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Abstract

We describe CARIN, a novel family of representation languages, that combine the ex-
pressive power of Horn rules and of description logics. We address the issue of providing
sound and complete inference procedures for such languages. We identify ezistential
entailment as a core problem in reasoning in CARIN, and describe an existential entail-
ment algorithm for the ALCA R description logic. As a result, we obtain a sound and
complete algorithm for reasoning in non recursive CARIN-ALCN R knowledge bases,
and an algorithm for rule subsumption over ALCAN'R. We show that in general, the
reasoning problem for recursive CARIN-ALCNR knowledge bases is undecidable, and
identify the constructors of ALCAR causing the undecidability. We show two ways in
which cARIN-ALCNR knowledge bases can be restricted while obtaining sound and
complete reasoning.

Keywords: description logics, Horn rules, query containment, hybrid languages, knowledge
representation.

1 Introduction

Horn rule languages have formed the basis for many Artificial Intelligence applications as well
as the basis for deductive and active database models. Horn rules are a natural representation
language in many application domains, and are attractive because they are a tractable subset
of first order logic for which several practically efficient inference procedures have been
developed. One of the significant limitations of Horn rules is that they are not expressive
enough to model domains with a rich hierarchical structure. In contrast, description logics
are a family of representation languages that have been designed especially to model rich
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hierarchies of classes of objects. The computational and expressive properties of description
logics have been extensively studied. Several systems have been built based on description
logics (e.g., CLASSIC [8], LOOM [28], BACK [31], KRIS [5]), and they have been used in several
applications (e.g., [38, 37]).

A description logic is a subset of first order logic with equality. In a description logic we
define sets of objects (referred to as concepts) as unary relations, and we define relationships
between objects as binary relations (called roles). Concepts are defined by the necessary
and sufficient conditions satisfied by objects in the set. These conditions are expressed by
concept descriptions that are built from a set of constructors. For example, the description
Parent I (V child.Smart) describes the instances of the concept Parent, all of whose children
are instances of the class Smart. Similarly, some description logics allow role descriptions in
addition to concept descriptions. Description logic knowledge bases contain a terminology
in which we define the set of concepts and roles used in the knowledge base. Description
logics and their properties vary depending on the set of allowed constructors and the kinds
of statements allowed in the knowledge base. Much of the research in description logics
has concentrated on algorithms for determining subsumption relations between concepts,
satisfiability of knowledge bases and for checking membership of an object in a concept.

Horn rules and descriptions logics are two orthogonal subsets of first order logic [7].
Several applications, such as combining information from multiple heterogeneous sources,
modeling complex physical devices, significantly benefit from combining the expressive power
of both formalisms. Starting from the KRYPTON language [9], several works have considered
the design of hybrid representation languages that combine rules with description logics (e.g.,
[17, 14, 2, 29]).

This paper describes CARIN, a novel family of languages, that extend Horn rules with the
expressive power of description logics. CARIN knowledge bases contain both a set of Horn
rules and a description-logic terminology. CARIN combines the two formalisms by allowing
the concepts and roles, defined in the terminology, to appear as predicates in the antecedents
of the Horn rules. CARIN is distinguished from previous hybrid languages in that we allow
both the roles and concepts to appear in the Horn rules. In contrast, previous languages
(e.g., AL-Log [14]) only allow the usage of concepts as typing constraints on variables that
already appear elsewhere in the rules.

The semantics of CARIN is derived naturally from the semantics of its component lan-
guages. The key problem in developing such a hybrid language is designing a sound and
complete inference procedure for answering queries in the language. As already observed for
the simpler language AL-Log [14], combining standard Horn rule inference procedures with
intermediate terminological reasoning steps does not result in a complete inference procedure
for AL-Log, and therefore the same applies to CARIN knowledge bases. The reason for the
incompleteness is that Horn rule reasoning procedures apply each rule in isolation, and they
try to instantiate the antecedent of the rule in order to derive its consequent.

In this paper we address the reasoning problem in CARIN. We consider CARIN for the case
in which the description logic is ALCNR, (referred to as CARIN-ALCNR). ALCNR is the
most expressive decidable implemented description logic [5]. For the Horn-rule component,
we consider function-free Horn rules. Our results distinguish the case of nonrecursive Horn



rules from the case of recursive Horn rules in CARIN knowledge bases.

In the nonrecursive case, we show that a single step of applying a Horn rule needs
to be replaced by a more sophisticated reasoning step. We isolate this step and refer to
it as existential entailment. Speaking informally, the existential entailment problem is to
decide whether the antecedent of a Horn rule, together with a description logic terminology
logically entail the disjunction of the antecedents of a set of Horn rules. We describe an
existential entailment algorithm for ALCANR. The existential entailment algorithm entails
several important results:

o [t provides a sound and complete inference procedure for nonrecursive CARIN knowledge
bases in which the description logic component is ALCNR.

o A particular and important case of the above is that we provide the first algorithm for
answering arbitrary conjunctive queries over an ALCNR knowledge base.

o It provides an algorithm for rule subsumption over ALCAN R, which is an important
building block in several query optimization algorithms.

o The existential entailment algorithm can be combined with the constrained-resolution
algorithm described by Biirckert [12] to yield a refutation complete SLD-resolution
algorithm for recursive CARIN-ALCN R.!

In the recursive case, we show how the decidability of the reasoning problem depends
on the constructors allowed and on the form of the Horn rules. In particular, we show the
following:

e Reasoning in recursive CARIN-ALCN R is undecidable. We show that in each of the
following cases by itself, the reasoning problem is undecidable:

— the description logic contains the constructor (V R.C'),
— the description logic contains the constructor (< n R), or
— the terminology contains terminological cycles and either the constructor (3 R.C')

or (> nR).

These results are significant because the constructors leading to undecidability are at
the core of most description logics.

o We identify two ways of restricting the sentences in the knowledge base for which we
establish sound and complete inference procedures:

— The first restriction concerns the description logic. We show that if the description
logic does not contain the constructors (V R.C') and (< n R), and the terminol-
ogy contains only concept definitions that are acyclic, the reasoning problem is

decidable.

!Recall that a refutation complete algorithm will terminate if the query is entailed by the knowledge base,
but may not terminate otherwise.



— The second restriction concerns the form of the Horn rules. We show that if
the rules are role-safe, then recursive Horn rules can be combined with all of
ALCNR, and reasoning is still decidable. Role-safe rules require that in every
role atom at least one variable that appears in the atom also appears in an atom
of a base predicate (i.e., a predicate that does not appear in the consequent of a
Horn rule, and is not a concept or role predicate). It should be noted that this
restriction covers some of the common usages of recursive rules (e.g., expressing
graph connectivity).

CARIN has several advantages that are important in applications. The added expressive
power of CARIN w.r.t. its component languages enables us to express rich constraints on
classes of objects in a form of a concept hierarchy while still having the ability to use
predicates of arbitrary arity, and the ability to express arbitrary joins between relations.
In addition, CARIN provides a query language over description logic knowledge bases in
which more traditional queries can be expressed. In particular, it is possible to express
conjunctive queries, unions of conjunctive queries and recursive queries. In contrast, queries
over description logic knowledge bases have been limited to membership and subsumption
queries. Both of these features in CARIN were key to the design of the Information Manifold
system [22] that combines information from multiple heterogeneous sources. Furthermore,
conjunctive queries and unions thereof are the basic building block of most database query
languages (e.g., SQL). Therefore, the ability to answer conjunctive queries over description
logics is important when we consider systems that combine description logics with traditional
databases. Finally, the ability to answer subsumption queries between conjunctive queries in
CARIN has been important in developing novel algorithms for knowledge base verification [25].
We elaborate on the applications of CARIN in Section 8.

The paper is organized as follows. Section 2 presents the CARIN family of languages, and
illustrates the novel kinds of inferences that can be made in the language. Section 3 describes
an algorithm for existential entailment that is at the heart of several reasoning algorithms for
CARIN. Section 4 considers inference in non recursive CARIN knowledge bases, and shows how
existential entailment is used for a sound and complete inference procedure for non recursive
CARIN-ALCNR. Section 5 describes several cases in which allowing recursive Horn rules
in CARIN knowledge bases leads immediately to undecidability of the reasoning problem.
Sections 6 and 7 describe cases in which there exist sound and complete algorithms for
reasoning in CARIN in the presence of recursive Horn rules. Section 8 concludes with related
work and discussion.

2 The cARIN Languages

CARIN is a family of languages, each of which combines a description logic £ with Horn
rules. We denote a specific language in CARIN by CARIN-L. A CARIN-L knowledge base
(KB) contains three components, the first is a description-logic terminology, the second is a
set of Horn rules and the third is a set of ground facts. The terminology is a set of statements
in £ about concepts and roles in the domain. Concepts and roles from the terminology can



also appear as predicates in the antecedents of the Horn rules and in the ground facts.
Predicates that do not appear in the terminology are called ordinary predicates. Ordinary
predicates can be of any arity. We describe each component below.

2.1 Terminological Component in CARIN

The terminological component of a CARIN-L knowledge base contains a set of formulas in
the description logic £. A description logic contains unary relations (called concepts) which
represent sets of objects in the domain and binary relations (called roles) which describe
relationships between objects. FExpressions in the terminology are built from concept and
role names and from concept and role descriptions, which denote complex concepts and roles.
Descriptions are built from the set of constructors of L. Here we consider CARIN languages
in which the description logic component is any subset of the language ALCNR [11]. De-
scriptions in ALCNR are defined using the following syntax (A denotes a primitive concept
name, P;’s denote primitive role names, ' and D represent concept descriptions and R
denotes a role description):

C,D— A (primitive concept)
T L] (top, bottom)
cnbD|CcubD| (conjunction, disjunction)
=C' | (complement )
VR.C | (universal quantification)
JR.C'| (existential quantification)
(> nR)| (< nR) (number restrictions)

R — pn...np, (role conjunction)

The sentences in the terminological component A7 of a CARIN knowledge base A are
either concept definitions, concept inclusions® or role definitions. A concept definition is a
statement of the form A := D, where A is a concept name and D is a concept description. We
assume that a concept name appears on the left hand side of at most one concept definition.
An inclusion statement is of the form ¢ © D, where C' and D are concept descriptions.
Intuitively, a concept definition associates a definition with a name of a concept. An inclusion
states that every instance of the concept C' must be an instance of D. A role definition is a
formula of the form P := R, where P is a role name and R is a role description. In ALCN'R

role descriptions are limited to conjunctions of atomic roles.

A concept name A is said to depend on a concept name B if B appears in the concept
definition of A. A set of concept definitions is said to be cyclic if there is a cycle in the
dependency relation. When the terminology contains only concept definitions and has no
cycles we can unfold the terminology by iteratively substituting every concept name with
its definition. As a result, we obtain a set of concept definitions, where all the concepts that
appear in the right hand sides do not appear on the left hand side of any definition.

ZA concept definition can also be given by two inclusion statements. However, we single out concept
definitions here because they will be of special interest later on.



The semantics of the terminological component is given via interpretations. An interpre-
tation I contains a non-empty domain Q. It assigns a unary relation C! to every concept in
A7, and a binary relation B! over OF x O to every role R in A7. The extensions of concept
and role descriptions are given by the following equations: (4{S} denotes the cardinality of
a set S):

TI=0 11=0,(CnD)=CInDi,
(CuD)y=ctuDl (-C)Yf =0\ CL,
(VR.C)Y ={dc O |Ve:(de) € Rl —ecc CT}
AR.CY ={d e O |Fe: (d,e) € RTNe e CT}
(
(
(

> nR)' ={de O |H{e|(d.e) € R} > n)
< nR) ={de 0! |He|(d.e) e R} <n)
pn..np)Y=Pn...nPL

An interpretation [ is a model of Ay if C1 C D' for every inclusion C' C D in the
terminology, A’ = D! for every concept definition A := D, and P! = R! for every role
definition P := R. We say that C is subsumed by D w.r.t. Ar if C* C D! in every model [
of Ar.

Example 2.1: Consider the following terminology, 7:

european Il american C L

european-associate := Jassociate.european

american-associate := Jassociate.american

no-fellow-company := Vassociate.— american
international-company := european-associate LI american-associate

The concepts european and american are primitive concepts, and the first inclusion states
that they are disjoint. The concept european-associate (respectively, american-associate) is
defined to be the set of individuals that have at least one filler of the role associate, which is a
member of european (respectively, american). The concept no-fellow-company is defined to be
the set of individuals that have as fillers of the role associate only individuals which are not
member of american. The concept international-company represents the set of individuals that
belong either to european-associate or to american-associate. As an example of a subsumption
relationship that can be inferred from the terminology, the concept european-associate I
american-associate is subsumed by (> 2 associate). The subsumption holds because instances
of the first concept are required to be instance of both european-associate and of american-
associate, and therefore to have both an American associate and a European associate.
However, since European and American companies are disjoint sets, it entails that instances
of european-associate ' american-associate have at least two associates. O

2.2 Horn Rules and Ground Facts in CARIN

Horn rule component: The Horn-rule component Ag of a CARIN knowledge base A
contains a set of Horn rules that are logical sentences of the form:

P (X)) A ApL(X,) = q(Y)



where Xi,...,X,,,Y are tuples of variables or constants. We require that the rules are safe,
i.e., a variable that appears in Y must also appear in X; U...UX,,. The predicates py,...,p,
may be either concept or role names, or ordinary predicates that do not appear in A7. Recall
that ordinary predicates can be of any arity. The predicate ¢ must be an ordinary predicate.
It should be noted that CARIN Horn rules are more general than previous languages such as
AlL-log [14], where, in addition to ordinary predicates, only concept predicates were allowed
in the rules, and a variable appearing in a concept atom had to appear in an atom of an
ordinary predicate in the antecedent.

