LIFE, a Natural Language
for Natural Language

Hassan Ait-Kaci
Patrick Lincoln

1989




Publication Notes

This article is a revised version of MCC Technical Report Ne@mACA-ST-074-88, Micro-
electronics and Computer Technology Corporation, 3500 ®akones Center Drive, Austin,
TX 78759, USA. This present version has been published ineaiagpissue on Unification
Grammars off. A. Informations, revue internationale du traitementauatique du langage
(volume 30, number 1-2, 1989 pages 37-67), an internatjonahal on computational lin-
guistics (ISSN 0039-8217) published by tientre Nationational de la Recherche Scientifique
and theEcole Normale Supérieure de Saint-Clo&dance.

The authors’ current addresses are;

Hassan Ait-Kaci Patrick Lincoln

Digital Equipment Corporation Computer Science Department
Paris Research Laboratory Margaret Jacks Hall

85, avenue Victor Hugo Stanford University

92563 Rueil-Malmaison Cedex Stanford, CA 94305

France USA

hak@r! . dec. com i ncol n@ol ya. st anf ord. edu



Abstract

Experimenting with formalisms for Natural Language Prabeg involves costly programming
overhead in conventional computing idioms, even as “adedhes Lisp or Prolog. LIFE
(Logic, Inheritance, Functions, and Equations) is a pnognéng language which incorporates
an elegant type system which supports a powerful facilitgfouctured type inheritance. Also,
LIFE reconciles styles from Functional Programming and icdgrogramming by implicitly
delegating control to an automatic suspension mechanidns allows interleaving interpre-
tation of relational and functional expressions which #yebstract structural dependencies
on objects. Together, these features provide a convennehversatile power of abstraction
for very high-level expression of constrained data stmegu Computational linguistics is a
discipline where such abstractions are particularly useftherefore, obvious convenience
is offered by LIFE for experimentation to the computatioliraduist, who becomes relieved
from burdensome yet extrinsic programming complicatiolige presently attempt to show
how LIFE may be a natural computer language for processitigalshuman languages.
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LIFE, a Natural Language 1

We modern Europeans (...) have lost the ability to think igéa
dimensions. We need a changé.gbensgefuljbur feeling for
life]. It is my hope that the enormous perspective of human
growth which has been opened to us by [this] research (..y) ma
serve to contribute in some small measure to its development

Leo Frosenius, Volksmarchen und Volksdichtungen Afrikas.

1 Introduction

LIFE, so-denominated fok ogic, I nheritance,Functions, andequations, is a prototype
programming language. It is the product to date of researelantto explore whether
programming styles and conveniences evolved as part oftiewat, Logic, and Object-
Oriented Programming could be somehow brought togetherdwist in a single programming
language. Being aware that not everything associateds$e theee approaches to programming
is either well-defined or even uncontroversial, we have besy careful laying out some
clear foundations on which to build LIFE. Thus, LIFE emergeithe synthesis of three
computational atomic components which we refer tduaction-orientedrelation-oriented
andstructure-orientegdeach being an operational rendition of a well-defined ugdey model.

Formalisms for linguistic analysis have emerged, based am ldlause logic [20], frame
unification [23],A-calculus [25], each proving itself adequate for particalspects of Natural
Language Processing (NLP). LIFE happens to reconcile @&sahapproaches, therefore
offering a unique experimental tool for the computatioringlist. To be sure, there are
other efforts attempting to tailor programming languaggpijcally logic programming, for
linguistic analysis. (As has been pointed out in [12], orslerted logic is quite convenient
for parsing.) Among those known to us CIL [17, 18] is one th@nhes close to LIFE’s spirit
in that it combines partial features of Log In [3] (see Sett®2.2) with delayed evaluation
handled with an explicifreezemeta-predicate borrowed from Prolog-11 [11]. CIL's consits
are called Partially Specified Terms (PST’s) which are dyabtie same as feature matrices
used in Unification Grammars [23], and are a strict particalse of Log In'sy)-terms. To
our knowledge PST’s do not accommodate disjunctive coastynor do they use a type
hierarchy, let alone type definitions. In addition, judgiingm the literature, we find CIL
constructs rather unnecessarily convoluted as opposegrtsimple LIFE style, although the
reader is encouraged to make an opinion for herself. On thgramming language side, there
is a growing multitude dealing with integrating logic anch@itional programming. However,
none of them worries about bringing in frame-like unificatior inheritance, and few have
higher-order functions. We refer the reader to [6] for a syrof prominent approaches.
LIFE stands apart as the only formalism we know which encasga such a breadth of
functionality.

This document consists essentially of two parts: an infbowarview of LIFE (Section 2)
and a particular experiment applying LIFE to linguistic isés meant as an illustration of its
adequacy (Section 3). For a formal semantics of LIFE, thdeess referred to [9] where all
aspects of LIFE are given a rigorous mathematical meaning.
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2 Hassan Ait-Kaci and Patrick Lincoln

2 The Chemistry of LIFE

LIFE is a trinity. The function-oriented component of LIFE directly derived from
functional programming languages standing on foundatimitse A-calculus like HOPE [10],
SASL [26], ML [13], or Miranda [27]. The convenience offerby this style of programming
is essentially one in which expressions of any order are-dlets objects and computation
is determinate. The relation-oriented component of LIFegsentially one inspired by the
Prolog [24] language, taking its origin in theorem-proviag Horn clause calculus with a
specific and well-defined control strategy—SLD-resolutiofo a large extent, this way of
programming gives the programmer the power of expressingram declaratively using
a logic of implication rules which are then procedurallyergreted with a simple built-in
pattern-oriented search strategy. Unification of firstesrgatterns used as the argument-
passing operation turns out to be the key of a quite uniquéaretofore unheard gfenerative
behavior of programs, which could construct missing infation as needed to accommodate
success. Finally, the most original part of LIFE is the stmoe-oriented component which
consists of a calculus of type structures—thealculus [2, 4]—and rigorously accounts for
some of the (multiple) inheritance convenience typicatlyrid in so called object-oriented
languages. An algebra of term structures adequate for gresentation and formalization of
frame-like objects is given a clear notion of subsumptidarpretable as a subtype ordering,
together with an efficient unification operation interpldéaas type intersection. Disjunctive
structures are accommodated as well, providing a rich aedncpattern calculus for both
functional and logic programming.

Under these considerations, a natural coming to LIFE hasistau thus in first studying
pairwise combinations of each of these three operatiormstoMetaphorically, this means
realizing edges of a triangle (see Figure 2) whose vertiardavbe some essential operational
renditions of, respectively-calculus, Horn clause resolution, apecalculus. (It is assumed
that the reader is familiar with the essential terminolognd anotions of functional and
logic programming.) Therefore, we shall first very brieflydaimformally describe what we
understand to be the canonical functionality found in eaetiex. Then, we shall describe
how we achieve pairwise bonding. Lastly, we shall synthethiz molecule of LIFE from the
three atomic vertices and the pairwise bonds.

2.1 The Atoms

This section gives a very brief and informal operationabart of functional programming,
logic programming, and type inheritance.

