
To be presented in International Conference on Parallel Processing, Aug. 1996

Reducing Cache Invalidation Overheads in Wormhole Routed DSMs
Using Multidestination Message Passing

�

Donglai Dai and Dhabaleswar K. Panda
Department of Computer and Information Science

The Ohio State University, Columbus, OH 43210-1277
Email:

�
dai,panda � @cis.ohio-state.edu

Abstract: Current generation DSM systems use point-to-
point (unicast) messages for cache invalidations. This in-
curs a large number of control messages, heavy network
traffic, and high occupancy at home nodes. This paper in-
troduces a new approach to reduce these overheads by us-
ing multidestination-based reservation and gather worms
for distributing invalidation requests and collecting ac-
knowledgments. Different grouping schemes to generate
multidestination worms on networks supporting determin-
istic (e-cube) or adaptive (turn-model) routing are investi-
gated to implement the fully-mapped cache-coherence pro-
tocol. For different applications on a 2D mesh system,
our simulation results indicate that up to 15% reduction in
overall execution time can be achieved by using multides-
tination messages.

1 Introduction
To design scalable parallel systems with distributed

shared memory (DSM) paradigm, architects typically use
directory-based cache-coherence protocols atop message-
passing hardware [2, 4]. Most recent DSM related re-
search has emphasized on designing efficient directory or-
ganizations and cache coherence protocols, deriving opti-
mal cache sizes, analyzing cache invalidation patterns, and
reducing synchronization overheads. However, very lit-
tle research is done towards reducing overheads of cache
coherence protocols on message-passing systems by tak-
ing advantage of underlying interconnection networks and
routing schemes.

Under closer examination, it can be observed that cache
coherence protocols use two fundamental message-passing
operations for a cache invalidation: sending one-to-many
messages from one node to a set of other nodes and collect-
ing many-to-one messages from a set of nodes to one node.
Both patterns belong to the class of collective communica-
tion [7]. Currently the wormhole-routing switching tech-
nique [8] is the trend in building scalable parallel systems.
In recent years, many new adaptive routing schemes and
multicasting schemes [10] have been proposed for worm-
hole routed systems. These developments lead to a natural
question whether we can take advantage of these schemes
to reduce cache coherence overheads in DSM systems.

Consider current generation DSM systems, which use
directory-based protocols to enforce conventional sequen-
tial consistency. In such systems, when an invalidation
transaction occurs, a home node sends multiple unicast

�
This research is supported by NSF Career Award MIP-9502294.

messages to all sharing nodes and receives unicast ac-
knowledgments from them. Such unicast message passing
incurs high traffic and contention in the network. It also
makes the home nodes as hot-spots in the system. This has
considerable impact on the occupancy of messages at direc-
tories [3]. Such overheads get reflected as high-latency for
write operations, leading to degradation on the overall sys-
tem performance. In WWT [5], the invalidation requests
are broadcasted using a dedicated broadcast network. This
leads to a costly design. Recently, Bhuyan et al. [6] have
proposed an embedded hierarchical ring broadcast mech-
anism for implementing fast invalidations. However, this
approach leads to high latency for invalidations.

Recently multidestination message-passing mecha-
nisms have been introduced for wormhole networks to
achieve low-latency multicast [10] and gather [9] opera-
tions on distributed memory systems. In this paper, we
propose a set of multidestination-based reservation and
gather worms to implement cache-coherence with reduced
overheads. A small set of invalidation acknowledgment (i-
ack) buffers are proposed to be used at the router interfaces
to facilitate fast collection of acknowledgments. Different
grouping schemes are proposed to send cache-invalidation
requests and collect acknowledgments for deterministic
(e-cube) and adaptive (turn-model) routing schemes. The
effect of these grouping schemes to reduce number of
invalidation request/ack messages, total network messages
and overall execution time is studied through simulation
experiments. Depending on the invalidation characteris-
tics in these applications, a wide range of improvement
(2-15% reduction in overall execution time) is observed. It
is shown that turn-model routing with a density-dependent
column grouping leads to the best reduction on overall
execution time for these applications. For simplicity, in
this paper, we consider a fully-mapped directory system
with sequential consistency. However, the methodology is
quite general and can be applied to other partial-directory
schemes and consistency models.

2 Cache Invalidation Overheads in DSMs

In this section, we briefly overview DSM architecture
and directory-based protocols. Then we analyze communi-
cation characteristics of cache invalidation transactions and
the associated overheads.

