
Handling Uncertainty in a Business-Rule Management System

Hassan Aı̈t-Kaci

Université Claude Bernard Lyon 1

hassan.ait-kaci@univ-lyon1.fr

Philippe Bonnard

IBM France

pbonnard@fr.ibm.com

June 2013

Abstract

This work investigates effective ways to integrate

probabilistic reasoning in an object-oriented Busi-

ness Rule Management System (BRMS) based

on “Production Rules” (also known as “Condi-

tion/Action Rules”) and Bayesian Network tech-

nology. It is organized as an informal overview

of, and motivation for, design features that would

be required to make a real industrial BRMS such

as IBM WODM JRules capable of handling uncer-

tainty in the conditions and actions of rules. It is

presented from the perspective of a user, motivat-

ing and illustrating each issue by way of examples.

Thus, we need to interpret objects with random-

valued attributes, manage classe/instance relations,

control probabilistic activation thresholds to rules,

specify stateful vs. stateless probability evaluation,

adapt working memory modification, when to reset

probabilistic variables, and handle Boolean logic

with unknown values.1

1 Introduction

Motivation—We propose to explore a technology

to support probabilistic condition/action rules. Our

objective is to provide a means to support more re-

alistic decision making by allowing rules to adapt

to naturally arising variations in data. As impor-

tantly, this technology is the key to enable learn-

1This paper is extracted from [1].

ing decision rules from causal data, sequential data

(time series), and empirical decision tables. With

such capabilities, a Business Rule Management

System (BRMS) such as IBM WODM2 JRules can

make rule-based decision-making greatly more re-

alistic as it would allow managing uncertainty.

The central issue to be addressed is how to make

the Rete technology work for such probabilistic

rules [2].3 We believe that all the pieces needed

to resolve this issue are now available. Indeed, re-

search and practice in probabilistic inference and

generalization technology has made great strides

in the past decade [3]. In particular, it is well-

known that decision-making in many important

Business Rules application areas relies crucially

on statistical and/or time series data (e.g., health

care, re/insurance, credit rating, financial trading,

etc., . . .). Finally, being able to deal with uncer-

tainty makes it possible to learn rules from data

rather than experts, thus rendering decision-making

more reliable.4

Relation to other work—There have been pre-

vious attempts to mix some form of probabilistic

logic with production rules. Indeed, one of the ear-

liest expert systems proposed in the 1980’s used a

2WODM stands for Websphere Operational Decision Man-

agement.
3Industrial BRMSs have adapted the LISP-based formu-

lation to an http://legacy.drools.codehaus.org/ReteOOobject-

oriented Rete.
4It is to be noted that deriving rules based on decision tables

is a frequent request from JRules customers [4].

http://www-01.ibm.com/software/integration/business-rule-management/jrules/
http://www.cis.temple.edu/~ingargio/cis587/readings/rete.html
http://www-01.ibm.com/software/decision-management/operational-decision-management/websphere-operational-decision-management/

form of odds-abiding rule logic (viz., Mycin [5]).

More recently, work such as [6, 7] even gives de-

tails on how probabilities may be taken into ac-

count in the Rete algorithm [2]. Yet, all this work is

still far from being standard technology as today’s

main BRMS vendors still do not support proba-

bilistic reasoning.

Still, the question that must be in the reader’s

mind is: “How is this any different from all that has

been tried before in the field?” Indeed, probabilis-

tic Production Rules have been used since some of

the earliest AI research.

Mycin [8, 5] was one of the original production-

rule systems in AI experimenting with enhancing

its decision-making power using probabilities. Be-

cause its domain of application was medical diag-

nosis, it was deemed appropriate to draw conclu-

sions from evidence and measures of medical pa-

rameters that would estimate a probability weight

for the conclusion. However, Mycin’s use of prob-

abilities was, contrary to what we propose, not as-

sociated to the condition part of C/A rule, but only

to its conclusion (a medical diagnosis). For exam-

ple, “if the patient has digestive problems, and if

this virus is present, and if the patient’s body tem-

perature is high, then there is a .85 probability that

the patient has gastric flu.” Such facts asserted with

some probabilistic value, when used in conditions

of other rules were then combined using the smaller

one when conjoined, or the greater one when part

of a disjunction. This was not only arbitrary a

“logic,” but also not at all related nor justified by

Bayesian Reasoning logic since probabilistic facts

were in no way correlated though Bayesian analy-

sis.