2.1.1 A-Calculus: Computing with Functions

The view taken by this way of computing is to formulate evegymputational object as
a functional expression. There are essentially two sortsuch expressions—constants and
reducible expressions. Constants may be of any order of tgpeund objects are null-order
constants (values) and abstractions are higher-ordertanaiss(functions). Typically, these
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LIFE, a Natural Language 3

Types

Functions Relations

Figure 1: The LIFE Molecule

evaluate to themselves. Reducible expressions are esfeapplications. Indeed, the only
rule of computation is3-reduction in the context of a global store of defined cortstan
Strategies of reduction consisting of whether argumengsfumction application are reduced
first or last fall into pragmatic considerations, and arelevant to this particular description.
For the sake of choice, we shall assuapglicative orderof reduction, althoughormal order
lazy or otherwise, could be as well considered.

Although the “pure” A-calculus is computationally complete, and therefore thtecally
sufficient to express all general recursive functions, al“tée” functional programming
language will typically have a built-in store of constantsvehich the user’s definitions
may be seen as an extension. At the very least, the usuabmégeighmetic constants and
functions would be assumed defined, as well as boolean edsstad null-order equality—
i.e,, equality on ground values. Notably, and regardless of tiesen evaluation strategy,
an exceptional constant function will also assumed defined¢dnditional expressions. The
simplest conditional function is a three argumdnthen-elsewhose infix form usually is
if e; then e else g, and whose evaluation consists in first evaluatingvhose boolean
value, upon termination, will determine evaluation of eitky or e, yielding the result of the
whole conditional expression. Thus, as an archetypicahgka, the factorial function may be
defined as:

We shall use=- to express global definitionsg., the facility which installs a constant in the global comsta
store.
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4 Hassan Ait-Kaci and Patrick Lincoln

fact(n) = if n = Othenl elsenxfact(n — 1).

Some functional programming languages make recursiorasgioally explicit by differen-
tiating two defining facilities. For instance a definitionnaunced by a reserved worceg¢,
say) asin

rec fac{n) = if n = 0thenl elsenxfact(n — 1).

would explicitly specify that occurrences of the constaging defined in its own body are
recursive occurrences as opposed to namesakes which awnably defined in the global
store. The reason has itsroots in the simple way these defigitan be parsed by left-recursive
descent and readily translated into a form stripped of sfitadornments which requires the
explicit use of the recursion combinatdr. However, this is not strictly required as LL(1)
parsing or even implementation of recursion withare necessary, especially when efficiency
rather than simplicity of implementation is sought [21]. uBh we shall dispense from such
explicit rec mentions, (mutual) recursion being systematically iniplichen and only when
free occurring constants appear in definitions (as in thedfrthe two foregoing definitions).

These basic paraphernalia are yet not quite enough for ewem feeds in symbolic
computing as no provision is made for structuring data. Thstprimitive such facility is
pairing (written as infix right-associative ‘."). The paiostructor comes with two projection
functionsfstandsndsuch that the following equations hold:

fst(zy) ==
snd(z.y) =y
fst(2).snd(z) = =

This allows the construction of binary tree structures dngstsufficient for representing any
symbolic structure such as trees of any arity, as well-knewhisp programmers. For these
constructed pairs, a test of equality is implicitly definasgaysical equalityi(e., same address)
as opposed to structure isomorphism. Thus, linear listgiras may be built out of pairing
and a nullary list terminator (written as [], as ir213.4.[]).

As an example, a function for concatenating two lists candfgmed as:
appendl1,(2) = if I1 =[] thenl;, else fsfl1).appendsnd(l1), [2).

In fact, a pattern-directed syntax is preferable as it isesges more perspicuous definitions
of functions on list structures. Thus, the above list coacation has the following pattern-
directed definition:

append[],!) =1
appendh.t,l) = h.appendt, ).
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LIFE, a Natural Language 5

Again, this can be viewed as syntactic adornment as thequeJ¥brm may be recovered in
a single conditional expression covering each pattern log®xplicitly introducing identifier
arguments to which projection functions are applied toege& appropriate pattern occurrences.
Not only are pattern-directed definitions more perspicydbsy also lead to more efficient
code generation. An efficient implementation will avoid deaditional by using the argument
pattern as index key as well as using pattern-matching to thia structure variables to their
homologues in the actual argument patterns [21].

Clearly, when it comes to programming convenience, linesds las a universal symbolic
construction facility can become quickly tedious and cursbme. More flexible data
structures such as first-order constructor terms can bewiskethe convenience and efficiency
of pattern-directed definitions. Indeed, for eaclary constructor symbal, we associate.
projections 1, ..., n. such that the following equations hold €1: < n):

te(c(re, ..o @) =25

c(L(2), . me(2)) = 2

Pretty much as a linear list data structure could then be egfas either [] or a pair
.(x, y) whose second projection is a linear list, one can then define any data structure as
a disjoint sum of data constructors using recursive typeaggns as a definition facility.
Then, a definition of a function on such data structures apssif an ordered sequence of
pattern-directed equations sucheggpendabove which are invoked for application using term
pattern-matching as argument binding.

A simple operational semantics of pattern-directed rémgitcan thus be given. Given a
program consisting as a set of function definitions. A fumrictdefinition is a sequence of
pattern-directed equations of the form:

f(A1) = By

f(4,) = B,.

which define a functiorf over patternsi;, tuples of first-order constructor terms. Evaluating
an expressior)‘(ﬁ) consists in (1) evaluating all arguments (component@pf then, (2)
finding the first successful matching substitutiom the order of the definitions;e., the first

i in the definition off such that there is a substitution of the variables in theepatt; such
thatf(ﬁ) = f(zfi)a (if none exists, the expression is not defined); finally, (8gvaluating in
turn the expressio®; o, which constitutes the result.

2.1.2 7-Calculus: Computing with Relations

Logic programming, of which Prolog ithe canonical language, expresses programs as
relational rules of the form:

ro(t_z)) — rl(ﬁ), .. .,rn(fn).
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6 Hassan Ait-Kaci and Patrick Lincoln

where ther;’s are relationals symbols and thgs are tuples of first-order terms. One reads
such a rule as: For all bindings of their variables, the ternis are in relationr if the terms

{1 are in relationr; and ... the terms, are in relationr,,.” In the case where = 0, the rule
reduces to the simple unconditional assertigfo) that the termsy are in relationq. These
rules are callediefinite clausesexpressions such as(t;) are calledliterals; the headof a
definite clause is the literal on the left of the arrow, andoibslyis the conjunction of literals
on the right of the arrow.

Given a set of such definite clauses, linear resolution is\iredeterministic computation
rule by which such rules are giving interpretationgjteeryexpressions of the form:

= q1(§1), .. 7QM(§m)

which may be read: Does there exist some binding of variables such that theg&frare in
relation¢; and ... s, are in relationg,,?” The linear resolution rule is a transformation rule
applied to a query. It consists in choosing a litefgk;) in the query’s body and a definite
clause in the given set whose heago) unifieswith ¢;(5;) thanks to a variable substitution
o (i.e. ¢:(5)o = ro(to)o), then replacing it by the body of that clause in the querplgpg
substitutiory to all the new query. That is,

= q:]_(gl)O', SR (Zi—l(‘;i—l)o-v 7‘1(15_;]_)0', reey Tn({n)o-v Qi+1(§i+l)o-7 sy Qm(gm)o-

The process is repeated and stops when and if the query’sibeaypty (success) or no rule
head unifies with the selected literal (failure). There are hon-deterministic choices made
in the process: one of a literal to rewrite in the query and am®ng the potentially many
rules whose head unify with this literal.

