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This chapter is an exploration of the possibilities that open up if we con-
sistently adopt a style of database query and collection processing which
allows us to look inside collections and thus enables us to play with atomic
constructors instead of the monolithic collection values they build.

This comprehension of values goes well together with a completely func-
tional style of query formulation: queries map between the constructors of
different collection types. It turns out that a single uniform type of map-
ping, the catamorphism, is sufficient to embrace the functionality of today’s
database query languages, like SQL, OQL, but also XPath. Monad compre-
hensions provide just the right amount of syntactic sugar to express these
mappings in a style that is similar to relational calculus (but goes beyond its
expressiveness).

The major portion of this chapter, however, demonstrates how monad
comprehensions enable a succinct yet deep understanding of database queries.
We will revisit a number of problems in the advanced query processing domain
to see how monad comprehensions can (a) provide remarkably concise proofs
of correctness for earlier work, (b) clarify and then broaden the applicability of
existing query optimisation techniques, and (c) enable query transformations
which otherwise require extensive sets of rewriting rules.

1.1 A Functional Seed

In line with the major theme of this book, we perceive query translation and
transformation as a functional programming activity. Superficially, this con-
cerns a number of notational conventions we will adopt. More deeply, you
will note that we generate query results solely through the side-effect free
construction of values from simpler constituents and that functional compo-
sition will be the predominant way of forming complex queries. Referential
transparency is the key to transformational programming and equational rea-
soning.

Relatively few components are needed in our initial query language core.
We grow this language through function definitions of the form

f ≡ e
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where e is an expression built from components we have already introduced.
The functions f so defined will get more complex as we go on until we are
ready to give the meaning of SQL, OQL [1.4], or XPath [1.1] query clauses
such as select-from-where, exists-in, flatten, or path expressions.

1.1.1 Notation, Types, and Values

If you are familiar with notational conventions of functional programming
languages such as Haskell [1.14] you will feel at home right away. Figure 1.1
introduces the core expression forms e and their notation.

e ::= c constants
| v variables
| λp → e lambda abstraction
| v ≡ e (recursive) function definition
| (e,e) pair former
| e e function application
| case p of e → e| . . . |e → e case (pattern matching)
| e ↑ e insertion constructor
| [] |{|}| | {} empty list, empty bag, empty set
| e op e infix operator (op = +, *, =, <, >, . . . )

p ::= c constants
| v variable binding
| (p,p) pair pattern
| p ↑ p collection pattern

Fig. 1.1. Core language syntax. The insertion constructor ↑ will be introduced in
Section 1.1.2.

We assume the presence of a prelude, i.e., a library of basic function def-
initions which makes working with the core language somewhat less tedious,
e.g.: id ≡ λx → x, fst ≡ λ(v1,v2) → v1 (and corresponding snd). The function
definition f≡λx→e may also be written as f x≡e. The core is strongly and stat-
ically typed. This means that any value—including functions—has a unique
type which we can deduce from its definition alone. We write e::t to indicate
that value e has type t. The application of a function to wrongly typed argu-
ments is bound to fail. Figure 1.2 summarizes the types t we will encounter.
Some values are polymorphic, i.e., their type includes type variables which
(consistently) assume specific types when the value is used. The left projec-
tion fst has the polymorphic type ∀αβ.α× β → α and can thus be applied to
pairs of arbitrarily typed constituents. (The type quantifier ∀α indicates that
α may indeed be instantiated by any type; we assume its implicit presence
whenever polymorphic types are used.)

We draw constants from a pool of domains of atomic types that we choose
according to the actual query language we need to represent: if the query lan-
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t ::=
�
| � | � | . . . atomic (numeric, boolean, string, . . . )

| v variables (α, β, γ, . . . )
| t → t functions
| t × t pairs
| [t] |{|t }| | {t} list (bag, set) type constructor

Fig. 1.2. Core language types.

guage supports numeric constants and arithmetic on these, we incorporate
numeric type � and operations on it in the core language. If the query lan-
guage supports dates e.g., values of the form Oct 8 2002, we incorporate
an atomic �����
	 type or choose an implementation type such as � × � × �
(which represents the month, day, year constituents of a date value via three
numbers) or simply � (a character string using an appropriate date format).

1.1.2 Constructing Collections

Remember that we are growing this language for a specific purpose: to repre-
sent database query languages. So, where a typical functional language would
offer lists only, the core supports the collection types bags (multi-sets) and
sets as well. Again, this is a means to properly reflect the type system of the
query language: SQL primarily operates on bags, while OQL includes clauses
that operate on all three collection types.

Starting from an empty collection ([],{|}|, or {}), we can insert elements
one by one using constructor ↑ to construct a more complex collection value.

To aid compact notation, we define the insertion constructor ↑ as over-
loaded, i.e., the type of its second argument determines its behaviour. Let
x :: α. Then:

x ↑ xs =















[x]++xs if xs :: [α]
{|x }| ∪+ xs if xs ::{|α}|
{x} ∪ xs if xs :: {α}
type error otherwise

(++ denotes list concatenation, while ∪+ is bag union respecting multiplicity of
elements.) Note that insertion order is only relevant if ↑ constructs lists (in
this case, ↑ is also widely known as cons). Insertion of duplicates is respected
if ↑ constructs lists or bags. Set insertion ↑ :: α× {α} → {α} disregards both
order and duplicates, i.e., the constructor is commutative and idempotent1.

We assume that ↑ is right-associative so that x0↑x1↑. . . xn↑{|}| corresponds
to the following parse tree, which we also term the the spine of the collection:

1 As the type of constructor ↑ suggests, we are actually talking of left-commuta-
tivity y ↑ x ↑ xs = x ↑ y ↑ xs and/or left-idempotence x ↑ x ↑ xs = x ↑ xs . Note
that element type α in the set case requires a notion of equality, = :: α× α → � , to
decide if a duplicate has been inserted into a set.
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↑
x0

��
↑

??

x1
��

↑
xn

��
{|}|
??