Independently of the important fact that the

technologies underlying both C/A-rule systems

and probabilistic decision-making have made dras-

tic progress since the time when those systems

and other academic prototypes were experimented

with, our most pertinent motivation may be ex-

plained as follows:

1. both C/A rules (in the form of BRMSs) and

Bayesian decision-making, since their ear-

lier manifestation mostly in an academic con-

text, have now reached industrial quality ex-

ploitable on the market place, and designed to

work in modern popular object-oriented sys-

tems (Java, C#, C++, etc., . . .);

2. industrial tools need now to be interfaced, or

made to work, seamlessly with other com-

monly used industrial-quality software devel-

opment environments;

3. there is no existing industrial-quality combi-

nation of the best existing technologies in both

fields offering a software that can support a

seamless, clean, well-integrated, and efficient

probabilistic production-rule decision making

environment.

In addition, early probabilistic expert systems

ever experimented with have been far from offering

as diverse a means to express uncertainty in pro-

duction rules as what we need to achieve.

Recently, the issue of integrating probabilis-

tic information in the standard database rela-

tional model has been addressed. One specific

model has emerged: the Probabilistic Relational

Model (PRM) [9] and its object-oriented extension

OOPRM [10]. In addition to being relevant for de-

cision making under uncertainty, PRMs are a par-

ticular instance of Probabilistic-Logical Models,

which have also been shown useful for machine

learning.

As was the case for C/A rules, reconciling

the PRM-based decision making paradigm with

object-oriented programming has necessitated de-

veloping new basic structural and procedural com-

piling methods [11, 10]. However, this work has

yet to be tested in an industrial context, as well

as the relatively recent development of clever an-

alytical tools and algorithms in uncertainty man-

agement in data and decision making [12, 13, 3].

Indeed, most, if not all, this cited work has been

carried out in academia, and not really tested in

an industrial context. Decision making under un-

certainty has yet to be transferred into “real” busi-

ness decision assistance products such as IBM’s

WODM.

http://people.csail.mit.edu/kersting/plmr/PLMR_references.html

Organization of contents—The rest of this pa-

per is organized as follows. Section 2 discusses

how our objective summed up above may be artic-

ulated into a BRMS such as IBM WODM JRules

from the standpoint of a user. Section 2.1 justi-

fies the natural need for managing uncertainty in

a BRMS. We essentially model Probabilistic Busi-

ness Objects following the well-known Probabilis-

tic Relational Model (PRM). Section 2.2 explains

the issue of how to handle probabilistic attributes.

Section 2.3 shows how to reconcile actual object-

oriented structures classes and objects using the

PRM. Section 2.4 extends probabilistic control to

specify activation thresholds to rules. Section 2.5

discusses how probabilities may be evaluated de-

pending on whether or not the state of the work-

ing memory is taken into account. Section 2.6 ad-

dresses the general issue of the need to manage

operations invoked on uncertain variables. Sec-

tion 2.7 considers what it means to modify the

working memory when it may be used to assert

prior probabilities on some probabilistic facts. Sec-

tion 2.8 explains the pragmatics in a “real” BRMS

to support resetting random attributes. Section 2.9

justifies the need for extending Boolean operations

with unknown values. Finally, Section 3 concludes

with a few perspectives.

2 Probabilistic decision making

This section explains how the software underlying

a BRMS such as IBM WODM JRules may be in-

strumentalized to accommodate probabilistic rea-

soning. We describe a set of ways to combine Busi-

ness Rules and probabilistic data-processing, tak-

ing advantage of Bayesian technology [3, 14, 15,

16, 17].

Business Rule (BR) engines are usually based

on Production Rules (PRs), which are Condi-

tion/Action rules. The condition part of such a

traditional rule uses the classical Boolean connec-

tives (and, or, not). This is sufficient to support

decision-making from facts that are certain. How-

ever, when either the facts and/or the rules’ condi-

tions are uncertain (which is the case in most realis-

tic situations) the traditional model becomes inade-

quate. Thus, the problem is then to determine how

traditional PRs can be made to support decision-

making under uncertainty.