2.1 Architecture and Directory-based Protocols

Let us consider a typical DSM architecture as shown in
Fig. 1. The system consists of a set of identical process-
ing nodes connected by a low latency interconnection net-
work. Each node consists of processor (PE), cache, cache
controller (CC), a module of the global shared-memory
(MM), directory controller (DC), incoming message con-
troller (IC), and outgoing message controller (OC). The IC
and OC modules connect the node to the interconnection
network through the router interface. Every node is the
home node to a set of memory blocks it contains. Each
memory block has an associated directory entry consisting
of current state information and a pointer array. A simple
implementation of the pointer array uses a presence bit vec-
tor with one bit for each node, popularly known as fully-
mapped directory.

DC: Directory Controller
CC: Cache Controller

OC: Outgoing Message Controller
IC: Incoming Message Controller

MM DC CC Cache

PE

ICOC

MM DC CC Cache

PE

ICOC

Interconnection Network

Node 1 Node N

Router Router

Figure 1: Typical architecture of a DSM system using directory-
based protocols.

2.2 Characteristics of Invalidations

In a system using a directory-based write-invalidation
protocol, when a request to obtain exclusive-write access
comes from a writer node to the home node of a cache
block, the home node sends invalidation request messages
to all sharers. These sharers, after receiving the inval-
idation requests, invalidate their respective cache blocks
and send an acknowledgment each to the home node. The
home node receives all these acknowledgments and then
provides exclusive-write access to the writer node request-
ing the cache block. The entire sequence can be defined as
an invalidation transaction, which consists of mainly two
phases: request and acknowledgment.

Figure 2 illustrates the two phases for a sample shar-
ing distribution in an e-cube routed ����� mesh DSM sup-
porting point-to-point (unicast) message passing. In this
example, the degree of sharing for the memory block be-
ing invalidated is assumed to be 23. Thus, the home node
sends 23 invalidation requests and receives 23 acknowledg-
ments. Let us denote such a framework as Unicast-based
Invalidation and Unicast-based Acknowledgment (UI-UA).
Under this framework, the invalidation takes considerable
time due to sending and receiving a large number of mes-
sages. The hot-spot effect occurs at the home node in both
the request phase as well as the acknowledgment phase.

It is to be noted that a strong dependency exists among
the request and reply messages for achieving cache coher-
ence, leading to deadlocks in such systems. As a common

practice, a pair of separate networks (at least logically sepa-
rated) are used. Any request and reply messages that are re-
lated to each other are forced to travel in different networks
to break the hold-and-wait condition that is necessary for a
deadlock to occur. This means that the above two phases
of an invalidation transaction usually take place in separate
networks. Thus, for a major fraction of the time of an inval-
idation transaction, these two phases progress in an over-
lapped manner.

sharer

unicast

(a) ireq (b) iack

home
node

worm

Figure 2: Example of an invalidation in an e-cube mesh DSM
supporting unicast communication: (a) the request phase and (b)
the acknowledgment phase.

2.3 Latency and Traffic Estimates

In order to analyze the latency of an invalidation trans-
action quantitatively, let us use the following four simple
measures. Home node occupancy [3] reflects the amount
of processing time required at a home node in order to send
the requests and receive the acknowledgments. It is propor-
tional to the number of messages sent from and received by
the home node. Average distance of a sharer from the home
node reflects the network latency component of invalida-
tion latency. Based on the underlying routing scheme, this
component is related to the average number of hops trav-
eled by a message. The number of messages and total num-
ber of hops traversed by the messages offer us valuable in-
sight to the volume of network traffic generated by an in-
validation transaction. For the example shown in Fig.2, the
values of these four measures are 46, 4, 46, and 186, respec-
tively.

Let us now derive an estimate for latency of an invalida-
tion on a ����� mesh using wormhole routing [8]. Assume
the average number of nodes sharing a block is � . Thus, the
invalidation will require ��� messages. Let us assume the
following timing parameters: message startup time equal to	 , router delay equal to
 , and one hop delay per flit equal
to � . Assume the message length is � flits. For a �
��� sys-
tem, the average distance traveled by a single message is � .
During the invalidation transaction, the home node sends
requests to the sharers one after another. If we ignore net-
work contention, the overall time for all the requests to be
received by the sharers ������������� 	�� ��
 ��� �! #"%$&� .
Let us assume that cache invalidation at a sharer takes '
time on average. An acknowledgment takes �(�*),+.-/� 	0�
��
 �1� �2 3"%$&� time to reach the home node. By assum-
ing the best overlapping, i.e., (�4 #") acknowledgments
have been received and processed by the home node prior
to the arrival of the last acknowledgment from a sharer, the

overall invalidation latency �������0� � ������� � ' � � �*),+.-0�� � � " $ 	 � � ��
 � � � � " $.� � ' .
Typically, network contention and hot-spot effect sur-

rounding the home node increase this latency considerably.
For the above analysis, the total number of hops traveled
by ��� messages are ����� . This relates closely to the volume
of communication traffic required for an invalidation. As �
and � increase, it can be observed that the volume of com-
munication traffic increases, leading to a potential increase
in network contention; It also increases the no-contention
invalidation latency, �(����� . This leads to a question whether
less than � invalidation requests and � acknowledgments
can be used to accomplish an invalidation with � sharers.
We use a multidestination message passing approach to ac-
complish this.