An ordinary predicate p is said to depend on an ordinary predicate ¢ if ¢ appears in the
antecedent of a Horn rule whose consequent is p. A set of rules are said to be recursive if
there is a cycle in the dependency relation among ordinary predicates.

Ground fact component: The ground-fact component of a CARIN knowledge base con-
tains a set of ground atomic facts of the form p(a) where a is a tuple of constants and p is
either a concept, role or ordinary predicate.

Example 2.2: As an example of a CARIN-ALCNR knowledge base, we can consider the
terminology 77, with the following rules, Rq, using the ordinary predicates made-by, monopoly
and price:

r1 : made-by(X,Y) A no-fellow-company(Y) = price(X,usa,high)
r2 : made-by(X,Y) A associate(Y,Z) A american(Z) A monopoly(Y,X,usa) = price(X,usa,high).

and the following ground facts:

Ay : {made-by(a,b), monopoly(b,a,usa), american-associate(b)} O

2.3 Semantics of CARIN

The semantics of CARIN is derived in a natural way from the semantics of its components
languages. An interpretation I contains a non-empty domain Q. The interpretation assigns
to every constant ¢ in A an object a’ € O, and a relation of arity n over the domain O to
every predicate of arity n in A. An interpretation [ is a model of a knowledge base A if it
is a model of each of it components. Models of the terminological component were defined
in Section 2.1. An interpretation [ is a model of a rule r if, whenever a is a mapping from
the variables of r to the domain Of, such that a(X;) € p! for every atom of the antecedent
of 7, then a(Y') € ¢!, where ¢(Y) is the consequent of r. Finally, I is a model of a ground
fact p(a) if a’ € p’. We make the unique names assumption, i.e., if a and b are constants in

A, then af # bl

Remark 2.1: It should be noted that CARIN does not allow concept and role atoms
to appear in the consequents of the rules because of the underlying assumption that the
terminological component completely describes the hierarchical structure in the domain, and
therefore, the rules should not allow to make new inferences about that structure. O



2.4 Reasoning in CARIN

The reasoning problem we address in CARIN is the following:

Given a CARIN knowledge base A and a ground atomic query of the form p(a),
where p can be any predicate, and a is a tuple of constants, does A = p(a)?

The following example shows some of the additional inferences that can be drawn from
CARIN rules but not from either of its sublanguages alone.

Example 2.3: Suppose we have the CARIN knowledge base 73 U A; U R;. The following
entailment holds:

71 U Ay URy = price(a, usa, high).

The fact american-associate(b) and 77 entail that b has some associate that is an american.
Therefore, even though no rule of Ry can be totally instantiated on Ay, the missing conjuncts
of ry are entailed by A; UT;.

As another example, suppose we have the ground facts:
As : {made-by(a,b),monopoly(b,a,usa), international-company(b)}.
The following entailment holds:
71 U Ay U Ry = price(a, usa, high).

Here, 73 U A, does not entail the antecedent of any single rule in Ry. However, we can
make the inference by reasoning by cases: (1) if b has at least one American associate, then
price(a,usa,high) will follow because the antecedent of rule ry will be entailed, as explained
above. (2) if b has no American associate, then no-fellow-company(b) will be entailed, and
price(a,usa,high) will follow from r;. O

The above examples illustrated that there are two aspects of traditional Horn rule infer-
ence mechanisms that make them inadequate for CARIN knowledge bases. The first aspect
is that they consider each rule in isolation, and the second aspect is that for each rule they
try to instantiate the antecedent in order to derive the consequent. The example with A,
showed that a KB may entail the antecedent of a rule without the antecedent being instan-
tiated in the KB. The example with A, showed that a KB may entail the disjunction of
the antecedents of two rules without entailing either of them. These problems have also
been observed in [14], even when role predicates were not allowed in the rules. Therefore,
to enable complete reasoning in CARIN, the process of instantiating a single rule needs to be
replaced by an algorithm that decides whether a set of ground facts and a terminology entails
the disjunction of the antecedents of a set of Horn rules. In the next section we formalize
this decision problem as the ezxistential entailment problem, and describe an algorithm for
solving it. In Section 4 we show that the existential entailment algorithm stands at the core
of several reasoning problems in CARIN.



3 Existential Entailment Algorithm for ALCNR

Formally, the existential entailment problem for a description logic £ is the following.

Definition 3.1: (existential entailment) Let T be a terminology in the description logic
L, and let Q) be a sentence of the form Q1 V ...V Q,. Assume that f and Q4,...,Q, are

existential sentences of the form

AYV)Ypi(Y) Ao Apu(Yan)

where py,...,pn are either roles or concepts appearing in T, Y, Y1,..., Y, are tuples of
variables and constants, and Y C Y, U...UY,,. The variables that do not appear existentially
quantified in () or [ are considered universally quantified. Any variable that appears in ()
must also appear in [3.

The existential entailment problem is to decide whether

fUT E@Q1V...VQ,. O
The existential entailment problem is important in our context for the following reasons:

o In the case in which 3 is a conjunction of ground atomic facts, existential entailment
enables us to deduce whether the disjunction of the antecedents of a set Horn rules is
entailed from the ground facts.?

e When n = 1, existential entailment amounts to subsumption of conjunctive queries
over the description logic. In contrast to subsumption of concepts, this problem has
not been considered in previous work.

It is important to emphasize that the existential entailment problem cannot be reduced to a
satisfiability problem of an ALCNR knowledge base, because the negation of the sentence
() cannot be expressed in an ALCN R knowledge base. Therefore, the algorithm in [11] does
not suffice.

We describe an existential entailment algorithm for the language ALCANR. Our algo-
rithm is based on the technique of constraint systems, also used in [11] for a satisfiability
checking of ALCNR knowledge bases and previously in [33, 15]. Informally, in our setting,
a constraint system represents a set of models of 5U7 . The algorithm begins with an initial
constraint system, Sg, constructed from B U 7. The initial constraint system represents
the set of all models of B U 7. The algorithm then applies a set of propagation rules that
generate a set of completions. Each completion is a refinement of the initial constraint sys-
tem, in which some implicit constraints have been made explicit, and some non-deterministic
choices have been made. Some completions contain explicit clashes, (e.g., they state that an
individual belongs both to a class and to its complement), and are then clearly unsatisfiable.
Each clash-free completion represents a subset of the models of U 7, and together they

3We will see later that entailing antecedents of CARIN rules is not complicated by the fact that they
contain ordinary predicates in addition to concepts and roles.



provide a finite representation of all the models of 3 U 7. The important property of our
completions is that checking whether the formula () is entailed from a clash-free completion
can be done by checking whether the formula is satisfied in one canonical model of the com-
pletion. Therefore, to check whether () is entailed by fUT, it suffices to check the canonical
models of each of the clash-free completions. To summarize, our algorithm has four steps:

1. build an initial constraint system Sy from g U T,
2. apply the propagation rules to Sz to obtain a set of completions, S,
3. for every clash-free completion S € §, build a canonical interpretation Ig, and

4. check whether ) is satisfied in all the canonical interpretations that have been con-
structed.

The key difficulty in designing the algorithm (and other algorithms based on constraint
systems) is to define the termination condition for the second step, in such a way that the
resulting completions have the desired properties.

Constraint Systems

We begin by introducing the elements of constraint systems. Formally, a constraint system
is a non-empty set of constraints of the form s : C,| sPt, Ve.x : C, and s # ¢, where C' is a
concept description and P is a primitive role name.

We denote the set of variables and constants that appear in ) or in 3 by V. From this
point on, we refer to elements of V as individuals. In describing constraint systems, we
introduce a new alphabet of variable symbols W, with a well-founded total ordering <.
The alphabet W is disjoint from V. We denote elements of W by the letters u,v,w, z,y, z.
The term object refers to elements of ¥V UW (i.e., either variables or individuals). Objects
are denoted by the letters s,¢. Elements in V are denoted by the letters a, b.

Suppose S is a constraint system and R is a role defined by the description R = PilM...MP
(k> 1). We say that an object ¢ is an R-successor of an object s in S, if sPit,...,sPt € S.
We say that t is a direct successor of s in 5, if it is the R-successor for some role R in
S. The successor relationship denotes the transitive closure of the direct-successor relation.
The direct-predecessor and the predecessor relations are the inverses of direct-successor and
successor, respectively. We say that s and ¢ are separated in S if s # ¢t € S. Finally, we
denote by S[z/s| the constraint system obtained from S by replacing each occurrence of the
variable x by the object s.

For a variable v in a constraint system S, we define the function o(S,v):={C|v:C €
S}. Two variables v, w € S are said to be concept-equivalent if o(S,v) = o(5,w). Intuitively,
two variables are concept-equivalent in S if, as far as the constraints in S are concerned, they
have the same properties, and therefore, unless they are separated in S, they may denote
the same element in the domain. The function o plays an important role in the termination
condition of the algorithm. A constraint system contains a clash, if it contains

10



o {s:1} or
o {s:A,s:2A}, or

o {s: (S nR)JU{sPityy....sPt;|i€ln+ 1y U{t;#t; 4,5 €lin+1,i# 5} where

The semantics of constraint systems is given by interpretations, mapping each element s
of VUW to an element a!(s) in the domain Of, and specifying extensions for the concepts
and roles. An interpretation satisfies the constraint s : ' if a?(s) € C', the constraint sRt
if (al(s),al(t)) € R!, the constraint s # ¢ if al(s) # al(t), and the constraint Va.x : C
if C1 = O'. An interpretation 7 is a model of a constraint system S if it satisfies every
constraint in 5. Note that a constraint system with a clash is unsatisfiable.

3.1 The Algorithm

We first describe the algorithm for the case in which # contains no variables, and therefore,
because of the unique names assumption, all individuals in 3 are necessarily mapped to
distinct objects in the domain. A minor modification to the algorithm to accommodate
variables is described in the end of this section. Without loss of generality, we can suppose
that 7 contains only inclusion statements and role definitions. We describe the different
steps of the algorithm.

3.1.1 Creating the Initial Constraint System

We first construct the initial constraint system Sg from S U 7T. Assume 3 is of the form
pr(a) A ... A pu(a,). We construct S as follows.

Al. For every ¢ € [1..n], if p;(a;) is of the form C(a), we put a : C'in Sg.

A2. For every ¢ € [l..n], if p;(a;) is of the form R(a,b) we put aPyib,...,aP,b in Sg, if
R=P1...MMPF, (or simply aRb if R is a primitive role).

A3. For every inclusion statement C'C D in 7, we add Vz.xz : =C'U D to Sg.
A4. For every pair of individuals ¢ and b in 3, we add a # b to Sp.

Ab. For every concept (' that appears in (), we add the constraint Vz.z : C'U =C to Sp.

It should be noted that the last set of constraints (which is not added in [11]) is needed
because our algorithm is meant to test entailment and not satisfiability. These constraints
have the effect that in every completion S that our algorithm generates, S |= C(s) or
S | —=C(s) for every object s, and concept C' that appears in ). We assume that all the
concepts in a constraint system are simple, i.e., the only complements they contain are of

4Adding this set of constraints has the same effect of adding the choose-rule used in [20, 4], which forces
every object in the constraint system to belong either to a concept or to its negation.

11



the form = A where A is the name of a primitive concept. As shown in [15], every ALCN'R
concept can be transformed into an equivalent simple concept in linear time.

The following observation follows immediately from the definitions. Intuitively, it shows
that Sz is an accurate representation of U T in terms of constraint systems. Note that
interpretations of U7 and of Sz are comparable because they have the same object constants
and relations.

Observation 3.1: An interpretation 7 is a model of g U 7 if and only if it is a model of
Sﬁ. O

3.1.2 Applying the Propagation Rules

The next step of the algorithm is to apply the set of propagation rules shown in Figure 1
to the constraint system S (these are the same propagation rules as in [11]). Informally,
each propagation rule corresponds to one of the constructors in ALCNR. For example,
rule 3 propagates the constraints implied by the VR.C' constructor onto a filler, while rule 5
creates additional variables in a constraint system to ensure that the (> n R) constraint is
satisfied. Rules 2 and 6 are said to be non-deterministic rules, and all the others are said to
be deterministic rules. Two of the propagation rules are generating rules because they add
new variables to the constraint system.

