
PARIS RESEARCH LABORATORY

d i g i t a l

December 1993

7

Hassan Aı̈t-Kaci
Roberto Di Cosmo

Compiling Order-Sorted Feature
Term Unification

PRL TECHNICAL NOTE

7

Compiling Order-Sorted Feature
Term Unification

Hassan Aı̈t-Kaci

Roberto Di Cosmo

December 1993

Publication Notes

The work reported, belatedly, in this technical note is the result of the authors’ collaboration
from September 1992 until December 1992, while Roberto Di Cosmo was visiting PRL from
ENS to work as a student intern under the supervision of Hassan Aı̈t-Kaci.

Current contact addresses of authors:

Hassan Aı̈t-Kaci
hak@cs.sfu.ca

School of Computing Science
Simon Fraser University
Burnaby, British Columbia
V5A 1S6, Canada

Roberto Di Cosmo
dicosmo@ens.ens.fr

École Normale Supérieure
Laboratoire d’Informatique
45 rue d’Ulm
75005 Paris, France

c Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii

Abstract

Order-sorted feature (OSF) terms generalize first-order rational terms: functors become
partially ordered sorts, arity is unconstrained, and subterms are unordered, indicated by
explicit feature symbols rather than implicit positions. Thus, OSF terms provide a handy
data structure to represent objects in symbolic programming languages. LIFE is such an
experimental language extending Prolog by replacing its term data structure and unification
operation with OSF term and unification. In this paper, we present an abstract machine design
for OSF term unification. This compiling scheme consists of an alteration of recent refinements
of WAM technology for compiling Prolog’s unification. Our modifications account for
order-sortedness, symbolic features, and absence of arity. Then, we improve that design by
incorporating several immediate optimizations.

Résumé

Les termes à traits et à sortes ordonnées généralisent les termes rationnels de premier ordre :
les symboles fonctionnels deviennent des sortes partiellement ordonnées. Ils n’ont pas de
contrainte d’arité, et leurs sous-termes sont dans le désordre, indiqués par des symboles de traits
explicites plutot que par des positions implicites. Ainsi, ces termes offrent une structure de
données adéquate pour représenter des objets dans des langages de programmation symbolique.
LIFE est un tel langage, étendant Prolog en remplaçant sa structure de données de terme et son
opération d’unification par les termes à traits et sortes ordonnées et leur unification. Dans ce
papier, nous présentons une maquette de machine abstraite pour l’unification de ces termes.
Ce schéma de compilation consiste en une altération de la technologie WAM pour compiler
l’unification de Prolog. Nos modifications prennent en compte l’ordre sur les sortes, les traits
symboliques, et l’absence d’arité. Puis, nous améliorons cette maquette en y incorporant
plusieurs optimisations immédiates.

iii

Keywords

Unification, Prolog, LIFE, Warren’s abstract machine, Feature structures.

iv

Contents

1 Heap representation 1

2 Compiling query terms 3

3 Compiling program terms 7
3.1 The write sequence : 10
3.2 The read sequence : 11

4 Optimizations 12
4.1 Uneffective code : 12
4.2 Unreachable code : 17
4.3 Unreachable labels and redundant write tests : : : : : : : : : : : : : 17
4.4 Compressing chains of write tests : 17

References 20

v

Compiling Order-Sorted Feature Term Unification 1

On the other hand, if it is true that regions gradually merge
into one another, and this remains to be proved, then I
may well have left mine many times, thinking I was still
within it.

SAMUEL BECKETT, Molloy

This document describes an abstract instruction set for compiling order-sorted feature (OSF)
term unification [4] as it is used in the LIFE language [2]. This set of instructions is being used
as the basis for the compiler of LIFE currently under development at PRL [8].

For an introduction to OSF terminology and the unification rules, the reader is referred to [4, 3].

1 Heap representation

We consider a simple language consisting of two kinds of entities, both OSF terms: a query
and a program. The operational semantics of this language amounts to unifying the query term
with the program term. As in the case for Prolog, instructions compiling the query will build
a representation for it in a memory area (called HEAP). However, the heap representation of
OSF terms, will be different from that used in the WAM, because we will need to take into
account the following additional elements that are specific of OSF terms:� there is no difference between a structure and a variable (in particular each node may be

dereferenced);� every node in an OSF term has a sort information in lieu of the functor information of Prolog
terms, and this information can be modified during unification;� the arity of functors is no longer fixed, and subterms are accessed by feature name, and not
just by position, as for the argument of a Prolog structure.

A consequence of the first and second points is that the distinction between structure and
variable made by the WAM heap representation is no longer appropriate: variables are just
sorted coreference tags virtually attached to any subterm of a term and no longer restricted as
leaves only. In particular, variables such as Prolog’s are implicitly sorted with >, the greatest
sort. Also, order-sorted unification can refine structures; for example, if the sort ordering is
such that zero < zeropos and zero < zeroneg, them the terms zeropos and zeroneg can be
unified, refining their sorts to zero. This means that in our heap representation, everything
must be encoded uniformly.