Prolog’s computation rule is called SLD-resolution. It ideterministic flattening of linear
resolution; that is, it is a particular deterministic apyxration implementing the above
non-deterministic computation rule. It consists in seedngrogram as amrdered set of
definite clause, and a definite clause body a@lered set of literals. These orders are
meant as a rigid guide for the two choices made by the linesmiuéon rule. Thus, Prolog’s
particular computation strategy transforms a query by itavg'the query literals in their order,
attempting to unify against heads of rules in the order ofrthes. If failure is encountered, a
backtracking step to the latest choice point is made, andhotetion resumed there with the
next alternative.

In exactly the same spirit asreduction is for the\-calculus, strategies of choice of where
to apply the linear resolution computation rule are all fle¢ioally consistent in the sense that
if computation terminates, the variable binding exhibited legitimate solution to the original
query. However, not all possible linear resolution stragegre complete. Indeed, pretty much
as applicative order reduction in thecalculus may diverge on an expression which does have
a normal form, Prolog’s particular strategy of doing lineasolution may diverge although
finite solutions to a query may exist.
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LIFE, a Natural Language 7

Central to logic programming is the presence of first-ordemstructor terms as well as
unification.

2.1.3 -Calculus: Computing with Types

The -calculus consists of a syntax of structured types calleterms together with
subtyping and type intersection operations. Intuitively,expounded in [3], the¢-calculus
is an attempt at obtaining a convenience for representicgrdelike data structures in
logic and functional programming more adequate than firdeoterms without loss of the
well-appreciated instantiation ordering and unificatipetion.

The natural interpretation of &-term is that of a data structure built out of construc-
tors, access functions, and subject possibly to equatiomastraints which reflect access
coreference—sharing of structure. Thus, the syntacticatjpms ony-terms which stand
analogous to instantiation and unification for first-ordemis simply denote, respectively,
sub-algebra ordering and algebra intersection, module & equational constraints. This
scheme even accommodates type constructors which are kiodvenpartially-ordered with a
given subtyping relation. As a result, a powerful operagiaralculus of structured subtypes is
achieved formally without resorting to complex translattdckery. In essence, thé-calculus
formalizes and operationalizesita structure inheritanceall in a way which is quite faithful
to a programmer’s perception.

Let us take an example to illustrate. Let us say that one hawrnid to express syntactically
a type structure for gersonwith the property, as expressed for the underlined symbol in
Figure 2, that a certain functional diagram commutes.

One way to specify this information algebraically would bepecify it as @orted equational
theoryconsisting of &unctional signaturagiving the sorts of the functions involved, and an
equational presentatiorNamely,

X : personwith

functions

name : person— id

first :id — string
last :id — string
spouse person— person
equations
last(naméX)) = last(haméspouséX)))

spouséspouséX)) = X

The syntax ofy-terms is one simply tailored to express as a term this spekiifid of
sorted monadic algebraic equational presentations. Tihtise>-calculus, the information of
Figure 2 is unambiguously encoded into a formula, perspislyoexpressed as theterm:
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8 Hassan Ait-Kaci and Patrick Lincoln

name
person |

first y
Y
Y

spouse v

person | name - id

spouse

Figure 2: A Functional Diagram

X : persorfname=- id(first = string,
last= S: string),
spouse=- persorfname=- id(last=- 9,
spouse=- X)).

Since itis beyond the informal scope of this paper, we slietain from giving a complete
formal definition ofy>-term syntax. (Such may be found elsewhere [4, 3].) Nevbrsise it
is important to distinguish among the three kinds of symldisch participate in ap-term
expression. Thus we assume given a signaturg/pe constructor symbagla setA of access
function symbolgalso calledattribute symbols), and a seR of reference tag symbalsin
the ¢-term above, for example, the symbgisrsonid, string are drawn from , the symbols
namefirst, last, spousdrom .4, and the symbol&, § from R.2

A i-term is eithetaggedor untagged A taggedy-term is either a reference tag or an
expression of the fornX : ¢t where X' € R andt is an untagged-term. An untagged-term
is eitheratomicor attributed An atomici-term is a type symbol in . An attributeg-term is
an expression of the form(l; = t1,...,1, = t,) wheres € and they-term principal type,
thel;’s are mutually distinct attribute symbols i, and the;’s arey-terms @ > 1).

Reference tags may be viewed as typed variables where theefgressions are untagged
-terms. Hence, as a condition to be well-formedy-#erm must have all occurrences of
reference tags consistently refer to the same structuneexample, the reference tagin

2We shall use the lexical convention of using capitalizediiiers for reference tags.
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LIFE, a Natural Language 9

persorfid = namdfirst = string,
last= X: string),
father=- persorfid = namélast=- X : string)))

refers consistently to the atomjetermstring. To simplify matters and avoid redundancy, we
shall obey a simple convention of specifying the type of anaice tag at most once as in

persorfid = namdfirst = string,
last= X: string),
father=- persorfid = naméglast = X)))

and understand that other occurrences are equally regeiwithe same structure. In fact, this
convention is necessary if we have circular references as in

X: persorfspouse=- persorfspouse=- X)).

Finally, a reference tag appearing nowhere typed, g@srik(kind = X) is implicitly typed by

a special universal type symbol always present in . This symbol will be left invisible and
not written explicitly as in §ge=- integer, name=- string). In the sequel, by-term we shall
always meanvell-formedi)-term.

Similarly to first-order terms, a subsumption preorder cardbfined onj-terms which is
an ordering up to reference tag renaming. Given that theasige is partially-ordered (with a
greatest element), its partial ordering is extended to the set of attributetbrms. Informally,
a-termtq is subsumed by &-term ¢, if (1) the principal type oft1 is a subtype in of the
principal type oft,; (2) all attributes of, are also attributes af with -terms which subsume
their homologues im;; and, (3) all coreference constraints bindingimust also be binding
Intq.

For example, itudent< personandaustin< citynamein then they-term

studentid = naméfirst =- string,
last= X : string),
livesat = Y : addresécity =- austin),
father=- persorfid = namélast = X),
livesat = Y))

is subsumed by the-term

persorfid = namglast=- X : string),
lives at = addresgcity = citynamé,
father=- persorfid =~ namglast =- X))).
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10 Hassan Ait-Kaci and Patrick Lincoln

person

student

Figure 3: A Signature with Well-Defined GLB's

In fact, if the signature is such thgteatest lower bound@GLB's) exist for any pair of
type symbols, then the subsumption orderingyeterm is also such that GLB’s exist. Such

are defined as thenificationof two ¢-terms. Consider for example the signature displayed in
Figure 3 and the twe-terms:

X : studenfadvisor=- faculty(secretary=- Y : staff,
assistant> X),
roommate= employe&epresentative=- Y'))

and

employeéadvisor=- f;(secretary=- employee,
assistants- U : persor),
roommate= V : studenfrepresentative> 1),
helper=- wi(spouse= U)).

