
Software Architecture Recovery based on Pattern Matching

PhD Dissertation Synopsis
Kamran Sartipi

School of Computer Science, University of Waterloo
Waterloo, ON. N2L 3G1, Canada

ksartipi@math.uwaterloo.ca

Abstract

This paper is a summary of the author’s thesis that
presents a model and an environment for recovering the
high level design of legacy software systems based on user
defined architectural patterns and graph matching tech-
niques. In the proposed model, a high-level view of a soft-
ware system in terms of the system components and their
interactions is represented as a query, using a description
language. A query is mapped onto a pattern-graph, where
a component and its interactions with other components
are represented as a group of graph-nodes and a group of
graph-edges, respectively. Interaction constraints can be
modeled by the description language as a part of the query.
Such a pattern-graph is applied against an entity-relation
graph that represents the information extracted from the
source code of the software system. An approximate graph
matching process performs a series of graph transforma-
tion operations (i.e., node/edge insertion/deletion) on the
pattern-graph and uses a ranking mechanism based on data
mining association to obtain a sub-optimal solution. The
obtained solution corresponds to an extracted architecture
that complies with the given query.

1 Introduction

In a nutshell, the existing approaches to software archi-
tectural recovery can be classified as clustering-based tech-
niques and pattern-based techniques. The clustering-based
techniques generate architectural components by gradually
grouping the related system entities using a similarity mea-
sure [6]. On the other hand, the pattern-based techniques
first compose a high-level mental model of the system ar-
chitecture (also known as conceptual architecture or archi-
tectural pattern) using a modeling means such as a query
language [5] or a block diagram [4], and then a pattern
matching engine searches to identify an instance of the ar-
chitectural pattern in the software system.

The clustering-based techniques can only implicitly
guide the result of the recovery toward a constrained objec-
tive. In contrast, the pattern-based techniques can use a for-
malism to model structural constrains that are derived from
the application domain and system documentation and can
link the analysis results with intended objectives, hence pro-
vide a user/tool cooperative environment for architectural
recovery. However, the pattern-based architecture recovery
approaches suffer from the lack of an expressive representa-
tion of the architectural patterns, and in most cases an expert
user is required to formulate the architectural pattern.

This thesis [7] argues that a pattern-based environment
for software architecture recovery with an expressive ar-
chitectural pattern language that incorporates knowledge
from the system’s domain and documentation, and a pro-
cess that ensures a repeatable recovery result would best
suit to the requirements of the architectural recovery prob-
lem. Moreover, the software systems are intuitively repre-
sented as graphs and the reverse engineering community is
on the verge of adopting a graph standard for information
exchange among the existing reverse engineering tools [3].

Specifically, this thesis proposes a pattern-based recov-
ery approach whose objectives can be specified in terms
of the structural properties that are defined through an
architectural pattern. The proposed architectural pattern
is based on the expressive features of the architecture de-
scription languages (ADLs) and is incrementally generated
via an interactive procedure that allows to incorporate
the knowledge from the application domain and system
documentation. The proposed approach considers the
high-level design of a system as a pattern-graph, and
models the recovery process as a graph pattern matching
problem that matches such a high-level pattern-graph of the
system with an entity-relationship graph representation of
the source-code system entities. The result of the recovery
can be directly tested against the recovery objectives
through: i) conformance checking with the available
documentation that ensures the decomposition of the core
system functionality into components; ii) measuring the

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

AQL querySoftware System

as graph

AST

Automatic

User-assisted

Software
generation

generation

& Similarity matrix

& Metrics
Architecture

RSF

 mining

Pattern

Expensive computation

Graph matching

Data

pattern

C / Pascal /

Module-Interconnection

Pattern graph

Graph

- Decision making
- Domain & Document
- System analysis

Parsing

(search & evaluation)
Graph regions

analysis
On-line:Off-line:

pre-process

Figure 1. The proposed interactive environ-
ment for pattern-based software architecture
recovery and evaluation.

modularity quality of the recovered architecture to ensure
the recovery of a maintainable system; and iii) conformance
with the component and connector size and type constraints
imposed by the pattern.

2 Proposed recovery environment

Figure 1 illustrates the different parts of the proposed
environment where the thick arrows signify the automatic
or user-assisted processes in the environment; boxes rep-
resent the different forms of information in the environ-
ment; the thin arrows indicate the inputs and output of the
graph matching engine; and the user is the high-level deci-
sion maker that produces a mental model of the architecture
and verifies the result of recovery. The proposed environ-
ment employs techniques from approximate graph pattern
matching, data mining, clustering, and architecture descrip-
tion languages. The environment consists of an off-line pre-
process part and an on-line analysis part, that are performed
in the following steps.