The third point confronts us with the only real difficulty: during OSF unification, subterms
identified by the same feature name must be unified. The problem is to perform this efficiently.
This issue does not arise in Prolog because, there, subterms come with an associated natural
order: the n-th subterm is the one coming in position n, so unification of two terms proceeds
by structural decomposition: foo(first(a); second(int)) and foo(second(int); first(a)) are not
unifiable.

Technical Note No. 7 December 1993

2 Hassan Aı̈t-Kaci and Roberto Di Cosmo

For OSF terms, on the contrary, subterms are identified by features names. So, for example,
the two OSF terms foo(first)a; second)int) and foo(second)int; first)a) are not only
unifiable, but actually identical. Thus, subterms must be unified not in the order they come, but
as indicated by common feature names. What is worse, arity of OSF terms being unconstrained,
it can vary dynamically through the unification process. So it is not possible to use at compile
time, as the WAM does for Prolog, a fixed order for the feature names.

This fact causes a major departure from the WAM heap term representation. It is necessary to
abandon the convention of having the references to the n arguments of a functor stored exactly
after it in n consecutive locations. What is needed is an alternative representation of the set of
featured subterms that enjoys the following properties:� fast associative access to, whether retrieval or insertion of, subterms via feature names;� fast iteration over a set of feature names and their associated reference subterms;� eventually for backtracking purposes, a small overhead for trailing operations and undoing

them.

One immediate drawback of associative access to subterms is that it is slower (even if not by
much) than in the WAM where access is direct thanks to fixed arity constraints.1 On the other
hand, the decoupling between the functor representation and the argument representation will
allow us to adopt more flexible code generation schemes. Hence, for simplicity and generality,
we will use abstract operations dealing with associative feature access to subterms.

As an illustration of our OSF term representation, Figure 1 shows a heap representation of the
OSF term:

X : person(name)id(first)string;
last)Y : string);

spouse)person(name)id(last)Y);
spouse)X)): (1)

This representation is explained as follows. An OSF term is essentially a labeled sorted graph:
the nodes contain sort and structure-sharing information and the edges are labeled with feature
names. This justifies separating the conventional single heap area in memory into two: HEAP
and FHEAP. The area HEAP is where nodes are stored and FHEAP contains tables associating
feature names to nodes. Therefore a HEAP cell consists of three fields:� CREF: the coreference field, an index into HEAP. This determines whether this term is

unbound or bound to another. If it is unbound, the value of this field is the index of its own
HEAP cell.
1However, many optimizations are possible, that will not be discussed here, whereby global analysis, explicit

pragmas, together with clever indexing techniques such as perfect hashing and/or cached feature access can provide
for Prolog terms to be compiled virtually as efficiently as in Prolog [8].

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 3

HEAP

CREF SORT FTAB

1 1 person t1
2 2 id t2
3 3 string NIL
4 4 string NIL
5 5 person t3
6 6 id t4

FHEAP

FEAT TERM

t1 name 2
spouse 5

...
t2 first 3

last 4
...

t3 name 6
spouse 1

...
t4 last 4

Figure 1 Heap representation of OSF term (1)� SORT: the sort field, a (representation of) the sort symbol of the root of this term.� FTAB: the feature table field, an index into FHEAP containing the association table between
feature symbols and the node address in HEAP of the subterms. If there are no subterms,
this field is set to NIL.

Similarly, the feature heap FHEAP consists of tables whose entries are cells made out of two
fields:� FEAT: the feature field.� TERM: the term field. This is a index into HEAP.

In the following sections we will first see how to generate efficient code to build such
representations and to perform unification on them, and then we will discuss some simple
immediate improvements.

2 Compiling query terms

Compiling a query term consists of generating a sequence of instructions that, when executed,
will build its representation on the heap, ready to be used later for unification with a program
term.

As in Prolog, we start by flattening an OSF term into a list of simple tokens. Then, we choose
an appropriate ordering for the tokens from which well-founded code may be generated. The
tokens will no longer refer to the user level names of the variables, but only to internal variables

Technical Note No. 7 December 1993

4 Hassan Aı̈t-Kaci and Roberto Di Cosmo

known as registers. Those will play exactly the same role as the WAM’s so-called temporary
registers and similarly denoted as X1, X2, etc. As in the WAM, X1 is always used for the root
of the outermost term.

The tokens making up an OSF term’s flattened form are of two kinds:� Xi : s (Xi has sort s);� Xi:`= Xj (Xi has feature ` and it corresponds to Xj).

For example, the flattened form of OSF term (1) is given by the following sequence of tokens:

X1 : person; X1:name = X2; X2 : id; X2:first = X3; X3 : string;
X2:last = X4; X4 : string; X1:spouse = X5; X5 : person; X5:name = X6;
X6 : id; X6:last = X4; X5:spouse = X1:

If one follows the WAM approach, each token yields an abstract machine instruction building
the corresponding piece of term on the heap. Namely:� set cell Xi; s

This corresponds to the token Xi : s and has for effect to create a cell on the heap, set register
Xi to its address, and set the sort field of this newly created cell to s.� set feature Xi; `;Xj

This corresponds to the token Xi:` = Xj and has for effect to create an entry in the feature
table of Xi for feature ` and set it to point to the address contained in register Xj.

