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Abstract 

This paper describes the current state of implementation of a 
cognitive computer model of human plausible reasoning, based on 
the theory of plausible reasoning described by Collins and 
Michalski.Our goal is to use the simulation as a means of testing 
and refining the theory. This requires developing appropriate 
memory organization and search techniques to support of this style 
of inference, finding ways to estimate similarity in specific contexts 
and investigating ways of combining the sometimes contradictory 
conclusions reached when inferences of different types are used to 
answer questions. 

1. INTRODUCTION 
Over the last 15 years, Collins and his colleagues (Carbonell and 

Collins, 1973, Collins et al., 1975, Collins, 978a, Collins, 978b)have 
collected and categohzed a wide variety of human plausible 
inferences made from incomplete and inconsistent information. This 
work led to the development of a partial theory of plausible inference 
(Collins and Michalski, in press) for situations where the most 
appropriate or specific information was not available. This paper 
describes some current work in progress, the development of a 
computer simulation of a portion of that theory. Our goal is to use 
the simulation as a means of testing and refining the theory. 

The popularity of expert systems has generated great interest in 
developing techniques to reason with uncertain information. To 
date, research on reasoning under uncertainty has emphasized the 
role of statistical theory. (Pearl, 1986, Duda et al., 1976). 
Unfortunately, in most real-world problems neither the data nor the 
inference rules themselves are known to apply with precise 
certainties. Methods of combining uncertain evidence from multiple 
sources are also often required. With the exception of Cohen 
(Cohen, 1985), it has usually been assumed that the appropriate 
certainty parameters and the methods of combination were 
independent of the type of inference performed. Furthermore, these 
techniques usually require some form of closed world assumption 
for correct interpretation. Unfortunately, in most real-world 
situations, the available information is incomplete as well as 
uncertain. People deal with this problem continually, and quite 
effectively, using techniques for reasoning by similarity, reasoning 
from negative information, and reasoning from their own lack of 
knowledge about particulars (e.g., "I would know it if Ronald Reagan 
was 10 feet tall.") It is these kinds of inferences that we seek to 
model. 

Collins' theory of plausible reasoning is based on a corpus of 
people's answers to everyday questions (Collins, 978b). In general. 
he found that these answers had the following characteristics: 

1. There are usually several different inference types used to 
answer any question. 

2. The same inference types recur in many different answers. 

1This work was done at BBN Laboratories, and sponsored by ARI under Contract 
number MDA903-8S-C-0411. 

3. People weigh different evidence (and different kinds of 
evidence) they find that bears on a question. 

4. People are more or less certain depending on the certainty of 
their information, the certainty of the inferences used, and on 
whether different inferences lead to the same or opposite 
conclusions. 
Also apparent from the protocols is that subjects faced with 

answering a question for which they have no specific knowledge 
launch a search for relevant information that they do have. As 
relevant pieces of information are found (or are found to be 
missing), they trigger particular types of inferences. The type of 
inference applied is determined by the relation between the 
information found and the question asked. For example, when a 
tutor was asked whether they grow coffee in the Llanos region of 
Colombia, he responded: 

I don't think that the savanna is used for growing coffee. The 
trouble is the savanna has a rainy season and you can't count on 
rain in general. But I don't know, this area around Sao Paulo (in 
Brazil) is coffee region, and it is sort of getting into the savanna 
region there. 

Initially, the tutor said no because he knew that coffee growing 
depends on factors like rainfall, temperature, soil, etc. and the 
savannas do not have the correct value on the rainfall factor. (This 
is called a derivation from mutual implication in the theory.) 
Secondly, he did not know specifically that the Llanos was used for 
coffee growing, and believed that he would know if it was (lack of 
knowledge). Later, he backed off when he found positive evidence; 
i.e., that the region in Brazil was near an area where coffee was 
grown (a similarity transform). His final answer weighed all of these 
pieces of evidence together, albeit inexactly. 

In the remainder of this paper, we will describe an initial 
implementation of one part of Collins' theory of plausible reasoning, 
based on examples like this one. Initially, we have concentrated on 
modeling the class of functional inferences, where the inference is 
based on a functional dependence such as that coffee growing 
depends on climate and vegetation. 

