
Axiomatic approach to feature subset selection basedon relevanceHui Wang, David Bell, Fionn MurtaghSchool of Information and Software EngineeringFaculty of InformaticsUniversity of Ulster Magee CollegeNorthland Road, Londonderry, BT48 7JLNorthern Ireland, UKEmail: fh.wang, da.bell, fd.murtaghg@ulst.ac.ukAbstractIn this paper an axiomatic characterisation of feature subset selection is presented. Twoaxioms are presented: su�ciency axiom | preservation of learning information, and necessityaxiom | minimising encoding length. The su�ciency axiom concerns the existing dataset andis derived based on the following understanding: any selected feature subset should be able todescribe the training dataset without losing information, i.e., it is consistent with the trainingdataset. The necessity axiom concerns predictability and is derived from Occam's razor, whichstates that the simplest among di�erent alternatives is preferred for prediction. The two axiomsare then re-stated in terms of relevance in a concise form: maximising both the r(X;Y ) andr(Y ;X) relevance. Based on the relevance characterisation, a heuristic selection algorithm ispresented and experimented with. The results support the axioms.1 IntroductionThe problem of feature subset selection (FSS hereafter) has long been an active research topicwithin statistics and pattern recognition (e.g., [9]), but most work in this area has dealt withlinear regression. In the past few years, researchers in machine learning have realised (see forexample, [18, 16]) that practical algorithms in supervised machine learning degrade in performance(prediction accuracy) when faced with many features that are not necessary for predicting thedesired output. Therefore FSS has since received considerable attention from machine learningresearchers interested in improving the performance of their algorithms.Common machine learning algorithms, including top-down induction of decision trees, such asCART, ID3, and C4.5, and nearest-neighbour algorithms (such as instance-based learning), areknown to su�er from irrelevant features [18, 19]. A good choice of features may not only helpimprove performance accuracy, but also aid in �nding smaller models for the data, resulting inbetter understanding and interpretation of the data.Broadly speaking, FSS is to select a subset of features from the feature space which is goodenough regarding its ability to describe the training dataset and to predict for future cases. Thereis a wealth of algorithms for FSS (see for example, [2, 15, 1, 17, 14, 24]). With regard to how toevaluate the goodness of a subset of features, the FSS methods fall into two broad categories: �lterapproach and wrapper approach, which are illustrated in Figures 1 and 2. In the �lter approach, agood feature set is selected as a result of pre-processing based on properties of the data itself and1
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Learning AlgorithmFigure 2: Wrapper model.independent of the induction algorithm. Section 5.1 presents a review on the empirical use of thenotion of goodness in this category.There is a special type in this approach | feature weighting [15], which is slightly di�erent fromthe mainstream �lter approach in the way the search for good feature set is conducted. Basicallythe mainstream approach evaluates each subset of features and �nds the \optimal", while theweighting approach weighs each individual feature and selects a \quasi-optimal" set of features,typically those whose weights exceed a given threshold [15, 17].In the wrapper approach, feature selection is done with the help of induction algorithms. Thefeature selection algorithm conducts a search for a good feature set using the induction algorithmitself as part of the evaluation function. Typically, the feature subset which performs best for theinduction algorithm will be selected.Both types of approach to FSS are closely related to the notion of relevance. For example,FOCUS [2], RELIEF [15] and Schlimmer's model [22] use \relevance" to estimate the goodness offeature subset in one way or another. Section 5.2 presents a review in this respect. Although thewrapper approach does not use the relevance measure directly, it is shown [16] that the \optimal"feature subset obtained this way must be from the relevant feature set (strongly relevant and weaklyrelevant features).However, the mathematical foundation for FSS is still lacking [26]. In [25], a uni�ed frame-work for relevance was proposed. In this framework relevance is quanti�ed and related to mutualinformation, and furthermore, it was shown that this quanti�cation satis�es the axiomatic charac-terisations of relevance laid down by leading researchers in this area. This renders the notion ofrelevance having a solid mathematical foundation.In light of these, we attempt to characterise FSS in terms of the relevance framework, in orderto give FSS a solid foundation for further theoretical study. We then present an algorithm for FSSbased on the relevance characterisation. We also present some experimental results applying thisalgorithm to some real world datasets.2 Characterisation of feature subset selectionIn this section we are to characterise FSS in the realm of machine learning, which is con�ned tothe following sense. 2