Step 1: in the off-line part, the software system (written
in a procedural language such as C) is parsed and repre-
sented as an attributed relational graph; the system graph
is pre-processed using data mining techniques to extract
groups of highly intra-related entities; and finally the sys-
tem graph is represented as a group of graph regions in a
database to be used by the graph matching engine. Each
graph region represents a reduced search space for recovery
of a component.

Step 2: in the on-line part, using an iterative recovery
process the user incrementally generates an architectural
pattern for the software system based on domain knowl-
edge, system documents, or tool-provided system analysis

information. The architectural pattern (can be referred to as
conceptual architecture) is directly defined for the tool, us-
ing a proprietary language that we call Architecture Query
Language (AQL). Therefore, a query in AQL represents a
macroscopic graph-form pattern for a part or the whole of
the system architecture to be recovered.

Step 3: the graph matching engine then represents the
architectural pattern in the AQL query as a graph-pattern;
sub-optimally matches the graph-pattern against the system
graph regions in the database; and finally presents the re-
covered architecture along with the evaluation metrics to
the user.

Step4: the user investigates the result of recovery us-
ing the tool-provided metrics and if the result is satisfac-
tory, stops the recovery process; otherwise, the user aug-
ments the architectural pattern by adding another compo-
nent and/or by adding/adjusting the constrained connectors,
and then resumes a new recovery iteration.

The proposed environment has been implemented in a
toolkit called Alborz which is described in Chapter 8 of
the thesis. Alborz provides the result of the architectural
recovery into two forms: i) HTML pages for the recovered
components, tool generated metrics, and source code, to
be visualized by a Web browser such as Netscape; and
ii) graphs of boxes and arrows to be visualized by the
Rigi tool [1], where the boxes are the system files or the
analyzed components and the arrows are either the resource
interaction (i.e., import/export) between the components or
their association values.

Contributions: the specific contributions of this thesis
with respect to the solid circles in the environment of Figure
1, and with refer to the Chapters of the thesis, are discussed
in the items C1 to C6 below:

C1: a new domain model that allows to represent the
software system as an attributed relational graph at a higher-
level of abstraction than the source-code which is suitable
for architectural recovery (in Chapter 3). C2: two new
similarity metrics that are based on the structural properties
of the groups of entities with maximal association (defined
later) generated by data mining techniques (in Chapter 3).
C3: a novel technique to limit the computational complex-
ity of the graph matching process for architectural recovery
using graph regions (in Chapter 3). C4: an architecture
query language (AQL) to model an architectural pattern of
constrained components and their interactions (in Chapter
4). C5 and C6: a new multi-phase approximate graph
matching algorithm to match a pattern-graph with the
regions of the software system graph (in Chapters 5 and 6).

2

3 Overview of the graph matching process

In modeling the proposed incremental graph matching
approach for architecture recovery, a number of inter-
mediate graphs and connector edges are defined. Such
intermediate graphs allow to represent the architectural
pattern and an input graph at each iteration of the matching
process in terms of their constituents (i.e., a number
of recovered components and their import/export links)
and consequently formulate these graphs using recursive
graph summation equations. This formulation provides a
valuable means for modeling and implementing the whole
incremental pattern matching process.

3.1 Software system representation
In this approach, the software system and the architectural
pattern are presented using the attributed relational graph
notation.The software system is represented by a source-
graph

���������	��
�����
, where the nodes (���) represent files,

functions, datatypes, and variables and the edges (���) repre-
sent call and use relationships. The nodes and edges com-
ply with the specific domain model defined for architectural
analysis [7].

The source-graph
���

provides a search-space for the
matching process. However, since even in a medium-size
software system the number of entities and relationships
that are generated are prohibitively high, any matching al-
gorithm will be intractable.

To address this problem, using data mining association
relation, the search space is divided in order to generate
a collection of sub-spaces, where each sub-space is a
sub-graph of the source-graph

���
, namely a source-region������ . Each source-region

������ is distinguished by the
main-seed node ��� in that region.

Data mining: in this context, the data mining technique
Apriori [2] is used to discover all groups of system entities
that are related by maximal association. Maximal associa-
tion is defined in a group of system entities in the form of
a maximal set of entities that all share the same relation to
every member of another maximal set of entities.

Every node in a source-region is labeled with an
association-based similarity value to the main-seed of the
source-region as a means for the matching process to oper-
ate on groups of highly associated entities. The similarity
value between two entities and between two groups of en-
tities are defined using the groups of entities with maximal
association extracted by the data mining technique.

