LTFE Su Doku

Hassan Ait-Kaci

ILOG Products and Solutions
ILOG Products and Solutions

=] =]
llypli gyt
[y 1L
UTL n
(i) (L)
[ln]] |||

ILOG Research Projects
IBM Canada Ltd.

LTFE Su Doku —Qutline

» Overview
» A quick look back on L7 F&

» How is L7 F& (all that) different?

ILOG Products and Solutions
ILOG Products and Solutions

» Purely declarative Su Doku

wi » It's all different using graphs! iy
]]

» 7 E bonus: a declarative Su Doku GUI

» Epilogue

ILOG Products and Solutions

@
[T
||I|“ij
(i)
[ln]]

—OQutline

Overview

ILOG Products and Solutions

@
Iyl
||I|“ij
(L)
|||

Overview

Life is “trying things to see if they work. . .”

RAY BRADBURY

LTFE stands for: Logic
7 nheritance
J unctions
£ quations

ILOG Products and Solutions
ILOG Products and Solutions

@
(T

iih" L7 FE may be viewed as a (L7 language: iilln

Logic Programming over (logically and functionally)
constrained order-sorted labeled graphs

Overview—ctd.

N.B.: L7 F& does not have “alldiff” as a built-in constraint!

However... LT7FE&’s features enable a surprisingly efficient
*alldiff” purely declaratively thanks to:

» L7 FE’s bullt-in constrained data-structure—the -term

ILOG Products and Solutions
ILOG Products and Solutions

» [FE’s control strategy—(constraint) residuation

iyl e
I I
||I|“ii ||I|“ii

0
(i) (L)
[ln]] |||

Residuation: Functional evaluation that proceeds as
far as possible, suspending upon unbound variables
and resuming as they get further instantiated

—OQutline

ILOG Products and Solutions
ILOG Products and Solutions

A quick look back on

® ®
|||||||| ||||||||
J1s- Jus-
III 'iil III 'iil
(i) (L)
[ln]] |||

A quick look back on L7F&

Life can only be understood looking backwards
but it must be lived forwards.

SPREN KIERKEGAARD

» L7FE1s a CLP language that may be loosely defined as
“Prolog over)-terms”

» A -term Is a rooted graph whose nodes are typed with
sorts, and whose arcs are labelled by feature symbols

ILOG Products and Solutions
ILOG Products and Solutions

wi B A p-term’s syntax extends that of a Prolog term: Iyl

])
" —f(a,X,g(X)) —same as f (3=>g(1=>X), 1=>a, 2=>X) "

—person(name => "bozo", dob => date(year => 1980))
—add(X,Y,result => X+Y)

—X:person(spouse => person(spouse => X))

A quick look back on L7F&

» A i-term has no arity —can have no or many features

» Unifying the ¢-terms f (a,3=>c) and £ (a,b) succeeds and
results in £ (a,b,c).

» Unifying the ¢-term:
person(P, dob => date(month => may))

ILOG Products and Solutions
ILOG Products and Solutions

i

1

II|||"_
uyy

iih" with the -term: ol
flul] flou]]

person(dob => date(year => 1980)),
succeeds with the -term:
person(P, dob => date(month => may, year => 1980)).

A quick look back on LTZFE&

» Everything In LZF£ 1S a y-term

» [/ FE's predicates are:

—defined by Horn rules over -terms
—invoked using unification

—non-deterministic : they use top-down left-right back-
tracking (i.e., like Prolog)

ILOG Products and Solutions
ILOG Products and Solutions

i“ln » /7 FEs functions are: i“ln

—defined by rewrite rules over y-terms

—invoked using matching

—deterministic : they use top-down committed choice
(I.e., functions do not backtrack)

ILOG Products and Solutions

gl
[TH]
||||“i|
(i)
[ln]]

A quick look back on L7F&

» L7 FE’s logical variables are typed—e.g., X:int

» No difference between type and value—all are sorts
» Sorts are partialy ordered in a sort hierarchy

» The top sortis ©; the bottom sortis {}

» If we declare: apple <| fruit. apple <| food. then,
the query: X = food, X = fruit? yields: X = apple

» If we also declare: banana <| fruit. banana <| food.
then, the query backtracks to yield: X = banana