Note that set cell Xi; s corresponds in fact to the combination of two WAM instructions:
put structure Xi; s and set variable Xi.2 This is due to the fact that structures and
variables are now just one same thing. Similarly, set feature Xi; `;Xj corresponds to
set value Xj for the WAM, but with the need to declare explicitly which feature of which
register we are setting, since the contiguous positional convention of WAM term representation
is no longer sound.

However, it is important to recognize that the set cell Xi; s instruction is actually built
out of two simpler instructions, which can used to produce better code. The set cell Xi; s
instruction really does two different things:� push cell Xi: it pushes on the heap a new cell and reserves it to register Xi� set sort Xi; s: it initializes the sort field of this new cell to s.

Now, if we keep the set cell Xi; s instruction, this means that new heap cells are generated
only in correspondence with a token Xi : s, while if we decompose it into push cell Xi and

2Strictly speaking, using original WAM instructions, we should say unify variable Xi in write mode,
rather than set variable Xi . However, we follow [1] using set instructions for queries rather than unify
instructions with a systematic useless write mode test as done in [9].

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 5

set sort Xi; s, we have the possibility to create new cells at a different time.

This is not only more natural, it simplifies code generation as no particular order must be
imposed on the token sequence. Moreover, this gives the additional freedom to commute
instructions, a technique that is often yielding relevant optimizations---we shall see later some
examples.

Our abstract instructions will be generated as follows from the token sequence:� push cell Xi

This corresponds to a first seen Xi in a token (either an Xi : s or a Xi:` = Xj or a Xj:`= Xi)
and has for effect to push on the heap a new cell and stored its address in Xi. It is generated
before any other instruction coming from the same token.� set sort Xi; s
This corresponds to the token Xi and has for effect to set the sort field of the cell pointed to
by Xi to s.� set feature Xi; `;Xj

This corresponds to the token Xi:` = Xj and has for effect to create an entry in the feature
table of Xi for feature ` and set it to point to the address contained in register Xj.

The main advantage of this code generation schema is that it will produce correct code
irrespective of the order of the tokens: indeed, it ensures that a set feature Xi; `;Xj

istruction will be generated only after a push cell Xi and a push cell Xj have been
generated, and similarly for set sort Xi; s instructions. Furthermore, this advantage is
obtained at no cost: the operations performed by a push cell Xi and a set sort Xi; s
instructions amount exactly to the same work done by one set cell Xi; s instruction. We
are now free to choose the token ordering that best suits our compilation needs.

Let us now consider the advantages of this compilation schema on the simple example of the
OSF term X : loop(a(X)). Its flattened form is:

X1 : loop; X1:1 = X2; X2 : a; X2:1 = X1:
Let us suppose that we want to follow the WAM compilation schema: it is clear that we must
first generate the code to build the subterms of X1, and then the code to build X1. But doing
so, we are forced to generate the code for X2 first, which requires in turn that X1 be already
available. So we are apparently stuck here: it seems impossible to generate the code for a
cyclic OSF term in one pass.

Suppose now that we adopt the decoupling of representation of nodes and edges and we take
the set cell Xi; s instruction (and not its components push cell Xi and set sort Xi; s)
as primitive: it is then possible to generate the code in one single pass. Indeed, when features
(arguments) of a sort (functor) are no longer required to be contiguous following that sort in
the heap, one can reorganize the code generation for an OSF term of the form X : s(t1; : : : ; tn)
as follows:

Technical Note No. 7 December 1993

6 Hassan Aı̈t-Kaci and Roberto Di Cosmo

set cell X1; loop % X1 : loop;
set cell X2; a % X2 : a;
set feature X2; 1;X1 % X2:1 = X1;
set feature X1; 1;X2 % X1:1 = X2:

Figure 2 Code with set cell for query OSF term X : loop(a(X))
push cell X1 % X1 : loop;
set sort X1; loop % X1 : loop;
push cell X2 % X2 : a;
set feature X2; 1;X1 % X2:1 = X1;
set sort X2; a % X2 : a;
set feature X1; 1;X2 % X1:1 = X2:

Figure 3 Code with push cell and set sort for query OSF term X : loop(a(X))� first, build the structure for X : s at address H in the heap and save it in a register Xi;3� then, build the representation of the subterms tk, already knowing the address Xi of X : s
(which can be used even with cyclic references);� finally, build the feature table of X : s, already knowing the addresses of each of the
subterms.

Hence, it is necessary to use the flattened token sequence in a specific order. This or-
der must generate a set feature Xi; `;Xj instruction only after the pair of instructions
set sort Xi; si and set sort Xj; sj have been generated. For instance, the tokens for query
in our previous example must be reordered thus:

X1 : loop; X2 : a; X2:1 = X1; X1:1 = X2

and the corresponding abstract machine code for it is then shown in Figure 2.