We will also write this expression as{|x0,x1, . . . ,xn }|.

1.2 Spine Transformers

Programming with collections in our core language consequently means writ-
ing programs that create, transform, and analyse spines. To provide a taste of
the resulting programming style, here is a function that computes the max-
imum element of a given collection of numbers assuming that the prelude
contains a definition max(x,y) ≡ casex < y oftrue → y|false → x:

maximum ::{| � }|→ �
maximumxs ≡ case xs of{|}| → -∞

| x ↑ xs ′ → max(x,maximum xs ′)

There are two things to note here:

(1) As indicated in the introduction to this chapter, we are analysing and
building collection values on the basis of their constructors.

(2) The two case branches exactly correspond with the two principal forms
a collection value can take: empty (here: {|}|) or constructed (x ↑ xs ′). In
the latter branch, maximum cuts off x and recurses on xs ′.

The second observation is particularly interesting for our forthcoming
discussion. It effectively states that maximum acts like a spine transformer :

maximum











↑
x0

��
↑

??

x1
��

↑
xn

��
{|}|
??











=

max
x0

��
max
??

?

x1
��

max
xn

��
-∞
???

In other words, maximum performs its computation solely through consis-
tent replacement of constructors.

This pattern of computation seems to be rather rigid but in fact it is
far from that: the expressive power of these spine transformers is sufficient
to embrace almost all computations expressible by current database query
languages. We will thus adopt spine transformers as the basic query building
block.
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1.2.1 Catamorphisms

To stress this idea of deriving a recursive computation from the recursive
structure of the input collection, let us undertake a generalisation step. Given
a collection [α] (or {|α}|, {α}) and values z :: β, ⊗ :: α× β → β we define the
overloaded mix-fix operator(|)| as

(|z;⊗ )| :: β× (α× β → β) → [α] → β
(|z;⊗ )| xs ≡ case xs of [] → z

| x ↑ xs ′ → x ⊗ ((|z;⊗ )| xs ′)

Pictorially,(|z;⊗ )| is the spine transformer

↑
x0

��
↑

??

x1
��

↑
xn

��
[]
??

−→
(|z;⊗ )|

⊗
x0

��
⊗

??

x1
��

⊗
xn

��
z

??
?

and we can immediately see that we could have defined maximum ≡(|-∞;max)|.
When applied to lists, the operator (| )| is known as foldr or reduce, espe-
cially in the functional programming community. In more general collection
programming settings,(| )| is also known as sri (structural recursion on insert)
[1.2, 1.21].

We can give an algebraic account of the nature of(| )|. Observe that(|z;⊗ )|
is a solution to the equations below which effectively say that the unknown
h is a homomorphism from monoid ([], ↑) to monoid (z, ⊗):

h [] = z (1.1a)

h (x ↑ xs) = x ⊗ h xs (1.1b)

It can be shown—based on the fact that ([], ↑) is the term or initial algebra of
lists built using these two constructors—that(|z;⊗ )| is the unique solution to
these equations, completely determined by z and ⊗ [1.16]. Homomorphisms
of initial algebras have been dubbed catamorphisms [1.17] and this is the
terminology we will adopt.

Caveat : Equation (1.1b) suggests that operator ⊗ of the target alge-
bra must not be completely arbitrary: ⊗ needs to have the same algebraic
properties as ↑: associativity, left-commutativity (if ↑ :: α ×{|α }| →{|α }| or
↑ :: α× {α} → {α}), or left-idempotence (if ↑ :: α× {α} → {α}).

Catamorphisms are a versatile tool. A number of useful collection pro-
cessing functions turn out to be catamorphisms:

maximum ≡ (|-∞;max)|

minimum ≡ (|+∞;min)|

or ≡ (|false;∨)|

and ≡ (|true;∧ )|
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xs ⊕ ys ≡ (|ys;↑ )| xs
first ≡ (|0;fst)|

list_mapf ≡ (|[];λ(x,xs) → (f x) ↑ xs )|
flatten ≡ (|[];⊕ )|

Note that infix operator ⊕ is overloaded and behaves like++, ∪+, or ∪ depending
on the type of its arguments. As given, list_map is well-defined on lists only.
The same is true for function first: fst is neither left-commutative nor left-
idempotent, an expression of the fact that there is no notion of a first element
in a bag or set.

1.2.2 Catamorphism Fusion

A query translator and optimizer based on the core language we have defined
so far would more closely resemble a program transformation system than a
traditional query optimizer. To ensure that the system can operate completely
unguided and without the need for Eureka steps—transformation steps not
immediately motivated by the goal the overall transformation strives for—we
need to be restrictive in the program forms we may admit.

Catamorphisms represent this restricted form of computation and in our
case, simplicity enables optimisation.

Reconsider list_map. We can turn this function into a generic map

catamorphism if we make its implicit use of the list constructors [] and
↑ :: α× [α] → [α] explicit and thus define:

map n c f ≡ (|n;λ(x,xs) → c (f x,xs) )|

Now, list_map f ≡ map [] (↑) f , set_map f ≡ map {} (↑) f , and bag_map f ≡

map{| }| (↑) f .
Apart from this generalisation, factoring out the constructors out of

a catamorphism opens up an important optimisation opportunity: we can
“reach inside” a catamorphism and influence the constructor replacement it
performs. This is all we need to formulate a simple yet effective catamorphism
fusion law. Let cata denote any catamorphism with constructors factored out
like above, then

(|z;⊗ )| ⋅ cata n c = cata z ⊗ (1.2)

Note that while the lefthand side walks the spine twice, the righthand side
computes the same result in a single spine traversal. With catamorphisms
being the basic program building blocks, a typical program form will be
catamorphism compositions. These composition chains can be shortened and
simplified using law (1.2). The two-step catamorphism chain below decides if
there is any element in the input satisfying p. Catamorphism fusion merges
the steps and yields a general purpose existential quantifier exists p:

exists p ≡ or ⋅ map {} ↑ p = map false ∨ p
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Law (1.2) is known as cheap deforestation [1.9] or the acid rain theorem
[1.22]. Its correctness obviously depends on cata being well-behaved: cata
is required to exclusively use the supplied constructors c and n to build its
result. Perhaps surprisingly, one can formulate a prerequisite that restricts
the type of cata to ensure this behaviour (parametricity of cata [1.23]).