3 Multidestination Message Passing

The multidestination message passing mechanism al-
lows data to be delivered to or picked up from multi-
ple nodes with a single message. A new Base-Routing-
Confirmed-Path (BRCP) model has been recently pro-
posed in [10] to implement multidestination mechanism on
wormhole networks with different routing schemes.

3.1 The BRCP Model

Figure 3 shows feasible paths under the BRCP model for
a 2D mesh supporting two kinds of routing. In an e-cube
system (assuming messages are routed first along the row
and then along the column), a multidestination worm can
cover a set of destinations in row/column/row-column or-
der as shown in Fig. 3. On a turn-model system, a multides-
tination worm can cover destinations along any west-first
non-minimal path, in addition to e-cube paths, as shown in
Fig. 3. The significant benefit of this BRCP model comes
from the fact that a message can be delivered to multiple
destinations with the same overhead as that of sending it to
a single destination. Similarly, information can be gathered
from multiple destinations with a single message.

E-cube Turn-model

source

destination

(west-first non-minimal)

Figure 3: Feasible paths for multidestination worms.

3.2 Multicast and Gather Worms

A multidestination multicast worm consists of a set of
destinations along a feasible path in its header. The worm
uses forward-and-absorb capability at the router interface
of each intermediate destination. Using such worms, so-
phisticated multicasting schemes are feasible to implement
a multicast with reduced latency [10].

A multidestination gather worm collects information
from multiple nodes at their respective router interfaces [9].
Each router interface can have a set of buffer entries con-
taining special flags. An ‘on’ state of such a flag indi-
cates that the associated processing node has arrived at the
gather execution point. A typical gather worm, while pass-
ing through the router interface of intended destinations,
checks for this flag. If the flag is ‘on’, the worm collects
the information and proceeds ahead. If the flag is not ‘on’,
the worm waits for this flag to be ‘on’. Such a mechanism
allows a gather worm to collect data/signal in a cumulative
manner from all its intermediate destinations and deliver it
to the final destination. In the following section, we pro-
pose augmentation to these multidestination worms for ef-
fective cache invalidations.

4 Frameworks to Reduce Overheads
In this section, we introduce new frameworks and mech-

anisms to implement efficient invalidations with multides-
tination messages.

4.1 MI-UA Framework

By using a multidestination multicast worm, a home
node can send an invalidation request to a set of shar-
ers along a single path. Let us name such a worm
as multidestination-based invalidation request (m-ireq)
worm. After receiving the request, a sharer invalidates
its local cache and sends a unicast-based acknowledgment
message back to the home node. The home node collects
all the individual invalidation acknowledgments. We iden-
tify such a framework as Multidestination-based Invalida-
tion request and Unicast-based Acknowledgment (MI-UA).

Let us compare the MI-UA and the UI-UA frameworks
through an example. Figure 4 highlights the distinction be-
tween these two frameworks. We only illustrate a portion,
relating to the sharing nodes along column 6, of the ex-
ample invalidation transaction previously shown in Fig. 2.
The rest of the invalidation transaction can be implemented
similarly and is not illustrated here for clarity. During the
request phase of the invalidation transaction in the UI-UA
framework, as shown in Fig. 4(a), home node sends five
unicast-based worms to the sharers. While in the MI-UA
framework, as shown in Fig. 4(b), home node sends only
two (up-turn and down-turn) m-ireq worms. During the ac-
knowledgment phase, each of these sharers sends a unicast-
based invalidation acknowledgment back to home node in
both frameworks. It can be observed that for the example
invalidation transaction in Fig. 2, the home node needs to
send only 11 invalidation worms in the MI-UA framework
as compared to 23 worms in the UI-UA framework. This
demonstrates considerable potential to reduce occupancy at
the home node as well as the invalidation latency.