Finally, if we take push cell Xi and set sort Xi; s as primitive instructions, the code
generation proceeds flawlessly without any need to reorder the token stream. For instance, the
code generated for the original token stream of the previous example is shown in Figure 3, and
the code for the reordered token stream is shown in Figure 4: they are both valid and they both
build the same structure on the heap. Notice that this last abstract instruction sequence will be
translated in the very same pseudo--code as the sequence in Figure 2.

3As in the WAM, we shall use a global register H to indicate the first free cell in HEAP. Similarly, a global
register FH will indicate the first free address in FHEAP.

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 7

push cell X1 % X1 : loop;
set sort X1; loop % X1 : loop;
push cell X2 % X2 : a;
set sort X2; a % X2 : a;
set feature X2; 1;X1 % X2:1 = X1;
set feature X1; 1;X2 % X1:1 = X2:

Figure 4 Code for query OSF term X : loop(a(X))
Going back to our OSF term 1, its flattened form can be directly translated into the abstract
machine code shown in Figure 5.

The effect of these instruction is described in Figure 6, so that, when executed, the code of
Figure 5 will build the heap representation shown in Figure 1. The add feature operation
(Figure 7) installs a new feature in a table, allocating a new table if necessary.

3 Compiling program terms

Now that we know how to compile an OSF term query into executable code that will build
its correct representation in memory, we can tackle the problem of generating code for a
program; i.e., another OSF term to be unified with the query already built. Let us recall briefly
the instructions used in the WAM to compile a program term. For simplicity, we will just
focus on the general purpose instructions get structure f=n;Xi, unify variable Xi

and unify value Xi, and not worry about their specialized versions for constants and lists.

These basic instructions can work essentially in two modes:� read mode---this is the default mode, in which the instructions check that the term on the
heap matches the program term;� write mode---this is the mode in which the instructions build on the heap a copy of (a
portion of) the program term, binding a variable in the query term.

Taking advantage of the sequential and contiguous representation of the argument of a functor
in memory, these instructions use a specialized register S (next subterm) together with a global
mode flag to switch back and forth from one mode to the other. The get structure f=n;Xi

instruction is in charge of this switching: it always checks if the memory location indicated
by Xi contains a structure or a variable. If it finds a structure, it sets the mode flag to read
and initializes S to the first subterm in the heap. The instructions following it in sequence, one
unify instruction per subterm in the order they come, will then unify what S points to in the
heap with the portion of the program term encoded by the instruction, and then increment S.
If, on the other hand, get structure f=n;Xi finds a variable on the heap, it switches the

Technical Note No. 7 December 1993

8 Hassan Aı̈t-Kaci and Roberto Di Cosmo

push cell X1 % X1 : person
set sort X1; person % X1 : person
push cell X2 % X2 : id
set feature X1; name;X2 % X1:name = X2

set sort X2; id % X2 : id
push cell X3 % X3 : string
set feature X2; first;X3 % X2:first = X3
set sort X3; string % X3 : string
push cell X4 % X4 : string
set feature X2; last;X4 % X2:last = X4
set sort X4; string % X4 : string
push cell X5 % X5 : person
set feature X1; spouse;X5 % X1:spouse = X5
set sort X5; person % X5 : person
push cell X6 % X6 : id
set feature X5; name;X6 % X5:name = X6

set sort X6; id % X6 : id
set feature X6; last;X4 % X6:last = X4
set feature X5; spouse;X1 % X5:spouse = X1:

Figure 5 Code for query OSF term (1)

push cell Xi � HEAP[H]:CREF H;
HEAP[H]:FTAB NIL;
Xi H;
increment(H)

set sort Xi; s � HEAP[Xi]:SORT s;

set feature Xi; `;Xj � add feature(HEAP[Xi]:FTAB; `;Xj)
Figure 6 Instructions for query terms

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 9

procedure add feature(table : address; feature : symbol; value : address);
begin

if table = NIL
then

begin
FHEAP[FH] new table;
table FH;
increment(FH)

end;
put feature(table; feature; value)

end add feature;

Figure 7 The add feature operation

mode flag to write, and the same unify instructions will then build on the heap the portion
of the program term that must occur at that corresponding position (i.e., behave exactly as for
a query term). Hence, these unify instructions test the mode flag to see if they have to match
or build their bit of information on the heap.

It is clear that for this to work, two conventions must be obeyed: (1) subterm cells must follow
contiguously a functor cell on the heap and in the right order; and (2) exactly one unify
instruction per subterm must be generated, contiguously and in the same order. Neither of
these two conventions are observed in our representation and code generation. Nevertheless,
it would not be difficult to adapt the basic idea to our setting, although at a cost.

Recently, another scheme for compiling unification was devised which does not rely on
contiguity conventions, and has the advantage of being more efficient than the original
contiguity scheme. The gist of this method relies on the fact, as described in [7],4 that
the original WAM contiguity scheme generates redundant work and, therefore, inefficiency.
Indeed, every execution of a get structure f=n;Xi performs a complex test to determine
if the machine must proceed in read or write mode. Namely, it always dereferences Xi and
tests whether it is a variable or a structure, no matter where and when it is executed. As a
result, this means that if the machine enters write mode to build a large term on the heap, it
will continually and uselessly test the mode flag and dereference newly built variables just to
discover that it has to keep on writing.