1.3 Monad Comprehensions

We have seen that catamorphisms represent a form of computation restrictive
enough to enable mechanical program optimisations, yet expressive enough
to provide a useful target for query translation.

However, we need to make sure that query translation actually yields
nothing but compositions of catamorphisms. This is what we turn to now.

To achieve this goal, we grow our language once more to include the ex-
pressions of the monad comprehension calculus [1.24, 1.25] whose syntactic
forms closely resemble the well-known relational calculus. The calculus is a
good candidate to serve as a translation target for user-level query syntax
[1.3]. Its semantics can be explained in terms of catamorphisms which com-
pletes the desired query translation framework:

Query syntax → monad comprehension calculus → catamorphisms.

Figure 1.3 displays the syntactic sugar mc introduced by the monad compre-
hension calculus.

mc ::= e core language (Figure 1.1)
| [mc | qs] |{|mc | qs }| | {mc | qs} monad comprehension

qs ::= ε empty
| q qualifier
| qs,qs qualifiers

q ::= v ← mc generator
| mc filter

Fig. 1.3. Syntax of the Monad Comprehension Calculus

We obtain a relational calculus-style sublanguage that can succinctly ex-
press computations over lists, bags, and sets (actually over any monad—we
will shortly come to this). The general syntactic form is

[e | q0, . . . ,qn]

Informally, the semantics of this comprehension read as follows: starting with
qualifier q0, a generator qi = vi←ei sequentially binds vi to the elements of its
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range ei. This binding is propagated through the list of qualifiers qi+1, . . . , qn.
Filters are qualifiers of type � (boolean). A binding is discarded if a filter
evaluates to false under it. The head expression e is evaluated for those
bindings that satisfy all the filters, and the resulting values are collected to
form the final result list.

Here is how we can define bag_map f and flatten:

bag_map f xs ≡ {|f x | x ← xs }|
flatten xss ≡ {x | xs ← xss,x ← xs}

SQL and OQL queries, like the following semi-join between relations r and
s, may now be understood as yet more syntactic sugar (we will encounter
many more examples in the sequel):

select r
from r,s

where p
≡ {|v1 | v1 ← r,v2 ← s,p }|

Note that the grammar in Figure 1.3 allows for arbitrary nesting of monad
comprehensions. The occurrence of a comprehension as generator range, filter,
or head will allows us to express the diverse forms of query nesting found in
user-level query languages [1.10, 1.12].

Figure 1.4 gives the translation scheme in the core language for the monad
comprehension calculus. It is based on the so-called Wadler identities which
were originally developed to explain the semantics of list comprehensions. The
scheme of Figure 1.4, however, is applicable to bag and set comprehensions
as well (simply consistently replace all occurrences of [|, |] by [, ] or {|, }| or
{, }, respectively). These translation rules, to be applied top-down, reduce a

[|e||] ≡ unit e (1.3a)

[|e | v ← e
′

::[|α|]|] ≡ mmap (λv → e) e
′ (1.3b)

[|e | v ← e
′

:: [α]|] ≡ mmap id ([e | v ← e
′

]) (1.3c)

[|e | v ← e
′

::{|α }| |] ≡ mmap id ({|e | v ← e
′

}|) (1.3d)

[|e | v ← e
′

:: {α}|] ≡ mmap id ({e | v ← e
′

}) (1.3e)

[|e | e
′

:: � |] ≡ case e
′

of true → unit e | false → zero (1.3f)

[|e | qs,qs ′

|] ≡ join ([|[|e | qs ′

|] | qs|]) (1.3g)

zero ≡ [||]

unit e ≡ [|e|]

mmap ≡ map [||] (↑)

join ≡ (|[||];⊕ )|

Fig. 1.4. Monad Comprehension Semantics

monad comprehension step by step until we are left with an equivalent core
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language expression. Definition (1.3g) breaks a complex qualifier list down to
single generator or filters. Note how (1.3c, 1.3d, 1.3e) examine the type of the
generator range to temporarily switch to a list, bag, or set comprehension.
The results are then coerced using mmap id which effectively enables us to mix
and match comprehensions over different collection types. (Coercion is not
completely arbitrary since the well-definedness condition for catamorphisms
of Section 1.2.2 applies. This restriction is rather natural, however, as it
forbids non-well-founded coercions like the conversion of a set into a list.)

Monad comprehensions provide quite powerful syntactic sugar and will
save us from juggling with complex catamorphism chains. Consider, for ex-
ample, the translation of filterp (which evaluates predicate p against the
elements of the argument list):

filterp xs ≡ [x | x ← xs,p x]
= join ([[x | p x] | x ← xs])
= (join⋅ mmap (λx → [x | p x])) xs
= map [] ⊕ (λx → [x | p x]) xs
= map [] ⊕ (λx → case p x of true → [x]|false → []) xs

Interestingly, comprehensions are just the “syntactic shadow” of a deeper,
categorical concept: monads [1.24]. Comprehension syntax can be sensibly
defined for any type constructor [|α |] with operations mmap, zero, unit,
join obeying the laws of a monad with zero which—for our collection
constructors—are as follows:

join⋅ unit = id (1.4a)

join⋅ mmap unit = id (1.4b)

join⋅ join = join⋅ mmap join (1.4c)

join⋅ zero = zero (1.4d)

join⋅ mmap zero = zero (1.4e)

With the definitions given in Figure 1.4, lists, bags, and sets are eas-
ily verified to be monad instances. Monads are a remarkably general con-
cept that has been widely used by the functional programming community
to study, among others, I/O, stateful computation, and exception handling
[1.19]. Monad comprehensions have even found their way into mainstream
functional programming languages2. We will meet other monads in the up-
coming sections.