The Termination Condition

A naive application of the propagation rules may not terminate. Therefore, rules 4 and 5
are applied only on variables that are not blocked. A key point in designing an algorithm
based on constraint systems, and where our use of constraint systems differs from [11], is
the definition of blocked variables. To illustrate the subtlety involved, we first illustrate the
standard use (e.g, as used in [11]) of constraint systems with an example.

Example 3.1: Consider the terminology 7 consisting of the single inclusion ¢' C 3R.C',
and 3 = C'(a). That is, the instances of C' must have at least one filler of R that is also an
instance of C'.

Figure 2 shows the application of the propagation rules to this example. The initial
constraint system is Sp, = {a : C,Va.z : =C U IR.C'}, whose constraints correspond to /3,
and the inclusion statement. The first constraint states that @ is an instance of ', and the
second constraint states that every individual is an instance of =C' U dR.C'.

The first propagation rule that is applied (rule 7) instantiates the second constraint with
the individual a. It creates the constraint system S; = Sp, U {a : =C' U JR.C'}. Because of
the disjunction, two successor constraint systems to S; can be created (using rule 2), one
in which a : =C' is added to 57, and the other in which ¢ : 3R.C is added. Since the first
one is unsatisfiable, we only consider the second one further: S, = S; U {a : JR.C'}. The
system Sy implies that a has a filler on the role R, therefore, a generating rule (rule 4)
is applied, which adds a new variable vy to S, with the appropriate constraints, to obtain
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1. S—=n{s:C1,s:Co}US
ifl. s:CiyMCyisin S,
2. s:(C4 and s: (3 are not both in S.
2.8 =, {s:D}US
ifl. s:ChUCyis1n S,
2. neither s : C nor s : Cy arein S,
3. D=Cior D=0,
3. S =y {t:C}US
if 1. s:VR.Cisin S,
2. tis an R-successor of s,
3. t:Cisnotin S.
4. S =3 {sPyy,....sPyy,y : C}US
1. s:dR.Cisin S,
2. R=P 1.1 P,
3. y 1s a new variable,
4. there is no t such that ¢ is an R-successor of sin S and ¢: C isin S,
5. if s 1s not blocked.
5.8 =s {sPiyi,...,sPwyi |tel.nfU{y; #y; |, €lnt# 5} US
if 1. s: (> nR)isin S,
2. R=P 1.1 P,
3. y1,...,y, are new variables,
4. there do not exist n pairwise separated R-successors of s in .5,
5. if s 1s not blocked.
6. S —< Sy/t]
if 1. s: (< nR)isin S,
2. s has more than n R-successors in 5,
3. y,t are two R-successors of s which are not separated
7.5 = {s:C}US
if 1. Ve.x: Cisin S,
2. s appears in .S,
3. s:Cisnotin S.

Figure 1: Propagation rules.

Sz = Sy U{aRvy, vy : C}. Then, the same sequence of propagation rules that were applied
to a are also applied to vy, to obtain the following constraint system: S; = S3 U {v; :
—~C UdR.C,vy : AR.Cv1Rvy, vy : C'}. At this point, the same propagation rules could be
applied to vy. However, vy and vy satisfy the same constraints in S;. Hence, v; is said to be
blocked by vy, and the propagation terminates.

The canonical model I of Sy which is considered in [11] is built as follows. The domain
of I is {a,v,vy}, and the extensions of the relations are: C! = {a,vi,vy}, and Rl =

{(av vl)v (vlv v2)7 (v27 UQ)}'
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The above illustrated the termination condition used in [11], which was designed espe-
cially to check satisfiability of an ALCN R knowledge base. The subtle point in the algorithm
is that when building the canonical model, fillers to the blocked variables have to be assigned.
Above, a filler for role R had to be assigned to vy. In doing so, cycles were introduced in
the canonical model that do not exist in every model of S;. For example, if the query @)
were Juy, &g, v3R(xa, 21) A R(as, 1) A R(x2, x3), it would be satisfied in the canonical model,
even though it is not entailed by S4. However, we want to use the canonical interpretation
to check which formulas are satisfied in all models of the completion. To avoid this problem,
we develop a termination condition that depends on the query, and that guarantees that the
resulting canonical model is sufficient for checking the entailment of the query. O

1
a:C
¥Vx. xx- CU4dR.C
’—>V1’

‘a: -C U EIR.C‘ S1

—u
a: =C a: JR.C | S2
clash 3
a R U1 S3
vl:C
A
| v1:-CU JR.C|
—u
‘_G clash
(%] R V2
UQZC
’—>V1’
|vy:~C U 3R.C]
—u
4
clash

Figure 2: The trace of the application of propagation rules to Example 3.1. In the figure,
we only show the constraints that are added to the constraint system at every step. Nodes
marked with clash represent unsatisfiable constraint systems.

Examining the propagation rules reveals that if we only consider the variables in a con-

straint system, it forms a forest of trees. Specifically, if we consider a graph whose nodes are
the variables and there is an arc from a node x to y if y is a direct successor of x, then the
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graph is a forest of trees. This follows from the fact that rules 4 and 5 generate new nodes
in the forest, and rule 6 only unifies two successors of the same node. The other rules do
not add nodes or edges to the graph. We can define the depth of a variable in a constraint
system to be its depth in the tree to which it belongs. Given this structure, we can define
the notion of n-tree equivalence among variables in a constraint system.

Definition 3.2: The n-tree of a variable v is the tree that includes the variable v and its
successors, whose distance from v is at most n direct-successor arcs. We denote the set of
variables in the n-tree of v by V,(v).

Two variables v,w € S are said to be n-lree equivalent in S if there is an isomorphism
W Vo (v) = Vi (w), such that

o (v) =,

o for every s,t € V,(v), sPt € S if and only if Y(s)P(t) € S, and

o for every s € V,(v), (5,4 (s)) = (S, s).

Intuitively, two variables are n-tree equivalent if the trees of depth n of which they are
roots are isomorphic. We denote by Dg the maximum number of literals in any of the @);’s.

If there exist two n-tree equivalent variables, v and w, such that w <y v, then we say
that w is a witness of v. The leaves of the n-tree of v will be deemed blocked. Figure 3
illustrates the relationship between the witness and the blocked variables.

witness of v

/4

isomorphism h
<= blocked variable

Figure 3: A variable x is blocked if it is the leaf of an n-tree rooted at v, and v has a witness
w. his an isomorphism from the n-tree of v to the n-tree of w. In a canonical interpretation,
we will have an émplicit tuple (x,t), where t is a successor of h(z).
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Definition 3.3: (witness) A variable w is a witness of a variable v if

o w is Dg-tree equivalent to v,
e v is notl in the Dg-tree of w, and

o there is no other variable z, such that z <y w, and z satisfies the first two conditions.

a

Definition 3.4: A variable x is said to be blocked if it is a leaf of a Dq-tree whose root is
v, and v has a witness. O

In order for the algorithm to detect correctly the blocked variables, the propagation rules
are applied according to the following strategy:

e Apply a rule to a variable only if no rule is applicable to an individual.

e Apply a rule to a variable x only if there is no rule applicable to a variable y, such that
Y <w T.

o Apply a generating rule only if a non-generating rule cannot be applied.

As in [11], a variable can be deemed blocked only after the strategy above permits to
apply to it a generating rule, and every variable is blocked by a single witness. It should be
noted that once a generating rule has been applied to a variable v in a constraint system
S, the value of o(5’,v) will be the same as o(5,v) in any constraint system resulting from
applying propagation rules to S (Lemma 3.2 in [11]). A constraint system is said to be a
completion when no propagation rule applies to it.

3.1.3 Building the Canonical Interpretation
Given a completion S, we define its canonical interpretation s as follows:
1. Ofs := {s| s is an object in S}.
2. als(s) :=s
3. For a primitive concept A, s € Als if and only if s : A € S,
4. (s,t) € Rs if and only if

(a) sRt € S, or

(b) s is blocked, v is the root of the Dg-tree of which s is a leaf, w is the witness of v,
1 is an isomorphism between the Dg-trees rooted with v and w, and ¢(s)Rt € S
(in this case, s would correspond to x in Figure 3).
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The extensions of the complex concepts are computed using the equations in Section 2.1.
The following lemma is proved in exactly the same way as in [11] (Theorem 3.6), by noting
that if s is a blocked variable in a constraint system S, then o(5,s) = o(5,¢(s)).

Lemma 3.2: Let S be a clash-free completion of Sg, and let Is be ils canonical interpreta-
tion. Then, Ig is a model of S. O

We can therefore refer to the canonical interpretation of a clash-free completion as its
canonical model. We distinguish two kinds of binary tuples in the extensions of the relations
in the canonical model. The tuples that are added because of the second clause (i.e., because
of s being blocked) are called implicit tuples, and the others are called explicit tuples. Implicit
tuples are put only in the canonical model, and would not necessarily appear in every model

of S.

3.1.4 Checking the Canonical Interpretations

The algorithm returns that SU7 | @Q if and only if @) is satisfied in the canonical interpre-
tations of all the clash-free completions of Sg.

Example 3.2: Continuing our example, with the query Jxy, x9, 25 R(22, 1) A R(xs,x1) A
R(x2,x3). Using our definition of blocked variables, the propagation rules would also generate
the variables vs, ..., vs using the same sequence of rule applications that applied to v; and
vy (see Figure 4). The variable vy is then recognized as the witness of vs. The variable vg
would be deemed blocked, because it is the leaf of a 3-tree rooted in vs, and the 3-trees
rooted in v; and vs are isomorphic. Therefore, the canonical model of the completion would
have the implicit tuple (vs, vs) in R (because 1 (vg) = vq4 and v4Rvs € S). The query Q is
not satisfied in the canonical interpretation, and therefore is not entailed by 7, U g5. O

witness of v5
é// é// b;cked
a vl v2 v3_.v4 v V6 "4 v8
\_/
3-tree isomorphic 3-tree

Figure 4: The application of the propagation rules with our termination condition to Exam-
ple 3.1. In this example, we consider 3-trees. The 3-tree of vs is isomorphic to the 3-tree of
v1. Therefore, the variable vs (which is a leaf of the 3-tree of v5) is blocked. In the canonical
interpretation we have the implicit tuple (vs, vs).

Allowing Variables in /3

Recall that so far we have assumed that J does not contain any variables, and hence, when
we create Sg from [ we make use of the unique names assumption. Therefore Sz only
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represents those models of # in which each constant is mapped to a distinct object in the
interpretation. When [ contains variables, # may have models in which two variables are
mapped to the same object in the domain. To check entailment in this case we need to apply
the algorithm to any homomorphism A on 5. A homomorphism & maps the variables of 3 to
variables or constants appearing in 3. If () is entailed from Sy(5) U7 for any homomorphism
h, then () is entailed from Sz U 7T.

3.2 Proof of Correctness and Complexity

In this section we prove the correctness of the existential entailment algorithm and discuss
its complexity. The structure of the proof is as follows. Theorem 3.3 establishes the basic
property of our termination condition and of the resulting completions. It shows that to
check that a formula is entailed from a completion, it suffices to check that the formula is
satisfied in the canonical interpretation of the completion. Next, we show that a formula is
entailed from U 7 if and only if it is entailed from all the clash-free completions of Ss.
Finally, we show that the application of the propagation rules terminates. For clarity, the
more tedious proofs are postponed to the appendix.

Theorem 3.3: Let S be a clash-free completion of Sg, and let Is be its canonical model.
If Is EQ, then SEQ. O

Proof: Since Is E @, and Q = Q1 V...V Q,, one of the ();’s must be satisfied in Is. We

can assume without loss of generality that it is (J;. Suppose )1 is of the form
AX) LX) A A LX)

Given a variable x in ()1, we define its connected component V,, as the minimal set of variables
that satisty the following conditions:

o zcV,,

o If y and 2z appear in the same role atom in ¢}y, and z € V,, then y € V.

We denote by L, the set of literals in ()7 that include variables in V,.. Since () is satisfied
in [s, there must be a mapping oo from the variables of @), to O's, such that for every ¢,
1 <i<m,o0(X;) € ZZ»IS.

Our proof proceeds in two steps:

1. First we show that we can modify og to a mapping o, such that o(X;) € ZZ»IS, and o(X;)
is an explicit tuple in ZZ»IS, for every 7, 1 <17 < m. Recall that the explicit tuples are the
ones that must be in the canonical interpretation (given the mapping of the objects,
a’s) in order for the canonical interpretation to be a model, while the choice of the
implicit tuples is, to some extent, arbitrary.

2. In the second step, we use the mapping o to show that )y will be satisfied in every

model of S.
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Step 1: If og makes use of implicit tuples in I, then there must be some variables x in
()1 such that og(«) is a blocked variable in S. For each such variable x, let us consider each
connected component V. of x in ();. We first note the following properties.