Besides supporting forward-and-absorb mechanism at
each router interface [10], the MI-UA framework does not

home node

sharer

unicast-based

(a) (b)UI-UA framework MI-UA framework

unicast-based

multidestination-3,3 3,3

6,6

6,4

6,2

6,1

6,0

6,6

6,4

6,2

6,1

6,0

based mireq

iack

ireq

Figure 4: Comparing the communication traffic for an invalida-
tion transaction in two frameworks: (a) UI-UA and (b) MI-UA.

require any additional modifications to the current genera-
tion DSM systems. The main thrust of this framework is to
reduce occupancy of the home node and the volume of net-
work traffic incurred in the request phase of an invalidation
transaction. In the acknowledgment phase, however, this
framework reduces neither occupancy of the home node
nor occupancy of sharers. It also does not reduce the vol-
ume of network traffic. The question is whether a better
framework is feasible which can achieve the above three
kinds of reduction in the acknowledgment phase. In order
to have such a framework, we first introduce three novel
mechanisms.

4.2 Three Novel Mechanisms

4.2.1 I-gather Worm

Let us consider using gather worms to collect the ac-
knowledgments. Assume that after receiving the request
and invalidating the local cache block, a sharer can set a
buffered signal at its associated router interface instead of
being forced to send a unicast-based acknowledgment. A
multidestination-based gather worm can pass through each
router interface associated with the sharers, collect the sig-
nal, and deliver the information to the home node. We
name such a gather worm as a multidestination-based in-
validation gather (i-gather) worm. Such i-gather worms
significantly reduce: 1) the occupancy of cache invalida-
tion for most sharers, 2) the volume of network traffic, and
3) the occupancy of the home node.

4.2.2 I-ack Buffer

A special buffer at the router interface is used to store
the signal associated with an invalidation acknowledgment
of a memory block for a short period of time. We denote
such buffer as i-ack buffer, an entry in the i-ack buffer as
i-ack entry, and the signal as i-ack signal. Ideally, every
router interface could have a dedicated i-ack entry for each
block of the global memory. However, it is not feasible to
do so because of cost consideration. Fortunately, the aver-
age number of invalidation transactions, which a node par-
ticipates during a given time interval, is quite small. Let
us consider allowing sharing of the i-ack entries at a router
interface among the ongoing invalidation transactions. In
order to distinguish which i-ack entry is used by which in-
validation transaction of a memory block, the block address
of the invalidation transaction is stored in the i-ack entry

and used as an identifier. When an i-gather worm arrives,
it can do a fully-associative search based on the block ad-
dress to find its corresponding i-ack entry and collect the i-
ack signal. Hence, we propose that the structure of an i-ack
entry consists of a free/used flag, an invalidation acknowl-
edgment signal (i.e.,i-ack signal), a block address field, and
a field to hold a copy of a message. We discuss the usage
of the message field in next section. Figure 5 shows the en-
hanced node organization and the associated router inter-
face.

CC CacheDCMM

ICOC

i-ack buffer

Switch

Router

links from
other routers

links to
other routers

PE

F: free or used
S: i-ack signal
badr: block address
msg: copy of message

Node

F S badr msg
F S badr msg

F S badr msg
. . .

Figure 5: Enhanced node organization and the associated router
interface with the i-ack buffer.

4.2.3 I-reserve Worm
With the above enhanced node organization and router

interface, we introduce a multidestination-based invalida-
tion reservation (i-reserve) worm. The i-reserve worm is
a variation of the general multidestination-based multicast
worm. Basically, an i-reserve worm is an augmented m-
ireq worm. In addition to delivering the invalidation re-
quest message, it also reserves an i-ack entry at the router
interface of each destination. When a sharer receives an in-
validation request, it invalidates its cache block and sets the
i-ack signal in the reserved i-ack entry. Later, when the as-
sociated i-gather worm arrives, it collects the i-ack signal
and releases the i-ack entry.

4.3 MR-MA Framework

We glue the above three mechanisms together to make
a Multidestination-based invalidation Reservation and
Multidestination-based gather Acknowledgment (MR-MA)
framework. For this framework to function smoothly, we
need to investigate several important issues closely.

4.3.1 I-ack Hits and I-ack Misses
In our proposed design, there are only a few i-ack entries

at the router interface. When an i-reserve worm reaches
the router interface, it is possible that there is no avail-
able i-ack entry. What should the MR-MA framework do
on such scenarios? When such a scenario occurs (denoted
as i-ack miss), we allow the i-reserve worm to deliver the
invalidation request and keep moving. Under such cir-
cumstances, after receiving and processing the invalidation
request, the sharer sends a unicast-based invalidation ac-
knowledgment message. Later when the corresponding i-
gather worm reaches this sharer, it can find out that there
is no i-ack entry reserved for the block and proceeds to the

next sharer/home node. We define an i-ack hit as a success
in reserving an i-ack entry by an i-reserve worm. In sec-
tion 6, we will show simulation results corresponding to i-
ack hits/misses with varying number of i-ack entries. It is
to be observed that 2-4 entries are sufficient to have a hit
ratio higher than

� ������� .