3.2 Architectural pattern representation
The architectural pattern is represented by an AQL query.
Each component (module or subsystem) of the query uses
one or more entities as fixed entities to appear in the re-

matched being matched
Phase 2Phase 1

G
m
1

m pr

2
G 2

pr

G
m
2

G

R

1 G
m

2

G
p
2

m sr
R2 +

+

G 2
mr

R

I

m mr
G

m
1 2 +

Main-seed

+

Match+ =

=

=

(

(

)

)
)+ (

G
sr
g(2)

n2,1

n2,2

n2,3

(d) Matched-graph(c) Input-graph

(b) Pattern-graph

13

1

9

65

4

in parts (b) and (c).
"pattern-graph" and "input-graph"
a "query-graph" that generates

(a) Representing an AQL query as

9

65

4

edge
Source-graph

summations

+ ,
Graph

Main-seed
Un-matched

edge

+

7

2
10

13

11

1

2

1 l

 M M 2

16
use-F : (1,2)

9

65

4

1

F: (2, 4)
 F:(2, 3)

Module M1

Module M2

AQL query

Figure 2. An example of matching a pattern-
graph with an input-graph to yield a matched-
graph at phase 2 of the matching process.

sult of the recovery, namely main-seed(s) which determine
the corresponding search-space to be searched for the com-
ponent, and seeds which just appear in the result without
search. In the following a part of an AQL query, consisting
of a subsystem S1 of files and its interconnection links to
other subsystems is shown:
BEGIN-AQL
SUBSYSTEM: S1

MAIN-SEEDS: files e edit, e update
IMPORTS:

RESOURCES: rsrc ?IR,
rsrc ?R1(6 .. 10) S2,
rsrc ?R2(12 .. 20) S4

EXPORTS:
RESOURCES: rsrc ?ER,

rsrc ?R3(10 .. 15) S2,
rsrc ?R4(1 .. 5) S3

CONTAINS:
FILES: file $CFI(7 .. 10), files e edit, e update

END-AQL

The above AQL fragment is interpreted as: the subsys-
tem S1 which will be instantiated with seven to ten files,
and definitely contains the files e edit and e update (main
seeds), imports minimum six and maximum ten resources
(?R1) from subsystem S2. A similar interpretation holds
for the EXPORTS and CONTAINS sections. The notations
?IR and ?ER in the import and export parts denote uniden-
tified quantities of links between the current subsystem and
any other subsystems in the query that have not been speci-

3

fied by the architectural pattern, therefore, are not matched
by the matching algorithm.

An AQL query can be further represented as a query-
graph consisting of composite nodes that are linked through
composite edges. The

�����
composite node is expanded into

a pattern-region
��� �� , and each composite edge is expanded

into a group of edge-bundles �
	�� � �� , as illustrated in the
example of Figures 2(a) and (b). Each edge-bundle con-
nects every node from a corresponding recovered compo-
nent to one node in the pattern-region

�� �� with respect to
the direction of the composite edge. The expansion of the
query-graph generates a pattern-graph

���� . The rationale
for expanding the composite-edges is to allow every subset
of the nodes in a source component to be connected to every
subset of the nodes in the destination component, according
to the constraints modeled in the AQL query.

3.3 Graph pattern matching
In order to address the tractability of the recovery process,
the whole recovery process is divided into � incremental
phases (as � partial-matchings) where � is the number of
components to be recovered and the current matching phase
is denoted by “

�
” (
���

[1.. No. of components]). Therefore,
the recovery process performs a multi-phase matching. This
allows to back-tracking to the previous phase of recovery if
the recovery of the current component fails. Figure 2 il-
lustrates an example of the matching process at phase 2,
where the process computes a sub-optimal match between
a pattern-graph

��� �
that originates from an AQL query and

an input-graph
����

that originates from the system source-
graph

���
.

We use the ��� search algorithm that has been modified
by a “Bounded-Queue” heuristic (namely BQ- ���) to com-
pute a sub-optimal match between the pattern-graph

��� and
input-graph

���� while the AQL query constraints are not vi-
olated. The BQ- ��� algorithm generates a search-tree and
uses a cost function based on graph transformation opera-
tions (i.e., node or edge deletion/insertion) that guides the
search algorithm to expand a tree-node with minimum cost.

In Figures 2(b) to (d), the graph summation notations
“plus � ” for connecting two graphs, and “oplus � ” for
connecting a graph to a group of connector-edges are used
to model the whole incremental pattern matching process
in terms of the recursive graph algebraic equations.