We propose to extend the traditional PR-based

computation model with a simple and intuitive en-

hancement of the notion of Production Rule into a

Probabilistic Production Rule (PPR). This can be

made possible by using Bayesian Network tech-

nology. This technology has the advantage of

enabling an operationally effective means to ac-

count for decision-making under uncertainty, all

the while keeping all the benefits of Rete-based

pattern-matching [2].

There are two possibilities for PRs to account

for uncertainty: (1) see data as probabilistic (e.g.,

data categorization); (2) see rules as probabilis-

tic (e.g., uncertain decisions).5 In the first case,

we must adapt Rete-style pattern-matching [2] to

account for uncertain data. In the second, we

need to take into account application of rules of

the form: “if (condition) then action

with probability alpha.” The informal

architecture we describe below offers an effective

operational means to achieve both.

2.1 Probabilistic rules

PR systems are usually based on Boolean Logic. A

decision is made to fire a rule and take the action it

guards whenever a specific Boolean condition ap-

plication of the rule is satisfied by a set of data. For

example, the following PR (expressed in JRules)

may be used to plan an appointment for a patient

with a specialist when a cancer has been detected.6

rule routePatientToSpecialist {

when {

patient:

Patient (cancer);

doctor:

5These two possibilities are illustrated on examples below.
6The use of the “vertical bar” character “|” for “knowing

that” is more familiar to users dealing with probabilities. Using

it inside a “prob” expression is not ambiguous. At any rate, the

syntax we use in this paper’s examples is in no way definite and

may be subject to change.

Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

Imagine now that, at this level of the diagnos-

tic, the cancer has not been effectively detected

although a risk of cancer is somehow estimated,

given the characteristics of the patient. If the fore-

going rule may be made to take this uncertainty into

consideration, it should be modified in such a way

as to take care of that risk and refer the patient to

a specialist for further testing only when a condi-

tional probability threshold is exceeded (say, 0.3).

For example:

rule referPatientToSpecialist {

when {

patient: Patient (

prob(cancer

| age == patient.age;

smoker == patient.smoker)

> 0.3);

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

Then, we can specify in a second rule under what

circumstances the patient is to be referred to a gen-

eral practitioner in cases where the risk is low.

rule referPatientToGP {

when {

patient: Patient (

prob(cancer

| age == patient.age;

smoker == patient.smoker)

< 0.1);

doctor: Doctor (

isGP ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

In that case, we have introduced the random vari-

ables cancer, age and smoker participating in

a probabilistic model of a patient case. A condi-

tional probability operator, prob, is introduced to

perform the effective evaluation of the risk. What

is important here to notice is the mixed use of ob-

ject data (such as the isSameTownAs method),

and probabilistic variables (such as patient).

2.2 Attributes as random variables

An improvement of the previous version maps

directly the random variables of the model into

the object model. In so doing, we follow the

Probabilistic Relational Model (PRM) extension of

Bayesian Networks [18]. Thus, the patient routing

rule is then rewritten into something easier to read:

rule referPatientToSpecialist {

when {

patient: Patient (

prob(cancer

| age; smoker) > 0.3);

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

Observe that now, cancer, age and smoker

are no longer variables but attributes of the Pa-

tient class. The PRM mapping associates to

them a probabilistic model with conditional distri-

http://www.slideshare.net/rommelnc/un-b-bayes-prm

butions [18].7 Note that those attributes are not

exactly instance attributes as in a regular object

model. Note that those attributes are no longer sim-

ple instance attributes as in a regular object model.

Indeed, they may not carry an actual value at run-

time—in other words, their value may simply be

unknown (i.e., ⊥ formally).

Another advantage is the capability of proba-

bilistic network generation. Each instance of the

Patient class is linked to a distinct network,

where each random variable is mapped into an in-

stance attribute. Generating a new patient net-

work requires only instantiating a new Patient

object.