The input to a (supervised) learning algorithm is a training set D of m labelled instances ofa target (concept) Y 1. Typically D is assumed drawn independently and identically distributed(i.i.d.) from an unknown distribution over the labelled instance space. An unlabelled instance x isan element of the n dimensional space X1�X2�� � ��Xn, where Xi is the ith feature (or variable)in the feature space X = fX1; X2; � � � ; Xng 2. Labelled instances are tuples < x; y > where y is thelabel, or output. Let L be a learning algorithm having a hypothesis space H. L maps D to h 2 Hand h maps an unlabelled instance to a label. The task of the learning algorithm is to choose ahypothesis that best explains the given data D.In this paper, the training set D will be represented by a relation table r[X [ Y ] 3, where X isthe set of features and Y is the output or target variable. In what follows we will use r[X [ Y ] todenote both the learning task and the training set.The problem of feature selection is then to search for a subset � of X that not only performswell on the training dataset, but also predicts well on unseen new cases | it is good enough. Ourobjective in this section is to characterise what the best feature subset should be from �rst principlesas well as some known principles.2.1 The preservation of learning informationGiven a dataset r[X [ Y ], the learning task is to characterise the relationship between X and Y sothat this relationship can be used to predict on future cases (either one in the dataset or a new case).Therefore any selected feature subset, if it is expected to work well on the given dataset, shouldpreserve the existing relationship between X and Y hidden in the dataset. A natural measure ofthis relationship is the mutual information [7]. We call this relationship learning information.Speci�cally, given a learning task r[X [ Y ], the learning information is the mutual informa-tion I(X ; Y ). Furthermore, suppose � and � are two subsets of X . If I(�; Y ) = I(�; Y ), then wesay that � and � have the same contribution to the learning task. A su�cient feature set orsimply SFS of a learning task is a subset, �, of X such that I(�; Y ) = I(X ; Y ). Clearly, all SFS'scontribute the same to the learning task. This is re-stated as the following axiom:Axiom 2.1 (Preservation of learning information) For a given learning task r[X [ Y ], thebest feature subset, �, should preserve the learning information contained in the training dataset.That is, I(�; Y ) = I(X ; Y ).The following two lemmas follow directly from the chain rule for mutual information and thenon-negativity of mutual information.Lemma 2.1 Given r[X [ Y ]. For any � � X, I(�; Y ) � I(X ; Y ).From this lemma and the additivity of mutual information [7] we know that given a SFS �,removing all the remaining features � will not lose learning information contained in the originaldataset. In other words, Y is conditionally independent of � given �.1Target or target concept is usually de�ned as a subset of an instance space [2], which can be interpreted as abi-partition of the instance space. Here we use it in the more general sense: a target concept is an arbitrary partitionof the instance space. It is regarded as a variable here.2In this paper we use Xi to refer to both a variable and the domain of the variable, when this can be identi�edfrom the context.3[6, 12]. We use the notation in [12]. A relation scheme R is a set of variables (features). A relation (table) overR is an indicator function for a set of tuples, written r[R] : r[R](t) = 1 if the tuple t is in the relation; r[R](t) = 0otherwise. For the purpose of this paper, we extend the indicator function such that r[R](t) = n, where n is thefrequency of tuple t appearing in the relation. With this extension, we can talk about the distribution of the tuples,which can be easily obtained. 3