To avoid this unnecessary overhead an optimization can remove redundant mode tests from
the instructions. Rather than processing terms breadth-first as done by the WAM contiguity
conventions, it is advantageous to proceed through a term depth-first. In this way, the mode
flag need not be reset for a term once set to write at its root. Two streams of instructions, a

4This method was in fact originally discovered as early as 1988 by Mohamed Amraoui, a doctoral student at
Rennes, France [5]. Amraoui’s idea, since unpublished, seems to have gone unnoticed until it was apparently
rediscovered independently by Micha Meier [7] and later optimized further by André Mariën and Bart Demoen [6].
It is the latter scheme that we shall adapt to our layout.

Technical Note No. 7 December 1993

10 Hassan Aı̈t-Kaci and Roberto Di Cosmo

write test Level; Label � if D � Level then goto Label

Figure 8 Conditional jump out of write mode

read stream and a write stream are thus generated, each adequately peppered by conditional
jumps from one to the other depending upon whether the term since the last jump into the
stream has been completely processed. A consequence of this is that different instructions must
be used for different (read or write) modes. This entails using more, albeit lighter-weight,
instructions. Moreover, these can further be arranged in such a way as to reduce tests for mode
switching to the minimum necessary. This approach can be smoothly adapted to our case, and
we will follow it in our design of the abstract machine.

A program term will be compiled into two sequences of instructions: a write sequence
consisting of exactly the same instructions used to compile a query term, and a read sequence
consisting of instruction to perform appropriate unification with the heap. The problem posed
by the depth-first organization of instructions is to insert tests and jumps properly in each
sequence. Clearly, these must be placed at the boundaries marking the code for each subterm.
They are logically where it is necessary to decide whether to carry on in the current mode
(read or write), or jump to the other stream.

Micha Meier’s instructions keep track of term boundaries using a rather complicated scheme.
André Mariën and Bart Demoen proposed a simpler and better means to do the same. Their
idea uses information given by the nesting depth of a term inside the outermost term being
compiled. A global register D will be used to indicate, at execution time, the least depth
encountered since the last stream jump. Thus, instructions ‘‘recognize’’ term boundaries by a
simple comparison test of their own (statically known) depth and the depth register D.

3.1 The write sequence

The write sequence is the simpler of the two; and this, for two reasons. Firstly, its writing
instructions are exactly the same as the code produced for compiling a query. Secondly, once
write mode is set, for a subterm this holds for all subterms underneath it. The idea is that
execution of a program term starts in read mode. Whenever, at a given depth, it is found
there that a subterm must be built, the register D is set to that depth and control jumps to
the write subsequence corresponding to that term. Control will know when to return to
the read sequence as soon as it reaches write instructions pertaining to a lesser level than
the one indicated by D. Therefore, the appropriate place to test for a jump out of a write
sequence is immediately after the last instruction corresponding to a subterm. This is achieved
by placing the instruction write test Level; Label shown in Figure 8 at the end of the code
sequence for each subterm of depth Level. The label Label is the address of the first instruction
in the code of the read stream which corresponds to the next appropriate subterm where to
resume in read mode. Namely, that of the next subterm of depth lower or equal to that of the

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 11

subterm just written.

3.2 The read sequence

Now, regarding the read sequence of a program term, its instructions will need to perform
the following operations on the representation on the term built on the heap, depending on the
information found on the heap:� refine the sort of a HEAP cell;� access a feature in the feature table of a HEAP cell; or,� perform unification on two terms.

In addition, it will need to test when and where to jump to the write sequence. Jumping
out of the read sequence to the write sequence must be done whenever it is found that a
subterm must be built. Therefore these jump tests must be carried out before entering the code
sequence corresponding to a subterm.

To understand the instructions that perform this, it is important to remember that the Prolog
term’s distinction between a variable and a structure is no longer appropriate for OSF terms.
Here, a term is made of uniform structures, all built of nodes (the cells in HEAP) and edges
(the tables in FHEAP). So, while Prolog code for the program must build a subterm on the
heap if the corresponding HEAP cell is a variable, in the case OSF terms, the program must
enter write mode only if the feature leading to that subterm is undefined. This is indeed the
only time where a new structure must be created.

Now, testing the existence of a feature is as expensive as accessing it. Therefore, there is no
point in using a single abstract instruction to perform the test: it is more effective to embed
such test in all the instructions that access a feature.

Under these considerations, the instructions used by an OSF program term in read mode are
the following:� intersect sort Xi; s� test feature Xi; `;Xj; Level; Label� unify feature Xi; `;Xj

The intersect sort Xi; s instruction attempts to refine the sort of the HEAP cell indicated
by Xi by intersecting it with s.

The test feature Xi; `;Xj; Level; Label instruction checks whether theHEAP cell indicated
by Xi has feature `. If it does, then Xj is set to point to its value. Otherwise, it causes a jump
to the write sequence at the appropriate Label and with the appropriate Level to build the
corresponding subterm (i.e., always a set sort Xj; s). Therefore, when the write sequence
terminates, Xj will point to the root of this newly built subterm.