3.4 Evaluation
A comprehensive set of experimentations related to the
time/space complexity, accuracy, stability, and quality of
the proposed architecture recovery technique has been pre-
sented in the Chapter 8 of the thesis [7].

The experimentations are performed on six middle-size
industrial systems, namely: i) Xfig.3.2.3 drawing editor,
ii) Clips.4.20 expert system builder, iii) Apache.1.2.4 http

server; iv) Bash.2.03 Unix shell; v) Elm.2.5.6 Unix mail
system; and vi) Ghostview.3.5.8 postscript file viewer. Fig-
ure 3(a) presents the source-code related characteristics of
the experimentation suite. Figure 3(b) illustrates the ar-
chitectural pattern of the Clips system with five subsys-
tems, where the constrained components and connectors are
shown. Figure 3(c) illustrates the result of recovery, where
the constraints of the architectural pattern have been satis-
fied.

Figures 3(d) to (g) illustrate the result of recovery for the
Clips system using the Netscape browser and the Rigi graph
visualizer. In Figure 3(h) the accuracy of the recovery result
is presented using the Precision and Recall metrics.

4 Conclusion
The thesis of this work argues that the pattern-based

approaches to software architecture recovery with an
expressive pattern language, and with an interactive and in-
cremental recovery process that incorporates the knowledge
from the application domain and system documentation,
best suites the objectives of an architecture recovery task.
The paper, then briefly discussed the characteristics of such
an environment with focus on the graph matching model,
tractability, and accuracy of the proposed technique.

Acknowledgment: I would like to thank Professor
Kostas Kontogiannis for supervising this thesis.

References

[1] Rigi, URL = http://www.rigi.csc.uvic.ca/rigi/rigiindex.html.

[2] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In Proceedings of the 20th Inter-
national Conference on Very Large Databases, pages
487–499, 1994.

[3] Bell, IBM. Workgroup on Standard Exchange Format
(WoSEF), Limerick, Ireland, June 06 2000.

[4] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
et al. The software bookshelf. IBM Systems Journal,
36(4):564–593, November 1997.

[5] R. Kazman and M. Burth. Assessing architectural com-
plexity. In Proceedings of the CSMR, pages 104–112,
1998.

[6] A. Lakhotia. A unified framework for expressing soft-
ware subsystem classification techniques. Journal of
Systems and Software, 36(3):211–231, 1997.

[7] K. Sartipi. Software Architecture Recovery based on
Pattern Matching. PhD thesis, School of Computer Sci-
ence, University of Waterloo, Waterloo, ON, Canada,
2003.

4

Files Funcs

40
38

74

44
35
39

62
47

47
42
44
98

469
420

709
736

1662

1017

KLOC

Clips
Apache
Bash

GSview
Elm

Xfig

Systems

retract

(d) Final recovered of Clips system with Strong and Medium links

(e) Adding "loose" and "weak" association links to part (d).

(f) Recovered subsystem S1

links to other HTML pages.
with various statistics and

recovered subsystems.

retract

?R
3(

0.
.5

)

?R
2(

10
..4

0)

?
R

1(
10

..2
0)

3 Phs 10 Phs

method math
expressn

10 Phs

10 Phs

generate ?R4(10..40)

10 Phs

matching
Pattern

 207 funcs
10 files

3 + 1 files
 86 funcs

No. of
files

(g) Assocition links among the

S2

S3

S1 S5

S4

Recovered files + Distributed files

S3

- Defrule structures
- Inference engine

rest-of-sys

expressn

method math

generate

 179 funcs

?R
3(

4)

?R
2(

35
)

?R4(39)

10 files

79 funcs
4 files

 177 funcs
10 + 1 files

?
R

1(
20

)

(a) Source code information
of the six analyzed systems (b) Architectural pattern of Clips using AQL query (c) Recovered architecture of Clips

(h) Architectural recovery evalution of the Clips system.

Pre-Recovered
subsystems

No. of
(documented)

Clips subsystems

S1

S2

rest-of-sys

- Rule manipulation

- Object

S4

S5 - System function
- User interface

4

4

10

5

10

11

- Expression eval

files

3

4

7

6

13

cision Recall

70%

83%

100%

57%

75%

40%

82%

50%

75% 75%

S1

S2

S5

S4

S3S2S3
S4

S5S1

Figure 3. (a) The architectural pattern of Clips with five subsystems, where the constrained compo-
nents and connectors are shown. (b) In the result of recovery, the constraints of the architectural
pattern have been satisfied. (d) The accuracy of the recovery result using the Precision and Recall
metrics.

5