» Disjunctive sort : X:{ breakfast ; lunch ; dinner }

ILOG Products and Solutions

=]
|I||;:!!
II!)
(L)
||||||||

A quick look back on LTZFE&

Predicate resolution and function evaluation cooperate
by residuation

» In query:
X =Y+, Y = 27

ILOG Products and Solutions

equation:
gl X =Y+l gt

5] is a residual constraint (or residuation) i)

ILOG Products and Solutions

» Executing Y = 27 awakens the residuation

» Resulting in fully resolved binding: ¥ = 3, Vv = 2

A quick look back on LTZFE&

Feature projection extracts subterms

» Dyadic function . /2:

m1starg: a y-term
m 2nd arg: a feature—I.e., position or symbol
m returns: the subterm rooted at specified feature

ILOG Products and Solutions
ILOG Products and Solutions

That Is:

gl
I

||I|“ii
[l
|||

gl
I

||I|“ii
[l
[ln]]

» N.B.. Feature projection residuates whenever its second
argument is not ground—e.g., foo(bar => baz) .X with X
unbound

ILOG Products and Solutions

||||“ﬁ
[y
(L))
[ln]]

A quick look back on L7F&

Feature projection may have side effects! ...

» If a ¢)-term T does not have feature f, then T.f creates
the feature f for T

That is, the query:
X = foo(bar => baz), X.boo = fuz?
yields the binding:

X = foo(bar => baz, boo => fuz)

» N.B.. All (binding and feature creation) side-effects are
undone upon backtracking

ILOG Products and Solutions

il
“||::._
I|I ny

ILOG Products and Solutions

@
[T
||I|“ij
(i)
[ln]]

—OQutline

How IS

(

that)

ILOG Products and Solutions

@
ull
”'||---
[ty

How is LZF& (all that) different ?

Life is the sum of all your choices.

ALBERT CAMUS

At first, L7 F¢ feels like Prolog

Same syntax for Horn clauses (‘:-/2°,*,/2’, %, /2"), logical
variables, lists, ... ; e.g.,

ILOG Products and Solutions
ILOG Products and Solutions

i i
1 n
i |I|||"_
i)
1

H'Ilii append ([],L,L). iii!ﬂl

[l append([HlT],L,[H|R]) ¢ - append(T,L,R).

can be used exactly as in Prolog!

How is LZF& (all that) different ?—ctd.

But, £LZF¢& also differs from Prolog

Arity Is not constrained ; e.g.,

A = foo(a=>1, b => 2),
B = foo(b => X, ¢ => 3),

ILOG Products and Solutions
ILOG Products and Solutions

A=B7~7
wi succeeds, resulting in the solved form: iyl
))
A = foo(a=>1, b =>X, ¢ => 3),
B = A,
X = 2.

How is LZF& (all that) different ?—ctd.

LTFE's user-defined functions are specified as rewrite
rules using infix operator ‘->/2"

length([]) -> 0.
length([_IT]) -> 1 + length(T).

and use them in relational clauses:

ILOG Products and Solutions
ILOG Products and Solutions

) has_even_length(L:1list) :- length(L) mod 2 = 0.)
il il

[l [l
[l Then | [l

has_even_length([a,b])?

succeeds as expected.

How is LZF& (all that) different ?—ctd.

Similarly:
has_even_length([a,L:1ist])?
creates the residuation:

(1 + length(L:1list)) mod 2 = 07

ILOG Products and Solutions
ILOG Products and Solutions

ol with incomplete solution: uof

[l [l
[l [l
L = 1ist™

L7 FE Indicates an incomplete solution with as many tildas
(“~™ as it has pending residuations

How is LZF& (all that) different ?—ctd.

metaprogramming allows reasoning about
features using feature projection

For instance, If:

ILOG Products and Solutions

A = foo(a=>1, b=>2, c =>2)

ILOG Products and Solutions

i then: Iy

[l [l
fll] flnnl]
X=9{a;b; cl}, ALX=27

succeeds first with: X = b

then, upon backtracking, with: X = ¢

—OQutline

ILOG Products and Solutions
ILOG Products and Solutions

Purely declarative

® ®
[T Iyl
||I|“ij ||I|“ij
(i) (L)
[ln]] |||

Purely declarative Su Doku

The art of life is the art of avoiding pain.