Technical Note No. 7 December 1993

12 Hassan Aı̈t-Kaci and Roberto Di Cosmo

The unify feature Xi; `;Xj instruction also tests for the existence of feature ` in the feature
table of Xi. However, whereas test feature initializes Xj with a jump to the write
sequence and back, unify feature assumes that Xj already points to a structure on the
heap. Hence, this instruction is used rather thantest feature if and only ifXj is guaranteed
to be initialized (i.e., if it has already occurred in a preceding instruction in this sequence). If
feature ` is not part of those of Xi, then it is added with the cell pointed to by Xj as value.
Otherwise, if ` does exist for Xi, it calls a full OSF unification procedure on Xi and Xj.

As for an example, refer to Figure 9. It shows the code generated using the method we just
described for the OSF term (1) when compiled as a program. There is a subtle remark to be
made here regarding the use of set instructions in the write sequence of a program code.
As we explained, the task that is carried out by that sequence is exactly the same term-building
work as the instructions of a query term---hence the use of the same instructions. In a query,
however, it is safe for set feature Xi; `;Xj to assume that the heap cell at address Xi is
not bound (since necessarily just created by a set sort). This is no longer the case when
set feature Xi; `;Xj is used in the code of a program (since execution may come to it with
a jump from a read instruction). Therefore, the effect of set feature given by Figure 6 is
not quite correct when used in the code for program terms. It is simple to correct it, as shown
in Figure 10, using the operation deref (defined in Figure 11) to follow dereference pointers
created by binding HEAP cells to other HEAP cells.

The effect of read sequence instructions is summed up in Figure 12. The unify feature
instruction may need to perform a full-fledged OSF term unification. This procedure is given
in Figure 13. It uses a push down list (PDL) as in the WAM. The difference is that sort
intersection is used instead of comparison of cell tags and equality of functors, and unification
of subterms depends on gathering together the relevant features present in both terms. The
former is done thanks to the ^ operation assumed defined on the (representation of) sorts, and
the latter thanks to the carry features operation given in Figure 14.

4 Optimizations

The code generation scheme we just sketched is rather naı̈ve in that it produces code that can
be immediately optimized in several ways. Indeed it is possible to identify systematically
some instructions in the generated code that either will never be executed or that performs
unnecessary work. Here we will identify superfluous instructions and explain how to recognize
them after the generation, and also how to improve the compilation scheme to simply avoid
generating them.

4.1 Uneffective code

Let us first remark that it is possible to generate intersect sort X1;> instructions, that
have no effect whatsoever. Indeed, any sort intersected with > stays the same. There is no
point then in executing such instructions. It is very easy to get rid of them after generation, but

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 13

intersect sort X1; person % X1 : person
test feature X1; name;X2; 1; W1 % X1:name = X2

intersect sort X2; id % X2 : id
test feature X2; first;X3; 2; W2 % X2:first = X3
intersect sort X3; string % X3 : string

R1 : test feature X2; last;X4; 2; W3 % X2:last = X4

intersect sort X4; string % X4 : string
R2 : test feature X1; spouse;X5; 1; W4 % X1:spouse = X5

intersect sort X5; person % X5 : person
test feature X5; name;X6; 2; W5 % X5:name = X6

intersect sort X6; id % X6 : id
unify feature X6; last;X4 % X6:last = X4

R3 : unify feature X5; spouse;X1 % X5:spouse = X1

R4 : jump W6 % (skip write code)
: push cell X1 % X1 : person

set sort X1; person % X1 : person
W1 : push cell X2 % X2 : id

set feature X1; name;X2 % X1:name = X2

set sort X2; id % X2 : id
W2 : push cell X3 % X3 : string

set feature X2; first;X3 % X2:first = X3

set sort X3; string % X3 : string
write test 2; R1 %

W3 : push cell X4 % X4 : string
set feature X2; last;X4 % X2:last = X4

set sort X4; string % X4 : string
write test 2; R2 %
write test 1; R2 %

W4 : push cell X5 % X5 : person
set feature X1; spouse;X5 % X1:spouse = X5

set sort X5; person % X5 : person
W5 : push cell X6 % X6 : id

set feature X5; name;X6 % X5:name = X6

set sort X6; id % X6 : id
W5bis : set feature X6; last;X4 % X6:last = X4

write test 3; R3 %
write test 2; R3 %

W5ter : set feature X5; spouse;X1 % X5:spouse = X1

write test 2; R4 %
write test 1; R4 %
write test 0; R4 %

W6 : %

Figure 9 Code for program OSF term (1)

Technical Note No. 7 December 1993

14 Hassan Aı̈t-Kaci and Roberto Di Cosmo

set feature Xi; `;Xj � add feature(HEAP[deref (Xi)]:FTAB; `;Xj)
Figure 10 Modified set feature instruction

function deref (a : address) : address;
begin

b HEAP[a]:CREF;
if a = b

then return a
else return deref (b)

end deref ;

Figure 11 The deref operation

intersect sort Xi; s � addr deref (Xi);
ns s ^ HEAP[Xi]:SORT;
if ns = ?