Their unification (up to tag renaming) yields the term:

W : workstudyadvisor=- fi(secretary=- 7 : workstudyrepresentatives- 7),
assistant> W),
roommate= 7,

helper=- wi(spouse= W)).
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LIFE, a Natural Language 11

A detailed unification algorithm fog-terms is given in [3]. This algorithm is an adaptation
of an efficient unification algorithm based on a rooted lath¢trected) graph representation
of ¢-terms, such as is illustrated in Figure 2. The nodes ardddbeith type symbols from
, and the arcs are labeled with attribute symbols. The roderie one from which every
other is reachable and is labeled with the principal typénef/t-term (underlined in Figure 2).
Nodes which are shared in the graph correspond to taggedrsutt Such graphs are quite
like finite-state automata with -sorted nodes (Moore maetlimnd where the transitions are
attribute symbols. In fact, thé-term unification algorithm is an immediate adaptation of
the algorithm deciding equivalence of finite-state aut@fal This algorithm merges nodes
which are reached by equal transition paths into coreferatasses, starting from the roots
and following all reachable strings of attributes from thdgach merged class is assigned the
type symbol in which is the GLB of the types of all nodes in tkess. The inconsistent type
1 (the least element in ) may result which makes the whole watitio fail.

Incidentally, ifleast upper boundd.UBs) are defined as well in, so are they fosterms.
Thus, a lattice structure can be extended fromytterms [2, 4]. For example, for these two
-terms, their LUB (denoting their most specific general@a) is:

persorfadvisor=- faculty(secretary=- employee,
assistant=- persor,
roommate=- persor)).

Although it may turn out interesting in other contexts, wealsimot use this generalization
operation here.

A technicality arises if is not a lower semi-lattice. For exale, given the (non-lattice) type
signature:

‘ employee‘ ‘ student ‘

(o | [y |

the GLB of studentand employeds not uniquely defined, in that it could jehn or mary
That is, the set of their common lower bounds does not adn@greatest element. However,
the set of theimaximalcommon lower bounds offers the most general choice of caeisd
Clearly, thedisjunctivetype {john; mary} is an adequate interpretatidnThus the:-term
syntax may be enriched with disjunction denoting type union

3See [7] for a description of an efficient method for computngh GLB’s.
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12 Hassan Ait-Kaci and Patrick Lincoln

For a more complete formal treatment of disjunctit«terms, the reader is referred to [4]
and to [3]. It will suffice to indicate here thatdisjunctivey-term is a set of incomparable
¥-terms, written{t1; .. .;?,} where thel;’s are basic)-terms. Abasici-term is one which
is non-disjunctive. The subsumption ordering is extendedisjunctive (sets of)};-terms
such thatD; < D, iff ¥t1 € D1,3t, € D, such thatt; < ¢,. This justifies the convention
that a singletor{¢} is the same ag and that the empty set is identified with Unification
of two disjunctivei-terms consists in the enumeration of the set of all maxifiébrms
obtained from unification of all elements of one with all elamts of the other. For example,
limiting ourselves to disjunctions of atomige-terms in the context of signature in Figure 3,
the unification of{employegstuden} with {faculty, staff} is {faculty, staff}. It is the set of
maximal elements of the sétaculty; staff; L; workstudy of pairwise GLB’s.

In practice, it is convenient to allow nesting disjunctiognghe structure of)-terms. For
instance, to denote a type of person whose friend may be amast with same first name, or
a businessman with same last name, or a charlatan with fidstaahnames inverted, we may
write such expressions as:

persorfid = naméfirst = X : string,
last = Y : string),
friend = {astronaufid = namdfirst= X))
; businessma(id = namélast = Y))
; charlatar(id = naméfirst = Y,
last = X))})

Tagging may even be chained or circular within disjunctiagn:

P :{charlatan
; persorfid = naméfirst = X : ‘john’,
last = Y : { ‘doe’; X }),
friend = {P; persorfid = naméfirst = Y,
last = X))})}

which expresses the type of either a charlatan, or a persoedaither “John Doe” or “John
John” and whose friend may be either a charlatan, or himsetf person with his first and last
names inverted. These are no longer graphs but hypergraphs.

Of course, one can always expand out all nested disjundtiangh an expression, reducing
it to a canonical form consisting of a set of non-disjunctivéerms. The process is described
in [2], and is akin to converting a non-deterministic finfi&ate automaton to its deterministic
form, or a first-order logic formula to its disjunctive norinlarm. However, more for
pragmatic efficiency than just notational conveniences ath desirable to keep-terms in
their non-canonical form. It is feasible then to build a lazgpansion into the unification
process, saving expansions in case of failure or unificagminstT. Such an algorithm is
more complicated and will not be detailed here.
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LIFE, a Natural Language 13

Last in this brief introduction to the-calculus, we explain type definitions. The concept is
analogous to what a global store of constant definitionsagairactical functional programming
language based on thecalculus. The idea is that types in the signature may beifsgxbto
have attributes in addition to being partially-orderedhdritance of attributes of all supertypes
to a type is done in accordance ¢eterm subsumption and unification. Unification in the
context of such an inheritance hierarchy amounts to soleggations in an order-sorted
algebra as explained in [22], to which the reader is refefoed full formal account.

For example, given a signature for the specification of litises = {list, cons nil }* with
nil < list andcons«< list, it is yet possible to specify thabnshas an attributéail = list.
We shall specify this as:

list := {nil; congtail = list)}.

From which the partial-ordering above is inferred.

As in thislist example, such type definitions may be recursive. Thennificationmodulo
such a type specification proceeds by unfolding type symaadsrding to their definitions.
This is done by need as no expansion of symbols need be domsenof (1) failures due to
order-theoretic clasheg.g, congtail = list) unified withnil fails; i.e., gives_L); (2) symbol
subsumption€.g, consunified with list gives justcong, and (3) absence of attribute.g,
congtail = list) unified withconsgivescongtail = list)). Thus, attribute inheritance is done
“lazily,” saving much unnecessary expansions.

2.2 The Bonds

In this section we indicate briefly how to operationalizerpée combination calculi from
A, m, andy computation models. That is, we describe the edges of thegie of LIFE in
Figure 2 on Page 3—the bonds between the atoms of the LIFEcoieleWe shall keep an
informal style, illustrating key points with examples.

2.2.1 JMr-Calculus: Le Fun

We now introduce a relational and functional programmingglzage called Le Fun [5, 6]
where first-order terms are generalized by the inclusioapplicative expressiorass defined
by Landin [15] (atoms, abstractions, and applicationsyhaemted with first-order constructor
terms. Thusjnterpretedfunctional expressions may participate lana fidearguments in
logical expressions.

A unification algorithm generalized along these lines muastsider unificands for which
success or failure cannot be decided in a local context, (function applications may not
be ready for reduction while expression components aréuwstihstantiated.) We propose
to handle such situations by delaying unification until tiperands are ready. That is, until

*We shall always leav& and L implicit.
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14 Hassan Ait-Kaci and Patrick Lincoln

further variable instantiations make it possible to reducéicands containing applicative
expressions. In essence, such a unification may be seen aglaateequation which will
have to be verified, as opposed to solved, in order to confirentesal success—whence
the nameresiduation If verified, a residuation is simply discarded; if failing,triggers
chronological backtracking at the latest instantiatiompwhich allowed its evaluation. This
is very reminiscent of the process of asynchronous bachpajaised in one-pass compilers
to resolve forward references.

We shall merely illustrate Le Fun’s operational semantiggiving very simple canonical
examples.