L. There is no variable z € V,,, such that oo(z) is an individual in S.

If this were not true, it would entail that there is a chain of direct-successor arcs of
length at most Dg L1 from an individual in S to a blocked variable in 5. Such a chain
cannot exist because every blocked variable is the leaf of a Dg-tree whose root is a
variable in S.

2. Let GG be the graph whose nodes are variables of V., and which contains an arc from
y to z if there is a atom R(y,z) in L,. Let oo((;) denote the image of G, under the
mapping og:

There is no cycle in oo(Gy) and therefore there is no cycle in Gy
Since all variables in V), are mapped by o¢ to variables in S, the only way that there
can be a cycle in o¢(G,,) is if it were caused by an implicit tuple in Ig. By definition,
an implicit link goes from a blocked variable s to a variable ¢ such that

e sis aleaf of a Dg whose root is v,

e v has a witness w, and

o the predecessor of ¢ is a leaf in the Dg-tree rooted in w.
Since Definition 3.4 requires that a variable v not be in the Dg tree of its witness,
it follows that the distance between ¢ and s is at least the distance between s and v.

Hence, the distance between s and ¢ is at least Dg, and therefore, since oo(G,) and
(i, have at most D edges, they cannot contain a cycle (see Figure 3).

Let xq,...,2% be a topological ordering on the variables of (7., (which is well defined
because (7, is acyclic). We consider a sequence of variable mappings from G, to Ofs,
00,01, ...,0k. For every mapping we show that:

e 0, is a satisfaction mapping for Qy, i.e., for every j, 1 < j < m, 0:(Y;) € []1,57 and
e the only possible implicit tuples in 0;((,) emanate from the o;(x;), ..., 0;(xk).

The desired mapping o is simply defined to be o;. Note that for oy, the properties hold
trivially. We show how to construct ;14 from o;.

Let y be lowest variable in the topological ordering of (7., such that o;(y) is blocked in
S. We denote by Y the set of variables that are the leaves of the same Dg-tree of which y
is a leaf. We can distinguish three sets of links in o;(G,):

Al. links emanating from ancestors of variables in Y,

A2. links emanating from variables in ), and
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A3. links between descendents of variables in V.

Let v be the root of the Dg-tree whose leatf is y, and let ) be the isomorphism between
v and its witness. We define 0,41 as follows:

B1. for a variable z that is either in ) or is an ancestor of a variablein Y, 0;11(2) = ¥(04(2))

B2. for the other variables 0,1 is identical to o;.

First, we show that 0,44 is a satisfaction mapping for ();. Consider two cases for a

conjunct [;(Y;) of Q1:

e if [; is a concept, then in case B1, since ) conserves concept equivalence, it guarantees
that o;(Y;) € ZJIS if and only if 0,41(Y}) € ZJIS. In B2 the claim holds trivially.

e if [; is a role atom, then case A3 is trivial since 0,41 does not affect the descendents of
variables in ). Case Al follows from the definition of n-tree equivalence. Case A2 is
the one in which o;(Y;) is an implicit tuple in Is of the form (s,t), where (3(s),t) is
an explicit tuple in Is. By the construction of o4, it follows that o, (Y;) is (1(s),1),

and therefore the claim follows.

Finally, note that for any variable z in ) or that is an ancestor of a variable in Y,
the tuples of the form (0;11(2),t) are explicit tuples in Is. Hence, by a simple induction
on ¢ it can be shown that the only possible implicit tuples in ¢,41(G,) emanate from the

oix1(Tiz1), .. o (wg). O

Step 2: Let I be a model of S. To complete the proof we need to show that I | (). To
do that, we need to find a mapping ¢ from the variables of ()1 to the domain of I, such that
#(X;) € I for every i, 1 <1 < m.

Since [ is a model of S, it means that there exists a mapping « from the objects of
S to the domain of I such that if v : € € S, then ol(v) € C!, and if sRt € S, then
(al(s),al(t)) € RL. Let the mapping ¢ be defined by é(x) = a!(o(z)). We show that for

every 1, 1 <1 < m, ¢(X;) € /. There are two cases:

e The literal [;(X;) is unary, i.e., of the form C(z). In this case, o(x) € C's. Recall
that s : C' € S or s : =C € S for any concept C' appearing in (), and therefore, it
must be the case that o(x): C' € S. Therefore, since [ is a model of 5, it follows that
al(o(z)) e ll.

e The second case is when the literal [;(X;) is of the form R(x,y). In this case, (o(z), o(y))
is an explicit tuple of the canonical model Is, which means that o(x)Ro(y) € S, and
therefore, (al(o(z)),al(o(y))) € RL.

a

The next step in proving the correctness of our algorithm is to show that the union of the
clash-free completions of S5 is equivalent to Sz. This is formalized by the following lemma.
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Lemma 3.4: Let S be a constraint system, and let S be the set of all possible constraint
systems obtainable from S using a propagation rule v (if v is a deterministic propagation

rule, then S is a singleton set). Then, S |= Q if and only if, for all S € S, 8" = Q O

The proof of the lemma appears in the appendix. The following corollary shows that
entailment of () can be checked by verifying entailment in each of the clash-free completions
of Ss. The corollary follows by iteratively applying Lemma 3.4.

Corollary 3.5:  Let S be a constraint system, and let S be the set of all its clash-free
completions. Then, S |E Q if and only if for every 8" € S, 5" E Q. O

The following lemma shows that our algorithm always terminates.

Lemma 3.6: Given the constraint system Sg, the application of the propagation rules will
terminate. O

Proof:  The number of times that a propagation rule can be applied to an object in a con-
straint system is bounded by the size of the terminology. Each application of a propagation
rule adds a number of successor variables which is also bounded by the size of the termi-
nology (specifically, the largest number appearing in the number restrictions). Therefore, in
order to show that the algorithm terminates, it suffices to show that there is a bound on the
depth of the variables in a constraint system.

To bound the depth, we show that there is a finite number N of non isomorphic Dg-trees.
Hence, the depth of a variable in a constraint system is bounded by (N +1)Dg. To see why,
suppose there would be a variable v of depth (N + 1)Dg with a successor w. The variable
v would be a leaf of a sequence of N 4 1 non-overlapping Dg-trees. Therefore, there would
definitely be two of them that are Dg-tree equivalent, and therefore, either v or one of its
ancestors would be blocked, and w would not be generated. We now derive a bound on the
value of N. We use the following notation:

e B denotes the size of Sz, i.e., the sum of the sizes of the constraints in Sg.

o (g denotes the set concept descriptions that appear in either in Sg or as subdescriptions
of concept descriptions in S, and € denotes the cardinality of the set (5. Note that
(' is linear in the size of Sp.

e r denotes the number of different role names in Cp, and r,,,, denotes the maximal
number appearing in the number restrictions in Sz (and is 1 if there are no number
restrictions or if only 0 appears in Sg).

We derive a (generous) upper bound on the maximal number of non-isomorphic n-trees,
denoted by g,. The value of N is ¢p,.

For n = 0, the number of different n-trees is at most 2¢, corresponding to the different
possible values for the function o(S,v).
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Consider the number of possible n-trees for n > 0. The root v of such a tree has at
most 29 different possible values for the o(S,v). Consider a single role R. The root v
can have at most Cr,,.,; direct successors of K. This is because the number of times a
generating rule can be applied to v is at most €' and each application can add at most r,,,,
successors. Fach successor can be the root of an (n L 1)-tree. Hence, there are O(2°¢™ )
non isomorphic subtrees in the case when v has exactly m direct successors of R and no
other direct successors.

Since there are (Crp.,) + 1 possible choices for the number of direct successors of R
for v, and each choice is bounded by C'r,,.,, then, if we consider a single role, there are
O(QOCTmaxqng%) non isomorphic n-trees rooted at v.

Finally, since we can repeat the above process for every role R in S3, and there are r
roles, we obtain

4n = O2° (Crpangt e )").

n—1

To simplify notation, let x = ZC(Crmax)T and a = rCry,4,. The equation can be rewritten
as:

¢n = O(2(¢n-1)")
Unfolding the equation yields:

4n = O((xl-l-a...-l—a"—l)(qo)a") _ O((xQO)an).
Returning to our original notation, we obtain
Gn = O((2°(Cr ) ) C7 )"

a

The following theorem establishes the correctness of our algorithm.

Theorem 3.7: T US = Q holds if and only if Q) is satisfied in the canonical interpretation
of every clash-free completion of Sg. O

Proof:  only if: Suppose S is a clash-free completion of Sg and in the canonical interpre-
tation Is of S, Is £ (). Since, by Lemma 3.2, I is a model of 5, it follows that S = Q.
Therefore, by Corollary 3.5 and Observation 3.1, U7 } Q).

if: Let S be the set of clash-free completions of Sy, and suppose that for every S € S,
the canonical interpretation Is of S satisfies (). By Theorem 3.3 it follows that S | @ for
every S € §. By Corollary 3.5 it follows that Sz |= @), and therefore, by Observation 3.1, it
follows that SU7T = @. O

3.2.1 Complexity

The proof of Lemma 3.6 shows that the number of non-isomorphic Dg-trees is at most
doubly exponential in the size of the U 7. The number of variables in a Dg-tree is also
at most doubly exponential in the size of 3 U 7, because the depth of the tree is Dg and
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the branching factor of the tree is possibly exponential in the size of 5 U7 (note that the
branching factor is exponential because we are assuming that the numbers in the number
restrictions are encoded in binary form).

In the worst case, a constraint system will contain an n-tree for every n-tree equivalence
class and for each such tree, all the leaves will have n-trees as well. Hence, the maximal
number of objects in a completion of S is at most doubly exponential in the size of U T.

Checking that the sentence () is satisfied in a canonical interpretation takes time at most
exponential in the size of @), and polynomial in the size of the canonical interpretation (this
is the time needed to evaluate a conjunctive query over a database).

In a similar way to what was shown in [11], it can be shown that the time to construct a
completion is doubly exponential in the size of 3 U 7. Consequently, the time complexity of
checking that S U7 }£ @ is non-deterministic doubly exponential in the size of U 7, and
triply exponential in the size of U7 U Q).

It is important to emphasize that the source of one exponent in the complexity analysis
is the fact that the numbers appearing in the number restrictions in U7 are encoded in
binary form. If we assume a unary encoding of numbers, or if we assume that the magnitude
the numbers is bounded by the size of 3U7T (which is very likely if § are the ground atomic
facts in the knowledge base, as we see in the next section), then the time-complexity of
determining U 7 £ @) is non-deterministic exponential time. The time complexity of the
existential entailment problem in this case is deterministic doubly exponential time (the
entailment problem requires checking all completions, and there are a doubly exponential
number of completions). The complement of the existential entailment problem we consider
is at least as hard as the KB-satisfiability problem considered in [11]. The algorithm given
there has a time complexity of non-deterministic exponential time, though they assume that
numbers are encoded in binary form.

It should be noted that it is not always necessary to apply the existential entailment
algorithm based on Dg-tree equivalence of variables. In fact, the only problem that the
canonical interpretation [s can introduce is to contain a cycle that does not exist in every
model of S. We can view each (); as a graph, where the nodes are the variables of (); and
there is an arc from = to y if there is a literal of the form R(x,y) in @);. We can consider
Ng, to be the length of the longest path (without node repetition) that exists in ;. The
existential entailment algorithm can be applied using the N-tree equivalence relation, where
N is the maximal Ng, for Q; € Q.° Finally, we note that we have provided only a worst-case
complexity analysis, and the issue of optimization is beyond the scope of this paper.

4 Uses of the Existential Entailment Algorithm

The existential entailment algorithm is a key tool for reasoning in CARIN. In this section
we describe two important uses of existential entailment. First, in Section 4.1 we show that
the existential entailment algorithm provides the basis for a sound and complete reasoning
algorithm for nonrecursive CARIN-ALCN R knowledge bases. In Section 4.2 we show that

>We thank Werner Nutt for pointing out this optimization to us.
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the existential entailment algorithm also provides a sound and complete algorithm for query

containment over ALCNR.

4.1 Sound and Complete Reasoning for Non Recursive CARIN-
ALCNR

When Horn rules are not recursive, they are equivalent to a union of conjunctive queries.
Given this equivalence, we can develop a sound and complete inference procedure for non
recursive CARIN-ALCN R based on the existential entailment algorithm. In this section we
describe our algorithm in detail. It should be noted that the algorithm does not actually
unfold the rules for performing reasoning.

Rule Unfolding: Given a set of Horn rules, we can iteratively unfold them. In an unfolding

step of a rule r we consider a conjunct in the antecedent of the form p(X), and a rule rq
whose consequent is of the form p(Y). We consider the most general unifier § of p(X) and
p(Y), i.e., O(p(Y)) = 0(p(X)). The result of the unfolding step is the rule in which the
antecedent is @(ant(r1))Uf(ant(r))\ 0(p(X)), where ant(r) denotes the antecedent of a rule
r. The consequent of the rule is 6(h), where h is the consequent of r. Note that if a variable
v appears in the antecedent of vy and not in its head, then # will map it to a fresh variable
that appears nowhere else. When the Horn rules are not recursive, the process of unfolding

will terminate.