More importantly, though, we can exercise a large number of query trans-
formations and optimisation exclusively in comprehension syntax.

2 Haskell [1.14] being the primary example here, although monad comprehensions
come in the disguise of Haskell’s do-notation these days.
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1.4 Type Conversion Saves Work

Perhaps the principal decision in solving a problem is the choice of language
in which we represent both the problem and its possible solutions. Choosing
the “right” language can turn the concealed or difficult into the obvious
or simple. This section exemplifies one such situation and we argue that
the functional language we have constructed so far provides and efficient
framework to reason about queries.

Some constructs introduced in recent SQL dialects (being liberal, we count
OQL as such) have no immediate counterpart in the traditional relational al-
gebra. Among these, for example, are type conversion or extraction operators
like OQL’s element: the query element e tests if e evaluates to a singleton
collection and, if so, returns the singleton element (tuple, object, . . . ) itself.
Otherwise, an exception is raised. SQL3 introduces so-called row sub-queries
which exhibit the same behaviour. The type of such an operator is [|α|] → α.

Different placements of a type conversion operator in a query may have
dramatic effects on the query plan’s quality. Early execution of type conver-
sion can lead to removal of joins or even query unnesting. Consider the OQL
query below (we use the convention that a query expression like f x y denotes
a query f containing free variables x, y, i.e., f is a function of x, y)

element (select f x y
from xs as x,ys as y)

Computing the join between xs and ys is wasted work as we are throwing the
result away should the join (unexpectedly) contain more than one element (in
which case the query raises an exception). A type conversion aware optimizer
could emit the equivalent

f (element xs) (element ys)

The join is gone as is the danger of doing unnecessary work. Pushing down
type conversion has a perilous nature, though:

– The above rewrite does not preserve equivalence if we compute with sets
(select distinct . . . ): function f might not be one-to-one. If, for exam-
ple, we have f x y ≡ c, then the query

element (select distinct f x y
from xs as x,ys as y)

effectively computes element {c} = c for arbitrary non-empty collections
xs and ys , while the rewritten query will raise an exception should xs or
ys contain more than one element.

– We must not push type conversion beyond a selection: the selection might
select exactly one element (selection on a key) and thus satisfy element
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while pushing down element beyond the selection might lead to an appli-
cation of element to a collection of cardinality greater than one and thus
raise an exception instead.

How do we safely obtain the optimized query? This is where our functional
query language jumps in. First off, note that we can represent element as

element ≡ snd ⋅(|z;⊗ )|
with z ≡ (true,⊥)

x ⊗ (c,e) ≡ case c of true → (false, x)
| false → ⊥

Evaluating the bottom symbol ⊥ yields an error and is our way of modeling
the exception we might need to raise. Function element interacts with the
collection monads list and bag (but not set) in the following ways:

element ⋅ mmap f = f ⋅ element (1.5a)

element ⋅ unit = id (1.5b)

element ⋅ join = element ⋅ element (1.5c)

This characterizes element as a monad morphism [1.24] from the list and bag
monads to the identity monad (which is defined through the identity type
constructor Id α = α plus mmap f e = f e, join = unit = id). We can exploit
the morphism laws to propagate element through the monad operations and
implement type conversion pushdown this way. For the example query the
rewrite derives the exact simplification we were after:

element (select f x y
from xs as x,ys as y)

= element ({|f x y | x ← xs,y ← ys }|)

= (element ⋅ join) ({|{|f x y | y ← ys }| | x ← xs }|)

= (element ⋅ join⋅ mmap) (λx → mmap (λy → f x y) ys) xs

= (element ⋅ element ⋅ mmap) (λx → mmap (λy → f x y) ys) xs

= element ((λx → mmap (λy → f x y) ys) (element xs))

= (element ⋅ mmap) (λy → f (element xs) y) ys

= (λy → f (element xs) y) (element ys)

= f (element xs) (element ys)

The morphism laws push the type conversion down as far as possible but
not beyond filters since these are mapped into case expressions (see Equa-
tion 1.3f) for which none of the morphism laws apply.

Early type conversion can indeed save a lot and even reduce the nesting
depth of queries. As a another example, consider the following OQL query
(note the nesting in the select clause):
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element (select (select f x y
from ys as y)

from xs as x)

= element ({|{|f x y | y ← ys }| | x ← xs }|)

Type conversion pushdown converts the above into a query of the form
{|f (element xs) y | y ← ys }| which simply maps f over collection ys instead
of creating a nested bag of bags like the original query did.

To wrap up: Wadler [1.24] observed that the action of a monad morphism
on a monad comprehension may more concisely described by way of the com-
prehension syntax itself. Space constraints force us to skip the details here,
but the resulting rewriting steps are remarkably simple and thus especially
suited for inclusion in a rule-based query optimizer [1.10].

1.5 Unraveling Deeply Nested Queries

Comprehensions may be nested within each other and a translator for a source
query language that supports nesting can make good use of this: a nested
user-level query may be mapped rather straightforwardly into a nested com-
prehension (see the example query at the end of the last section). However,
deriving anything but a nested–loops execution plan from a deeply nested
query is a hard task and a widely recognized challenge in the query optimi-
sation community. We are really better off to try to unnest a nested query
before we process it further.