then fail true
else HEAP[Xi]:SORT ns

test feature Xi; `;Xj; Level; Label � addr deref (Xi);h found ; value i get feature(HEAP[addr]:FTAB; `);
if found

then Xj value
else

begin
D Level;
goto Label

end

unify feature Xi; `;Xj � addr deref (Xi);h found ; value i get feature(HEAP[addr]:FTAB; `);
if found

then osf unify(value;Xj)
else add feature(HEAP[addr]:FTAB; `; Xj)

Figure 12 Instructions for OSF term program read sequence

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 15

procedure osf unify(a1 : address; a2 : address);
begin

push(a1;PDL);
push(a2;PDL);
fail false;
while :empty(PDL) _ fail do

begin
d1 deref (pop(PDL));
d2 deref (pop(PDL));
if d1 6= d2

then
begin

ns HEAP[d1]:SORT^ HEAP[d2]:SORT;
if ns = ?

then fail true
else

begin
bind refine(d1; d2; ns);
if deref (d1) = d2

then carry features(d1; d2)
else carry features(d2; d1)

end
end

end
end osf unify;

Figure 13 The OSF term unification procedure

Technical Note No. 7 December 1993

16 Hassan Aı̈t-Kaci and Roberto Di Cosmo

procedure carry features(d1; d2 : address);
begin

for h ` ; v1 i in HEAP[d1]:FTAB do
beginh found ; v2 i get feature(HEAP[d2]:FTAB; `);

if found
then

begin
push(v1;PDL);
push(v2;PDL)

end
else add feature(HEAP[d2]:FTAB; `; v1)

end
end carry features;

Figure 14 The carry features operation

procedure bind refine(d1; d2 : address; s : sort);
begin
HEAP[d1]:CREF d2;
HEAP[d1]:SORT s

end bind refine;

Figure 15 The bind refine operation

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 17

it is even easier to avoid generating them, so this is the solution we will choose.

4.2 Unreachable code

The instruction sequence that builds a new term assumes that it has to do so from scratch. But,
when executing code corresponding to a program term, one knows that at least the root of the
term is already on the heap and will never need to be built. Therefore, the push cell and
set sort instructions of the write sequence relative to X1 will never be executed. They can
hence be safely eliminated. We simply erase the two push cell X1 and set sort X1; s
from the write sequence, or, more properly, avoid generating such instructions by skipping
X1 : s tokens and not generating the push cell X1 for X1:l = Xi tokens.

4.3 Unreachable labels and redundant write tests

When in the read sequence we generate a unify feature Xj; l;Xi instruction, we are sure
that we will never need to build the subterm relative to Xj alone. Indeed, during execution,
either we reach this unify instruction, and in that case we do not jump to the write sequence,
or we jump to the write sequence before reaching this unify instruction, in correspondence
with an external subterm Xh at lower depth containing Xi, and in that case we will not have to
jump back to read mode after generating Xi, but after generating Xh. In either case,� we never enter write mode at the label for Xi, so such label is unused and redundant;� we never exit from the write sequence at the depth of Xi, but at a lower depth, so the write

test generated for Xi will never succeed and is useless.

Eliminating useless labels and tests is a little harder than for the previous optimization. One
needs to check that there is no test feature involving that label, and that in the corresponding
read sequence there is no test feature involving the depth specified in the test. It is much easier
to avoid producing that code, by recognizing that Xi in the token Xj:l = Xi has already been
seen, so no label nor test must be generated for the term rooted at Xi.

4.4 Compressing chains of write tests

The easiest and most effective optimization is the possibility to compress chains of write tests
into one single write test. When generating the write code for a deeply nested term, like for
example f(g(h(l(a)))), the write tests that we must generate at the end of each subterm will
actually lie side by side, all accumulated in a chain, as shown in Figure 16.

This is because when we finish building a, we also finish building l(a), and h(l(a)) and all
the more external terms where a appears as a rightmost subterm. Here, the sequence of tests
can be compressed in just one test on the smallest depth d: this sequence of tests tells us to
jump to Ri is the depth register is greater than or equal to d + 4, or d + 3, : : : or d, i.e. we must
jump if it is greater or equal to d.

Technical Note No. 7 December 1993

18 Hassan Aı̈t-Kaci and Roberto Di Cosmo

write test d + 4; Ri % end of subterm rooted at a
write test d + 3; Ri % end of subterm rooted at l
write test d + 2; Ri % end of subterm rooted at h
write test d + 1; Ri % end of subterm rooted at g
write test d; Ri % end of subterm rooted at f

Figure 16 Optimized for program term f (g(h(l(a))))
This condition is most easily recognized after code generation, as a chain is clearly identifiable
locally, but also in phase of code generation one can just pass on a flag identifying the leftmost
subterm, to inhibit generation of write tests for it.

Figure 17 shows the result of applying all the above optimizations to the code of Figure 9.

This concludes our description of our basic compilation scheme for OSF term unification. This
scheme can be improved much further to exploit several particular situations as shown in [8].