A goal literal involving arithmetic variables may not be pem by Prolog, even if those
variables were to be provided by proving a subsequent gdas i3 why arithmetic expressions
cannot be nested in literals other than thpredicate, a special one whose operation will force
evaluation of such expressions, and whose success deperitsshaving no uninstantiated
variables in its second argument. Consider the set of Haunsels:

Q(vav Z) :_p(vav Z7 Z)vaCk(va)

(XY, X+Y, X +Y).
(XY, X +Y,(X Y) L 14).

pick(3,5).
pick(2,2).
pick(4, 6).

and the following query:

?_(Z(Av B7 C)

From the resolveny(A, B, C'), one step of resolution yields as next goal to establish
p(A, B,C,C). Now, trying to prove the goal using the first of the twoassertions is
contingent on solving the equatioh+ B = A x B. At this point, Prolog would fail, regardless
of the fact that the next goal in the resolvept¢k(A, B) may provide instantiations for its
variables which may verify that equation. Le Fun stays opgnded and proceeds with the
computation as in the case of success, remembering howeateztentual success of proving
this resolvent must insist that the equation be verified. tAarhs out in this case, the first
choice forpick(A, B) does not verify it, since 3 + % 3« 5. However, the next choice
instantiates botm and B to 2, and thus verifies the equation, confirming that success i
hand.

To emphasize the fact that such an equationdas B = A « B is a left-over granule
of computation, we call it aesidual equatioror equational residuation-E-residuation, for
short We also coin the vertio residuate” to describe the action of leaving some computation
for later. We shall soon see that there are other kinds ofluesions. Those variables whose
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instantiation is awaited by some residuations are ca#ieluation variable$RV). Thus, an E-
residuation may be seen asequational closure-by analogy to a lexical closure—consisting
of two functional expressions and a list of RV’s.

There is a special type of E-residuation which arises froomaéiqns involving an uninstan-
tiated variable on one hand, and a not yet reducible funatierpression on the other hand
(e.g, X =Y +1). Clearly, these will never cause failure of a proof, sititey are equations in
solved form. Nevertheless, they may be reduced furtheripgridstantiations of their RV’s.
Hence, these are callexblved residuation®r S-residuations. Unless explicitly specified
otherwise, “E-residuation” will mean “equational resitioas which are not S-residuations.”

Going back to our example, if one were interested in furtiodutions to the original query,
one could force backtracking at this point and thus, contmravould go back eventually
before the point of residuation. The alternative proof ¢ goalp(A, B, C, ') would then
create another residuation; namely+ B = (A x B) L 14. Again, one can check that this
equation will be eventually verified by = 4 andB = 6.

Since instantiations of variables may be non-groived,may contain variables, residuations
mutate. To see this, consider the following example:

q(2) =pX,Y,2), X =V LW,Y =V + W, pick(V, W).
p(A, B, Ax B).
pick(9, 3).

together with the query:
?—q(Ans).

The goal literal( X, Y, Ans) creates the S-residuatiotms = X Y. This S-residuation has
RV’s X andY. Next, the literalX = V 1L W instantiates{ and creates a new S-residuation.
But, sinceX is an RV to some residuation, rather than proceeding astizales better sense
to substituteX into that residuation and eliminate the new S-residuatidms leaves us with
the mutatedresiduationAns = (V' L W) x Y. This mutation process has thus altered the
RV set of the first residuation froflX, Y’} to {V, W, Y}. As computation proceeds, another
S-residuation instantiatés, another RV, and thus triggers another mutation of the oali
residuation intadns = (V' L W) « (V + W), leaving it with the new RV sefV, W}. Finally,
as pick(9, 3) instantiated” to 9 andW to 3, the residuation is left with an empty RV set,
triggering evaluation, and releasing the residuation,\aaltling final solutionAns = 72.

The last example illustrates how higher-order functiox@ressions and automatic currying
are handled implicitly. Consider,

sqX) = X« X.
twicg(F, X) = F(F(X)).
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valid_op(twice).

p(1).
pick(lambd&X, X)).
q(V) =G = F(X),V = G(1), valid_op(F), pick(X), p(sqV)).

with the query,
?—q(Ans).

The first goal literal = F'(X) creates an S-residuation with the RV $ét X }. Note that
the “higher-order” variablé” poses no problem since no attempt is made to solve. Proggedin
a new S-residuation is obtained 4ss = F(X)(1). One step furtherf is instantiated to the
twice function. Thus, this mutates the previous S-residuatiodte = twice(X)(1). Next,

X becomes the identity function, thus releasing the residnaind instantiatingins to 1.
Finally, the equatiosq1) = 1 is immediately verified, yielding success.

2.2.2 myp-Calculus: Log In

Log In is simply Prolog where first-order constructor ternasé been replaced hy-terms,
with type definitions [3]. Its operational semantics is themediate adaptation of that of
Prolog’s SLD resolution described in Section 2.1.2. Thus,may write a predicate for list
concatenation as:

list := {[]; [ |list] }.
append([], L : list, L).
append[H|T : list], L : list, [H|R: list]) :— appendT, L, R).

This definition, incidentally, is fully correct as opposes Rrolog’s typeless version for
which the quenappend]], t, t) succeeds incorrectly for any non-list tetm

Naturally, advantage of the type partial-ordering can leraas illustrated in the following
simple example. We want to express the facts that a studamgesson; Peter, Paul, and Mary
are students; good grades and bad grades are grades; a goedigalso a good thing; ‘A
and ‘B’ are good grades; and ‘C’, ‘D’, ‘F’ are bad grades. Timformation is depicted as the
signature of Figure 4. This taxonomic information is exgexsin Log In as:

student« person
student= {peter, paul, mary}.
grade:= {goodgradebadgrade.

SFirst-order terms being just a particular caseyoferms, we use such an expressionf¢s, . .., t.) them
as implicit syntax forf(1 = ¢1,...,n = t,). Thus, pure Prolog is fully subsumed. In particular, we tdts
notation for lists, and for “don’t-care”a.k.a.T.
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person ‘goodthing‘ ‘ grade ‘

student ‘ goodgrade* ‘ badgrade‘

Figure 4: The Peter-Paul-Mary Signature

goodgrade« goodthing
goodgrade= {a; b}.
badgrade= {c;d;f}.

In this context, we define the following facts and rules. lkmown that all persons like
themselves. Also, Peter likes Mary; and, all persons likg@bd things. As for grades, Peter
got a ‘C’; Paul got an ‘F’, and Mary an ‘A’ Lastly, it is knowtat a person is happy if she
got something which she likes. Alternatively, a person iggyaif he likes something which
got a good thing. Thus, in Log In,

likeg(X : person X).
likeqpeter, mary).
likegperson goodthing.

got(peter, c).
got(paul, f).
got(mary, a).

happyX : person —likegX, Y), got(X,Y).
happy(X : person —likegX, YY), got(Y, goodthing.

From this, it follows that Mary is happy because she likesdytungs, and she got an
‘A—which is a good thing. She is also happy because she lierself, and she got a good
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thing. Peter is happy because he likes Mary, who got a good thihus, a query asking for
some “happy” object in the database will yield:

?—happy(X).
X =mary,

X =mary,

X = peter,
No

2.2.3 ¢ A-Calculus: FOOL

FOOL is simply a pattern-oriented functional language \etf@st-order constructor terms
have been replaced by-terms, with type definitions. Its operational semanticghs
immediate adaptation of that described in Section 2.1.usTiwe may write a function for list
concatenation as:

list := {[J; [ Jlist] }.
append[], L : list) = L.
append[H|T : list], L : list) = [H|appendT, L)].

