
LIFE Su Doku

Hassan Aı̈t-Kaci

ILOG Research Projects
IBM Canada Ltd.

1

LIFE Su Doku —Outline

◮ Overview

◮ A quick look back on LIFE

◮ How is LIFE (all that) different?

◮ Purely declarative Su Doku

◮ It’s all different using graphs!

◮ LIFE bonus: a declarative Su Doku GUI

◮ Epilogue

2

LIFE Su Doku —Outline

Overview

3

Overview

Life is “trying things to see if they work. . . ”
RAY BRADBURY

LIFE stands for: Logic
Inheritance
F unctions
E quations

LIFE may be viewed as a CLP language:

Logic Programming over (logically and functionally)
constrained order-sorted labeled graphs

4

Overview—ctd.

N.B.: LIFE does not have “alldiff ” as a built-in constraint!

However. . . LIFE ’s features enable a surprisingly efficient
“alldiff ” purely declaratively thanks to:

◮ LIFE ’s built-in constrained data-structure—the ψ-term

◮ LIFE ’s control strategy—(constraint) residuation

Residuation: Functional evaluation that proceeds as
far as possible, suspending upon unbound variables
and resuming as they get further instantiated

5

LIFE Su Doku —Outline

A quick look back on LIFE

6

A quick look back on LIFE

Life can only be understood looking backwards
but it must be lived forwards.

SØREN KIERKEGAARD

◮ LIFE is a CLP language that may be loosely defined as
“Prolog over ψ-terms”

◮ A ψ-term is a rooted graph whose nodes are typed with
sorts, and whose arcs are labelled by feature symbols

◮ A ψ-term’s syntax extends that of a Prolog term:

– f(a,X,g(X)) — same as f(3=>g(1=>X), 1=>a, 2=>X)

– person(name => "bozo", dob => date(year => 1980))

– add(X,Y,result => X+Y)

– X:person(spouse => person(spouse => X))

7

A quick look back on LIFE

◮ A ψ-term has no arity —can have no or many features

◮ Unifying the ψ-terms f(a,3=>c) and f(a,b) succeeds and
results in f(a,b,c).

◮ Unifying the ψ-term:

person(P, dob => date(month => may))

with the ψ-term:

person(dob => date(year => 1980)),

succeeds with the ψ-term:

person(P, dob => date(month => may, year => 1980)).

8

A quick look back on LIFE

◮ Everything in LIFE is a ψ-term

◮ LIFE ’s predicates are:

– defined by Horn rules over ψ-terms
– invoked using unification
– non-deterministic : they use top-down left-right back-

tracking (i.e., like Prolog)

◮ LIFE ’s functions are:

– defined by rewrite rules over ψ-terms
– invoked using matching
– deterministic : they use top-down committed choice

(i.e., functions do not backtrack)

9

A quick look back on LIFE

◮ LIFE ’s logical variables are typed—e.g., X:int

◮ No difference between type and value—all are sorts

◮ Sorts are partialy ordered in a sort hierarchy

◮ The top sort is @; the bottom sort is {}

◮ If we declare: apple <| fruit. apple <| food. then,
the query: X = food, X = fruit? yields: X = apple

◮ If we also declare: banana <| fruit. banana <| food.

then, the query backtracks to yield: X = banana

◮ Disjunctive sort : X:{ breakfast ; lunch ; dinner }

10

A quick look back on LIFE

Predicate resolution and function evaluation cooperate
by residuation

◮ In query:

X = Y+1, Y = 2?

equation:

X = Y+1

is a residual constraint (or residuation)

◮ Executing Y = 2? awakens the residuation

◮ Resulting in fully resolved binding: X = 3, Y = 2

11

A quick look back on LIFE

Feature projection extracts subterms

◮ Dyadic function ./2:

� 1st arg: a ψ-term

� 2nd arg: a feature—i.e., position or symbol

� returns: the subterm rooted at specified feature

That is:

T.f = T’ iff T = s(..., f => T’, ...)

◮ N.B.: Feature projection residuates whenever its second
argument is not ground—e.g., foo(bar => baz).X with X

unbound

12

A quick look back on LIFE

Feature projection may have side effects! . . .

◮ If a ψ-term T does not have feature f, then T.f creates
the feature f for T

That is, the query:

X = foo(bar => baz), X.boo = fuz?

yields the binding:

X = foo(bar => baz, boo => fuz)

◮ N.B.: All (binding and feature creation) side-effects are
undone upon backtracking

13

LIFE Su Doku —Outline

How is LIFE (all that) different ?

14

How is LIFE (all that) different ?