Lemma 2.2 If � is a SFS for a learning task r[X [ Y ], then any superset, �, of � is also a SFS.This lemma helps in determining SFSs without having to calculate the learning information. Thisproperty is exploited in the design of an FSS algorithm later.2.2 The simplest description: Occam's razorGiven a learning task, there may be a number of SFSs. However they may not perform the same onprediction. The best feature subset should perform best in this respect. However it is not easy todetermine which subset of features predicts better since there is no full knowledge about the future.Although the dataset is assumed to be drawn i.i.d. from the labelled instance space according toan unknown distribution, this assumption doesn't help in individual cases. What we can do is tofocus on the training dataset itself and then apply some empirical principles. There are a numberof empirical principles. Occam's razor is one of them.Occam's razor, known as the principle of parsimony, is a tool that has application in manyareas of science, and it has been incorporated into the methodology of experimental science. Thisprinciple is becoming inuential in machine learning, where this principle can be formulated as:given two hypotheses that both are consistent with a training set of examples of a given task, thesimpler one will guess better on future examples of this task [4, 27, 3]. It has been shown (see forexample, [4]) that, under very general assumptions, Occam's razor produces hypotheses that withhigh probability will be predictive of future cases.One basic question is concerned with the meaning of \simplicity", namely Occam simplicity.Typically Occam simplicity is associated with the di�culty of implementing a given task, namelycomplexity of implementation. For example, the number of hidden neurons in neural networks [3];the number of leaf nodes of a decision tree [10, 11]; the minimum description length (MDL) [21, 20];and the encoding length [23]. However, Wolpert [27] noticed that the complexity of implementationis not directly related to the issue of prediction or generalisation, therefore there is no direct reasonto believe that minimisation of such a complexity measure will result in improvement of general-isation. Wolpert [27] then derived the uniform simplicity measure, which is concerned exclusivelywith how learning generalises. Wolpert showed [27] that when expressed in terms of the uniformsimplicity measure Occam's razor is indeed a way to set up a good generaliser.The main disadvantage of uniform simplicity measure is that the calculation of it needs \alllearning sets and all questions", as well as guessing distribution and simplicity distribution [27].This is impossible in practice. It seems that uniform simplicity measures have only theoreticalsigni�cance. Fortunately many of the conventional simplicity measures are shown to be roughapproximations to the uniform simplicity measure [27]. In practice we can only rely on approxima-tions, like those mentioned above.Back to our problem: Most of the practical simplicity measures (approximations to uniformsimplicity measure) are model-dependent. However we are looking at FSS independently of anylearning model, so a model-independent simplicity measure is required. Entropy seems an idealcandidate, as it measures the average number of bits (encoding length) to describe a source (e.g.,a random variable).Using the entropy as the Occam simplicity measure in our context, we have: given a learningtask r[X[Y ], the Occam's razor dictates the selection of a SFS � which minimises H(�; Y ), whereH is Shannon's entropy function. To make this formal, we re-state it, in conjunction with theinformation preservation axiom, as the following axiom:Axiom 2.2 (Minimum encoding length) Given a learning task r[X[Y ] and a set of su�cientfeature subsets. The one � which minimises the joint entropy H(�; Y ) should be favoured with4



respect to its predictive ability.Now we set out to characterise the � which minimises the joint entropy.Lemma 2.3 Given a learning task r[X [ Y ], consider two SFSs �;� � X. H(�; Y ) �H(�; Y ) () H(�) � H(�).Proof. Since both � and � are SFSs, by de�nition we have I(�; Y ) = I(�; Y ) = I(X ; Y ).Therefore we have H(Y )�H(Y j�) = H(Y )�H(Y j�) () H(Y j�) = H(Y j�). Furthermore wehave H(�) � H(�) () H(�) +H(Y j�) � H(�) +H(Y j�) () H(�; Y ) � H(�; Y ). 