remark to be
made here regarding the use of set instructionsin thewr i t e sequence of a program code.
Aswe explained, thetask that iscarried out by that sequence isexactly the sameterm-building
work as the instructions of a query term---hence the use of the same instructions. In a query,
however, it is safe for set _f eat ure X, £, X to assume that the heap cell at address X is
not bound (since necessarily just created by aset _sort). Thisis no longer the case when
set _feature X, (,X isused inthe code of aprogram (since execution may cometo it with
ajump fromar ead instruction). Therefore, the effect of set _f eat ur e givenby Figure6is
not quite correct when used in the code for program terms. It is simpleto correct it, as shown
in Figure 10, using the operation deref (defined in Figure 11) to follow dereference pointers
created by binding HEAP cellsto other HEAP cells.

The effect of r ead sequence instructionsis summed up in Figure 12. Theuni fy f eat ure
instruction may need to perform afull-fledged OSF term unification. This procedure is given
in Figure 13. It uses a push down list (PDL) as in the WAM. The difference is that sort
intersection is used instead of comparison of cell tags and equality of functors, and unification
of subterms depends on gathering together the relevant features present in both terms. The
former is done thanksto the A operation assumed defined on the (representation of) sorts, and
the latter thanksto the carry_features operation given in Figure 14.

4 Optimizations

The code generation scheme we just sketched is rather naive in that it produces code that can
be immediately optimized in several ways. Indeed it is possible to identify systematically
some instructions in the generated code that either will never be executed or that performs
unnecessary work. Herewe will identify superfluousinstructionsand explain how to recognize
them after the generation, and aso how to improve the compilation scheme to simply avoid
generating them.

4.1 Uneffective code
Let usfirst remark that it is possibleto generatei nt er sect _sort Xi, T instructions, that

have no effect whatsoever. Indeed, any sort intersected with T stays the same. Thereis no
point then in executing such instructions. It isvery easy to get rid of them after generation, but

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification

13

Ry

R>

Rs

W,

W,

Ws

Wy

Ws

Whpis

Whier

Ws

i ntersect sort Xg, person

t est _f eat ure Xy, name, X, 1, W,
i ntersect_sort X, id

t est feature X, first, X3, 2, W,
i ntersect sort Xz, string

t est feature X, last, X4, 2, W3
i ntersect _sort Xg,string

t est _f eat ur e Xy, spouse, Xs, 1, Wy
i ntersect sort Xs, person

t est _f eat ur e Xs, name, Xg, 2, Ws
i ntersect _sort Xg,id

uni fy_feature X last, X4

uni fy_f eat ur e Xs, spouse, X3

j unp We

push_cel | X;

set _sort X, person

push_cel |l X;

set _f eat ur e X;, name, X,

set sort X,id

push_cel | X3

set feature X, first, Xz

set _sort Xz, string
witetest 2R

push_cel | X4

set _feature X, last, X4

set _sort Xy, string
witetest 2R

witetest 1R

push_cel |l Xs

set f eat ure X, spouse, Xs

set _sort Xs, person

push_cel |l Xg

set _f eat ur e Xs, name, X

set _sort Xs,id

set _f eat ure Xg, last, X4
witetest 3Rs

witetest 2 Rs

set f eat ure Xs, spouse, X3
witetest 2 Ry

witetest 1Ry

witetest O,Ry

X1 : person
Xi.name= X,
X5 id

Xz.first = X3
X3 : string
Xo.last = X4
Xq : string
Xi1.Spouse = Xs
Xs : person
Xs.name = Xg
Xs :id

Xg.last = X4
Xs.Spouse = X3
(skipwri t e code)
X1 : person

X1 : person
X5 id
Xi.name = X,
X5 id

X3 : string
Xz.first = X3
X3 : string

Xq : string
Xo.last = X4
Xq : string

Xs : person
Xi1.Spouse = Xs
Xs : person

Xs :id
Xs.name = Xg
Xs :id

Xg.last = X4

Xs.Spouse = X;

Figure9 Codefor program OSF term (1)

Technical Note No. 7

December 1993

14 Hassan Ait-Kaci and Roberto Di Cosmo

set featureX;, ¢, X = add_feature(HEAP[deref (X)] .FTAB, ¢, X;)

Figure 10 Modifiedset _f eat ur e instruction

function deref (a : address) : address;

begin
b — HEAP[a] .CREF;
ifa=">b

then return a
elsereturn deref(b)
end deref;

Figure11l Thederef operation

i ntersect sort X,s addr — deref (X);
ns — sA HEAP[X;] .SORT;
ifns = L

then fail — true

else HEAP[X;] .SORT < ns

test feature X, X, Level Labd = addr — deref(X;);
(found , value) — get_feature{ HEAP[addr] .FTAB, ¢£);
if found
then X, — value
ese
begin
D — Levd;
goto Label
end

uni fyfeatureX,¢X = addr — deref(X);
(found , value) — get_feature{ HEAP[addr] .FTAB, ¢£);
if found
then osf _unify(value, X)
else add_feature(HEAP[addr] .FTAB, ¢, Xj)