2.3 Relating classes and instances

The PRM goes beyond the simple attribute map-

ping presented in the previous section. Indeed, by

completing the mapping between classes and re-

lations, it enables defining probabilistic network

overlapping several instances. In such models,

probabilistic dependencies between attributes of

different classes and instances are possible. Con-

sequently, the PRM takes advantage of the object-

oriented model for representing a set of classes

with possible navigation between them. While this

makes it easy to generate complex probabilistic

networks, it also complicates evaluation of their

probabilities [19, 20].

In our case study, we introduce in the model a set

of complementary analyses prescribed to a patient.

The new strategy is to refer a patient to a special-

ist if the risk is deemed sufficiently high knowing

the results of a gamma analysis performed on the

patient.

rule referPatientToSpecialist {

when {

patient: Patient ();

analysis: CEAAnalysis ()

in patient.analysisList;

evaluate (

prob(cancer

7See Figures 1, 2, and 3 for examples of such class and in-

fluence diagrams.

| age; smoker;

analysis.value)

> 0.3);

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

In this rule, the random variable analy-

sis.value denotes an attribute of the class

CEAAnalysis.8 It is connected to a Patient’s

instance and its probabilisitc attributes by navigat-

ing through the Patient.analysisList ref-

erence from the patient instance.

Furthermore, this reference concept brings the

opportunity to define complex aggregation vari-

ables over a collection (Figure 1 illustrates this

for our example.) In fact, the PRM makes use of

the most common aggregation funtions: exists,

forall, mean, min, max, etc., . . . These func-

tions can thus be used in the model for defining new

probabilisitic variables, or directly in the rules by

ways of conditions involving aggregations [19, 21].

Figures 2 and 3 illustrate influence diagrams for our

example, with and without aggregation—where the

influence of the random variables An.value is ag-

gregated using “
⊕

” as a generic aggregation sym-

bol standing for any aggregation functions such as

listed above.

2.4 Activation thresholds

Note that the probabilistic operator prob can be

used explictly in a rule’s condition as shown the

in previous section. We now propose to remove

it from the rules for simplicity’s sake. To achieve

that, we introduce a new type of rule: a probabil-

isitic production rule. This sort of rule is simply ob-

tained as a production rule with an additional prob-

abilistic activation threshold. Such a rule’s proba-

bility threshold helps to determine when a PPR is

8“CEA” stands for “CarcinoEmbryonic Antigen.”

http://en.wikipedia.org/wiki/Carcinoembryonic_antigen

Patient

cancer

smoker

age

Analysis

date

CEAAnalysis

value

analysisList

Figure 1: Example of Class Navigation Diagram

P1.age P1.smoker A1.value

P1.cancer

Figure 2: Example of Bayesian Influence

eligible (i.e., potentially fireable). By definition, a

PPR is eligible against a tuple when the probability

of the tuple pattern matching equals or exceeds the

probabilistic threshold.
Consider now the following rule where the prob-

ability rule property defines this threshold:

rule referPatientToSpecialist {

probability >= 0.3;

when {

patient: Patient (cancer);

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

This rule means that if the probability of having

a cancer is higher that 30%, then the patient should

be referred to a specialist.9

9Note that this notation may look ambiguous when it is not.

Another example means that a patient with a

cancer risk lower that 10% is referred to a general

practitioner.

rule referPatientToGP {

probability <= 0.1;

when {

patient: Patient (cancer);

doctor: Doctor (

isGP ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

It may be necessary in some complex situation

to indicate which specific rule conditions will par-

ticipate to the whole probability calculation. For

Indeed, having the probability at the outset before the condition

means that it applies to all but only the random attributes men-

tioned in the condition. It does not concern other unmentioned

random attributes of an object’s class.

P2.age P2.smoker A1.value

⊕ ...

An.value

P2.cancer

Figure 3: Example of Aggregative Bayesian Influence

example, the foregoing rule would then be rewrit-

ten as:

rule referPatientToGP {

when {

patient: Patient (

prob (cancer) < 0.1);

doctor: Doctor (

isGP ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

Hence, the probability calculation is limited to

the random variable cancer.