The monad comprehension calculus provides particularly efficient yet sim-
ple hooks to attack this problem:

– Different types of query nesting lead to similar nested forms of monad
comprehensions. Rather than to maintain and identify a number of special
nesting cases—this route has been taken by numerous approaches, notably
Kim’s original and followup work [1.15, 1.8] on classifying nested SQL
queries—we can concentrate on unnesting the relatively few comprehension
forms.

– Much of the unnesting work can, once more, be achieved by application of
a small number of syntactic rewriting laws, the normalisation rules (1.6a–
1.6d below).

The normalisation rules exclusively operate on the monad comprehension
syntax level. As before, we use generic monad comprehensions to introduce
the rules and you can obtain the specific variants through a consistent re-
placement of [|, |]n by [, ] or{|, }| or {, }, respectively:

[|e | qs,v ←[||]2,qs
′|]1 = [||]1 (1.6a)

[|e | qs,v ←[|e′|]2,qs
′|]1 = [|e[e′/v] | qs,qs ′[e′/v]|]1 (1.6b)

[|e | qs,v ←[|e′ | qs ′′|]2,qs
′|]1 = [|e[e′/v] | qs,qs ′′,qs ′[e′/v]|]1 (1.6c)
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{e | qs,or[|e′ | qs ′′|],qs ′} = {e | qs,qs ′′,e′,qs ′} (1.6d)

(Expression e[e′/v] denotes e with all free occurrences of v replaced by e′.)
The rules form a confluent and terminating set of rewriting rules which

is our main incentive to refer to them as normalisation rules.
Normalisation gives an unnesting procedure that is complete in the sense

that an exhaustive application of the rules leads to a query in which all
semantically sound unnesting have been performed [1.7]. In the set monad,
this may go as far as

{e | v1 ← e1,v2 ← e2, . . .,vn ← en,p }

with all ei being atomic expressions with respect to monad comprehension
syntax, i.e., the ei are references to database entry points (relations, class
extents) or constants. Nested queries may only occur in the comprehension
head e or filter p (to see that we really end up with a single filter p, note that
we can always “push back” a filter in the qualifier list and that two adjacent
filters p1,p2 may be merged to give p1 ∧ p2).

Unnesting disentangles queries and makes operands of formerly inner
queries accessible in the outer enclosing comprehension. This, in turn, pro-
vides new possibilities for further rewritings and optimisations. We will see
many applications of unnesting in the sequel.

Comprehension syntax provides a rather poor variety of syntactical forms,
but in the early stages of query translation this is more of a virtue than a
shortcoming. Monad comprehensions extract and emphasize the structural
gist of a query rather than to stress the diversity of query constructs. It is
this uniformity that facilitates query analysis like the completeness result for
comprehension normalisation we have just mentioned. This can lead to new
insights and simplifications, which is the next point we make.

In [1.20], Steenhagen, Apers, and Blanken analyzed a class of SQL-like
queries which exhibit correlated nesting in the where-clause, more specifi-
cally:

select distinct f x
from xs as x
where p x z

with z =





select g x y
from ys as y
where q x y





The question is, can queries of this class be rewritten into flat join queries of
the form

select distinct f x
from xs as x,ys as y

where q x y
and p′ x (g x y)

Queries for which such a replacement predicate p′ cannot be found have
to be processed either (a) using a nested–loops strategy, or (b) by grouping.
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Whether we can derive a flat join query is, obviously, dependent on the nature
of the yet unspecified predicate p.

Steenhagen et.al. state the following theorem—reproduced here using our
functional language—which provides a partial answer to the question:

Whenever p x z can be rewritten into or [|p′ x v | v ← z|] (i.e., p is
an existential quantification w.r.t. some p′) the original query may
be evaluated by a flat join.

The monad comprehension normalisation rules provide an elegant proof of
this theorem:

select distinct f x
from xs as x

where p x z

= {f x | x ← xs,p x z}

= {f x | x ← xs,or[|p′ x v | v ← z|]}

= {f x | x ← xs,v ← z,p′ x v}

= {f x | x ← xs,v ←{|g x y | y ← ys,q x y }|,p′ x v}

= {f x | x ← xs,y ← ys,q x y,p′ x (g x y)}

Observe that the normalisation result is the monad comprehension equiv-
alent of the unnested SQL query.

But we can say even more and strengthen the statement of the theorem
(thus answering an open question that has been put by Steenhagen et.al. in
[1.20]):

If p is not rewriteable into an existential quantification like above,
then we can conclude—based on the completeness of comprehensions
normalisation—that unnesting will in fact be impossible.

Kim’s fundamental work [1.15] on the unnesting of SQL queries may
largely be understood in terms of normalisation if queries are interpreted in
the monad comprehension calculus. We additionally gain insight into ques-
tions on the validity of these unnesting strategies in the context of complex
data models featuring collection constructors other than the set constructor.

Monad comprehension normalisation readily unnests queries of Kim’s type
J, i.e., SQL queries of the form

Q ≡ select distinct f x
from xs as x
where p x in (select g y

from ys as y
where q x y)
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Note that predicate q refers to query variable x so that the outer and nested
query blocks are correlated. (The SQL predicate in is translated into an exis-
tential quantifier.) The derivation of the normal form for this query effectively
yields Kim’s canonical 2-relation query :

Q = {f x | x ← xs,or[|p x = v | v ←[|g y | y ← ys,q x y|]|]}

= {f x | x ← xs,or[|p x = g y | y ← ys,q x y|]}

= {f x | x ← xs,y ← ys,q x y,p x = g y}

We can see that Kim’s type J unnesting is sound only if the outer query block
is evaluated in the set monad. No such restriction, though, is necessary for the
inner block—an immediate consequence of the well-definedness conditions for
monad comprehension coercion (see Section 1.3).