Example 4.1: If we have the rules:

r1: p(X) A p(Y) = r(X.Y)
ry : e(X,Y) A d(Y) = p(X)

then one step of unfolding r; can result in the rule
r' o e(X,Z) A d(Z) A p(Y) = r(X)Y). O

Given the Horn rules in a CARIN-ALCNR knowledge base A, we denote by U(A) the
mazimal size (i.e., number of conjuncts) of a rule that can be obtained by unfolding rules in
A. Note that U(A) may be exponential in the depth® of rules in A. Note that the rules do
not actually have to be unfolded in order to determine U(A).

Given a knowledge base A and a query p(a), the algorithm for reasoning in non recursive
CARIN-ALCNR proceeds in two steps:

Sthe depth of a set of rules is the maximal derivation depth of the literals appearing in the rules. Let ¢(X)
a literal: if ¢ is a base predicate, depth (q(X)) = 0 ; if ¢ is not a base predicate, it appears as a consequent
of some rules, let py(X1),...,pn(X,) the literals appearing in the antecedent of those rules: depth(g(X)) =
1+ Max{depth(pi(X1)),...,depth(pi(Xy))}
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1. We let 3 be the set of ground facts in A of role and concept predicates, 3. be the set
of ground facts of ordinary predicates in A, and A, be the set of Horn rules in A.
We apply the propagation rules to Sz with U(A)-tree equivalence as the termination
condition. Note that Sg contains Va.x : €' U= for every concept predicate appearing
in the rules.

2. In each completion S, we compute extensions of the ordinary predicates by evaluating
the Horn rules of A using a traditional Horn rule reasoning algorithm. We pay special
attention to how we perform lookups. If we are performing a lookup for a fact of
the form C(a) where C is a concept description (i.e., trying to determine whether
S | C(a)), we check whether a’s € C's. Lookups for role atoms are done similarly.
Lookups for atoms of ordinary predicates are done from 3,.. A bottom-up procedure
for evaluating the Horn rules is shown in Figure 5.

procedure horn-evaluate(A, Ig)
/* A'is a CARIN-ALCNR KB, and Ig is a canonical interpretation of a completion of Sg. */
/* The procedure computes es for the ordinary predicates e € A. x/

Extend the domain O's to include all the constants that appear in A.
for every ordinary predicate e € A, efs = {a | e(a) € 3,}.

while new tuples are being added to the extensions do:
Let 7 be a Horn rule in A, of the form I;(X{) A ... AlLy(Xn) = q(X).
Let 7 be a mapping from the variables of 7 to O's,
if the following holds for 7, 1 < i < m, then add ¥(X) to ¢'s:
if [; is an ordinary predicate and (X;) € lZ»IS, or
if [; is a role predicate R, such that R = Py M...M P, and (X;) € PjIS for1<j <k, or
if [; is a concept predicate and ¥(X;) € lZ»IS.

return the extensions of the ordinary predicates of A.
end.

Figure 5: An algorithm for bottom-up evaluation of Horn rules in a given completion.

A query of the form p(a) is entailed by A if and only if @ is in the extension of p for every
clash-free completion S. Formally, our algorithm entails the following result:

Theorem 4.1:  Let A be a CARIN-ALCNR knowledge base whose Horn rules are not
recursive. Let p(a) be a ground atomic query, where p is either a concept, role or ordinary
predicate. The problem of determining whether A |= p(a) is decidable. O

The complexity of the decision procedure is the same as the complexity of the existential

entailment algorithm because the evaluation of the Horn rules in each completion takes time
that is polynomial in the size of the completion. It is interesting to note that complexity of
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entailment algorithm is in Co-NP, as a function of the number of ground facts in A. This
follows because the size of each completion is linear in the number of ground facts in A, and
checking whether ¢(a) is entailed by a canonical model can be done in time polynomial in
the size of the completion.

Proof:  Given a clash-free completion S, and its canonical interpretation [g, the process
of computing the extension of the ordinary predicates effectively computes an interpretation

for A. We denote this interpretation by I%. It is easy to see that since Is is a model of
BUT, then I3 is a model of all of A.

We first prove the completeness of the algorithm. Suppose there exists a clash-free
completion S of Sz such that in the evaluation of the Horn rules, we do not compute «a is
not in the extension of p in I3. Since I is a model of A, it follows that A [~ p(a).

The soundness of our algorithm is a consequence of the following three claims:

1. The existential entailment algorithm described in Section 3 can be extended trivially to
the case in which /3 is a set of ground facts, and both ) and 3 may contain ground facts
of ordinary predicates (of any arity). Note that such ground facts do not play any role
in the propagation phase. Hence, since the termination condition of the propagation
phase of our algorithm was based on U(A)-tree equivalence, it follows that if /s is a
canonical interpretation, then IsU 3. can be used for correctly checking satistaction of
existential sentences with U(A) atoms or less, even if they contain atoms of ordinary
predicates.

2. In a similar fashion to the proof of Lemma 3.4 and using Observation 3.1, it can be
shown that for a ground fact p(a),

A Epla) & A, US | p(a) for every clash-free completion S of Sp.

3. Finally, we need to show that our procedure for computing the extensions of the ordi-
nary predicates from a canonical interpretation Is and 3, has the property that a is in
the extension of p if and only if SUA, |= p(a).

Suppose that we derived that a is in the extension of p from IsU 3,. In this case, p(a)
has a derivation tree d. A derivation tree has p(a) as its root, and its child rq is the
instantiation of a rule in r € A, that was used in the final step of deriving p(a). The
children of rq are the atoms in its antecedent, and their children are the rules used
to derive them, etc. The leaves of the tree are either ground atomic facts of ordinary
predicates in A, or concept or role atoms that were looked up in Ig5. The number of
leaves in the tree is at most U(A). Given the tree, it is possible to construct one rule
r1 with the following properties:

D1. ry is the result of unfolding rules in A, and hence A, | rq,

D2. there is a mapping 7 from the variables of r; to the constants in A, such that 7

maps the consequent of ry to p(a), and the atoms in the antecedent of ry to facts
in IsUfS,,

D3. the number of atoms in the antecedent of ry is at most U(A).
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Because of D2, the existential entailment algorithm would entail the antecedent of 4
from Ig U f,. Because of D3, it follows that the antecedent of r; is entailed by S U 3,.
Hence, because of D1, it follows that A, U S U g, | p(a). O

Remark 4.2: An important consequence of Theorem 4.1 is that we obtain the first al-
gorithm for answering arbitrary conjunctive queries (with existentially quantified variables)
from an ALCNR knowledge base. In contrast, previous algorithms only considered answer-
ing membership and subsumption queries. We note that conjunctive queries are the basis
underlying database query languages such as SQL. O

Example 4.2: We illustrate the algorithm on the rules and ground facts given in Section 2.
Note that in this case the predicates made-by and monopoly are ordinary predicates.

r1 : made-by(X,Y) A no-fellow-company(Y) = price(X,usa,high)
r2 : made-by(X,Y) A associate(Y,Z) A american(Z) A monopoly(Y,X,usa) = price(X,usa,high).

As : {made-by(a,b),monopoly(b,a,usa), international-company(b)}

Recall that the terminology contains the definition:

no-fellow-company := Vassociate.— american
international-company := european-associate LI american-associate.

Figure 6 shows the trace of the application of propagation rules to the initial constraint
system. The constraints in each node are the ones that are added to the parent constraint
system as a result of applying the propagation rule. For clarity, we only show the constraints
that are important for our explanation. The first constraint in node 1 comes from the ground
fact international-company(b), and the second constraint comes from the instantiation of rule 7
to the concept no-fellow-company U —no-fellow-company. In applying the propagation rules,
the disjunction rule (rule 2) is first applied to b and the top disjunction in node 1, yielding
nodes 2 and 3. In node 2 the disjunction rule is applied again to b the second disjunction
in node 1. In node 4 we apply the existential rule to produce v2 and then the universal-
quantification rule to assert v2:—american. In node 5 we apply the existential rule twice, once
to produce v3 and once for v4.

Now we compute the extensions of the ordinary predicates in the different completions.
In this case 3, contains the facts made-by(a,b) and monopoly(b,a,usa). In node 7, no-fellow-
company(b) is satisfied and therefore price(a,usa,high) is derivable by rule r;. In the com-
pletions of nodes 8 and 6 b has an American associate, and therefore price(a,usa,high) is
derivable by rule ry. O
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1

b:(Jassociate.americanlJassociate.european)

b:(Vassociate.~americanlLiJassociate.american)

| b:Jassociate.european | | b:Jassociate.american |
1 =0 5 6 | —3
b:V associate.—american ‘ ‘ b:Jdassociate.american ‘ b associate vl
7 |=3, oy 3 [~ —3 vl:american
b associate v2 b associate v3
v2:european v3:european
v2:—american b associate v4
v4d:american

Figure 6: The trace of the application of propagation rules to the initial constraint system.

4.2 Query Containment over ALCN'R

The second important usage of the existential entailment algorithm is to provide the first
sound and complete algorithm for containment of conjunctive queries over ALCNR. In
database systems, algorithms for query containment play an important role in several query
optimization techniques [32] and related problems (e.g., rewriting queries using views [21],
semantic query optimization [10, 27], detecting independence of queries from updates [26]).
Therefore, extending these algorithms for conjunctive queries over description logics enables
to extend optimization techniques to a setting involving description logics. In particular, [6]
uses our query containment algorithm to extend algorithms for rewriting queries using views
to views and queries expressed in description logics.

Formally, a conjunctive query over an ALCN R terminology 7 is an expression of the
form

AY)pi (YDA .. Apn(Y),

where the p;’s are either concepts or role predicates that appear in 7. The tuples Y, VY3, ..., Y.,
are tuples of variables and constants, and Y C Y, U...UY,,. The distinguished variables
X = Xq,..., X, of a conjunctive query are the variables that do not appear in Y. Given a
set of ground atomic facts, (7, for concept and role predicates, the answer to the conjunctive
query from GG U 7T is any tuple of the form a4,...,a,, such that

GUT E@Y)pi(p(Y) A A pm(d(Yon)),

where ¢ maps X; to a;.

Definition 4.1: Let Q; and Q; be two conjunctive queries over an ALCNR terminology
T with the same number of distinguished variables. The query )y is contained in Q)5 if, for
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any set of ground facts G for the concept and role predicates in T, the set of answers for ()4
from G UT is a subset of the answers for (s from GUT. O

The following theorem follows from the existential entailment algorithm by noting that

7 U@ E @ if and only if (); is contained Q).

Theorem 4.3: Let Q1 and Q) be two conjunctive queries over an ALCNR terminology T,
with the same number of distinguished variables. The problem of determining whether )y is
contained in )y is decidable. O

Using existential entailment for recursive CARIN-ALCNR: As noted by Biirckert,”
the existential entailment algorithm can be combined with constrained SLD-resolution [12]
to provide a goal directed backward chaining algorithm on arbitrary (even recursive) CARIN-
ALCNR Horn rules. This procedure will yield a refutation complete procedure for CARIN-
ALCN R knowledge bases. That is, given a knowledge base A and a query p(a), the algorithm
will terminate if A U =p(a) is not satisfiable, but may not terminate otherwise. In the next
sections we consider the problem of obtaining a complete reasoning algorithm for recursive
CARIN knowledge bases.

5 Recursive CARIN-ALCN R

In the previous section we showed that the reasoning problem is decidable for non recursive
CARIN knowledge bases. We now consider what happens when the Horn rules are recursive.
Recall that the reasoning problem for recursive function-free Horn rules without a terminol-
ogy (i.e., datalog) is decidable [35] (and is even polynomial in the number of ground facts in
the knowledge base).

We first show that the reasoning problem is undecidable for recursive CARIN-ALCNR
knowledge bases. In fact, we show that the reasoning problem becomes undecidable simply
by introducing either the constructor VR.C' or the constructor (< n R). This result is
interesting because these two constructors are generally considered to be at the core of most
description logics.

In the next section we show that without these constructors we obtain a sublanguage
of CARIN-ALCN R (called CARIN-MARC) for which the reasoning problem is decidable even
when the Horn rules are recursive, as long as the terminology contains only concept defi-
nitions and they are acyclic. In Section 7 we describe another way of restricting the Horn
rules (without restricting the description logic) such that the reasoning problem remains

decidable.

The following theorem shows that if the description logic contains either the constructor
V R.C or (< n R), then the reasoning problem is undecidable.

"personal communication.
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Theorem 5.1:  The problem of determining whether A |= p(a) is undecidable, when A is a
CARIN-L knowledge base with recursive function-free Horn rules, A has an acyclic termino-
logical component that contains only concept definitions, and L is either

1. the description logic that includes only the constructor ¥V R.C, or

2. the description logic that includes only the constructor (< n R).

The following theorem shows that introducing arbitrary (possibly cyclic) inclusion state-
ments also causes the reasoning problem to be undecidable.