Figure 12 Instructionsfor OSF term program r ead sequence

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification

15

procedure osf _unify(a; : address, a, : address);
begin
push(as, PDL);
push(ay, PDL);
fail — false
while —empty(PDL) V fail do
begin
d; — deref (pop(PDL));
dy — deref (pop(PDL));
if dy #dp
then
begin

ns — HEAP[d;] .SORT A HEAP[d;] .SORT;

ifns = L
then fail — true
dse
begin
bind_refine(ds, dy, ns);
if deref(di) = db
then carry_features(ds, d,)
else carry_features(dy, di)
end
end
end
end osf _unify;

Figure 13 The OSF term unification procedure

Technical Note No. 7

December 1993

16 Hassan Ait-Kaci and Roberto Di Cosmo

procedure carry_features(d;, d : address);
begin
for (¢, v1) in HEAP[di] .FTAB do
begin
(found, v, } — get_feature(HEAP[d;] .FTAB, ¢£);
if found
then
begin
push(vy, PDL);
push(v,, PDL)
end
else add_feature{HEAP[dy] .FTAB, ¢, v1)
end
end carry_features;

Figure 14 The carry_features operation

procedure bind_refine(ds, d; : address, s: sort);
begin
HEAP[d]_] .CREF +— dz;
HEAP[d;] .SORT «— s
end bind_refine;

Figure 15 The bind_refine operation

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 17

itiseven easier to avoid generating them, so thisis the solution we will choose.

4.2 Unreachable code

Theinstruction sequence that builds a new term assumesthat it hasto do so from scratch. But,
when executing code corresponding to a program term, one knows that at least the root of the
term is aready on the heap and will never need to be built. Therefore, the push_cel | and
set _sort instructions of the write sequence relative to X; will never be executed. They can
hence be safely eliminated. We simply erase the two push_cel | X; and set _sort Xi,s
from the write sequence, or, more properly, avoid generating such instructions by skipping
X1 : stokensand not generating the push _cel | X for X;.1 = X tokens.

4.3 Unreachable labels and redundant write tests

When in the read sequence we generate auni fy_f eat ur e X, 1, X instruction, we are sure
that we will never need to build the subterm relative to X alone. Indeed, during execution,
either we reach this unify instruction, and in that case we do not jumpto thewr i t e sequence,
orwejumptothew i t e sequence beforereaching thisuni f y instruction, in correspondence
with an external subterm X, at lower depth containing X;, and in that case we will not have to
jump back tor ead mode after generating X, but after generating Xu. In either case,

o wenever enter wr i t e mode at the label for X;, so such labd isunused and redundant;
¢ wenever exit fromthew i t e sequence at the depth of X;, but at alower depth, so the write
test generated for X; will never succeed and is useless.

Eliminating useless labels and tests is a little harder than for the previous optimization. One
needs to check that there is no test feature involving that label, and that in the corresponding
read sequence thereis no test feature involving the depth specified in the test. It ismuch easier
to avoid producing that code, by recognizing that X; in the token X.I = X; has aready been
seen, so no label nor test must be generated for the term rooted at X;.

4.4 Compressing chains of write tests

The easiest and most effective optimization is the possibility to compress chains of write tests
into one single write test. When generating the write code for a deeply nested term, like for
examplef(g(h(I(a)))), the write tests that we must generate at the end of each subterm will
actually lie side by side, all accumulated in a chain, as shown in Figure 16.

This is because when we finish building a, we aso finish building I(a), and h(I(a)) and all
the more external terms where a appears as a rightmost subterm. Here, the sequence of tests
can be compressed in just one test on the smallest depth d: this sequence of tests tells us to
jumpto R isthe depth register is greater than or equal tod+4, ord+3, ... ord, i.e. we must
jumpiif itisgreater or equal to d.

Technical Note No. 7 December 1993

18

Hassan Ait-Kaci and Roberto Di Cosmo

witetest d+4 R
witetest d+3 R
witetest d+2 R
witetest d+1 R
witetest d R

%
%
%
%

end of subtermrooted a a
end of subterm rooted at |
end of subtermrooted at h
end of subterm rooted at g
end of subterm rooted at f

Figure 16 Optimized for programterm f(g(h(I(a))))

Thiscondition ismost easily recognized after code generation, asachainisclearly identifiable
locally, but also in phase of code generation one can just pass on aflag identifying the leftmost
subterm, to inhibit generation of writetestsfor it.

Figure 17 shows the result of applying al the above optimizationsto the code of Figure 9.

This concludes our description of our basic compilation scheme for OSF term unification. This
scheme can be improved much further to exploit severa particular situations as shown in [8].