4.3.2 I-ack Signal Counts
Once i-ack misses occur, it becomes impossible for the

home node to decide when an invalidation transaction com-
pletes, based on the number of acknowledgment messages
it has received. Hence, we incorporate an i-ack counter
field in the i-gather worm. This field can be used to remem-
ber how many i-ack signals that an i-gather worm actually
collects. For a unicast-based acknowledgment, this count
is assumed to be 1. At the beginning of an invalidation,
from the directory entry for a memory block, the home node
knows the total number of sharers (denoted as �). On re-
ceiving the invalidation acknowledgments for the memory
block, the home node decrements � by the i-ack count in
the acknowledgments. When � becomes 0, the invalidation
transaction is completed.

Let us apply this MR-MA framework to the example in-
validation transaction shown in Fig. 2. Again, only the por-
tion relating to sharers along column 6 is illustrated in Fig. 6
for clarity. Home node (3,3) sends two i-reserve worms.
As the i-reserve worms propagate, let us assume that only
one i-ack miss occurs at sharer (6,1). The i-gather worms
later collects two i-ack signals each. (Special unicast-based
acknowledgment messages are needed in an e-cube sys-
tem because the i-gather worms can not reach the home
node under X-Y routing.) Independently, sharer (6,1) sends
a unicast-based acknowledgment back to the home node.
Overall, assuming the best-case where only i-ack hits oc-
cur, it can be observed that for the example invalidation
transaction in Fig. 2, the home node needs to send and re-
ceive only 22 invalidation worms in the MR-MA frame-
work as compared to 46 worms in the UI-UA framework
or 34 worms in the MI-UA framework. This demonstrates
further reduction in volume of network traffic, occupancy
at the home node, and most importantly the invalidation la-
tency.

home node
sharer

unicast-based

multidestination-

multidestination-

i-ack hit
i-ack miss

3,3

2

2

1

6,6

6,4

6,2

6,1

6,0

iack

based i-gather

based i-reserve

Figure 6: An example of a portion of invalidation using the MR-
MA framework.

Other issues in this MR-MA framework, like deadlock-
freedom, vitual cut-through, etc., have also been investi-
gated. Interested readers are encouraged to refer to [1] for
details.

5 Grouping Schemes

It can be seen that i-reserve and i-gather worms must
be generated on-the-fly by the directory controller because
of the dynamic property of sharing. Let us define group-
ing as the procedure of selecting a set of i-reserve and i-
gather worms to cover all sharers of a memory block. In
this section, we propose and analyze some heuristic group-
ing schemes for e-cube routing and turn-model routing. All
grouping schemes are illustrated with the example invalida-
tion pattern introduced in Fig. 2.

5.1 Associated Issues

Directory Organization and Grouping for I-reserve
Worms: It can be very helpful if the pointer array is so or-
ganized that when an invalidation transaction occurs, the
home node can send the i-reserve worms with little over-
head. Assume that the fully-mapped protocol is used to en-
force coherence. Let us consider organizing the presence
bits in the column major order and use the bit string address
encoding for multidestination worms [9]. Hence, different
portions of the presence bits can be directly taken as the
routing headers of the i-reserve worms.
Grouping for I-gather Worms: In all the schemes we dis-
cuss, the final destination node of an i-reserve worm initi-
ates an i-gather worm to collect the i-ack signals. This node
needs the identifiers of the sharers that are covered by the
associated i-reserve worm. To satisfy such a requirement, a
copy of the routing header of the i-reserve worm can be du-
plicated and carried as an additional data item in the worm.
This may increase the length of an i-reserve worm slightly.
However, the delay induced by such an increase in worm
length is very small under wormhole routing. After the final
destination of an i-reserve worm receives the message, its
directory controller does a grouping with itself as the source
node and the home node as the final destination in order to
generate appropriate routing header for the corresponding
i-gather worm. Readers are encouraged to refer to [1] for
further details.

5.2 E-cube Routing

5.2.1 Up-and-Down Column Grouping (UD) Scheme

In an up-and-down column grouping (UD) scheme, a
home node needs maximum two i-reserve worms in each
column for an invalidation transaction. One such worm,
the up i-reserve worm, moves along the +Y direction after a
possible turn from � X. The complementary down i-reserve
worm moves along the –Y direction. A sharer in a column
locating on the row containing the home node can be cov-
ered by either worm. An associated i-gather worm visits
the sharers in the reverse order of the i-reserve worm along
the � Y direction to collect the i-ack signals. The i-ack sig-
nal count is finally carried back by a unicast-based worm to
the home node. Figures 7(a) and 7(b) illustrate the request

and acknowledgment phases using the UD scheme. As dis-
cussed in section 2.2, we consider two e-cube routed vir-
tual networks, i-reserve worms moving in one and i-gather
worms in the other.