Theorem 5.2:  The problem of determining whether A |= p(a) is undecidable, when A is a
CARIN-L knowledge base with recursive function-free Horn rules, the terminological compo-
nent of A allows arbitrary inclusion statements and L includes either only the constructor
I R.C or only the constructor (> n R). O

The proofs of both theorems, given in the appendix, are obtained by encoding the exe-
cution of a Turing machine as a knowledge base of the form allowed in the theorems. Hence,
we obtain a reduction from the halting problem to our decision problem.

6 Decidable Subset of Recursive CARIN-ALCN R

We now show that in the language resulting from removing the constructors VR.C' and
(< n R) and not allowing terminological cycles the reasoning problem is decidable. Specifi-
cally, we consider the language CARIN-MARC that includes the constructors M, U, (> n R),
d R.C and negation on primitive concepts.® Furthermore, CARIN-MARC allows only concept
definitions in the terminological component (i.e., no inclusions or role definitions), and they
must be acyclic. In what follows we describe a sound and complete inference procedure for
CARIN-MARC. Our algorithm proceeds in two steps:

1. We first apply a set of propagation rules to an initial constraint system obtained from
the knowledge base. The propagation rules we use are a variation on those used in
Section 3. As before, the union of the completions will be equivalent to the original
knowledge base.

2. Next, we evaluate the (possibly recursive) Horn rules in every completion. We show
that a fact p(a) is entailed by the knowledge base if and only if it is entailed in each of
the completions that we construct. In the evaluation of the Horn rules we use a special
procedure to check entailment of a ground atom of a concept or role predicate.

8Note that allowing arbitrary negation would allow us to express the constructors YR.C and (< n R).
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6.1 The Inference Algorithm
6.1.1 Building the Initial Constraint System

Throughout the algorithm, we assume that all the concept definitions in A are unfolded.
Given a knowledge base A whose terminology is 7, the algorithm begins by constructing an
initial constraint system Sa as follows. If C'(a) is a ground fact in A, where C is defined in
A7 by C:= D, we add a: D to Sa (if C does not have a definition in Az, then we simply
add a : C to Sa). If R(a,b) € A, then we add aRb to Sa. Finally, for every pair of constants
(a,b) in A we add the constraint a # b to Sa.

6.1.2 Propagation Phase

The propagation rules we apply are shown in Figure 7. Rules 1 and 2 are the same as those
shown in Section 3. Rule 3 is similar to rule 4 in Section 3, except that it does not necessarily
create a new variable in the constraint system. It non-deterministically chooses either one
of the existing successors of s, or adds a new successor. Rule 4, which is a variant of rule 5
in Section 3, adds to s only the minimal number of R-successors needed in order to satisfy
the > constraint (as opposed to the rule in Section 3 that adds n R-successors even when
s already has R-successors). Rule 5 is the choose rule that enforces every object to be an
instance of a primitive concept or of its negation.

A constraint system is said to have a clash if it contains both s : A and s : =A. As
before, a constraint system is considered to be a completion when no propagation rule can
be applied to it. We apply the rules using the same strategy as before.

Remark 6.1: One may ask at this point why we needed to design a new set of rules
rather than simply taking the subset of the rules used in Section 3 for the constructors we
kept in CARIN-MARC. The reason is that in Section 3, when rules 4 and 5 (i.e., —> and
—3) create too many successors for an object, then the application of the rule —< would
ensure (by equating some of the successors) that there is no clash-free completion in which
the < number-restriction is violated. However, since we do not have the —< rule (since
CARIN-MARC does not have the < constructor), we need to modify the generating rules to
ensure that only the minimal number of new objects is created.

It should be noted that rules 3 and 4 of this section could be used in Section 3. However,
since rule 3 is both non deterministic and a generating rule, it will often lead to a larger
number of completions.

Finally, another important property of the propagation rules in this section is the follow-
ing. When a successor variable v is generated in a constraint system, it is guaranteed that
the size of the constraints on v are smaller than the size of the constraints on the predecessor.
Therefore, the application of the propagation rules is guaranteed to terminate without the
need for an explicit termination condition. As a result, the construction of the canonical
interpretations will also be simpler (we will not need any implicit links, because we don’t
have blocked variables). O
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1. S —=n{s:C,s:Co}US
ifl. s:CynCyisin S,
2. s: (4 and s : (5 are not both in 5.
2.9 =u{s:D}US
ifl. s:CyUCyisin S,
2. neither s : C'y nor s : (9 arein 9,
3. D:ClorD:Cg.
3. § —3{sRy,y: C}U{y# x|z €sglUS
1. s:3R.C'is in S,
2. there is no t such that ¢ is an R-successor of sin .S and ¢ : (' is in 5,
3. y is a new variable or one of the existing R-successors of sin 5.
4. spis Suce(s, R)\ y.
4.8 —> {sRy1,...,sRy JU{yi #Fy; | 1 <d,j <mgi # jJ ULy # 2|2 € Suce(s,R),1 <i <npjUS

ifl. s:(>nR)isin 9,
2. s has exactly m R-successors in 5, and n = m + ng,
3. Y1,...,Yn, are new variables,
4. there is no [ > n, such that s: (> [ R) is in 9.
5 8§ —_{s:D}uUS
if 1. A is a primitive concept and both s: A and s: ~A are not in 5,
2. D=Aor D=-A.

Figure 7: Propagation rules for recursive CARIN-MARC. Succ(s, R) denotes the set of R-
successors of s.

1
cl:Jassociate.—american
cl associate ¢2, c2:americanldassociate.american
c2 assoclate ¢3, c3:—american

2 T 3
|c2:E|associate.american| c2:american

4 —3 5 3 —3 9
associate(c2,vI) cI associate v3
clash vl # ¢3, vl:american clash v3 # ¢2, v3:—american

—3 7

6
c2:—american cl associate v2

v2 # ¢2, v2:mamerican

Figure 8: The application of propagation rules on Sa,. Note that in every node we show
only the facts that were added to the constraint system. Under every node we show which

propagation rule was applied to obtain its children.
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Example 6.1: Consider the knowledge base A; containing the following terminology:

american-associate := Jassociate.american
foreign-associate := dJassociate.~american
allied-company := american LI american-associate
conglomerate := (> 2 associate)

the ground facts:
foreign-associate(cl), associate(cl,c2), allied-company(c2), associate(c2,c3), —american(c3).
and the rules:

ry : associate(X,Y) = sameGroup(X,Y)

2 : sameGroup(X,Z) A sameGroup(Z,Y) = sameGroup(X,Y)

r3 : foreign-associate(X) A conglomerate(X) A sameGroup(X,Y) = TaxLaw(Y,USA ,Domestic)
r4 : american-associate(X) A associate(X,Y) = TaxLaw(Y,USA,Domestic).

The initial constraint system Sa, includes:

cl associate c2, c2 associate c3, c3:mamerican, c2: americanl) Jassociate.american, and
cl:Jassociate.—mamerican.

Figure 8 shows the application of the propagation rules to the initial constraint system.
We apply the —, rule to c2, resulting in two possible constraint systems: node 2 (in which
c2:3 associate.american is added), and node 3 (in which c2:american is added). In node 2 we
apply the rule —3 to ¢2. The constraint c2:3 associate.american implies that c2 has at least
one filler on the role associate that is American. There are two options. This filler may be
an existing one, 1.e., ¢3, as in node 4, however, this causes a contradiction with an existing
constraint c3:—american. The second option is that there is another filler, vl, as in node 5.
Since node 4 is contradictory, we do not consider it further. In node 5 we apply the rule —3
to cl. The constraint cl:dassociate.—mamerican implies that ¢l has at least one filler on the
role associate that is not American. Once again, there are two options, resulting in nodes 6
and 7. Similarly, we expand node 3 by applying the —3 to cl. O

6.1.3 Horn Rule Evaluation Step

In the second step of the algorithm we create a set of ground facts for every completion, and
evaluate the Horn rule using a procedure described below.

Given a clash-free completion S, we create a set of ground facts Ag in a straightforward
way as follows. The set of predicate names in Ag includes all the descriptions appearing in
S and the set of ordinary predicates and roles in A. First, Ag contains all of the ground

facts in A. Second, we add to Ag facts corresponding to the constraints in 5. Specifically,
ifv:D €S, where D is a description, then we add D(v) to Ag. If sRt € S, we add R(s,1)
to Agand if v #u € 5 we add v # u to Ag.
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Given a completion S and a query ¢(a), we determine whether Ag |= ¢(a) using the
conditions stated in the theorem below. Essentially, the theorem specifies how to entail
a ground atom of a concept or role predicate. Entailment of ground atoms of ordinary
predicates is done in the same fashion as in standard Horn reasoning algorithms. Our
algorithm will return that the query ¢(a) is entailed from A if and only if it is entailed
from Ag for each clash-free completion S of Sx. The proof of the theorem is given in the
appendix.

Theorem 6.2: Let S be a clash-free completion resulting from applying the propagation
rules on Sa. Let Ag be the the set of ground facts constructed for S.

o [f C(s) is an atom, where C is a concept name defined in Ag by the description D,
Ags = C(s) if and only if:
— D is primitive or a negation of a primitive concept, and D(s) € Ag, or
— D =(> nR), and s has at least n R-successors in S, or
— D =3R.C, and s has an R-successor t such that As = C(t), or
— D=CiNCy, and Ag | Ci(s) and Ag = Cy(s), or
— D=CUCy, and Ag | Ci(s) or Ag | Ca(s).

o If R isarole, then As |= R(s,t), if and only if R(s,t) € Ag,

o [fp is an ordinary predicate, As | p(a), if and only if p(a) € S or, there exists a
Horn rule v € A of the form pi(X1) A ... A pa(X,) = p(Y) and a mapping b from the
variables of v to constants, such that »(Y) = a, and As = (p;(X;)), fori, 1 <1< n.
O

Example 6.2: We illustrate the phase of evaluation of the Horn rules on two completions
shown in Figure 8. Consider the completion described in node 9. The set of ground facts
constructed for it, Ag, contains the following facts that are originally in Sa,:

(Jassociate.~american)(cl), (american L Jassociate.american)(c2),
associate(cl, c2), associate(c2 c3), mamerican(c3),

and the following facts that correspond to constraints added during the propagation phase:
american(c2), associate(cl, v3), mamerican(v3), v3 # c2 .

The facts sameGroup(cl,c2) and sameGroup(c2,c3) are entailed by ry, and therefore rule r;
entails sameGroup(cl,c3). Since company cl has two fillers on the role associate (c2 and v3),
it is an instance of conglomerate. It is also given that cl is an instance of foreign-associate,
and therefore, rule r3 entails TaxLaw(c3,US A, Domestic).

Consider the completion in node 6 that has the following facts in addition to those from
the initial database:
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(Jassociate.american)(c2), associate(c2,v1), american(vl), mamerican(c2), vl # c3.

In this completion company ¢2 is an instance of american-associate, therefore, rule ry
entails TaxLaw(c3,USA,Domestic). In fact, TaxLaw(c3, USA, Domestic) is entailed in all
the clash-free completions, and therefore, it is entailed by A;. O

6.2 Proof of Correctness and Complexity

In addition to Theorem 6.2, the key to proving the correctness of the algorithm is the
following lemma, which is an analog of Lemma 3.4. The proof of the lemma is given in the
appendix. We denote by A, the set of ground facts of ordinary predicates in A.

Lemma 6.3:  Let S be a clash-free constraint system generated by applying a (possibly
empty) sequence of propagation rules to Sa. Let Sy, ...,5; be the constraint systems that can
be generated from S by applying one of the propagation rules. Let ¢(a) be a ground atom.
Then, SUA, = q(a) if and only if S; UA, UA, = q(a) for every i, 1 <i <[ O

The soundness and completeness of our algorithm is established by the following theorem:

Theorem 6.4: Let A be a CARIN-MARC knowledge base. A |= ¢(a) if and only if Ag U
A, UA, E q(a) for every S that is a clash-free completion of Sa. O

Proof:  Since we unfolded the concept definitions when creating Sa it follows that M(A) =
M(SAUA,UA,). By induction on the application of the propagation rules in the first phase
of the algorithm, Lemma 6.3 implies that A |= ¢(a) if and only if SU A, UA, [ ¢(a) for
every clash-free completion S of Sa. Since Ag is equivalent to S U A, Theorem 6.2 entails
that A | ¢(a) if and only if AgUA, | ¢(a) for every clash free completion S of Sa. O

6.2.1 Complexity

The complexity of reasoning in CARIN-MARC is given by the following theorem:

Theorem 6.5: Let A be a CARIN-MARC knowledge base. Deciding whether A = q(a) is
co-NP-Complete in the number of ground facts in A, and polynomial in the number of Horn
rules in A. If the numbers in the number restrictions in A are encoded in unary form, the
entailment problem is CO-NP-Complete in the size of the terminology of A. O

Proof: We begin with the complexity in the number of Horn rules in A. The size and
the number of completions is independent of the number of Horn rules. In each completion
we can compute the least fixed point model by a bottom-up evaluation of the Horn rules,
which is polynomial in the number of rules.