Life is the sum of all your choices.
ALBERT CAMUS

At first, LIFE feels like Prolog :

Same syntax for Horn clauses (‘:-/2’, ‘,/2’, ‘;/2’), logical
variables, lists, . . . ; e.g.,

append([],L,L).

append([H|T],L,[H|R]) :- append(T,L,R).

can be used exactly as in Prolog!

15

How is LIFE (all that) different ?—ctd.

But, LIFE also differs from Prolog :

Arity is not constrained ; e.g.,

A = foo(a => 1, b => 2),

B = foo(b => X, c => 3),

A = B ?

succeeds, resulting in the solved form:

A = foo(a => 1, b => X, c => 3),

B = A,

X = 2.

16

How is LIFE (all that) different ?—ctd.

LIFE ’s user-defined functions are specified as rewrite
rules using infix operator ‘->/2’:

length([]) -> 0.

length([_|T]) -> 1 + length(T).

and use them in relational clauses:

has_even_length(L:list) :- length(L) mod 2 = 0.

Then,

has_even_length([a,b])?

succeeds as expected.

17

How is LIFE (all that) different ?—ctd.

Similarly:

has_even_length([a,L:list])?

creates the residuation:

(1 + length(L:list)) mod 2 = 0?

with incomplete solution:

L = list~

LIFE indicates an incomplete solution with as many tildas
(“~”) as it has pending residuations

18

How is LIFE (all that) different ?—ctd.

metaprogramming allows reasoning about
features using feature projection

For instance, if:

A = foo(a => 1, b => 2, c => 2)

then:

X = { a ; b ; c }, A.X = 2?

succeeds first with: X = b

then, upon backtracking, with: X = c

19

LIFE Su Doku —Outline

Purely declarative Su Doku

20

Purely declarative Su Doku

The art of life is the art of avoiding pain.
THOMAS JEFFERSON

% Specify the Su Doku grid:

sudoku(@(@(X11,...,X19), ..., @(X91,...,X99)))

:- % The rows constraints:

alldiff(X11,...,X19), ..., alldiff(X91,...,X99),

% The columns constraints:

alldiff(X11,...,X91), ..., alldiff(X19,...,X99),

% The square constraints:

alldiff(X11,...,X33), ..., alldiff(X77,...,X99).

21

Purely declarative Su Doku

% Specify the cell labels:

labels(@(@(X11,...,X19), ..., @(X91,...,X99)))

:- X11 = label, ..., X19 = label,

...,

X91 = label, ..., X99 = label.

% Generate the cell labels:

label -> { 1 ; ... ; 9 }.

% The main predicate:

sudoku solver(G) :- sudoku(G), labels(G).

22

LIFE Su Doku —Outline

It’s all different using graphs!

23

It’s all different using graphs!

If A equals success, then the formula is: A = X + Y + Z,
where X is work, Y is play, and Z is keep your mouth shut.

ALBERT EINSTEIN

alldiff(X1,X2,X3)

:- assign(A,X1,1), assign(A,X2,2), assign(A,X3,3).

where:

◮ A denotes the global assignment

◮ X denotes the constrained variable

◮ I denotes the assignment’s unique id

assign(A,X,I) :- A.X = I.

24

It’s all different using graphs!

For example:

show(X1,X2,X3)

:- alldiff(X1,X2,X3),

X1 = a ; b , % domain of X1

X2 = b ; c , % domain of X2

X3 = a ; d . % domain of X3

Then, invoking show(X1,X2,X3)? yields, successively:

X1 = a, X2 = b, X3 = d.

X1 = a, X2 = c, X3 = d.

X1 = b, X2 = c, X3 = a.

X1 = b, X2 = c, X3 = d.

25

Purely declarative Su Doku

Test and generate:

sudoku solver(G) :- sudoku(G), labels(G).

vs.

Generate and test:

bad sudoku solver(G) :- labels(G), sudoku(G).

26

It’s all different using graphs!

alldiff(X1,X2,X2)

A : @

X1 : @ X2 : @ X3 : @

1 2 3

27

It’s all different using graphs!

X1 = a

A : @

X1 : a X2 : @ X3 : @

1 2 3

28

It’s all different using graphs!

X2 = b

A : @

X1 : a X2 : b X3 : @

1 2 3

29

It’s all different using graphs!

X3 = a

A : @

X1 : a X2 : b X3 : a

=

1 2 3

6=

30

LIFE Su Doku —Outline

LIFE bonus: a declarative Su Doku GUI

31

LIFE bonus: a declarative Su Doku GUI

Life is just a mirror, and what you see out there,
you must first see inside of you.

WALLY ‘FAMOUS’ AMOS

A LIFE Su Doku game GUI display

32

Epilogue

In life, the earlier one fails, the earlier one
eventually succeeds!

Altaı̈r El-Ghoul

33

Thank You For Your Attention !