2According to this lemma, the most favourable feature subset would be the su�cient one whichhas the least marginal entropy.2.3 Characterisation of feature subset selection in terms of relevanceIn the previous two sections we have derived two axiomatic characterisations of FSS: the preserva-tion of learning information, and minimum encoding length. In this section we are going to showthe above two axioms can all be re-stated in terms of relevance, in an even more concise form.Given two variables X and Y , by de�nition (see appendix), the relevance of X to Y isI(X ; Y )=H(Y ), wrt. r(X ; Y ). Therefore for a SFS � � X , i.e., I(�; Y ) = I(X ; Y ), it is clearlyr(�; Y ) = r(X ; Y ). So preserving learning information amounts to preserving the relevance rela-tionship. Since r(�; Y ) � r(X ; Y ) in general (due to the fact that I(�; Y ) � I(X ; Y )), the � whichpreserves learning information in fact maximises the relevance r(X ; Y ).Consider two SFSs � and �. Since, by de�nition, I(�; Y ) = I(�; Y ) = I(X ; Y ), we haveH(�) � H(�) () I(�; Y )=H(�) � I(�; Y )=H(�) () r(Y ; �) � r(Y ; �). Therefore,in conjunction with the previous requirement, the most favourable feature subset would be thesu�cient one which maximises the relevance r(Y ;X).Summarising the above discussion we have the following theorem:Theorem 2.1 Given a learning task r[X [ Y ], the most favourable feature subset is the � whichis su�cient (preserving learning information, I(�; Y ) = I(X ; Y )) and minimises the joint entropyH(�; Y ) among all other SFSs. Putting it concisely, this is the one which has maximum r(�; Y )and maximum r(Y ; �).This theorem formalises the more or less intuitively justi�ed connection between relevance and FSS.3 A relevance-based algorithm for feature selectionIn this section we present a heuristic FSS algorithm which is based on the characterisation inthe previous section. A straightforward algorithm is to systematically examine all feature subsetsand �nd one which satis�es the above two axioms. Unfortunately, as shown in [8], this classof algorithms turns out to be NP-complete. Branch and bound based on the characteristics ofrelevance was attempted [25], but it was shown to be also exponential in general. So we attemptedheuristic approaches. Here we are to present our preferred heuristic FSS algorithm.Our objective is to �nd a su�cient subset of features, which is close to optimal in the aboveaxiomatic sense. The heuristic used here is: if a feature or attribute is highly relevant on its own, itit very likely that this feature is in the optimal feature set. Since features are examined individually,we need to take into account the correlation among individual features. Consider, for example, twofeatures x1; x2, let Y be the target. Suppose r(x1; x2) = 1, r(x1; Y ) = 0:9, and r(x2; Y ) = 0:95. If5



x1 is selected, then x2 is not needed any more since r(x2; Y jx1) = 0 according to Lemma 6.1. Inother words, x2 becomes irrelevant given x1. Our algorithm should not select them both. To thisend, we design our algorithm, which takes advantage of conditional relevance.Algorithm 3.1 (CR: feature selection based on conditional relevance) Given a learningtask r[X [ Y ], where jX j = N ,� Calculate, for every x 2 X, the relevance r(x; Y ), and �nd the feature x0 with largest relevancevalue;� Main procedure:1. BSFS = fx0g;2. Repeat: Add xi to BSFS such that xi is not in BSFS and r(xi; Y jBSFS) is the largestamong all possible relevance values.3. Until r(BSFS; Y ) = 1;� Return BSFS.Clearly the time complexity for calculating relevance and �nding the largest is O(N). Wenow analyse the complexity for the main procedure. At loop k where there are k features left forinspection, we need to compute conditional relevance r(xi; Y jBNAS) for all k features, hence acomplexity of O(k). To �nd the feature with largest conditional relevance value, we need k � 1comparisons, hence a complexity of O(k � 1). In the worst case we need to loop from k = N � 1to k = 1, hence the complexity is P1k=N�1 2k � 1 = O(N2). Therefore the overall complexity forabove algorithm is O(N2).This algorithm is highly dependent on the choice of the initial set of features, which is theindividual feature most relevant to Y . The BSFS selected by CR is guaranteed to be SFS, but notguaranteed to be necessary. It is conjectured that if x0 is in the optimal SFS, then the BSFS foundby CR is indeed optimal.4 Experiment and evaluationHere we are to evaluate the performance of the feature selection algorithm presented in the pre-vious section using some real world datasets. We choose three datasets from the U. C. Irvinemachine learning repository: Australian, Diabetes, and Heart. Some general information aboutthese datasets is shown in Table 1.To evaluate the performance of out feature selection algorithm, we chose to use the C4.5 modulein the Clementine package in our experiment. We feed the selected feature subsets to C4.5 andcompare the results with and without feature subset