Higher-order definition and currying are also naturallyaled in FOOL;e.g,

maq(l,-) = [I.
map([H|T], F) = [F(H)[mag(T, F)].

Thus, the expressiamaf[1, 2, 3], +1) evaluates to [3, 4].

The-term subsumption ordering replaces the first-order matgbirdering on constructor
terms. In particular, disjunctive patterns may be used. arbérary richness of a user-defined
partial-ordering on types allows highly generic functiciesbe written, thus capturing the
flavor of code encapsulation offered by so called objecrasd languages. For example,
referring back to the signature in Figure 3 on Page 10, thetion:

aggpersorfdob=- datgyear=- X)), ThisYear. integer) = ThisYear— X.
will apply generically to all subtypes and instances of passwith a birth year.

2.3 The Arty Molecule

Now that we have put together the pairwise bonds betweenttimesai.e, what constitutes
the LIFE molecule as advertised in Figure 2 on Page 3. In LIRE can specify types,
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functions, and relations. Rather than simply coexistihngse may be interwoven. Since the
i-calculus is used in Log In and FOOL to provide a type inhadiasystems of sorts to logic
and functional programming, we can now enrich the expressss of the)-calculus with
the power of computable functions and relations. More dadly, a basic-term structure
expresses only typed equational constraints on objects, Widh FOOL and Log In, we can
specify in additiorarbitrary functional and relational constraintsn ¢-terms.

In LIFE, a basic)-term denotes a functional application in FOOL's sensesifdot symbol
is a defined function. Thus, fanctional expressiofis either ai-term or a conjunction of
-terms denoted by; : ¢ 1 ... :t,. An example of such isppendlist,L) : list, where
appendis the FOOL function defined above. This is how functionalefefency constraints
are expressed in@-term in LIFE. For example, in LIFE the-term

foo(bar = X : list,baz=- Y : list,fuz= appendX,Y) : list)

is one in which the attributtuzis derived as a list-valued function of the attribubes and
baz Unifying suchi-terms proceeds as before modulo residuation of functierptession
whose arguments are not sufficiently refined to be subsumedinyction definition.

As for relational constraints on objects in LIFEyaterm¢ may be followed by &uch-that
clause consisting of the logical conjunction of literals. .., [,. Itis written ast | l1,...,1,.
Unification of such relationally constrained terms is doneduido proving the conjoined
constraints.

Let us take an example. We are to describe a LIFE renditionsufagp opera. Namely, a
soap opera is a television show where a cast of characterésisod persons. Persons in that
strange world consist of alcoholics, drug-addicts, andsgayhe husband character is always
called “Dick” and his wife is always an alcoholic, who is irctais long-lost sister. Another
character is the mailman. The soap opera is such that thahdsind mailman are lovers, and
the wife and the mailman blackmail each other. Dick is gageda an alcoholic, and Harry is
a drug-addict. In that world, it is invariably the case the long-lost sister of gays are named
“Jane” or “Cleopatra.” Harry is a lover of every gay personlsd@ Jane and a drug-addict
blackmail one another if that drug-addict happens to be arlo¥Dick. No wonder thus that
it is a fact that this soap opera is terrible.

In LIFE, the above could look like:

cast:= {[]; [ personcasi }.

soapopera:=tv_showcharacters= [H, W, M],
husband=- H : dick
wife = W : alcoholic: longlostsistel(H),
mailman = M)
| loverq M, H),blackmai(W, M).

person:= {alcoholic drug.-addict gay}.
dick « gay.
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jane« alcoholic

harry « drug-addict

long lost siste(gay) =- {jane cleopatra.
lovergharry, gay).

blackmailjane, X : drug.addic) :— lovergX, dick).
terrible(soapoperg.

Then, querying about a terrible TV show with its charactest ¢st
?—terrible(T : tv_show{characters=- cas)).
which unfolds from the above LIFE specification into:

T = soapopergcharacters=- [H : dick, W : jane, M : harry],
husband= H,
wife = W,
mailman = M)

Itis instructive as well as entertaining to convince onketdelt somehow everything falls into
place in this LIFE sentence.

3 Natural Language

This section is a description of a specific parser of a veryllssudset of English where
syntactic, semantic, and pragmatic constraints are egpdeall at once. This alleviates the
need to pipeline many invalid forms from syntax to semantiben to pragmatics. This
example is by no means to imply that its parsing scheme is wieatecommend: We are,
indeed, mere neophytes in computational linguistics. Weettteless hope to convince the
computational linguist that we, as programming languagigters, did put together in LIFE
a unique functionality for NLP.

3.1 Traditional NLP

Natural language understanding systems are notoriougg,laefficient systems with slow
response times. Thus, optimizing the parsing process imporiant task if natural language
is to be used in realistic user interfaces.

Traditional natural language processing systems work figetiphases. The first, syntactic
analysis, phase determines the surface structure of the+dpoking up words in a dictionary,
checking word order, etc. The second phase determines sbthe semantic content of
the input—checking semantic agreement and enforcing ti@hed restrictions. Finally, the
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third phase determines the deepest meaning behind an irpuntirg anaphora to their

referents, analyzing paragraph or discourse structurd,crecking the consistency of the
guessed meaning of the input with world knowledge. Althogglie standard even in state
of the art natural language processing systems, this séguerethod contains some inherent
inefficiencies.

Obviously, if there is a deep semantic clash at the beginafrg long input, one would
hope that a system would not waste too much time processingrtire input before noticing
the clash. More commonly, there will be many readings of gruipand most of them will be
be semantically flawed. It is desirable that the semanticsflae/found as soon as possible,
eliminating the wasted work of doing even the surface amslykthe rest of the input under
the bad readings. However, this is very difficult to achiegeg the traditional approach of
three phase processing. Only by doing all levels of proogssimultaneously can a system
achieve the desired behavior.

By processing input syntax, semantics, and pragmaticseasdame time a system has the
further opportunity to use the semantics to drive the syntoe instance, if the semantics of
the first part of an input have been discovered, and the tegknawn, any lexical ambiguities
(multiple word definitions, etc) may be correctly interm@timmediately. In traditionally
constructed systems, the lexical forms of all ambiguoudirggs would be fully fleshed out,
and only upon semantic checking would they be thrown out.

Pushing the semantics and pragmatics through to the igtahmar seems daunting to
those familiar with implementations of natural languagstegns. Efficiently handling all
the constraints on language is very difficult, even in suafhHevel languages as Lisp or
Prolog. However, LIFE’s formalism is one in which complexstraints are easily and cleanly
incorporated in declarative programs through the integtiig of relational and functional
expressions.

3.2 NLPinLIFE

A simplified natural language processing system was builtlFE as an experiment in
using LIFE’s full functionality on a complex problem. Firgt simple best first chart parser
was constructed using a standard logic programming cliGezond, constraints were added
to the categories and objects in the parser, in order to eafoumber agreement and similar
trivial conditions. Then semantic functions which expegbshe meanings of certain words
were included in the dictionary definitions of those wordeeGrammar was also modified to
use those functions, when present, to enforce semantieragrg and selectional restrictions.
Finally, the grammar was modified slightly to force unificatiof pronouns with referents,
resolving all anaphora into coreferences.