1.6 Parallelizing Group-By Queries

The database backends of decision support or data mining systems frequently
face SQL queries of the following general type (termed group queries in [1.5]):

Q f g a xs ≡ select f x,a (g x)
from xs as x

group by f x

Group queries extract a particular dimension or feature—described by func-
tion f—from given base data xs and then pair each data point f x in this
dimension with aggregated data a (g x) associated with that point; a may be
instantiated by any of the SQL aggregate functions, e.g., sum or max.

Here is query Q expressed in the monad comprehension calculus (the
group by introduces nesting in the outer comprehension’s head):

Q f g a xs ≡ {(f x,(agg a){|g y | y ← xs,f y = f x }|)|x ← xs}

Helper function agg translates SQL aggregates into their implementing cata-
morphisms, e.g., agg sum =(|0;+ )| and agg max = maximum.

We are essentially stuck with the inherent nesting. Normalisation is of no
use in this case (the query is in normal form already). Chatziantoniou and
Ross [1.5] thus propose to take a different three-step route to process this
type of query.

(1) Separate the data points in dimension f of xs in a preprocessing step,
i.e., partition input xs with respect to f .

(2) Evaluate a simplified variant Q′ of Q on each partition. In particular, Q′

does not need to take care of grouping. Let ps denote one partition of
xs, then we have
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Q′ g a ps ≡ select a (g x)
from ps as x

or, equivalently,

Q′ g a ps ≡ (agg a){|g y | y ← ps }|

(3) Finally, merge the results obtained in step (2) to form the query response.

This strategy clearly shows its benefit in step (2): first, since xs has been
split into disjoint partitions during the preprocessing step, we may execute Q′

on the different partitions in parallel. Second, there is a chance of processing
the Q′ in main memory should the partitions ps fit. Measurements reported in
[1.5] show the performance gains in terms of time and I/O cost to compensate
for the effort spent in the partitioning and joining stages.

In [1.5], classical relational algebra is the target language for the trans-
lation of group queries. This choice of query representation introduces sub-
tleties. Relational algebra lacks canonical forms to express the grouping and
aggregation found in Q. The authors thus propose to understand Q as a syn-
tactical query class: the membership of a specific query in this class and thus
the applicability of the partitioning strategy is decided by the inspection of
the SQL parse tree for that query.

Relational algebra also fails to provide idioms that could express the pre-
processing, i.e., partitioning, step of the strategy. To remedy this situation,
Chatziantoniou and Ross add attributes to the nodes of query graphs to
indicate which partition is represented by a specific node.

Finally, the core stage (2) of the strategy has no equivalent at the target
language level as well. Classical relational algebra is unable to express the
iteration (or parallel application) inherent to this phase. The authors imple-
ment this step on top of the relational database backend and thus outside
the relational domain.

Facing this mix of query representations (SQL syntax, query graphs, re-
lational algebra, procedural iteration), it is considerably hard to assess the
correctness of this parallel processing strategy for query class Q.

Reasoning in the monad comprehension calculus can significantly simplify
the matter. Once expressed in our functional query representation language,
we can construct a correctness proof for the strategy which is basically built
from the unfolding of definitions and normalisation steps. Let us proceed by
filling the two gaps (partitioning and iteration) that relational algebra has
left open.

First, partitioning the base data collection xs with respect to a function f
is expressible as follows (note that we require type β to allow equality tests):

partition :: (α → β) →[|α|] → {(β,[|α|])}
partition f xs ≡ {(f x,[|y | y ← xs,f x = f y|])|x ← xs}
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which builds a set of disjunct partitions such that all elements inside one par-
tition agree on feature f with the latter attached to its associated partition.
We have, for example,

partition odd [1 . . . 5] = {(true,[1,3,5]),(false,[2,4])}

Second, recall that iteration forms a core building block of our functional
language by means of map; map f also adequately encodes parallel application
of f to the elements of its argument. See, for example, the work of Hill [1.13]
in which a complete theory of data-parallel programming is developed on top
of map.

With the definition of Q′ given earlier, we can compose the phases and
express the complete parallel grouping plan as

(map {} (↑) (λ(z,ps) → (z,Q′ g a ps)) ⋅ partition f) xs

We can now derive a purely calculational proof of the correctness of the
parallel grouping idea through a sequence of simple rewriting steps: unfold
the definitions of Q′, partition, and map, then apply monad comprehension
normalisation to finally obtain Q f g a xs , the original group query:

(map {} (↑) (λ(z,ps) → (z,Q′ g a ps)) ⋅ partition f) xs

=
(⋅)

(map {} (↑) (λ(z,ps) → (z,Q′ g a ps)) (partition f xs)

=
partition

(map {} (↑) (λ(z,ps) → (z,Q′ g a ps))

{(f x,{|y | y ← xs,f x = f y }|)|x ← xs}

=
Q′

(map {} (↑) (λ(z,ps) → (z,(agg a){|g y′ | y′ ← ps }|))

{(f x,{|y | y ← xs,f x = f y }|)|x ← xs}

=
map

{(λ(z,ps) → (z,(agg a){|g y′ | y′ ← ps }|)) v|

v ← {(f x,{|y | y ← xs,f x = f y }|)|x ← xs}}

=
1.6c

{(f x,(agg a){|g y′ | y′ ←{|y | y ← xs,f x = f y }|}|)|x ← xs}

=
1.6c

{(f x,(agg a){|g y | y ← xs,f x = f y }|)|x ← xs}

= Q f g a xs .

1.7 A Purely Functional View of XPath

Monad comprehensions can serve as an effective “semantical backend” for
other than SQL-style languages. To make this point and to conclude the
chapter let us take a closer look at how monad comprehensions can provide
a useful interpretation of XPath path expressions [1.1].