selections.The test accuracies by C4.5 without and with feature selection are shown in Table 2. Theevaluation method we used is cross validation implemented in Clementine. From these experimentresults we see that applying our feature selection algorithm does indeed improve the test accuraciesfor all three datasets, and the corresponding decision trees have smaller sizes. However the successis limited in the sense that the accuracy improvements were not very great in this case. Thereason is probably that C4.5 has a built-in feature selection facility based on mutual information.It is then reasonable to believe that if the feature selection algorithm described above is used withother learning algorithms without built-in feature selection facilities (e.g., nearest neighbour), theaccuracy improvement could be higher than those reported here.6



Dataset features no. of examples no. classes class distributionAustralian 14 690 2 44:5%(+)Diabetes 8 768 2 65:1%(+)Heart 13 270 2 55:56%(+)1 2 3 4 5 6 7 8 9 10 11 12 13 14Australian D C C D D D C D D C D D C CDiabetes C C C C C C C CHeart C D D C C D D C D C C C DTable 1: General information about the datasets, where D refers to discrete (here categorical) andC refers to continuous.Dataset C4.5 C4.5-CRSize of trees Test accuracy Selected features Size of trees Test accuracyAustralian 32 85.2 2,3,8,9,10,13,14 22 85.7Diabetes 54 72.9 2,5,6,7,8 42 74.2Heart 16 77.1 5,9,12,13 12 80.8Table 2: Decision tree sizes, test accuracies on decision trees generated by C4.5 without and withfeature selection, together with the selected feature sets. The evaluation method we used is crossvalidation implemented in Clementine. The datasets are from the U. C. Irvine machine learningrepository: Australian credit, Diabetes, and Heart.We also carry out an experiment to inspect the change of accuracies through gradually addingfeatures in the order of relevance values. We �rst rank all the features according to their individualrelevance values (r(X ; Y ) only) and start evaluation from the one with highest relevance value.The results are shown in Figure 3. From this �gure we can see that as features are gradually addedin the order, the accuracy will on average go up �rst and reach a peak and then go down. Thisdiagram justi�es to some extent our algorithm, although the algorithm may not always �nd thefeature subsets corresponding exactly to the peak points.Another observation from this experiment is that the performance of C4.5 for the three datasetsis (in descending order): Australian, Heart and Diabetes (Table 2) in terms of the average (test)accuracy, while the percentage of continuous features is in the (descending) order: Diabetes (8/8),Heart (7/13), and Australian (6/14). It indicates that C4.5 doesn't work as well for continuousfeatures as for discrete features. Our feature selection algorithm didn't change this situation. InC4.5, continuous features are treated as discrete features in such a way that their values are dividedinto two groups, each of which is a discrete cluster used in the classi�cation. From the granularitypoint of view [13], the granularity of the continuous features are made simply too coarse. In ourfeature selection algorithm, continuous features are treated as discrete features in such a way thateach continuous value is taken to be a discrete value and is used individually in the classi�cation.Again the granularity here seems too �ne. This points to a direction for future studies: what is theproper granularity for a continuous feature for use in classi�cation?7
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HeartFigure 3: Accuracy vs. �rst k features used in the relevance ranking, where k starts from1. The (r(X ; Y )) relevance-based rankings for the three datasets are as follows. Australian:2,14,8,3,13,7,10,9,5,6,4,12,11,1; Diabetes: 7,6,2,5,8,4,1,3; Heart: 5,8,10,13,3,12,1,4,9,11,2,7,6.5 Comparison with related workIn this section we are to take a closer look at some related work from the relevance point of viewand compare them with ours.5.1 How is the best feature subset characterised in the literature?In [15], the best feature subset is characterised as su�cient and necessary to describe the target.Ideally the su�ciency and necessity requirement is quanti�ed by a measure J(�; Y;D) which eval-uates the feature subset � for the target concept Y and the given data D: the best feature subsetshould have the best value of J(�; Y;D). However the nature of the su�ciency and necessity re-quirement was not made clear in [15]. In the context of learning from examples, it seems reasonablethat su�ciency concerns the ability