Thus when an input is presented, all the constraints comeao immediately. As soon
as a verb with a semantic function is looked up in the dictignas entire semantics are
enforced. LIFE automatically handles the delayment of fimm@l expressions until certain
arguments are sufficiently bound, firing the function at thdiest possible time. Using this
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functionality, powerful semantic functions can be posted¢@nstraints as soon as they apply.
Also, LIFE’s unification routine supports partially orddrpartially specified types, which is
useful in capturing semantic information.

3.2.1 Syntax—The Grammar

The initial parsing routine was encoded as a set of facts @lations, broken up into three
main categories; a set of grammar rules expressing Englast wrder and basic grammar,
a dictionary relation from words to categories, and a panséich relates lists of words to
categories such as noun phrase or sentence.

Each grammar rule was encoded as a LIFE fact, relating someauof constituent
categories to a single result category. For example,

grammacrule(np, art, n).
grammacrule(s, np, vp).

could be read as “an article followed by a noun can be a nouasghrand a noun phrase
followed by a verb phrase can be a sentence.” Then a smabudy was constructed which
related words to their definition. For example,

dictionary(compilersn).
dictionary(john, pn).
dictionary(the art).
dictionary(runs iv).

could be read as €ompilersis a noun, john' is a proper noun,the is an article, andruns is

an intransitive verb.” A particular word may have multipkefihitions in the dictionary, which
are chosen nondeterministically. To complete the basesyst simple parser was constructed
which attempts to find a reading of the input list of words Whsatisfies the given category.

parséList, null, List).

parsé[WordRes}, Cat, ST :—
dictionary(Word, Def),
grammatrule(Cat, Def, Needing,
pars€RestNeedingS1).

parsé[WordRes}, Cat, ST :—
dictionary(Word, Def),
grammacrule(Cat, Catl, Cat2),
pars€[Def|Rest, Catl S2),
pars€S2 Cat2 S1).
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One might call the parser with

parsd[john, rung, s, []).

In order to prevent useless search in a chart parser, it isssacy to precompute a “next
word” attribute for each grammar rule. As given above, paysivould progress bottom-up.
In order to enforce a left-to-right strategy, one needs striet which grammatical rules can
be used based on the next word in the sequence. For instéuwecrst grammar-rule given
above describing noun phrases should only be applied wkenekt word in the sequence is
an article. The next word for the second grammar rule aboyeuis n; adj; pn; pron} which
stands for article or noun or adjective or proper noun or pron (Other rules for sentences
which start with interjections, adverbstc, and rules for noun phrases starting with nouns,
adjectives, proper nouns and pronouns do exist.) In ordekeadvantage of the precomputed
next word, an extra argument was added to each grammar rhles, Given a list of words, the
category of the first word is looked up in the dictionary. The trules above have become:

grammatrule(np, art, art, n).
grammarrule(s, {art; n; adj; pn; pron}, np, vp).

Then, only those grammar rules which have the proper cayeg®ia possible first word are
tried.

Thus extended, these grammar rules can now be read as “@ etnvords starting with an
article, if made up of an article followed by a noun, can benseea noun phrase, and a string
of words starting with either an article, noun, adjective@ger noun, or pronoun, if made up of
a noun phrase followed by a verb phrase, can be seen as ageht€hus, if given a string of
words beginning with an adverb, neither rule would fire, sitfte precomputed “next word”
attributes both fail to unify wittadverbh However, given a list of words starting with a proper
noun, the second rule could fire.

The operation of this parser is simply to find the first readdh@n input form that satisfies
the user specified category. If there is a choice at any pfaininstance the choice of which
definition of a word, or which grammar rule to use, a non-dataistic choice is made. If there
is a failure along the way, due to some category not unifyiity another, or the precomputed
next word disallowing the use of a grammar rule, then backirgg ensues. Control returns
to the last nondeterministic choice made, where a new chisidemanded. If there are no
choices left to make, control returns to the previous choilfghere is no previous choice,
then failure has occurred, and it is reported that the inpumhfcannot be parsed into the given
category.

3.2.2 Semantics—The Constraints
Using the above as a base, additional rules of proper Engigsh encoded by modifying

dictionary entries and grammar rules. For instance, nurageement is enforced by adding
a number field to certain dictionary entries:
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dictionary(compilers n(number=- plural)).
dictionary(john, pn(hnumber=- singular)).
dictionary(the art).

dictionary(runs iv(humber=- singular)).

Since the can be either singular or plural, the number field is left ,oamd is implicitly
anything. Also, certain grammar rules were restricted tastituents that agreed:

grammarrule({art; n; adj; pn; pron}, s,
np(number=- N), vp(number=- N)).

So long as the number of the noun phrase can be coerced to bartigeas the number of the
verb phrase, the two together can be read as a sentence.' jphuguns is accepted, since the
number of john’ and ‘runs agree. However,compilers runsis rejected, sincecompilersis
plural, and funs is singular.

Gender agreement was added in precisely the same manheugthtless words and rules
have an explicit gender. The gender attribute is also ugsefahaphora resolution. Moreover,
selectional restrictions were added. Fields of dictiondefinitions were added to enforce
these constraints:

dictionary(throws tv(number=- singular,

object=- projectile

subject=- animatg).
dictionary(john, pn(number=- singular, class=- humar)).
dictionary(frisbee n(number=- singular, class=- projectile)).

The first entry above describes the transitive vénoow. Its object must be a projectile, and
its subject mush be animate. The second entry is a slightfioatibn of the above definition
of ‘john’, the added information is thajochn' is human. The corresponding grammar rules
were then modified to use this information:

grammarrule({art; n; adj; pn; pron}, s,
np(number=- N, class=- X),
vp(number=- N, subject=- X)).

Here the sentence rule is modified to ensure that the verls@kraubject can be unified with
the class of the noun phrase. In this way, semantic infoonati gathered at the same time
that syntactic constraints are met.

A semantic hierarchy was constructed to account for the mgarof the classes mentioned
in the dictionarye.g,

human« animate
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which can be read as “anything which is human is also anifh@tds semantic hierarchy can
be very rich. Using the powerful inheritance mechanismslbH, complex semantic domains
can be described very economically. Rules of the type shdvavea express simple type
subsumption, but if the typ@nimatehas any attributes, those are inherited by the typman
Thus, the list of wordsJohn throws the frisbéean be parsed only if john is animate, which
he is since he is human, and if the frisbee is a projectilectwttiis. This kind of constraint is
very simple to enforce, since it has been translated inte tygecking during unification.

Simple constraints like “only projectiles can be thrown&dhus simple to implement. In
order to express more complex constraints, like “carnigagat meat,” functions were used.
Each definition of a verb can have a semantic function whichegress constraints on its
subject or object that are dependent on something else.id&ortke verb éat!

dictionary(eat tv(subject=- animatdeatinghabit = EH),
object=- food: eatenby(EH),
number=- plural)).

The word ®eat is a plural transitive verb whose subject must be animatd,whose object
must be food. Further, if the subject has an eating habity the object must be edible
by something with that eating habit. The pattern-directedcfion eatenby expresses the
relationship between an eating habit and eaten objects:

eatenby(vegetariarn =- vegetable
eatenby(carnivore = meat
eatenby(omnivorg = food.