THOMAS JEFFERSON

% Specify the Su Doku grid:
sudoku(@(@(X11,...,X19), ..., @(X91,...,X99)))
:— % The rows constraints:

alldiff (X11,...,X19), ..., alldiff(X91,...,X99),
iﬁﬁ % The columns constraints: mﬁ
i alldiff(X11,...,X91), ..., alldiff(x19,...,X99), ™
/%» The square constraints:

alldiff(X11,...,X33), ..., alldiff(X77,...,X99).

ILOG Products and Solutions
ILOG Products and Solutions

Purely declarative Su Doku

%» Specify the cell labels:
labels(@(@(X11,...,X19), ..., @(X91,...,X99)))
:— X11 = label, ..., X19 label,

°

X91 = label, ..., X99 label.

ILOG Products and Solutions
ILOG Products and Solutions

% Generate the cell labels:
i label —> { 1 ; ... ; 9 }. i
flonl

e e
Tyl Nyl
|'|||-- I||"'_
1] o ||

%» The main predicate:
sudoku solver(G) :- sudoku(G), labels(G).

ILOG Products and Solutions

gl
il
||||I:||
[l
[ln]]

—OQutline

It's all different using graphs!

ILOG Products and Solutions

gl
il
||||“||
[l
|||

It's all different using graphs!

If A equals success, then the formulais: A= X +Y + Z,
where X is work, Y is play, and Z is keep your mouth shut.

ALBERT EINSTEIN

alldiff (X1,X2,X3)
:— assign(A,X1,1), assign(A,X2,2), assign(A,X3,3).

ILOG Products and Solutions
ILOG Products and Solutions

where:

wi p A denotes the global assignment i
(L)) (A
flwnl]

™ p X denotes the constrained variable

» I denotes the assignment’s unique id

assign(A,X,I) :- A.X = I.

It's all different using graphs!

For example:

show (X1,X2,X3)

;- alldiff (X1,X2,X3),
X1 = a; b, % domain of X1
X2 = b ; c, % domain of X2

ILOG Products and Solutions
ILOG Products and Solutions

X3 = a; d. 7 domain of X3

i Then, invoking show (X1,%2,X3) 7 yields, successively: i
))
o o

X1 =a, X2 = b, X3 = d.

X1 =a, X2 = ¢, X3 = d.

X1 =Db, X2 = ¢, X3 = a.

X1 =Db, X2 = ¢, X3 = d.

Purely declarative Su Doku

Test and generate:

sudoku solver(G) :- sudoku(G), labels(QG).

ILOG Products and Solutions
ILOG Products and Solutions

VS.

! i
"'II:.. "'II:..
e Iy
[l1H]) [l
[E] (]

Generate and test:

bad sudoku solver(G) :- labels(G), sudoku(QG).

ILOG Products and Solutions

ﬁ
1]

I||||,,_
(T

It's all different using graphs!

alldiff(X1,X2,X2)

ILOG Products and Solutions

gl
il
||||“||
[l
|||

ILOG Products and Solutions

=]
ull
Is-

It's all different using graphs!

X1: a X2 :

NN
~
NN
~

ILOG Products and Solutions

ﬁ
1

I||||,,_
[ty

ILOG Products and Solutions

ﬁ
1]

I||||,,_
(T

It's all different using graphs!

X1: a X2: b X3 :

ILOG Products and Solutions

gl
il
||||“||
[l
|||

It's all different using graphs!

ILOG Products and Solutions
ILOG Products and Solutions

il il

1] 1

||||“._ ”I|,,..
| [ty

b 1. 2 3

.
.
.
. .
,,,,,,
. .
. .
.....
.....
........
"""""""""
. .

........................

—OQutline

ILOG Products and Solutions

bonus: a declarative GUI

ILOG Products and Solutions

@
Iyl
||!|lii'|
(L)
|||

@
[T
||I|“ij
(i)
[ln]]

| ILOG Products and Solutions

LTFE bonus: a declarative Su Doku GUI

Life is just a mirror, and what you see out there,
you must first see inside of you.

WALLY ‘FAMOUS’ AMOS

A LTFE Su Doku game GUI display

| ILOG Products and Solutions

ILOG Products and Solutions

gl
il
||||I:||
[l
[ln]]

Epilogue

eventually succeeds!

In life, the earlier one falls, the earlier one

Altair EI-Ghoul

ILOG Products and Solutions

ﬁ
1

I||||,,_
[ty

32

ILOG Products and Solutions

gl
[TH]
||||“i|
[l
[ln]]

Thank You For Your Attention!

ILOG Products and Solutions

il
“||i:._
I|I ny