home node
sharer

multidestination worm
 unicast worm

(a) ud_ireq (b) ud_iack (c) sc_ireq (d) sc_iack
Figure 7: E-cube routing grouping schemes

To do a performance analysis similar to that for the UI-
UA framework, we use similar assumptions, as described
in section 2.3. In addition, let us assume the startup time
for multidestination-based messages as 	�� . Assume �����
i-reserve worms are initiated at the home node on average.
Thus, the best-case invalidation latency, � ������� ��� , can be de-
rived as 	2� � � ��� � "%$ 	 � � � 	 ���
 � � � � ��� "%$&� � ��' and the
total number of hops traversed by the messages,
 ������� ��� , as� � ��� 	 ��� .
5.2.2 Selective Column Leader Grouping (SC) Scheme

In a selective column leader grouping (SC) scheme, a
home node initiates an up or down i-reserve worm as in
the UD scheme if it can cover all the sharers in a column.
Otherwise, the home node initiates a unicast-based worm
to a selected column leader. The leader is the highest or
lowest sharer in a column whichever is closer to the home
node. Figures 7(c) and 7(d) illustrate the request phase and
the acknowledgment phase using the SC scheme. In the
SC scheme, for each column, the home node sends maxi-
mum one worm. Compared to the UD scheme, this scheme
achieves a better balance between the occupancy of the
home node and the propagation delay of the invalidation
request than the UD scheme. Assume �
� +�� � unicast-based
worms and � � +�� � multidestination-based worms are initi-
ated at a home node on average for an invalidation. This
leads to: � ������� � +�� � � � +�� � � "%$ 	 � � � � +�� � � "%$ 	�� � � 	 � +�
 �
� � � � + " $&� � � ' and
 ������� � + � � � � � +�� � � � � +�� � $ 	 � + .
5.3 Turn Model Adaptive Routing

It is to be noted that any e-cube grouping scheme can be
used in networks supporting turn-model routing [8]. How-
ever, we discuss two new grouping schemes to exploit the
adaptivity better. Similar to e-cube routing, we consider
two virtual networks, one supporting west-first routing and
the other east-first.

5.3.1 Dual-Path Grouping (DP) Scheme
In this scheme a home node needs maximum two i-

reserve worms for an entire invalidation transaction. One
such worm, the left i-reserve worm, covers all the sharers
on the left side of the home node and travels in the network

using east-first routing. The complementary right i-reserve
worm covers all the sharers on the right side and travels in
the network using west-first routing. The sharers along the
column containing the home node can be divided into two
half columns: upper and lower with respect to the home
node. Each of the half column, but not both, can be covered
by either of the i-reserve worms. This scheme achieves
the greatest reduction in volume of network traffic among
all the proposed grouping schemes. Assume � ��� i-reserve
worms are initiated at a home node on average for an invali-
dation. This leads to: � ������� ��� � 	 � � � ��� � "%$ 	 � � � 	 ���
 �
� � � ��� " $&� � ��' and
 ������� ��� � ��� ��� 	 ��� . Figures 8(a) and
8(b) illustrate the request phase and the acknowledgment
phase using the DP scheme.

home node
sharer

multidestination worm
 unicast worm

(a) dp_ireq (b) dp_iack (c) dcg_ireq (d) dcg_iack
Figure 8: Turn model routing grouping schemes

5.3.2 Density-dependent Column Grouping (DCG)
Scheme

Two major drawbacks of the DP scheme are: 1) high
latency and 2) complicated routing headers for the mul-
tidestination worms. A density-dependent column group-
ing (DCG) scheme tries to balance the number of destina-
tions covered by each worm. In addition to statically par-
titioning the network into � adjacent columns each, this
scheme restricts maximum destinations a multidestination-
based worm can cover in the � columns to a certain thresh-
old value (�). When the threshold is reached, more than
one i-reserve worms are used to cover destinations in the �
columns. Figures 8(c) and 8(d) illustrate the request phase
and the acknowledgment phase of the invalidation trans-
action in the DCG scheme with � � � and � ��� . As-
sume ��� +�� i-reserve worms are initiated at a home node
on average for an invalidation. This leads to: � ��� ��� � +�� �	 � � ��� +�� � "%$ 	�� � � 	 � +��
 � � � ��� +�� �"%$&� � ��' and

 ��� ��� � +���� � ��� +�� 	 � +�� .