XML syntax provides an unlimited number of tree dialects : data (docu-
ment content) is structured using properly nested opening <t> and matching
closing tags </t>.
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XPath provides operators to describe path traversals over such tree-shaped
data structures. Starting from a context node, an XPath path expression
traverses its input document via a sequence of steps. A step’s axis (e.g.,
ancestor, descendant, with the obvious semantics) indicates which tree
nodes are reachable from the context node, a step’s node test ::t filters
these nodes to retain those with tag name t only3. These new nodes are then
interpreted as context nodes for subsequent steps, and so forth.

In XPath syntax, the steps of a path p are syntactically separated by
slashes /; a path originating in the document’s root node starts with a lead-
ing slash: /p. In addition to node tests, XPath provides path predicates q
which may be evaluated against p’s set of result nodes: p[q]. Predicates have
existential semantics: a node c qualifies if path q starting from context node
c evaluates to a non-empty set of nodes.

We can capture the XPath semantics by a translation function xpath p c
which yields a monad comprehension that computes the node set returned by
path p starting from context node c. Function xpath is defined by structural
recursion over the XPath syntax:

xpath (/p) c ≡ xpath p (root c)
xpath (p1/p2) c ≡ {n′ | n ← xpath p1 c,n′ ← xpath p2 n}
xpath (p[q]) c ≡ {n | n ← xpath p c,or {true | n′ ← xpath q n}}
xpath (a::t) c ≡ step (a::t) c

The primitive root c evaluates to the root of the document that includes node
c. Function step does the actual evaluation of a step from a given context
node. We will shortly come back to its implementation.

As given, function xpath fails to reflect one important detail of XPath:
nodes resulting from path evaluation are returned in document order. The
XML document order << orders the nodes of a document according to a
preorder traversal of the document tree. A complete XPath translation would
thus read (sidoaed⋅xpath) p c where sidoaed4 (sort in document order and
eliminate duplicates) orders a node set according to <<.

Note that sidoaed is a catamorphism itself. Let iidoaed (n,ns) (insert
in document order and eliminate duplicates) denote the function that inserts
node n into node list ns with respect to << if n is not an element of ns (by
straightforward recursion over ns). We then have

sidoaed ::[| � |]→ [ � ]
sidoaed ≡ (|[];iidoaed)|

with � being the implementation type for XML nodes (see below). Note
that sidoaed is well-defined over any collection type since iidoaed is left-
idempotent and left-commutative.

3 For brevity, we omit XPath features like the *, node(), or text() node tests.
4 The particular name sidoaed has been borrowed from an XQuery tutorial by

Peter Fankhauser and Phil Wadler [1.6].
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(We could even go a step further and integrate document order more
tightly into our model. To this end, observe that

zero ≡ []

unit n ≡ [n]
mmap ≡ map [] (↑)
join ≡ (|[];⊕ )| with xs ⊕ ys ≡ (|ys;iidoaed)| xs

yields a monad of node sequences in document order and its associated notion
of node sequence comprehensions—see Figure 1.4.)

To illustrate, the XPath expression /child::a[child::b] is translated
as follows (where c denotes the context node):

sidoaed (xpath (/child::a[child::b]) c)

= sidoaed (xpath (child::a[child::b]) (root c))

= sidoaed ({n | n ← xpath (child::a) (root c),

or {true | n′ ← xpath (child::b) n}})

= sidoaed ({n | n ← step (child::a) (root c),n′ ← step (child::b) n})

Note how the second step depends on the context nodes n computed in the
first step.

Thanks to the comprehension semantics for path expressions we are in a
position to find concise proofs for a number of useful XPath equivalences. As
an example, consider predicate flattening :

xpath (p[p1[p2]]) c

= {n | n ← xpath p c,or {true | n′ ← xpath (p1[p2]) n}}

= {n | n ← xpath p c,or {true | n′ ← {v | v ← xpath p1 n,

or {true | v′ ← xpath p2 v}}}}

= {n | n ← xpath p c,or {true | n′ ← {v | v ← xpath p1 n,v′ ← xpath p2 v}}}

= {n | n ← xpath p c,or {true | n′ ← xpath (p1/p2) n}}

= xpath (p[p1/p2]) c

The more explicit we are in explaining the XPath semantics, the more op-
portunities for optimisation are created. Since XPath axes are defined with
respect to document order and tag inclusion, let us make these notions ex-
plicit.

We choose a specific implementation type for an XML node, namely
� = ( � ,( � ,� )). While the first component will store the node’s tag name
as a string, the pair of numbers represents its preorder and postorder traver-
sal rank, respectively. The ranks are sufficient to encode document order as
well as to characterize the major XPath axes [1.11]. Figure 1.5 displays an
XML document instance, its associated document tree as well as its internal
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representation, the set doc of � values. Intuitively, the preorder rank of a
node represents the position of its opening tag relative to the positions of the
opening tags of all other nodes in the document. An equivalent observation
applies to the postorder rank and the node’s closing tag. Obviously, then,

v′ is a descendant of v
⇔

pre v < pre v′ ∧ post v′ < post v ,

i.e., the tags of v embrace those of v′. The other major XPath axes ancestor,
preceding, and following may be understood in terms of preorder and
postorder ranks, too.

<a>
<b><c/></b>
<d>
<e/><f/>

</d>
</a>

root

a

b
��

��

c

d
??

??

e��
��

f
??