The primary purpose of the system is to act as a testbed for the 
theory. As such, it is not designed to produce one "right" answer, 
but a number of plausible positive and negative inferences each of 
which may be a weak (or not so weak) reason for believing that the 
question asked could be answered in a particular way. Our goals 
are to demonstrate that the theory produces only plausible answers, 
to develop ways of searching memory for the kinds of relevant 
information that are needed in order to apply each inference type, 
and to investigate methods for combining the various kinds of 
evidence that are produced. 

The Plausible Reasoning Simulation System (PRSS) we have 
developed is thus quite different from other systems that have been 
developed to reason with incomplete and/or uncertain information. 
Since it is intended to simulate human reasoning, it generates 
multiple proofs of both the truth and the falsity of a given 
proposition. The types of inferences made depend on the particular 
information found in memory, and the nature of their relevance to 
the question asked. Finally, the certainty of the overall conclusions 
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reached depends on both the certainty of the evidence and the 
types of inferences used. 

2. AN EXAMPLE 
To give a sense of the behavior of the simulation system, 

consider how it behaves when asked a question like "Does coffee 
grow in Llanos?". 

(.? crop :of llanos := coffee) 

HO DIRECT EVIDENCE FOUND. 

TRYING NEGATIVE IMPLICATION FROM: 

CROP - COITEE ===> RAINFALL - HIGH 
(certainty .8) 

Since HIGH is not a known value for 
RAINFALL(LLANOS), and set of values 
for RAINFALL(LLANOS) is CLOSED. 

Conclude that COFFEE is not a value 
for CROP(LLANOS) with MEDIUM certainty. 

TRYING ARGUMENT BASED DEPENDENCY TRANSFORMS. . . . . 
LLANOS and SAO-PAULO match on CLIMATE. 

(aim -0.8) 
LLANOS and SAO-PAULO match on VEGETATION. 

(aim -0.6) 
Using a SIM transform: 
Since CLIMATE and VEGETATION <===> CROP 
and SAO-PAULO is similar to LLANOS with respect 

to CLIMATE and VEGETATION. (aim -0.7) 
and CROP(SAO-PAULO) - COFFEE 
Conclude that CROP (LLANOS) - COFFEE is TRUE 

with MEDIUM certainty. 

Evidence is evenly mixed. I cannot make a judgement. 

For this example, PRSS finds two kinds of evidence. First, it 
reasons from the implication that coffee growing requires heavy 
rainfall, and from the fact that it does not believe the Llanos to have 
heavy rainfall, that the Llanos is not a coffee growing region. This 
conclusion is given medium certainty primarily because of the 
certainty of the implication. Secondly, it finds that the SAO-PAULO 
region does have coffee as a crop and matches Llanos on 
CLIMATE and VEGETATION, two variables involved in a mutual 
dependency with CROP. Since the evidence is evenly divided, no 
final conclusion is reached. 

3. SYSTEM OVERVIEW 
Unlike an expert system, which must generate a solution, PRSS 

tries both to verify and disconfirm each proposition that it is given as 
an input question. Some examples of the kinds of queries the 
system may receive as input are: 

(? CLIMATE :OF ENGLAND :- TEMPERATE) 
(? FLOWER-TYPE :OF HOLLAND :- ROSE) 
(? MATER-REQUIREMENT :OF ROSE :- HIGH). 
The system responds to each query with a determination of 

whether the statement is TRUE or FALSE along with an estimate of 
the certainty of its answer and an explanation of its reasoning. 
When presented with a query the system first checks whether it has 
the answer stored directly. If so, the answer is returned along with 
the certainty that was recorded at the same time the fact was 
recorded. If it does not have the fact stored it attempts to use every 
plausible inference for which it has adequate information and 
explains what it is doing as it performs each inference. The 
evidence from each plausible inference is then weighed together to 
generate a final guess of TRUE or FALSE along with the estimated 
certainty of that guess. 

In general, people use many different, possibly independent, 
arguments to convince themselves of the truth or falsity of a 

proposition. It is a bit like using a theorem prover that returns every 
possible proof. Unlike Bayesian inference networks (Pearl, 1986), 
which can be viewed as combining probabilistic evidence from 
multiple proofs to verify the truth of a proposition, our system tries to 
prove both the truth and, separately, the falsity of a proposition in as 
many ways as are possible given the information available. 