Table 1: Comparison of different grouping schemes.

grouping home avg # of total
scheme occup. dist. mesg hops

unicast 46 4.0 46 186
d_ud 22 4.5 31 99
d_sc 16 6.6 32 106
t_dp 4 22.0 4 88
t_dcg 12 8.5 18 102

5.4 Comparison of Grouping Schemes

We compared these schemes by using the four measure-
ments proposed earlier in section 2. For a fair comparison
across different schemes, if worms traveled in a chained
fashion, they are counted as one message with a distance
equivalent to the sum of distance traveled by component
worms; while in the calculation of the number of total mes-
sages they are counted individually. Table 1 summarizes
the results for the sample invalidation transaction, intro-
duced in Fig. 2. A simple observation from this table is
that all the proposed schemes cut down the volume of net-
work traffic for the invalidation effectively with respect to
unicast scheme. Furthermore, it can be observed from Ta-
ble 1 and derived from earlier latency expressions that the
SC scheme is more efficient than the UD scheme while the
DCG scheme is more efficient than the DP scheme.

Table 2: System parameters used in simulation.
Parameter Values Time

Processor 1 cycle 5 ns
Cache access 1 cycle 5 ns
Cache block size 16 bytes
Cache block fill time 8 cycles 40 ns
Cache set associativity 1
Cache size per node 64 Kbytes
Memory word width 4 bytes
Memory block access time 8 cycles 40 ns
Directory check 2 cycles 10 ns
Directory check and update 4 cycles 20 ns
mesg startup (unicast) 5 cycles 25 ns
mesg startup (multidest) 10 cycles 50 ns
mesg dispatch 2 cycles 10 ns
Control mesg size (unicast) 4 bytes
Control mesg size (multidest) 6 bytes
Data message size 20 bytes
Injection channels per node 2
Consumption channels per node 4
I-ack entries per router 4
Channel width (Flit size) 2 bytes
Link propagation delay 1 cycle 5 ns
Router switch delay 1 cycle 5 ns
Router delay (header) 4 cycles 20 ns

6 Simulation Experiments and Results
We evaluated our schemes for a set of different applica-

tions using a CSIM-based execution-driven simulation en-
vironment. The environment accurately models intranodal
and internodal communication, memory access contention,
network contention, and port contention.

6.1 Simulation Setup

System Parameters: The following parameters were as-
sumed: 100 MHz processor, 200 Mbytes/sec communica-
tion link and 20.0 nanosec router delay. For unicast-based
message-passing we assumed 5 processor clock cycles as

the startup time. For multidestination messages this time
was assumed to be 10 clock cycles. We considered an � � �
system. Table 2 lists the relevant system parameters used.
Derived Memory Latencies: Assuming no contention,
Table 3 lists the derived latencies of common memory oper-
ations from our simulation. Table 4 shows the break down
of the derived latencies of a clean read-miss to neighboring
node. These results are very comparable with the results
reported on the DASH, Alewife, and FLASH.

Table 3: Memory miss latencies on our system (in cycles).
Access Home # Inv Dir

type location CpyBk Lat. State

local 0 13
remote 0 65

Load rmt(2-party) 1 74 home excl
rmt(3-party) 1 121 rmt excl

local 0 13
local 1 79 rmt shrd

Store rmt 0 65 rmt shrd
rmt(2-party) 1 70 home shrd
rmt(3-party) 1 102 rmt shrd

Application Characteristics: We considered three differ-
ent applications. The first application, Barnes-Hut, was
ported to our simulator from Stanford SPLASH2 bench-
mark suite. We simulated " � � bodies for � time steps.
We also ported the blocked LU-decomposition kernel from
Stanford SPLASH2 benchmark suite. We simulated " � � �
" � � matrices with ��� � blocks. The third application we
chose was All Pairs Shortest Path (APS). The APS ker-
nel was developed locally by our research group. It uses
the Floyd-Warshall algorithm to compute all pairs shortest
paths problem on an input matrix. We used the conven-
tional in-place variation. We simulated "%��� ��" � � matrices
with 50% of links not connected (infinite link cost).

Table 4: Break down of clean read-miss latency (in cycles).
Suboperation Lat.

Cache-miss to request in the network 6
Request transmit time (4 bytes) 9
Request arrives home to response transmit 14
Data return in network (20 bytes) 25
Response arrival to cache fill 3
Cache fill 8
Total 65

6.2 Results and Discussions

We observed three important parameters: number of
messages used for invalidation, total network messages,
and overall execution time. In order to perform compar-
ative evaluation, we used dimension order system with
unicast-based message passing (d-uni) as the base case
(100%). All other results are compared and reported
against this base case.