??

doc = { ("a",(1,6)),("b",(2,2)),
("c",(3,1)),("d",(4,5)),
("e",(5,3)),("f",(6,4)) }

root c = ("root",(0,7))

Fig. 1.5. XML Document and its Preorder/Postorder Encoding

Given the following function definitions:

tag (t,(pre,post)) ≡ t
pre (t,(pre,post)) ≡ pre
post (t,(pre,post)) ≡ post

n1 << n2 ≡ (pre n1) < (pre n2)

we can encode XPath step evaluation as follows:

step (descendant::t) c ≡ {n | n ← doc,c << n,post n < post c,tag n = t}
step (following::t) c ≡ {n | n ← doc,c << n,post c < post n,tag n = t}
step (preceding::t) c ≡ {n | n ← doc,n << c,post c < post n,tag n = t}
step (ancestor::t) c ≡ {n | n ← doc,n << c,post n < post c,tag n = t}

Now, given the XML instance of Figure 1.5, it is easy to verify that our
monad comprehension semantics and the XPath semantics are indeed the
same. We have, for example:

xpath (/descendant::d[preceding::b]) c = {("d",(4,5))}

Note that the choice of context node c is immaterial here since the path ex-
pression is absolute, effectively having the document root node as the context
node.
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If you look at the definitions for the preceding and ancestor axes you
will notice that both axes select nodes n that are before context node c in
document order. Axes of this kind are referred to as reverse axes.

Reverse axes pose a problem for so-called streaming XPath processors.
XPath engines of this type try to perform a single preorder traversal (e.g., by
receiving the events of a SAX parser) over the input document to evaluate a
given path expression. The big win is that only very limited memory space
is necessary to perform the evaluation: a streaming XPath processor can, in
principle, operate on XML documents of arbitrary size.

To evaluate a reverse axis step in such a setup is problematic because the
XPath processor would need temporary space to remember past SAX events.
To restore the modest memory requirements we thus need to get rid of the
reverse axes. Such an approach is indeed possible and discussed in [1.18]. The
authors present a number of XPath equivalences, e.g.,

/descendant::t/preceding::t′ = /descendant::t′[following::t]

(note that the righthand side trades a reverse axis for a forward axis and a
step for a predicate, respectively).

A proof for this equality naturally depends on the path expression se-
mantics as well as the semantics of the XPath axes themselves. As we have
defined both semantics in terms of monad comprehensions, we can carry out
the actual proof solely by means of equational reasoning, which is typical for
a purely functional query representation. We first map the righthand side
XPath expression into its monad comprehension equivalent and then exhaus-
tively apply the monad comprehension normalisation rules 1.6a–1.6d. For our
current example, the normal form is reached after two normalisation steps
(see below). Applied to the lefthand side of the above equation, mapping and
normalisation (not shown here) yields an identical monad comprehension,
which validates the equality.

xpath (/descendant::t′[following::t]) c

=
xpath

xpath (descendant::t′[following::t]) (root c)

=
xpath

{n | n ← xpath (descendant::t′) (root c),

or {true | n′ ← xpath (following::t) n}}

=
xpath

{n | n ← step (descendant::t′) (root c),

or {true | n′ ← step (following::t) n}}

=
step

{n | n ← {v | v ← doc,(root c) << v,post v < post (root c),tag v = t′},

or {true | n′ ← {v′ | v′ ← doc,n << v′,post n < post v′,tag v′ = t}}}

=
1.6c

{v | v ← doc,(root c) << v,post v < post (root c),tag v = t′,

or {true | v′ ← doc,v << v′,post v < post v′,tag v′ = t}}

=
1.6d

{v | v ← doc,(root c) << v,post v < post (root c),tag v = t′,

v′ ← doc,v << v′,post v < post v′,tag v′ = t}



22 Torsten Grust

= {v | v ← doc,tag v = t′,v′ ← doc,v << v′,post v < post v′,tag v′ = t}

To understand the last rewriting step above, note that (root c) << v and
post v < post (root c) for arbitrary nodes c, v of the same document (also
see Figure 1.5).

We observe that the resulting normalised monad comprehension describes
the same computation as the following SQL query:

select v
from doc v,doc v′

where tag v = t′ and tag v′ = t
and v << v′ and post v < post v′

More generally, an XPath expression consisting of n steps or predicates yields
an n-ary join of the relation doc of � values with itself. The structural aspects
of a path expression, implicitly given by the XPath axes, as well as name tests
are mapped into a simple conjunctive predicate against this intermediary n-
ary self-join result.

Although this XPath evaluation scheme may appear rather simplistic, it
offers a number of—sometimes non-obvious—optimization hooks, especially if
the scheme is used in a set-oriented manner [1.11] i.e. when a path expression
is evaluated for a context node set, not just a single context node c as discussed
here.

1.8 Conclusion

In this chapter we have used monads in the role that sets play in the re-
lational calculus. A feature of the monad notion is that it comes with just
enough internal structure that is needed to interpret a query calculus. The
resulting monad comprehension calculus is limitted with respect to the vari-
ety of syntactic forms it offers but this ultimately leads to a form of query
representation that stresses the core structure inherent to a query.

We have seen that a monad comprehension [|f x | x ← xs|] can describe a
variety of query constructs, e.g., parallel application of f to the elements of xs,
iteration, duplicate elimination, aggregation, or a quantifier ranging over xs,
depending on the actual choice of monad we are evaluating the comprehension
in. This uniformity has enabled us to spot useful and sometimes unexpected
dualities between query constructs, e.g., the close connection of the class of
flat join queries and existential quantification discussed in Section 1.5.

The terseness of the calculus additionally has a positive impact on the size
of the rule sets necessary to express complex query rewrites, most notably
monad comprehension normalisation.
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This chapter has aimed to show that monad comprehensions provide an
ideal framework in which the interaction of a diversity of query representa-
tion and optimisation techniques may be studied. We have found this purely
functional representation of queries based on catamorphisms and monads
to cover, simplify, and generalize many of the proposed views of classical
database query languages as well as the more recent XML languages such as
like XPath.
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