2.5 Statefulness vs. statelessness

The probability operator prob has the same

meaning as the standard mathematical operator

P (. . .) denoting the probability of a random event.

This means that the expression prob (can-

cer | age; smoker) denotes the probabil-

ity of having a cancer, given the age and the smok-

ing habits of a patient. The conditionnal context is

explicitly written.

The situation is somehow different when we use

the notion of PPR. Intuitively, what is relevant

when we define the following rule:

rule referPatientToSpecialist {

probability = 0.3;

when {

patient: Patient (cancer);

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

is that, given everything we know about the patient,

the probability of having a cancer of greater than

0.3. In that case, the conditional context of every

facts of the WM is important but not explicitly writ-

ten, for practical reason, since we don’t care what

has been posted previously in the working memory.

The prob operator presented above actu-

ally should be stateful for it to be easily

used in a rule without knowing the underly-

ing random variable model. In that perspective,

prob(cancer|age,smoker) could be simply

rewritten as prob(cancer). Thus, the previous

rule are simply rewritten as:

rule referPatientToSpecialist {

when {

patient: Patient (

prob(cancer) > 0.3);

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor);

}

}

The expression prob(cancer)means implic-

itly P (cancer | WM), which is indeed “reduced”

in our model to P (cancer | age,smoker).
In order to allow distinguished contexts in which

a probability may be interpreted, we introduce the

concept of world. Essentially, a world encom-

passes every probabilisitc known fact in the WM.

By default, there are two basic worlds: (1) WM,

the stateful world—i.e., the working memory it-

self (implicit by default), and (2) STATELESS, the

stateless world containing no fact at all—i.e., the

empty world.

Specifying world context can be done by using

a second argument to the prob operator. The op-

tional condition part of the operator still exists and

maybe combined with an explicit world selection.
In that meaning:



































prob(cancer) = prob(cancer,WM)

= P (cancer | WM),

prob(cancer | age > 50)

= P (cancer | age > 50,WM),

prob(cancer,STATELESS)

= P (cancer).

More generally, if R is a random attribute and
(a,b,...) is a tuple satisfying its condition part
Q(a, b, . . .), then:

prob(R;(a,b,...)) = P (Q(a, b, . . .) | WM).

Finally, other worlds could be defined in order to

extend and control the hypothetical reasoning of

the rule engine.

2.6 Unknown operator arguments

When an attribute is mapped into a random vari-

able, its value is linked to a probability distribution.

Hence, this attribute is not guaranteed to hold al-

ways a unique value at any given time as are usual

object attributes. Therefore, when the actual value

of a random attribute is not known, some instruc-

tions, such as operators or methods expecting this

attribute as argument, may not be carelessly in-

voked on this attribute. A special isKnown op-

erator is introduced that determines whether such

an attribute has a value or not.

Let us take for example the following rule, sup-

posing that analysis.value is linked to a ran-

dom variable:

rule referPatientToSpecialist {

probability > 0.7;

when {

patient: Patient ();

analysis: CEAAnalysis (

analysis.value > 0.3)

in patient.analysisList;

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor,

new HighCEAAnalysis (

analysis.value));

}

}

The meaning of this rule is to plan an appointe-

ment for a patient when the probability that his/her

CEA analysis value (some indicator measure) ex-

ceed .3 is greater than 70%. Observe that the ac-

tion planAppointement is one that now has

new parameter of type, say, class HighCEAAnal-

isys requiring that the actual analysis value be ac-

tually provided. In order for the action of this rule

to be safely executable, it is required that analy-

sis.value’s actual value be known. When this

is the case, it means that its distribution is set to

a unique value with the probability set to 100%.

However, when it is not the case that analy-

sis.value’s actual value is known, the above

rule is clearly unsafe.
To control this situation, the following safer rule

may be specified using a guard explicitly testing
whether that the rand variable’s actual value is
known:

rule referPatientToSpecialist {

probability > 0.7

when {

patient: Patient ();

analysis: CEAAnalysis (

analysis.value isKnown;

analysis.value > 0.3)

in patient.analysisList;

doctor: Doctor (

isCancerSpecialist ();

isInSameCity(patient));

}

then {

planAppointement

(patient, doctor,

new HighCEAAnalysis (

analysis.value));

}

}

Note however that such a test is only required

depending on the level of static analysis sophisti-

cation of the probabilistic rule processing system.