Figure 9 shows the number of invalidation messages
used. It can be seen that all multidestination schemes
reduce the number of messages required for invalida-
tion compared to the unicast-based (uni) message-passing.
Turn-model with dual-path grouping (DP) always leads to
maximum reduction (up to 95%).

uni ud sc uni sc dp dcg uni ud sc uni sc dp dcg uni ud sc uni sc dp dcg

E-cube Turn-model

100 100 100

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

(a) Barnes-Hut (b) LU (c) APS

Figure 9: Comparing number of invalidation messages required
under unicast-based and multidestination message passing.

Figure 10 shows the total number of network messages
used. It can be observed that reduction in the total network
messages varies significantly depending on the ratio of in-
validation messages and other messages. For application
like LU-decomposition which exhibits very low number of
invalidations, the gain is very minimal (0.6% at the best).
For other two applications, different grouping schemes lead
to 20-40% reduction.

uni ud sc uni sc dp dcg uni ud sc uni sc dp dcg uni ud sc uni sc dp dcg

100 100 100

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

(a) Barnes-Hut (b) LU (c) APS

Figure 10: Comparing total number of messages.

Figure 11 shows the overall execution time. It can be
observed that substantial reduction in network messages do
not necessarily lead to reduction in overall execution time.
This depends on the critical path of execution. However,
some grouping schemes like SC, DCG are able to reduce
overall execution time up to 15%.

uni ud sc uni sc dp dcg uni ud sc uni sc dp dcg uni ud sc uni sc dp dcg

100 100 100

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

(a) Barnes-Hut (b) LU (c) APS

Figure 11: Comparing overall execution time.

To understand the impact of i-ack buffer size on sys-
tem performance, we ran Barnes-Hut with different num-
ber of i-ack entries at each router interface. Figure 12(a)
shows the normalized of i-ack misses over the total number
of reservation attempts. Figure 12(b) shows the normalized
overall execution time. It can be observed that with only
few i-ack entries (2-4) i-ack misses can be dramatically re-
duced without apparent execution-time loss.

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18
Number of i-ack entries

(a) Normalized i-ack misses

dm
tm

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18
Number of i-ack entries

(b) Normalized execution time

dm
tm

Figure 12: The impact of i-ack buffer size in Barnes-Hut.

7 Conclusions
In this paper we have introduced a new multidestination

message-passing approach to implement directory-based
cache coherency in wormhole distributed shared memory
(DSM) systems. By applying the BRCP model, reser-
vation and gather worms were used to distribute invali-
dation messages and to collect acknowledgments. Com-
pared to the conventional approach, this new method pro-
duces less number of messages, less network traffic, and re-
duced occupancy at home nodes. New grouping schemes
were proposed to generate these multidestination worms to
implement the fully-mapped protocol. Simulation results
demonstrate considerable potential for these schemes to be
applied to current generation DSM systems. Currently we
are investigating limited directory organizations with this
new approach.

Readers are encouraged to refer to home page
http://www.cis.ohio-state.edu/˜panda/pac.html for re-
lated papers.

References
[1] D. Dai and D. K. Panda. Reducing Cache Invalidation Over-

heads in Wormhole Routed DSMs Using Multidestination
Message Passing. OSU-CISRC-4/96-TR24, 1996.

[2] A. Agarwal et al. The MIT Alewife Machine: Architecture
and Performance. ISCA’95, pp.2–13.

[3] C. Holt et al. The Effects of Latency, Occupancy, and Band-
width in Distributed Shared Memory Multiprocessors. CSL-
TR-95-660, Stanford University, 1995.

[4] J. Kuskin et al. The Stanford FLASH Multiprocessor.
ISCA’94, pp.302–313, 1994.

[5] S. K. Reinhardt et al. The Wisconsin Wind Tunnel: Vir-
tual Prototyping of Parallel Computers. SIGMETRICS’93,
pp.48–60.

[6] P. Mannava, A. Kumar, and L. N. Bhuyan. Cache Coherence
Architecture for Large Scale Multiprocessors. 5th SSMM
Workshop, ISCA’95.

[7] P. K. McKinley and D. F. Robinson. Collective Communi-
cation in Wormhole-Routed Massively Parallel Computers.
Computer, pp.39–50, 1995.

[8] L. Ni and P. K. McKinley. A Survey of Wormhole Routing
Techniques in Direct Networks. Computer, pp.62–76, Feb.
1993.

[9] D. K. Panda. Fast Barrier Synchronization in Wormhole k-
ary n-cube Networks with Multidestination Worms. Future
Generation Computer Systems, 11:585–602, Nov 1995.

[10] D. K. Panda, S. Singal, and P. Prabhakaran. Multidestination
Message Passing Mechanism Conforming to Base Worm-
hole Routing Scheme. PCRCW’94, pp.131–145.