As a consequence, certain nouns were modified with furtletiogiary information:

dictionary(john, pn(number=- singular,

class=- humarfeatinghabit = omnivorg)).
dictionary(monk n(number=- singular,

class=- humarfeatinghabit = vegetarian)).

The semantic functions can take advantage of any of thernrdton available, using
higher-order functions and complex type attributes. Agrit amounts of computation can be
done in order to determine the proper category of the subjeabject.

3.2.3 Pragmatics—Anaphora

Not surprisingly, the most difficult aspect of natural laage processing to push into the
syntactic parser was pragmatics. However, even this wdg &inple to encode in LIFE.

The approach to anaphora and their referents is demonstratAs a list of words is
parsed, each possible referent of an anaphora is pusheddisto Whenever an anaphora
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is encountered it has to unify with some element of the lishe Tnification would ensure
that all the information known about the anaphora in placechea all the information known
about the referent in its place. Thus ifohn runs and he walksinifying ‘john and ‘hée is
correct, where inJohn runs and she walkanifying ‘john” and ‘shé is not, due to the fact
that the pronounhé has the attributedender= malg and so doesjohn’. Thus ‘h€ and
‘john’ are unifiable. However,sheé has the attributegender=- femalg which does not unify
with ‘john's attribute gender= male.

Even paragraphs such aBne computer compiled my file. It then deleted &re parsed
correctly using this scheme. There are four possible megnif “It then deleted it” in this
context® ‘the computer then deleted the compytethe computer then deleted my filemy
file then deleted the computeand ‘my file then deleted my fileHowever, only one of these
is semantically coherent. Computers can not be deletedfilasdare not animate, and thus
can not delete anything. Thushe computer compiled my file. The computer then deleted my
file. is the only reading generated.

Interestingly, even anaphora resolution is performed atghme time as syntactic and
semantic checking. As a list of words is parsed, as soon as@phara is encountered, its
referent is identified before any following words are eveokied up in the dictionary.

The result of all this is a parse graph which represents thtasyic, semantic, and pragmatic
information corresponding to the input list of words. In th&se graph anaphora and their
referents corefer; that is, they point to the same data tstreic The parse graph contains the
surface structure of the input in much the same way a traditinatural language processing
system represents parse trees. Semantic informationrissempted as additional information
on the parse graph. Embedded in the graph are also point#te tictionary definitions of
words, reduced functional constraints, and complex object

4 Conclusion

4.1 Why LIFE?

There are several unique aspects of LIFE which make it deithdy natural language
processing. The first and most useful is the logic prograngrbizmse. Declarative encoding
of grammar rules and parsing strategies is extremely etegyathis not inherently inefficient.
LIFE’s powerful type system allows an even more declarasiyée with added programming
convenience. Addressing LIFE term’s by label instead oftposallows quick extensions to
existing code without significant rewriting. Partially @emed types allow an unprecedented
economy of expression, and extremely powerful constrastiobtainable in standard logic
programming languages only through large amounts of realihdode. Higher-order
functions allow one to express extremely complex and pawsgmantic notions in simple

8In fact, there could be more interpretations ivfthan just the computeror ‘ my file. The act of compiling
could be referred to ast’, or if any previous sentence had a neuter referent thosectbould be referred to as
‘it’. For simplicity, we will only discuss the two obvious meags.
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ways. Complex meaning dependencies can be encoded witeffibrt.

4.2 Categorial Grammars

LIFE is suitable for the examination of alternative gramsnsuich as originally inspired by
Lambek[14]—so called Categorial Grammars. We have in meéagecially, the combination of
a unification-based formalism and the categorial parsimggigm. As we have demonstrated,
a unification-based grammar could easily be encoded in LHaEKs to its native structured
type calculus. Higher-order functions being also a basituie in LIFE, they ought to come as
handy to formulate a Categorial Unification Grammars sugbraposed by Wittenburg [28].

We are in the process of implementing a Categorial GrammialHg. The lexical category
functions on which these grammars are based, with theinddiat type raising and function
composition, can be easily encoded as higher-order fumetioLIFE. In Categorial Grammars,
each word has an associated function. For example, in thersmJohn ate lunch; ‘john’
has the categorial function ‘S/VP’ which can be roughly read‘sentence looking for verb
phrase”. The wordhte’ has the category ‘VP/NP’, arldinch’ has the category ‘NP.” Through
function composition and function application, the whdhing) can be reduced to ‘S.’ In order
to capture syntactic issues such as long distance depeaddns in the sentencé/hat did
john eat) higher-order functions are necessary. The search syratsigg such a grammar
could be encoded, as above, using the nondeterministicanexth of logic programming. In
the near future we hope to build a Categorial Unification Greanfollowing Wittenburg’s
approach closely [28].

4.3 Limitations of Current System

The current system was constructed in less than two weekdeimonstration purposes.
Although improvements have been made, the scope of thiegirbps been limited by time
more than technical difficulties. Thus, the user must typéepeEnglish. This sort of fragility
makes the system impractical, but this limitation may berswntable. The most important
extension seems to be the addition of some sort of scoringpamésm for failures—if every
reading of an input fails, the system should go back and tfintba reading which “almost”
succeeded.

Also, certain constructs demand that the semantic chedierigrned off, or at least altered.
‘| dreamt..’ is one such phrasel dreamt | ate my frisbéés an acceptable English sentence.
In order to accomplish this some sort of flag needs to be sethwihétermines how much
analysis to perform.

Idiomatic phrases are often rejectedJohn threw upshould be acceptable, but is not,
since up' is not a projectile. Some sort of intermediate idiom praieg needs to be done to
accomplish this.

The dictionary and grammar are fairly small, and thus thglege accepted by the system
is a very small subset of English. This project was a proofafoept, not construction of
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realistic system.

Finally, performance of the system can and must be improvedsing the original
implementation $till Life), on a Sun-3, simple sentences take just a few seconds, rget la
sentences can take over a minute to process. Paragrapihs ewgt-lengthening lists of
possible anaphora referents, and other deep semanticniafian) take several minutes to
process. On the other hand, with the C version of the LIFErmm&ter (Vild Life) which is
about 50 times faster th&till Life, performance becomes quite acceptable. On a fast machine
like a DECstation-3100, performance matches that of cagdgllommon Lisp on a Sun 3.

Even then, independently of which platform is used, them@dsn for improvement. The
most obvious is that we have constructed a natural languagepreter on top of a LIFE
interpreter. Furthermore, the grammar is not well tunedi aften searches less frequently
successful branches before searching the most often sficteAlthough properly called a
“pbest first chart parser” what is implemented is a parser toatd perform best first search
if we had the empirical evidence from English text about wahierms are truly most often
successful.) It is our belief that once a LIFE compiler is lempented with, in particular,
indexing facilities as in Prolog’s [8], the parser will perin in much more reasonable, even
competitive time.

In conclusion, with this paper, we hope to have achieved oat tp illustrate the unique
adequacy of LIFE’s functionality for the specific purposeNdtural Language Processing.
The point of our statement is that it is our responsibilitysgsbolic programming language
designers to cater to the needs of high-level applicatidtifiough much work has yet to be
done to make the idea a competitive one, we nonetheless hawwohviction that LIFE is a
natural choice of computer language for the computationguist.
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