Indeed, these isKnown tests could be automati-

cally generated for any occurrence of a random at-

tribute in an expression requiring its actual value.

Note however that, whether explicit or automati-

cally generated, these “isKnown” safety tests are

part of the rule’s guard.

2.7 Modifying the working memory

Formally, a WM might be seen as a set of facts con-

cerning a set of objects. These facts are properties

of the objects that are used by the object-matching

engine to calculate which objects satisfy the rules

patterns. The execution of the rules potentially may

change the state of the WM by inserting, updating,

or retracting objects, as well as inserting or retract-

ing facts.

Consider the following rule updating the family

risk whenever cancer was diagnosed for a patient’s

parent:

rule setFamilyRisk {

when {

patient: Patient ();

exist Patient (

cancer,

isParentOf (patient));

}

then {

update patient {

patient.familyRisk == HIGH; }

}

}

The action part instruction means that the WM is

changed since the familyRisk has changed. In

addition to update, the usual insert/delete

can be used to insert a new object into the WM, or

retract an object from it.

In order to post facts, we use the operator as-

sertFact. Thus, the previous rule may be rewrit-

ten as:

rule setFamilyRisk {

when {

patient: Patient ();

exist Patient (

cancer,

isParentOf (patient));

}

then {

assertFact (

patient.familyRisk == HIGH);

}

}

Indeed, this operator may post complex facts to
the WM, such as:

assertFact (patient.age > 21);

or

assertFact (

patient1.age > patient2.age);

Note that this type of facts are usually not man-

aged by PR engines such as JRules. However, they

become handy in a PPR engine for asserting spe-

cific prior probabilities for some facts and propa-

gating them into their Bayesian network for updat-

ing posterior probabilities of its random variables

they are connected to.
By default, the fact are asserted in the common

working memory world, following the same logic
than the prob operator. Nevertheless, other worlds
might be chosen, specified by a second parameter
of the assertFact operator. For example, con-
sider the assertion of the fact patient.age >

21 in the world named MY WORLD:

assertFact (patient.age > 21,

MY_WORLD);

The complexity of the asserted fact depends on

the capability of the compiler to process it. Some

expressions might be rejected by the system or sim-

ply ignored.

By asserting the fact f in a world W =
{f1, . . . , fn}, we schematically mean that the

world’s state represented by the set of facts W is

being changed to the new state represented by the

set {f, f1, . . . , fn}. This is essentially equivalent

to saying that the model represented by the world W

has been updated with a new evidence f . Any ref-

erence to world W will now take this new fact into

account along with all the facts previously making

up W.

2.8 Resetting random attributes

When an attribute is mapped into a random vari-
able, its probability distribution will evolve accord-
ing to the facts posted in the WM. In order to reini-
tialize the processing, it may be required that this
value be reset to its original distribution. A special
operatorassertUnknown is provided to perform
this reinitialization. For example, the rule:

rule reinitPatient {

when {

patient: Patient ();

}

then {

assertUnknown (patient.cancer);

assertUnknown (patient.smoker);

}

}

may be used to reinitialize a patient’s random

atributes. For all practical purposes, this operator

may be extended to be applied to an object so as to

initialize every random variables of that object.

2.9 Boolean logic with unknowns

As could be seen in the previous section, the value

of a random attribute is not always known, defined

only to be a probability distribution. The seman-

tics of random attribute access must be adapted de-

pending on the kind of the operators or methods

that are invoked on it, the location in the rules (i.e.,

condition or action part), and the parameters of the

compilation, in such a way that:

1. an exception is raised as soon one try to ac-

cess an unknown value (this semantics is rec-

ommended for the right part of the rules); and,

2. the Boolean expression is evaluated taking

into account a 3-valued logic with the seman-

tics given in Table 1 for the common Boolean

operators.