of a feature subset to describe the given dataset (called qual-i�ed later on), while the necessity concerns the optimality among all the quali�ed feature subsetsregarding predictive ability. From this we can say that our two axiomatic characterisations arepossible interpretations of the su�ciency and necessity requirement proposed in [15].In practice, the best feature subsets are measured in pragmatic ways. For example, in FOCUS[2] a good feature subset is a minimal subset which is consistent with the training dataset. Here theconsistency can be understood as the su�ciency requirement, since only when the feature subsetis consistent with the given dataset can it qualify to describe the dataset without losing learninginformation. The minimality of feature subset can be understood as the necessity requirement, asit was used as a bias of learning regarding which subset can predict better for future cases. InRELIEF [15], a good subset is one whose elements each has a relevance level greater than a giventhreshold. Here the relevancy and the threshold together determine whether a given feature subsetis su�cient (or quali�ed) to describe the given dataset. But there is no direct justi�cation as towhy the feature subset determined in this way would perform better in predicting for future cases,i.e., necessary. In [22] a good subset is one of the minimal determinations, but nothing is mentionedas to which one is the best. Here all the minimal determinations are su�cient, but which of theseis necessary is left open.5.2 Re-modelling using the relevance frameworkMany FSS algorithms use \relevance" to estimate feature usefulness in one way or another. TheFOCUS [2] algorithm starts with an empty feature set and carries out breadth-�rst search untilit �nds a minimal combination � of features which is consistent with the training dataset. The8



features in � are relevant to the target concept C. In terms of the relevance framework [25], thisrequirement amounts to r(�;C) = 1 and j�j being minimum.RELIEF is a feature relevance estimation algorithm, but the meaning of relevance is di�erentfrom ours and has not been theoretically justi�ed. It associates with each feature a weight indicatingthe relative relevance of that feature to the concept class (C) and returns a set of features whoseweights exceed a threshold. This amounts to �rstly calculate, for each feature X , r(X ;C), andthen select a set of features such that for any X in this set, r(X ;C)� � , where � is the threshold.Compared to FOCUS, this method is computationally e�cient. Furthermore, it allows features tobe ranked by relevance.Schlimmer [22] described a related approach that carries out a systematic search through thespace of feature sets for all (not just the one with minimal cardinality) minimal determinationswhich are consistent with training dataset. The algorithm has an attractive polynomial complexitydue to the space-for-time technique: caching the search path to avoid revisiting states. A determi-nation is in fact a SFS, and a minimal determination is such a SFS that removing any element willrender it not being a SFS anymore. Therefore this algorithm amounts to �nding all SFSs within agiven length such that for each of these, �, r(�;C) = 1 and for any X 2 �, r(�=fXg;C)< 1.Most recent research on feature selection di�ers from these early methods by relying on wrapperstrategies rather than �ltering schemes. The general argument for wrapper approaches is that theinduction method that will use the feature subset should provide a better estimate of accuracythan a separate measure that may have an entirely di�erent inductive bias. John, Kohavi, andPeger [14] were the �rst to present the wrapper idea as a general framework for feature selection.The generic wrapper technique must still use some measure to select among alternative features.One natural scheme involves running the induction algorithm over the entire training data usinga given set of features, then measuring the accuracy of the learned structure on the training data.However, John et al argue that a cross-validation method, which they use in their implementation,provides a better measure of expected accuracy on novel test cases.The major disadvantage of wrapper methods over �lter methods is the former's computationalcost, which results from calling the induction algorithm for each feature set considered. This costhas led some researchers to invent ingenious techniques for speeding the evaluation process.The wrapper scheme in [16] does not use the relevance measure directly; rather, it uses theaccuracy obtained by applying an induction algorithm