Each inference made by PRSS is like a proof in that it may 
require backchaining to generate information necessary for the top 
level inference. Each top level inference (i.e. proof based on 
uncertain information) becomes a separate bit of evidence. Proofs 
that the query proposition are true are gathered together as 
evidence for the proposition and proofs of falsity are pooled as 
evidence against the proposition. Each bit of evidence has a 
certainty parameter that has been derived by combining the 
certainty parameters of the stored propositions used and 
parameters that measure the goodness of matches required in the 
applications of inference rules. The final judgment and the system's 
certainty of that judgment depend on the certainties of the evidence 
and on how contradictory the evidence was. 

4. THE KNOWLEDGE BASE 
We have tried to model the system on the behavior of people 

when generating functional inferences. This has required a highly 
redundant, crossreferenced memory organization. The knowledge 
representation system we developed for this purpose provides 
mechanisms for automatic crossreference of every input 
proposition, allowing for redundancies in set/subset relations, and 
multiple indexing of declarative inference rules. Collins and 
Michalski's theory assumes that inferences are made when relevant 
information is found by a parallel search for information associated 
with the argument and the referent of the query. While our current 
simulation does not do this directly, we have implemented a set of 
specialized search routines that collect all information potentially 
useful for (possibly several of) the inference types so far 
implemented. 

PRSS has a database consisting of prepositional knowledge and 
functional relations (implications and mutual dependencies), 
organized in a multiply-indexed semantic network. In the existing 
implementation each proposition is a binary relation. We are 
currently working on extending the representation to include 
structured objects and n-ary relations. 

Collins and Michalski (in press) identified four different certainty 
parameters associated with the propositions or declarative 
knowledge in this network. Two parameters, certainty and 
frequency are associated with each proposition in the knowledge 
base. For example, we might have 
CLIMATE(AFRICA)-TEMPERATE, freq=3, cert-.9 
CLIMATE(AFRICA)-TROPICAL, freq=.5, cert=HIGH 

Following the notation of Collins and Michalski (in press), we call 
the predicate a descriptor, which, together with its argument (here, 
AFRICA) forms a term. The predicate CLIMATE is the descriptor, 
mapping its argument (a place) to various referents (values for 
climates). The certainty parameter is a measure of degree of 
certainty that a statement is believed to be true. The frequency 
parameter2 measures the estimated proportion of the referent out of 
all possible referents for that descriptor and argument. The 
example above represents the belief that 30% of AFRICA is 
temperate and 50% is tropical.3 

In addition to certainty, a likelihood parameter is attached to each 
implication and dependency. For example we might have the 
dependency, 

2Corresponding to the all some distinction in logic. 
3At present we assume that potential ambiguities associated with the meaning of 

the frequency parameter • e.g. does it refer to space or time - are accounted for by 
consistent interpretation by the user. 
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For all Places p, 
TEMPERATURE(p) <===> LATTITUDE(p) 

certainty - .9 .likelihood - HIGH. 
where the likelihood is intended to be a measure of the 

conditional probability of the right-hand side given the left hand side. 
For an implication like the one below, it is a measure of the 
likelihood that the right hand side of the implication is in the given 
range when the left hand side is in its specified range. 

For all Places p, 
GRAIN(p) - rice ===> rainfall(p) - heavy 

certainty - .9, likelihood - HIGH. 
The fourth type of certainty parameter stored with the declarative 

knowledge of the system is dominance A dominance parameter is 
associated with every set/subset link in the system. It measures the 
proportion of elements in the subset out of all elements in the set. 
For example, PART-OF(ENGLAND) - SURREY would have low 
dominance, since Surrey is a small part of England. 

5. MULTIPLE TYPES OF INFERENCE 
The current version of PRSS implements three basic types of 

functional inferences on statements retreived from its memory, 
depending on the kind of dependency found and the resulting kind 
of contextually-based similarity match required. The three types are 
functional analogies, which are based on mutual dependencies 
between descriptors, implication inferences, and set/subset 
inferences. 

In the example below, we show how the system is able to 
construct three separate "proofs" that the climate of England is 
temperate. Given the data in memory provided for this example, the 
system is unable to construct a single proof that the climate of 
England is not temperate. 