For example, assuming that the patient’s age is
unknown, if (smoker == true) holds, then so
does the condition:

patient.smoker || patient.age > 17;

A last extension, fully compatible with the distri-
bution definition, enables evaluating the probability
of Boolean expression as a whole. In that case, the
previous expression is said to be true if:

prob (patient.smoker ||

patient.age > 17) == 1;

The 3-valued logic with unknown (i.e., ⊥) de-

fined by the operations described in Table 1 may

then be used when the probability calculations be-

come too complex.

3 Conclusion

In this paper, we have discussed ways to en-

hance Business Rule Management Systems based

on condition/action rules under uncertainty using

Bayesian techniques. We have reviewed relevant

work with similar pursuits and positioned our ap-

proach in the current context. We think that the

time is ripe as several “hot” notions and techniques

have recently been put forth in decision-making

software research—namely, implementation tech-

niques like the Generalized Distributive Law and

Bucket Elimination [22, 12].

x not x

true false

false true

⊥ ⊥

x y x or y x and y

true true true true

true false true false

true ⊥ true ⊥
false true true false

false false false false

false ⊥ ⊥ false

⊥ true true ⊥
⊥ false ⊥ false

⊥ ⊥ ⊥ ⊥

Table 1: 3-Valued Boolean Operators

Finally, one can see our efforts trying to to

make a Production Rule engine such as JRules

able to accommodate uncertainty as a necessary

step toward Data and Rule Mining [23]. Invest-

ing in data analytics for business decisions is part

of a larger effort at IBM.10 To wit, “IBM Roars into

Business Consulting”—or so recently wrote Busi-

ness Week ’s columnist Steve Hamm. And he adds,

“Its new 4,000-strong Business Analytics & Op-

timization Services will mine IBM’s research and

software divisions for innovations.” It is hoped that

our efforts will contribute to leverage this potential.

Acknowledgements The authors wish to express their

thanks to Jean-Louis Ardoint, Pierre-André Paumelle,

and Hugues Citeau for comments.

References

[1] Aı̈t-Kaci, H., Bonnard, P.: Probabilistic

production rules. IBM ILOG technical re-

port, International Business Machines, Gen-

tilly, France (2012)

[2] Forgy, C.L.: RETE: a fast algorithm for

the many pattern/many object pattern match

problem. In Raeth, P.G., ed.: Expert Systems:

A Software Methodology for Modern Appli-

cations. IEEE Computer Society Press, Los

Alamitos, CA, USA (1990) 324–341

10See also IBM’s event proceessing.

[3] Darwiche, A.: Bayesian networks. Commu-

nications of the ACM 53(12) (2010) 80–90

[4] Ardoint, J.L., Bonnard, P.: Composite pro-

duction rules—a better support of business

rules implementation. IBM ILOG techni-

cal report11, International Business Machines,

Gentilly, France (2012)

[5] Novak, G.S.: TMYCIN expert system tool.

Technical Report AI-TR-87-52, The Univer-

sity of Texas, Austin, Texas, USA (1987)

[6] Sottara, D., Mello, P., Proctor, M.: Config-

urable rete-oo engine for reasoning with dif-

ferent types of imperfect information. IEEE

Transactions on Knowledge and Data Engi-

neering 22(11) (2010)

[7] Sottara, D.: Integration of symbolic and con-

nectionist AI techniques in the development

of Decision Support Systems applied to bio-

chemical processes. PhD thesis, Department

of Electronics, Computer Science and Sys-

tems, University of Bologna, Bologna, Italy

(2010) [available online].

[8] Shortliffe, E.H.: Computer-Based Medical

Consultations: MYCIN. Elsevier/North Hol-

land, New York, NY, USA (1976)

[9] Getoor, L., Friedman, N., Koller, D., Pfef-

fer, A., Taskar, B.: Probabilistic relational

11Based on IBM US Patent 13/281,037 (2011).

http://domino.research.ibm.com/comm/research_projects.nsf/pages/dar.index.html
http://www.businessweek.com/technology/content/apr2009/tc20090414_322525.htm
http://www.ibm.com/developerworks/webservices/library/ws-eventprocessing/index.html
http://amsdottorato.cib.unibo.it/2972/1/Sottara_Davide_Tesi.pdf

models. In Getoor, L., Taskar, B., eds.: An

Introduction to Statistical Relational Learn-

ing. MIT Press, Cambridge, MA, USA (2007)