as the measure for the goodness of featuresets. However, Kohavi and Sommer�eld show that the \optimal" feature set X obtained this waymust be from the relevant feature set (strongly relevant and weakly relevant features). As shownin [25] their strong relevance and weak relevance can be characterised by our relevance formalism,so the wrapper scheme can also be modelled by our relevance, r(X ;C)> 0.However, Caruana and Freitag [5] observe that not all features that are relevant are necessarilyuseful for induction. They tested FOCUS and RELIEF on the calendar scheduling problem, wherethey fed the feature sets obtained by those two algorithms to ID3/C4.5, and found that a moredirect feature selection procedure, hill-climbing in feature space, �nds superior feature sets. Theydidn't explain the reason for this. But a possible explanation based on relevance is as follows. Fora given concept class C there are many SFS's, where for each SFS, X , r(X ;C) = 1. One of themany SFS's, which satis�es some criteria, should be optimal in general. This optimal feature setmay not be the minimal one in general. Starting from Occam's razor, we argue that the optimalone should be such that r(C;X) is maximised.In conclusion from the above discussion, RELIEF, Schlimmer's algorithm, and Wrapper takeinto account only the su�ciency condition, evidenced by their addressing only r(X ;C). FOCUStakes into account both su�ciency and necessity conditions. But the necessity is measured bythe cardinality of the feature subset being minimal. The relationship of this measurement to the9



Occam's razor characterisation above is not clear yet.6 ConclusionIn this paper we have derived, from �rst principles and Occam's razor principle, two axiomaticrequirements for any feature subset to qualify as \good": preservation of learning information andminimum encoding length. Since FSS has traditionally linked with relevance, we further showedthat when identi�ed with the variable relevance in the uni�ed framework for relevance, relevancehas a direct relationship with FSS: maximising relevance in both ways (i.e., r(X ; Y ) and r(Y ;X))will result in the favourable feature subset.Based on the axiomatic characterisation of FSS, one heuristic FSS algorithm was designedand presented. This algorithm weights (ranks) features using conditional relevance r(X ; Y jZ) ina step-wise way: it starts with the feature with the highest unconditional relevance value andthen keeps selecting features with highest conditional relevance values with respect to the currentselected subset. This algorithm can get rid of highly correlated features, and it is shown to have acomplexity of O(n2).We also presented evaluation results using three real world problems: Australian credit, Diabetesdiagnosis, and Heart diagnosis, all from the UCI machine learning repository. The purpose of theevaluation is two fold. Firstly, we evaluated the performance of the algorithm. The results are quiteencouraging: the average test accuracies on three datasets were all improved, and the resultantdecision trees had smaller tree sizes. Since C4.5 has a built-in feature selection process, which isbased on gain ratio de�ned by mutual information, we conjecture that if the algorithm is used withother learning algorithms without a built-in feature selection process (e.g., nearest neighbour), theaccuracy improvement could be higher.Secondly, we evaluated the relationship between relevance and learning accuracy. The resultsshow a strong connection between relevance and learning accuracy. When all features are rankedaccording to their conditional relevance values, adding features one by one to the feature set wouldlead to a clear pattern of accuracy: �rst ascending to a peak and then descending gradually.Therefore we conclude that highly relevant features can improve learning accuracies and highlyirrelevant features can degrade learning accuracies.As an aside, we observed that C4.5 based learning accuracy (whether or not feature selection isused) is related to the proportion of continuous features: the higher the proportion of continuousfeatures, the lower the accuracy. It is argued that one possible reason is that in C4.5 continuousfeatures are bi-partitioned, which could be too coarse. Future studies in this direction will focuson developing algorithms to �nd proper granularities for continuous features.References[1] D. W. Aha and R. L. Bankert. Feature selection for case-based classi�cation of cloud types.In Working notes of the AAAI94 Workshop on Case-based Reasoning, pages 106{112. AAAIPress, 1994.[2] H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In Proc. NinthNational Conference on Arti�cial Intelligence, pages 547{552. MIT Press, 1991.[3] B. Amirikian and H. Nishimura. What size network is good for generalization of a speci�ctask of interest? Neural Networks, 7(2):321{329, 1994.10