Consider the number of ground facts in A. The number of times a propagation rule can
be applied to an object in a constraint system is polynomial in the size of the terminology,
and does not depend on the number of ground facts in A. Fach application of a propagation
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rule adds a constant number of constraints. Furthermore, if s is a successor of an individual
a 1n a constraint system 5, then the distance of s from a is bounded by the size of the largest
concept in the terminology. Therefore, the number of objects in a completion is linear in the
number of ground facts in A, and hence every completion is obtained by a linear number
of applications of propagation rules. This entails that the size of each completion is linear
in the number of ground facts. To show that a query ¢(a) is not entailed from A, we need
to find one completion S of Sy in which ¢(a) is not part of the least fixed point model of
AgsUA,. Computing the least fixed point model can be done in time polynomial in the size
of the completion, and therefore, showing that A [~ ¢(a) is in NP.

To prove the NP-hardness result we use a reduction from the NP-complete problem 3-
SAT. We encode a 3-SAT propositional theory A, by a CARIN-MARC knowledge base A using
a relation

R(clause Number, positionInClause, signO f Literal, variable Number).

For example, if {p1, ps, pa} is the first clause in A,, then A will include the ground facts
R(1,1, Plus, 1), R(1,2, Minus,2) and R(1,3, Plus,4).

A truth value assignment for a propositional theory is given by the concept A. The atom
A(v) denotes that variable v is assigned T'rue.

In addition to the ground facts for R, A contains 8 rules (corresponding to the 8 different
forms of a clause) that define a predicate NS. The ground atom NS(n) denotes that clause
n is not satisfied under the current variable assignment. For example, the following rule
considers clauses in which the first literal is positive and the second two are negative:

R(n,1, Plus,v1) A R(n,2, Minus,vy) A R(n,3, Minus,vs)\ = A(vy) A A(vz) A A(vs) = NS(n).
Finally, we have the rule

NS(n) = NSAT.

NSAT is entailed only when one of the clauses is not satisfied. It is easy to see that
if there is some satisfying assignment to the variables of A,, we can build an extension for
the concept A that includes exactly the propositions that are mapped to True. From this
extension of A, we can build a model of A in which NSAT is not satisfied. On the other
hand, if any assignment to the variables of A, always causes one of the clauses not to be

satisfied, then A = NSAT. Note that the size of A is linear in the size of A,.

Finally, consider the size of the terminology. The hardness result follows from the
complexity of concept unsatisfiability in ALU [33]. Given a concept C, the entailment
C(a) = False holds if and only if C' is not satisfiable. As in our analysis above, if the
numbers in the number restrictions are encoded in unary form, then the size of each com-
pletion is polynomial in the size of the terminology. Checking entailment of ground atom
in a completion can also be done in time polynomial in the size of the terminology. Hence,
the bottom-up evaluation of the rules can be done in time polynomial in the size of the
terminology. Therefore, non-entailment is in NP. O
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7 CARIN-ALCNR with Role-Safe Rules

In this section we describe another way of obtaining a subset of CARIN-ALCNR for which
sound and complete inference is possible for recursive function-free rules, while still allowing
all the constructors of ALCANR and arbitrary inclusion statements in the terminology. The
subset language is obtained by restricting the Horn rules in the knowledge base to be role-
safe, as we define below. Role-safe rules restrict the way in which variables can appear in
role atoms in the rules. This restriction is similar in spirit to the safety condition which is
widely employed in database query languages for queries containing interpreted predicates
(e.g., <, < #) [35]. Furthermore, many classical uses of recursion (e.g., connectivity on
graphs whose edges are represented by ordinary predicates) can be expressed by role-safe
rules. An ordinary predicate ¢ is said to be a base predicate in A if ¢ does not appear in the
consequent of any Horn rule in A.

Definition 7.1: A rule r is said to be role-safe if for every atom of the form R(x,y) in
the antecedent, where R is a role, then either x or y appear in an atom of a base predicate
in the antecedent of r. O

The following theorem shows that the reasoning problem in CARIN-ALCNR is decidable
when all the Horn rules in the KB are role-safe.

Theorem 7.1: Let A be a CARIN-ALCNR knowledge base in which all Horn rules are
role-safe. The problem of determining whether A |= q(a) is decidable. O

It should be noted that CARIN-ALCAN R with role-safe rules is a strictly more expressive
language than AL-Log [14], since AL-Log only allows concept atoms in the Horn rules. The
complexity of reasoning with role-safe rules is co-NP-Complete in the number of ground facts
in A, polynomial in the number of Horn rules in A, and doubly exponential in the size of
the terminology of A.

Proof:  The inference algorithm is exactly the one we used in Section 4 for non recursive
CARIN-ALCNR knowledge bases, except that we use 0-tree equivalence as the termination
condition (i.e., the same condition as in [11]), and in the Horn-rule evaluation phase, the
rules may be recursive.

The key to the proof of soundness is to note that in the bottom-up evaluation of the
Horn rules we do not make use of the implicit tuples in Ig, but only of explicit tuples. To see
this, consider a mapping 1 from the variables of a rule r € A, to objects in O%s. If R(z,y)
is an atom in the antecedent of r, then either x or y appears in an atom of a base predicate
in the antecedent of r, and therefore, either ¢ (x) or ¢(y) is an individual in S. Since there
are no arcs from individuals to blocked variables, then both () and ¥ (y) are not blocked
variables, and therefore (1(x),%(y)) is an explicit tuple in Is.

Since the explicit tuples must exist in every model of 5, the facts we infer for the ordinary
predicates are entailed by S. As for completeness, if we have a clash-free completion from

which we could not derive ¢(a), then it provides an example model of A in which ¢(a) is not
entailed. O
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Example 7.1: We illustrate the algorithm with the following simple example. Consider
a knowledge base A, that contains the concept C', the role R, and the ordinary binary
predicates e and p. The terminology has the single cyclic inclusion statement ¢' C 4 R.C,
and we have the ground facts C'(a),C(b),e(a,b) and e(b, ¢). Finally, we have the rules:

s1:e(x,y) N Rz, 2) = pla,y)
sy pla,z) ANplz,y) = pla,y).

The propagation step would create the completion that includes the following constraints
in addition to those in the initial constraint system: a Rvq, vy : C', vy Rvg, vo : C', bRuy, uq = C,
u Ruy and ug @ O, where vy, vg, up and ug are newly created variables in the constraint system.
We create a model [ of the completion as follows. The domain of [ is {a, b, ¢, v1, vy, uq, us}.
The interpretations of the concepts and roles are

I
¢ = {Cl, bv U1, U2, U1, u2}7

RI = {(av vl)v (vlv v2)7 (v27 v2)7 (bv ul)v (ulv u2)7 (u27 UQ)}

The interpretation of ¢ is taken directly from the ground facts in Ay: ¢! = {(a,b), (b,¢)}.
Finally, the interpretation of p is constructed from the rules in Ay: p! = {(a,b), (b,¢), (a,c)}.

Therefore, Ay entails p(a, b), p(b, ¢) and p(a,c). The important point is to note that the
extension of R includes the tuples (vq, v2) and (us, ug) that are not explicit in the completion,
but are necessary in order to obtain a finite model, while satisfying the inclusion C' C
d R.C. However, because of the fact that the rules are role-safe, these tuples are not used in
computing the extension of p. O

8 Conclusions

We described CARIN, a family of representation languages that combine the expressive power
of Horn rules and description logics. We addressed the issue of designing sound and complete
inference procedures for CARIN knowledge bases. We identified the core inference problem of
existential entailment, and showed that it is central to several reasoning problems in CARIN.
We described an existential entailment algorithm for ALCAR. As a result, we obtained
a sound and complete algorithm for reasoning in non recursive CARIN-ALCAN R knowledge
bases, and an algorithm for query containment over ALCNR. We have shown that in
general, the reasoning problem for recursive CARIN-ALCAN R knowledge bases is undecidable,
and identified the constructors of ALCANR causing the undecidability. Finally, we have
shown two ways in which recursive CARIN-ALCN R knowledge bases can be restricted while
obtaining sound and complete reasoning.

CARIN has already proved useful in two contexts. In [22] it is shown how the expressive
power of CARIN has been key to the development of the Information Manifold system that
combines information from multiple autonomous and heterogeneous data sources. In par-
ticular, the ability to combine relations of arbitrary arity (which are needed when modeling
relational databases) with a hierarchy of concepts expressed in a description logic terminol-
ogy has proved very useful in that application. In contrast, related systems (e.g., SIMS [3],
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Razor [16]) use only description logics or only Horn rules. Furthermore, the ability to answer
conjunctive queries over a description logic knowledge base, and to decide query containment
were a key in developing the architecture of the system. Deciding containment of conjunctive
queries is the key building block in determining which data sources are relevant to a user
query [22].

Another use of CARIN for the problem of knowledge base verification is described in [25].
In that paper, the knowledge base verification problem is shown to be related to the query
containment problem studied in the database literature [35]. Our query containment algo-
rithm extends containment algorithms to conjunctive queries over description logic knowl-
edge bases. Consequently, this algorithm enables verifying hybrid knowledge bases containing
both Horn rules and description logics. Furthermore, we have shown in [25] that our query
containment algorithm also enables us to deal with tuple-generating dependencies. Tuple
generating dependencies (tgd’s) are logical sentences of the form

Tgd’s are useful in expressing integrity constraints on rule-based knowledge bases. Veri-
fying the correctness of a set of rules requires reasoning about entailment among tgd’s (i.e.,
deciding whether one tgd entails another). The entailment problem for tgd’s is known to
be undecidable in general [36, 18]. In [25] we show that in some cases, entailment between
tgd’s can be translated into query containment of conjunctive CARIN queries. As a result,
we obtain new decidability results for the entailment problem for tgds.

Related Work

Several other works have discussed the integration of Horn rules and description logics. Some
works (e.g., AL-log [14], TaxLog [1], LIFE [2, 30]) had the goal of using a description logic
or other object-oriented component as a typing language on the variables already appearing
in the rules (which could also be recursive). For example, in AL-log [14], which is most
closely related to CARIN, only unary predicates from the description logic are allowed in
the Horn rules, and the variables used in atoms of concepts must appear in atoms of ordi-
nary predicates as well. Al-log allows recursive Horn rules, but a weaker description logic,
ALC, and it is shown in [14] that the reasoning problem is decidable in the language. Other
works (e.g., [9, 19]) considered a more tight integration of the two formalisms. For exam-
ple, KRYPTON [9] combined an assertional component (more expressive than Horn rules)
with a less expressive description logic than ALCNR. The reasoning engine was modified
by either adding resolution steps to consider the inferences sanctioned by the terminologi-
cal component, or by modifying the unification operation underlying the resolution engine.
These approaches are either incomplete or guarantee only refutation completeness.

LIFE [2] is also a language whose goal is to combine logic programming with a structure
oriented component. However, the LIFE structure-oriented component is composed of -
terms that differ from description logics in several significant ways. The idea of -terms,
rooted in the functional programming paradigm, is to represent subtyping in record-like data
structures. On one hand, they are more limited than description logics and closer to feature
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logics [34], since they only allow attributes, i.e functional roles (as opposed to roles with
multiple fillers). For example, number restrictions and existential statements about role
fillers that are standard in description logics are not expressible in ¢ -terms. On the other
hand, the variables in ¥-terms enable to express complex coreferences constraints, which can
only be expressed in a limited fashion using the same-as constructor in description logics.”

A different approach to integrating rules and description logics is to add rules as an addi-
tional constructor (e.g., CLASSIC [8], BACK [31], LOOM [28]). These works allowed only rules
of a restricted form: C(x) = D(x), where C and D are concepts. Furthermore, the rules are
generally not integrated in subsumption inferences but they are just used to derive additional
knowledge about concept instances. MacGregor [29] and Yen [39] describe algorithms for
determining rule-specificity and classification of arbitrary predicates in LOOM, which are an
instance of the existential entailment problem described here. However, since subsumption
in LOOM is undecidable, their algorithms are not complete either.

Our analysis of CARIN focussed on the time complexity of the reasoning problem. We
showed that for CARIN-MARC, the complexity is co-NP Complete in the number of ground
facts. The question arises whether there exists subset of CARIN that are able to express all
queries in coNP. Recently, Cadoli et al. [13] investigated the expressive power of CARIN, and
showed that there are certain classes of second order formulas, such that even a relatively
simple subset of CARIN, role-safe CARIN-MARC is able to express all queries in those classes.

Future Work

It is important to emphasize that the focus of this paper has been on the question of decid-
ability of the reasoning problem in CARIN-ALCANR. Our work raises the important issue
of how to efficiently reason in systems based on CARIN. One direction to investigate is
to find subsets of CARIN-ALCN R for which the resulting language is more tractable than
CARIN-ALCNR. A second direction is to find practically efficient methods for implementing
reasoning in CARIN.