December 1993 Digital PRL

Compiling Order-Sorted Feature Term Unification 19

intersect sort X1; person % X1 : person
test feature X1; name;X2; 1; W1 % X1:name = X2

intersect sort X2; id % X2 : id
test feature X2; first;X3; 2; W2 % X2:first = X3
intersect sort X3; string % X3 : string

R1 : test feature X2; last;X4; 2; W3 % X2:last = X4

intersect sort X4; string % X4 : string
R2 : test feature X1; spouse;X5; 1; W4 % X1:spouse = X5

intersect sort X5; person % X5 : person
test feature X5; name;X6; 2; W5 % X5:name = X6

intersect sort X6; id % X6 : id
unify feature X6; last;X4 % X6:last = X4

R3 : unify feature X5; spouse;X1 % X5:spouse = X1

R4 : jump W6 % (skip write code)
: push cell X1 % Unreachable code

set sort X1; person % Unreachable code
W1 : push cell X2 % X2 : id

set feature X1; name;X2 % X1:name = X2

set sort X2; id % X2 : id
W2 : push cell X3 % X3 : string

set feature X2; first;X3 % X2:first = X3

set sort X3; string % X3 : string
write test 2; R1 %

W3 : push cell X4 % X4 : string
set feature X2; last;X4 % X2:last = X4

set sort X4; string % X4 : string
write test 2; R2 % Redundant test: nested subterms
write test 1; R2 %

W4 : push cell X5 % X5 : person
set feature X1; spouse;X5 % X1:spouse = X5

set sort X5; person % X5 : person
W5 : push cell X6 % X6 : id

set feature X5; name;X6 % X5:name = X6

set sort X6; id % X6 : id
set feature X6; last;X4 % X6:last = X4

write test 3; R3 % Redundant test: nested and unreachable subterm
write test 2; R3 %
set feature X5; spouse;X1 % X5:spouse = X1

write test 2; R4 % Redundant test: nested and unreachable subterm
write test 1; R4 % Redundant test: nested subterms
write test 0; R4 % Redundant test: end of write code

W6 : %

Figure 17 Optimized for program OSF term (1)

Technical Note No. 7 December 1993

20 Hassan Aı̈t-Kaci and Roberto Di Cosmo

References

1. Hassan Aı̈t-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press,
Cambridge, MA (1991).

2. Hassan Aı̈t-Kaci. An introduction to LIFE---programming with logic, inheritance, func-
tions, and equations. In Dale Miller, editor, Proceedings of the International Symposium
on Logic Programming, pages 52--68, Cambridge, MA (October 1993). MIT Press.

3. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison,
France (June 1991).

4. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. Journal of Logic
Programming, 16(3-4):195--234 (July-August 1993).

5. Mohamed Amraoui. Une Expérience de Compilation de Prolog II sur MALI. Thèse de
doctorat, Université de Rennes I, France (January 1988).

6. André Mariën and Bart Demoen. A new scheme for unification in WAM. In Vijay Saraswat
and Kazunori Ueda, editors, Logic Programming, Proceedings of the 1991 International
Symposium, pages 257--271, Cambridge, MA (1991). MIT Press.

7. Micha Meier. Compilation of compound terms in Prolog. In Saumya Debray and Manuel
Hermenegildo, editors, Logic Programming, Proceedings of the 1990 North American
Conference, pages 63--79, Cambridge, MA (1990). MIT Press.

8. Richard Meyer. Compiling life. PRL Technical Note 8, Digital Equipment Corporation,
Paris Research Laboratory, Rueil-Malmaison (December 1993).

9. David H. D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI
International, Menlo Park, CA (October 1983).

December 1993 Digital PRL

PRL Technical Notes

The following documents may be ordered by regular mail from:

Librarian -- Technical Notes
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line is help to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server.

Technical Note 1: Wild-LIFE, a User Manual. Hassan Aı̈t-Kaci and Richard Meyer. (being
revised).

Technical Note 2: Wild-LIFE, an Implementation Manual. Richard Meyer. (being revised).

Technical Note 3: Characterising Perle0. Alan Skea. October 1990.

Technical Note 4: Perle1DC: a C++ Library for the Simulation and Generation of DECPeRLe-
1 Designs. Hervé Touati. February 1994.

Technical Note 5: TiGeR Version 1.0 User Guide. Olivier Coudert, Jean-Christophe Madre,
and Hervé Touati. January 1994.

Technical Note 6: Tgr Version 1.0 Reference Manual. Olivier Coudert, Jean-Christophe
Madre, and Herve Touati. August 1993.

Technical Note 7: Compiling Order-Sorted Feature Term Unification. Hassan Aı̈t-Kaci and
Roberto Di Cosmo. December 1993.

Technical Note 8: Compiling LIFE. Richard Meyer. December 1993.

7
C

o
m

p
ilin

g
O

rd
er-S

o
rted

F
eatu

re
T

erm
U

n
ificatio

n
H

assan
A

ı̈t-K
aciand

R
oberto

D
iC

osm
o

d i g i t a l

PARIS RESEARCH LABORATORY
85, Avenue Victor Hugo