129–174

[10] Howard, C., Stumptner, M.: Automated

compilation of object-oriented probabilistic

relational models. International Journal of

Approximate Reasoning 50(9) (2009) 1369–

1398

[11] Torti, L., Wuillemin, P.H., Gonzales, C.: Re-

inforcing the object-oriented aspect of prob-

abilistic relational models. In Myllymäki,

P., Roos, T., Jaakkola, T., eds.: Proceedings

of the Fifth European Workshop on Prob-

abilistic Graphical Models, Helsinki, Fin-

land, Helsinki Institute for Information Tech-

nology, HIIT Publications (2010) 273–280

[available online].

[12] Dechter, R.: Bucket elimination: A unify-

ing framework for reasoning. Artificial Intel-

ligence 113(1–2) (1999) 41–85

[13] Cowell, R.G., Dawid, A.P., Lauritzen, S.L.,

Spiegelhalter, D.J.: Probabilistic Networks

and Expert Systems—Exact Computational

Methods for Bayesian Networks. Springer

Science+Business Media, New York, NY,

USA (2007)

[14] Paskin, M.A.: A short course on graphical

models (2003) [available online].

[15] Murphy, K.: A brief introduction to graph-

ical models and Bayesian networks (1998)

[available online].

[16] Kjærulff, U., Madsen, A.: Probabilis-

tic networks—an introduction to Bayesian

networks and influence diagrams (2005)

[available online].

[17] Niculescu, R.S., Mitchell, T.M., Rao, R.B.:

Bayesian network learning with param-

eter constraints. Journal of Machine

Learning Research 7 (2006) 1357–1383

[available online].

[18] Howe, E., Lenfestey, J., Temple, T.: In-

tro to Probabilistic Relational Models. MIT

Open Courseware, Avanced Lectures (2005)

[available online].

[19] Mengshoel, O.J., Wilkins, D.C.: Ab-

straction and aggregation in belief networks.

In: Abstractions, Decisions, and Uncertainty:

Collected Papers from the 1997 Workshop.

AAAI Press, Menlo Park, CA, USA (1997)

53–58 [available online].

[20] Koller, D., Pfeffer, A.: Object-oriented

Bayesian networks. In: Proceedings of

the Thirteenth Annual Conference on Un-

certainty in Artificial Intelligence (UAI-97),

Providence, Rhode Island, USA (1997) 302–

313 [available online].

[21] Howe, E., Lenfestey, J., Temple, T.: Ex-

tensions of Bayesian Networks. MIT

Open Courseware, Avanced Lectures (2005)

[available online].

[22] Aji, S.M., McEliece, R.J.: The general-

ized distributive law. IEEE Transactions on

Information Theory 46(2) (2000) 325–343

[available online].

[23] Apte, C., Liu, B., Pednault, E.P.D., Smyth, P.:

Business applications of data mining. Com-

munication of the ACM 45(8) (2002) 49–53

[available online].

http://www-desir.lip6.fr/publications/pub_1393_1_tor-wui-pgm2010.pdf
http://ai.stanford.edu/~paskin/gm-short-course/
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
http://www.cs.aau.dk/~uk/papers/pgm-book-I-05.pdf
http://jmlr.csail.mit.edu/papers/volume7/niculescu06a/niculescu06a.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/a5_hw_lnfty_tmpl.pdf
http://www.dwilkins.org/publicLibrary/KBSPubs/RefereedPublications/abstraction_aggregation_belief_networks.pdf
http://www.eecs.harvard.edu/~avi/Papers/uai97oobn.ps
http://web.mit.edu/16.412j/www/html/Advanced%20lectures/Slides/Temple_Howe_Lenfestey_DBN.pdf
http://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
http://doi.acm.org/10.1145/545151.545178

	Introduction
	Probabilistic decision making
	Probabilistic rules
	Attributes as random variables
	Relating classes and instances
	Activation thresholds
	Statefulness vs. statelessness
	Unknown operator arguments
	Modifying the working memory
	Resetting random attributes
	Boolean logic with unknowns

	Conclusion