(? climate :of england := temperate) 
Using an Inheritance transform: 

Since ENGLAND = PART-OF(EUROPE) (dom = LOW) 
And EUROPE has CLIMATE = TEMPERATE (cert = HIGH) 
Conclude that CLIMATE(ENGLAND) = TEMPERATE 
is TRUE with MED certainty. 

Using an Implication transform: 
Since LATITUDE = SECOND-QUAD or THIRD QUAD 

===> CLIMATE = TEMPERATE 
and LATITUDE(ENGLAND) = THIRD-QUAD 

Conclude that CLIMATE(ENGLAND) = TEMPERATE 
is TRUE with MEDIUM certainty. 

TRYING ARGUMENT BASED DEPENDENCY TRANSFORMS.... 
Using a SIM transform I reason: 
Since LATITUDE <===> CLIMATE 
and HOLLAND is similar to ENGLAND with respect 

to LATITUDE. (sim = 1.0) 
and CLIMATE(HOLLAND) = TEMPERATE. 

Conclude that CLIMATE(ENGLAND) - TEMPERATE 
is TRUE with MEDIUM certainty. 

TRYING REFERENT BASED DEPENDENCY TRANSFORMS 
Insufficient Information Available. 

I conclude CLIMATE(ENGLAND) = TEMPERATE, (cert = HIGH). 

One general class of functional inference is called statement 
transforms (Collins and Michalski, in press). This type of inference 
requires a declarative rule called a dependency. In the example 
above, an analogy is made between England and Holland. The 
system is aware of a general relationship that the climate of a place 
is dependent upon the latitude of a place. In order to determine 
whether a specific relation exists between a latitude in the third-

quad (45-67.5 deg.) and a temperate climate the system must find 
an instance analogous to England which is known to have a 
temperate climate. Holland is such an instance. Since Holland and 
England have the same latitude the system can conclude that 
England can have a temperate climate as well. 

Argument-based Transforms 
GEN: flower-type(Europe)={daffodils, roses...} 
SPEC: flower-type(Surrey)={daffodils, roses...} 
SIM: flower-type(Holland)={daffodils, roses...} 
DIS: flower-type(Brazil)̂  {daffodils, roses...} 

Reference-based Transforms 
GEN: flower-type(England)=temperate flowers...} 
SPEC: flower-type(England)={yellow-roses...} 
SIM: flower-type(England)={peonies...} 
DIS: flower-type(England)= {bougainvillea...} 

Figure 5-1: Eight Transforms on "flower-
type(England)=Daffodils, roses...} 

Within the class of statement transforms, Collins and Michalski (in 
press) describe eight different kinds of transforms, four 
argument-based transforms, and four reference-based transforms. 
The eight inference transforms were derived by considering 
concepts related to the ones mentioned in the question asked, 
where the relationship could be any of generalization, specialization, 
similarity, and dissimilarity. Each of these operators could be 
applied to either the argument or the referent in the question 
statement, giving the total of eight specific transforms. Figure 5-1 
gives an example of each of the eight transforms for the statement 
FLOWER-TYPE(ENGLAND)={darfodils, roses...}. The overall 
certainty of an inference based on one of these transforms depends 
on the degree of similarity or typicality of the concepts related, as 
compared along the dimensions specified in the dependency used, 
and the degree of certainty of the dependency itself. The 
dependency used in the example above can be paraphrased "If two 
places match on latitude then they will match on climate." 

The simplest type of functional inference is based on a type of 
declarative inference rule called an implication. Implication 
inferences can be used to infer values for properties on the basis of 
other properties of the same concept. Since the precise relation is 
completely specified in an implication, an analogous instance is not 
required for its application. The implication used in the example 
above can be paraphrased as "If the latitude of a place is third-quad 
then the climate of that place is temperate." 