December 1993

Digital PRL

Compiling Order-Sorted Feature Term Unification

19

i ntersect _sort X, person
t est _f eat ure Xy, name, X, 1, W,
i ntersect_sort X, id
t est feature X, first, X3, 2, W,
i ntersect sort Xz, string
Ry . test _feature X, last, X4, 2, W3
i ntersect _sort Xg,string

R, : test _feature Xy, spouse Xs, 1, W,

i ntersect _sort Xs, person

t est _f eat ur e Xs, name, Xg, 2, Ws
i ntersect _sort Xg,id

uni fy_feature X last, X4

R; : uni fy_feature Xs, spouse, X1
Ry Dojunp We
© pushcell X
set—sort—Xrpersen
W, push_cel |l X;

set _f eat ur e X;, name, X,
set sort X,id

push_cel | X3

set feature X, first, Xz
set _sort Xz, string
witetest 2R
push_cel | X4

set _feature X, last, X4
set _sort Xy, string
writetest 2 R
witetest 1R
push_cel |l Xs

set f eat ure X, spouse, Xs
set _sort Xs, person
push_cel |l Xg

set _f eat ur e Xs, name, X
set _sort Xs,id

set _f eat ure Xg, last, X4
writetest 3 Rs
witetest 2 Rs

set f eat ure Xs, spouse, X3

W,

Ws

Wy

Ws

Ws

X1 : person
Xi.name= X,
X5 id

Xz.firﬂ = X3

X3 : string
Xo.last = X4

Xq : string
Xi1.Spouse = Xs
X5 : person
Xs.name = Xg

Xs :id

Xg.last = X4
Xs.Spouse = X3
(skipwri t e code)
Unreachable code
Unreachable code
X5 id
Xi.name = X,
X5 id

X3 : string
Xz.firﬂ = X3

X3 : string

Xq : string

Xo.last = X4

Xq : string

Redundant test: nested subterms

X5 : person

Xi1.Spouse = Xs

X5 : person

Xs :id

Xs.name = Xg

Xs :id

Xg.last = X4

Redundant test: nested and unreachable subterm

Xs.Spouse = X;

Redundant test: nested and unreachable subterm
Redundant test: nested subterms

Redundant test: end of write code

Figure 17 Optimized for program OSF term (1)

Technical Note No. 7

December 1993

20 Hassan Ait-Kaci and Roberto Di Cosmo

References

1. Hassan Ait-Kaci. Warren's Abstract Machine, A Tutorial Reconstruction. MIT Press,
Cambridge, MA (1991).

2. Hassan Ait-Kaci. An introduction to LIFE---programming with logic, inheritance, func-
tions, and equations. In Dae Miller, editor, Proceedings of the International Symposium
on Logic Programming, pages 52--68, Cambridge, MA (October 1993). MIT Press.

3. Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Ma maison,
France (June 1991).

4. Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. Journal of Logic
Programming, 16(3-4):195--234 (July-August 1993).

5. Mohamed Amraoui. Une Expérience de Compilation de Prolog Il sur MALI. These de
doctorat, Université de Rennes |, France (January 1988).

6. AndréMariénand Bart Demoen. A new schemefor unificationin WAM. InVijay Saraswat
and Kazunori Ueda, editors, Logic Programming, Proceedings of the 1991 International
Symposium, pages 257--271, Cambridge, MA (1991). MIT Press.

7. MichaMeier. Compilation of compound terms in Prolog. In Saumya Debray and Manuel
Hermenegildo, editors, Logic Programming, Proceedings of the 1990 North American
Conference, pages 63--79, Cambridge, MA (1990). MIT Press.

8. Richard Meyer. Compiling life. PRL Technical Note 8, Digital Equipment Corporation,
Paris Research Laboratory, Rueil-Mamaison (December 1993).

9. David H. D. Warren. An abstract Prolog instruction set. Technica Note 309, SRI
International, Menlo Park, CA (October 1983).

December 1993 Digital PRL

PRL Technical Notes

The following documents may be ordered by regular mail from:

Librarian -- Technical Notes
Digital Equipment Corporation
Paris Research Laboratory

85, avenue Victor Hugo

92563 Rueil-Malmai son Cedex
France.

It is aso possibleto obtain them by electronic mail. For more information, send a
message whose subject lineishel p todoc- server @r | . dec. comor, from
withinDigital,todecpr| : : doc- server.

Technical Note 1: Wild-LIFE, a User Manual. Hassan Ait-Kaci and Richard Meyer. (being
revised).

Technical Note 2: Wild-LIFE, an Implementation Manual. Richard Meyer. (being revised).
Technical Note 3: Characterising Perle0. Alan Skea. October 1990.

Technical Note 4: PerlelDC: a C++ Library for the Simulation and Generation of DECPeRLe-
1 Designs. Hervé Touati. February 1994.

Technical Note 5: TiGeR Version 1.0 User Guide. Olivier Coudert, Jean-Christophe Madre,
and Hervé Touati. January 1994.

Technical Note 6: Tgr Version 1.0 Reference Manual. Olivier Coudert, Jean-Christophe
Madre, and Herve Touati. August 1993.

Technical Note 7: Compiling Order-Sorted Feature Term Unification. Hassan Ait-Kaci and
Roberto Di Cosmo. December 1993.

Technical Note 8: Compiling LIFE. Richard Meyer. December 1993.

Compiling Order-Sorted Feature Term Unification
Hassan Ait-Kaci and Roberto Di Cosmo

dliloli[tlall

PARIS RESEARCH LABORATORY