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[22] J. C. Schlimmer. E�ciently inducing determinations: a complete and systematic search algo-rithm that uses optimal pruning. In ML93, pages 284{290, 1993.[23] H. Schweitzer. Occam algorithms for computing visual motion. IEEE Transactions on PatternAnalysis and Machine Intelligence, 17(11):1033{1042, 1995.[24] D. B. Skalak. Prototype and feature selection by sampling and random mutation hill-climbingalgorithms. In Proceedings of the 11th International Conference on Machine Learning, pages293{301. Seattle, WA: Morgan Kaufmann, 1994.[25] Hui Wang. Towards a uni�ed framework of relevance . PhD thesis, Faculty of Informatics, Uni-versity of Ulster, N. Ireland, UK, October 1996. http://www.infm.ulst.ac.uk/~hwang/thesis.ps.[26] Sholom M. Weiss and Casimir A. Kulikowski. Computer systems that learn { classi�cation andpredication methods from statistics, neural networks, machine learning, and expert systems.Morgan Kaufmann Publishers, San Mateo, California, 1991. ISBN 1-55860-065-5.[27] D. H. Wolpert. The relationship between Occam's Razor and convergent guessing. ComplexSystems, 4:319{368, 1990.Appendix: A uni�ed framework for relevanceRelevance is a common sense notion in our daily lives. It concerns the relationship amongobjects. Suppose we have two objects X and Y . We understand X is relevant to Y if knowing Xhappening would change the likelihood of Y . Based on this understanding, various formulationshave been proposed with regard to di�erent problem domains. A uni�ed framework was proposedin [25] which uni�es two basic types of relevance in a consistent way: variable relevance and instancerelevance. Various guises of relevance can be modelled by this framework. For the purpose of thispaper, we present a brief introduction to the variable relevance.The relevance of one variable to another (target) variable is understood in information theoreticterms, as the mutual information between the two variables relative to the entropy of the targetvariable, or in other words, the relative reduction of entropy (uncertainty) of one variable due tothe knowledge of another. The bigger the reduction, the higher the relevance. Formally we have:De�nition 6.1 Given three random variables X, Y and Z with a joint probability distribution p,if H(Y jZ) 6= 0, then the variable relevance of X to Y given Z, denoted rv;p(X ; Y jZ), is de�nedas rv;p(X ; Y jZ) = I(X ; Y jZ)H(Y jZ) = H(Y jZ)�H(Y jX;Z)H(Y jZ)If H(Y jZ) = 0, then rv;p(X ; Y jZ) = 0.Where there is no ambiguity, p and v will be dropped for brevity.This de�nition says that the relevance of X to Y given Z is indicated by the relative reductionof uncertainty of Y when X and Z are known. With this notion we can say that X is relevant toY given Z with degree r(X ; Y jZ). Examples can be found in [25].Theorem 6.1 (Dependency vs independency,[25]) Suppose X, Y , and Z are three randomvariables with a joint distribution p. Then r(X ; Y jZ) = 1 () Y is conditionally fully dependenton X given Z; r(X ; Y jZ) = 0 () Y is conditionally independent of X given Z.12



This theorem shows that the de�nition of variable relevance agrees with two extreme cases ofprobabilistic dependence: full dependence and full independence. In other word, two extremecases can be identi�ed by our variable relevance measure: 0 for extreme irrelevance (conditionalindependence) and 1 for extreme relevance (full dependence).There are some useful properties for variable relevance. Here we list some of them.Lemma 6.1 ([25]) The following properties hold for variable relevance:� Continuity: r(X ; Y jZ) is continuous in the distribution p.� Uniformity: 0 � r(X ; Y jZ) � 1. That is, relevance measures lie between two �xed extremes.� Self-reexiveness: r(X ;X jZ) = 1. If Y � X, then r(X ; Y ) = 1.� Symmetry: r(X ; Y jZ) � 0 () r(Y ;X jZ)� 0. But in general, r(X ; Y jZ) 6= r(Y ;X jZ).� Monotonicity: For two sets of variables � and 
, if � � 
, then r(
; Y ) � r(�; Y ).� Intransitivity: In general r(X ; Y jZ) > 0& r(Y ;W jZ) > 0 6) r(X ;W jZ) > 0, andr(X ; Y jZ) = 0& r(Y ;W jZ) = 0 6) r(X ;W jZ) = 0.� Saturability: If r(X ; Y jZ) = 1, then r(W ; Y jZ;X) = 0, where W is any variable.� Given two variables X; Y; Z with a joint distribution p, r(Z; Y ) = 1 () r(X ; Y jZ) = 0 ()r(Y ;X jZ) = 0.Other properties can be found in [25].
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