In the next example, the system first generates an argument-
based statement transform using a dependency whose consequent 
is the queried descriptor, FLOWER-TYPE. It finds a place where 
tulips are grown (Holland) and compares that place to Venezuela on 
the antecedent descriptor of the dependency, CLIMATE. Since they 
do not match, it concludes that tulips don't grow in Venezuela. The 
second inference is a reference-based transform. Here, a 
dependency is required whose consequent is the inverse of the 
query descriptor FLOWER-TYPE (i.e GROWS-IN), since one needs 
to find a flower that grows in Venezuela and which is similar to tulips 
with respect to the factors that affect flower growth in a place.4 

4The system uses a knowledge representation in which the descriptor definitions 
may specify an inverse The descriptor FLOWER-TYPE has been defined as having 
a domain that must be a PLACE, a range that must be a FLOWER, and an inverse 
named. GROWS-IN. Thus while FLOWER-TYPE maps from PLACES into the 
FLOWERS that grow there, GROWS-IN maps FLOWERS into the PLACES where 
they grow. 

5ln the future, we plan to extend the matcher to compare multiple features with 
multiple values. 

Baker, Bursteln, and Collins 187 



(? flower-type :of Venezuela :s tulip) 
TRYING ARGUMENT BASED DEPENDENCY TRANSFORMS. . . . 

Using a DI8 transform I reason: 
Since CLIMATE <-—> FLOWER-TYPE 
and HOLLAND it dissimilar to VENEZUELA with respect to 

CLIMATE. (sim = -1.0) 
and FLOMER-TYPE(HOLLAND) - TULIP. 
Conclude that FLOWER-TYPE (VENEZUELA) - TULIP is FALSE 

with LOW certainty. 

TRYING REFERENT BASED DEPENDENCY TRANSFORMS 
Using a DIS transform I reason: 
Since CLIMATE-OF <===> GROWS-IN 
and BOUGAINVILLEA is dissimilar to TULIP with respect 

to CLIMATE-OF. (sim - -1.0) 
and GROWS-IN (BOUGAINVILLEA) » VENEZUELA. 
Conclude that GROWS-IN(TULIP) - VENEZUELA is FALSE 

with LOW oartainty. 

I concluda TULIP IS NOT FLOWER-TYPE of VENEZUELA. 
(cart - MED). 

6. COMPUTING THE CERTAINTY OF AN INFERENCE 
Each of the examples shown so far involves several types of 

inference, and the certainty of each inference is based on a 
combination of several certainty parameters and a similarity or 
typicality measure. 

The two similarity parameters computed by the matcher are 
similarity and typicality. At present, these two parameters 
measure the quality of a match and are computed in exactly the 
same way. The difference between them is that typicality applies 
when a property (properties) of a set is being matched with those of 
a subset and similarity is computed as the quality of a match 
between two subsets. In the theory, similarity (or typicality) 
measures the quality of the match either of a single feature or of a 
bundle of features. 

In the current implementation we compute the similarity (or 
typicality) of a single feature with multiple known values by an urn 
model type algorithm.5 The similarity parameter is currently 
computed as the probability that two values for a given feature, 
chosen at random within their frequency distributions, match or 
mismatch. 

The certainty of each individual inference is currently computed 
as the minimum of all the certainty parameters and match 
certainties used. This includes the certainties associated with every 
proposition used, the certainty and the likelihood of the inference 
rule and similarity measure returned by the matcher. 

Once the system has constructed every possible proof for a given 
proposition it must determine whether the proposition is true or false 
and estimate the certainty of its guess. Currently this is done by 
weighing the evidence for the proposition with the evidence against 
that proposition. The certainties of all of the positive conclusions 
are combined, and all of the negative conclusions are combined. 
Multiple lines of evidence in a given direction increases the certainty 
of the conclusion for that direction. The final judgment is the 
direction with the greater certainty, and the certainty of that 
Judgement is downweighted by the certainty of the conclusion in the 
opposite direction. 

7. CONCLUSION 
This work is still in its early stages, and yet already we see a 

number of interesting issues that will require further study. To date, 
we have not run the simulation with large numbers of facts in 
memory, and we forsee that this will cause the number of inferences 
the system makes to grow exponentially. Clearly, techniques will be 
needed to control this growth, such as the filtering of weak and 
redundant inferences, the use of prototypes when many similar 

examples exist, and more sophistocated representations for 
complex dependencies and implications. We also need to develop 
better and more efficient techniques for similarity matching, if we are 
to do matches on many contextual features at once. As the model 
continues to develop, we will also begin a new round of protocol 
experiments, in order to test our model, and answer some of the 
questions discovered by computer modeling. 
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