One of the possible optimizations we plan to consider is to reduce the size and number
of the completions created by the algorithm by employing a termination condition in the
spirit of the one proposed in [4]. In that work, Baader et al. use a termination condition that
modifies the one used by [11], by not requiring a blocked variable to have the same value for
the o function as its witness, but rather have a subset of the o value of its witness. Clearly,
employing this more relaxed condition reduces the number of objects in a completion. In
our context, we need to extend the condition of [4] to n-tree equivalence.

We have already found two applications of CARIN in information integration and in
verification of knowledge bases. We are currently looking into applying CARIN as a repre-
sentational tool for modeling physical devices, for describing ontologies, and for database
applications such as datawarehousing and schema integration.

9One main reason for the limited coreference constraints in description logics is that subsumption becomes
undecidable when coreference constraints are applied to roles with multiple fillers.
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9 Appendix

Proof of Lemma 3.4: We prove the claim for each of the propagation rules. We begin with
the non generating and deterministic rules, for which the set S is a singleton set containing
the constraint system S’. We show that [ is a model of S if and only if I is a model of 57,
and therefore the lemma holds for these rules.

Trivially, every model of S’ is a model of S because S contains a subset of the constraints
of 5. For the other direction, let I be a model of S. There are several cases:

e Rule 1: If [ is a model of S and s : C; My € S, then ozI(S) c [Cy Oy, therefore,
by definition, o?(s) € C! and o (s) € CL. Since S’ = S U {s:Cy,s: Cy}, then [ is a
model of S’.

e Rule 3: Since the propagation rule is applied, and [ is a model of 5, there exist s and
t such that (a?(s),a®(t)) € RL. Since s : VR.C' € S, by the definition of the extension
of VR.C, o®(t) € €', and therefore, since S" = S U {t: C}, I is a model of S’

e Rule 7: In this case, 8" = S Us: C. However, Va.x : C € S, therefore, I is a model of
S’

We now consider the other propagation rules. Consider rule 2, and let S; and S, be the
two constraint systems that can be obtained by applying the rule to S. The set of models
of S is the union of the models of 57 and 53, and therefore the claim of the lemma holds.

Consider rule 4, and let 5" be the single constraint system resulting from applying the
rule to S. Denote by y the variable that is added to the constraint system S while applying
the rule to the variable s. Note that any model I” of S” is obtained from a model I of S by
extending the mapping of to the new variable y. Let I be a model of S. For one direction
of the lemma, it suffices to show that I’ = @ for every model I’ of 5* that is obtained from [
by extending of to y. Since I |= @, there is a mapping o from the variables and constants of
@ to O that maps every literal in one of the );’s to a tuple in extensions of the relations in
1. The same mapping o will be valid in I’ as well, because the set of tuples in the extensions
is the same as in [. Therefore I' = Q.

For the other direction, suppose that S | @), and we show that S = Q). Let I be a model
of S. Since I is a model of S, there must be some object 0 € Of, such that (al(s),0) € RZ,
and o € C1. Consider the interpretation I’ obtained by extending I by o (y) = o. Clearly,
I"is a model of 5’. Therefore, I = @, because I' = () and the models I and [’ have identical

relation extensions.

The proof for rule 5 is similar to that of rule 4. As before, every model of 5’ is obtained
from a model of S by extending o to yy,...,y,. If I is a model of S and I’ is a model of
S’ that is obtained from [, then, in the same way shown for rule 4, if I = @ then I' = Q.
For the other direction, suppose S = @), and we show that S = (. Let [ be a model of
S, and therefore there are distinct objects oy,...,0, in O, such that (a!(s),0;) € R!, for 1,
1 < ¢ < n. Consider the interpretation I’ obtained by extending I by ol (y;) = 0;. I' is a
model of ') and therefore, as before I = Q).
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Finally, consider rule 6, and suppose the constraint system 5" was obtained from S by
replacing y by . In this case, every model I of S can be obtained from a model I’ of S’ by
extending a!’ to y. For the first direction, suppose S’ = Q for every S € S, and let I be
a model of S. We need to show that [ = Q. Since [ is obtained from extending a model
I' of some S € S, the same variable mapping from the variables of @ to O that shows
that I’ = @ will show that [ = Q. For the second direction, suppose S |= @), and let I’ be
a model of " € S. We need to show that I’ = (). Let I be the model of S obtained by
extending o'’ by setting of(y) to of'(#). It can be checked that I is indeed a model of S,
because any constraint involving y in S appears in 5" as constraints where y is replaced by
t. Therefore, the same variable mapping that shows [ |= () will show that I’ E Q. O

The proof of Theorem 5.1 is easier to illustrate after the proof of Theorem 5.2.

Proof of Theorem 5.2: We begin with the case in which the description logic contains
only the constructor 4 R.C'. We reduce the halting problem of a Turing machine T'M to the
entailment problem. We assume without loss of generality that T'M begins with the empty
string on its tape. The initial state of T'M is () and its halting state is (). An execution of a
Turing machine can be described by a set of configurations, each describing the tape contents,
head position and state of the machine at a given time point. We encode the configurations of
T'M by a CARIN knowledge base A. Configuration times and tape positions are represented
by instances of concept integer in our encoding. The role suce(x,y) is intended to represent
that y is the successor integer to . The knowledge base A includes the following statements
about integers:

integer(1),
integer C dsucc.anteger.

The relation [t(x,y) is intended to represent that x is less than y, and is defined by the
following recursive rules in A:

suce(x,y) = lt(x,y).
suce(x, z) Nt(z,y) = lt(x,y).

The relation state(t,q) is intended to represent that the machine is in state ¢ at time t.
The relation headPos(t,p) is intended to represent that the machine’s head is at position p
on the input tape at time ¢, and the relation tape(t, p, s) is intended to represent that in time
t, the tape has the symbol s in position p. The following ground facts describe the initial
state of the machine:

state(1,Qo), headPos(1,1),
integer(t) = tape(1,t,77).

Next we describe the rules corresponding to the transitions of the Turing machine T'M.
The rules for transitions differ slightly depending on whether the head is moved to the left
or to the right, so below we describe the rules for the transition 6(Q, A) = (@', A', =), i.e.,
when the machine is in state () and reading the symbol A, the machine writes the symbol
A’ on the tape, moves one place to the right and goes into state Q'
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The rules need to describe: (1) the change of state, (2) change of head position, and (3)
changes to the tape. The rule for change of state is the following:

ry :integer(c) A integer(cr) A suce(e, ¢r) A state(e, Q) A headPos(e,p) A tape(e,p, A) =
state(cq, Q).

The rule for changing the head position is:

ry :integer(c) Ainteger(cr) A suec(e, ¢1)N state(e, Q) A headPos(e, p) A suce(p, p1)A
tape(e,p, A) = headPos(ci,p1).

The rule for changing the contents of the tape is:

rs :integer(c) A integer(cr) A succ(e, ¢r)N state(c, Q) A headPos(e,p) A tape(e,p, A) =
tape(cr, p, A').

The following rules are needed to state what did not change on the tape: (the first rule takes
care of the symbols to the right of the head and the second takes care of those to its left).

ry :integer(c) Ainteger(cr) A suce(e, ¢r)N state(e, Q) A headPos(c, p) A tape(e, p, A)A
It(p,y) A tape(e,y, x) = tape(cr,y, x).

rs :integer(c) Ainteger(cr) A suce(e, ¢r)N state(c, Q) A headPos(c, p) A tape(e, p, A)A
It(y,p) A tape(e,y, x) = tape(c,y, x).

Finally, the following rule defines a predicate query:
re @ integer(cy) A state(er, Qn) N1, ¢1) = query.

The proof of Theorem 5.2 follows from the following claim:
Claim: The machine 7'M halts on the empty string if and only if A | query. O

Proof: We first define the intended model, M, of A. The domain of M includes the integers,
the states of T'M, and symbols in the alphabet of T'M. The extension of integer includes
exactly all the integers greater or equal to 1, and the extension of succ is (¢,¢+ 1), for every
1 > 1. The extensions of state, headPos and tape are the minimal model of A that includes
the extension of integer and suce, and in which (1,Qo) € state™ and (1,1) € headPos™.
Note that this model is unique.

It is easy to prove by induction that M describes exactly the execution of T'M, i.e.,

e TM is in state ¢ at time 7 if and only if (4, ¢) € stateM,
e The head of T'M is in position p at time 7 if and only if (¢, p) € headPos™, and

e The tape contains the symbol a in position p at time 7 if and only if (¢, p,a) € tape™.
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We begin with the if direction. If A | query, there is an integer j, for which the rule
re 1s satisfied. At time j the machine will be in the halting state. Therefore, we have shown
that if A | query then T'M halts on the empty string.

Consider the only-if direction. Assume that the machine T'M halts, and let M; be a
model of A. We need to show that M; = query. We define a mapping ¢ from the integers
to the domain of M;, OM1. We define ¢/(1) = 1M1. We define the mapping for the other
integers inductively. Since M; is a model of A (and therefore of the inclusion statement),
there exists at least one element s in the domain of M, such that (1 s) € succ™. We
choose one such s arbitrarily and define ¢(2) = s. Similarly, we define the mapping for
the integers greater than 2. Note that it is possible that () = ¢ (j) for some ¢ # j. The
following claims follow by induction on :

o If TM is in state Q at time i, then ((z), Q1) € stateMr,
e If the head of TM is in position p at time 7, then (¢(7),%(p)) € head Pos™:,

e If the tape contains the symbol A in position p at time ¢, then (¥(2),%(p), AM) €
tapeMr,

This induction claim holds for ¢ = 1 because of the facts in A that describe the initial
state. The inductive step follows by examining the rule corresponding to the transition that
T'M takes in time ¢, and noting that the induction hypothesis guarantees that the antecedent
of the rule is satisfied. Note that M; does not necessarily encode the execution of the machine
precisely, but contains the tuples that describe the execution. Consequently, since T'M halts
after NV steps, query will follow by the substitution @ — 1 (N) in rule rg.

Consider the second case of the theorem, i.e., the case in which the description logic
contains the constructor (> n R). In this case, in our construction of A we replace the
inclusion integer T Jsucc.integer by the inclusion T C (> 1succ). In the proof, the
new inclusion guarantees that we can construct the mapping ¢ for every integer (because
every object has a successor). In order for the intended model to satisfy the inclusion
T C (> 1succ) for objects that are not instances of integer, we add to the model a new
object fin, such that (fin, fin)isin the extension of suce, and (o, fin) is also in the extension
of succ for every object o which is not in the extension of integer. The rest of the proof is
similar to the previous case. O

Proof of Theorem 5.1: Consider the case in which £ has only the constructor (< n R).
We define A; which is a slight modification of A of the previous proof as follows. The
role predicate integer in A is now an ordinary predicate in Ay, and A; does not have any
inclusion statements. Instead of the inclusion statements, A; contains the following Horn
rules:

s1 @ integer(x) A suce(x,y) = integer(y)
s s integer(x) A (S 0suce)(x) = query.

The first direction of the proof is the same as before, using the intended model M for
A;. Note that the second atom in the antecedent of s, is not satisfied in M. For the other

44



direction, consider a model My of Ay. There are two cases. If we can construct the mapping
¢ from the integers to OMt as before (i.e., there is an infinite sequence of integers), the same
proof holds, and therefore, My |= query. If not, then there is some integer n, such that there
is no tuple of the form (¥(n),7) in succ™ and (n) € integer™t. Therefore, since M, is a
model of sy, it must be the case that M; [ query.

Consider the case in which £ contains only the constructor V R.C. We define A, by
modifying A; as follows. Instead of the rule s; we add the following rule:

s s integer(x) A (Vsuce. B)(x) = query.

where B is a new concept predicate. In the proof, the intended model M of A, will have
the empty extension for B. The proof of the first direction follows as before, because the
antecedent of s3 is never satisfied in M. For the other direction, consider a model M7 of A,. If
M, is a model in which there is some element o € integer? such that o € (V suce. B)M1, then
M |= query because of s3. If not, then every element o € integer™ must have a successor,
i.e., there must exist an o; such that (0,01) € succ® (otherwise, o € (V suce. B)M1). Hence,
we can build the mapping ¢ as in the previous proofs, and show that M; | query. O

Proof of Theorem 6.2: Let S be a clash-free completion of Sa and let Ag be the set of
ground facts constructed for S. Recall that A, denotes the set of Horn rules in A. We define
a canonical model Mg for As U A,. The domain of Mg includes all the constants in Ag,
and for each constant s*s = s. The extensions of the relations are defined as follows. If A
is a primitive concept, then s € AMs if and only if A(s) € As. For a role R, (s,t) € RMs
if and only if R(s,?) € Ag. The extensions of the complex concepts are determined by the
equations in Section 2.1. The extension of each of the ordinary predicates in Mg is determined
as follows. We begin with the ground facts in Sa, i.e., if ¢(a@) € Ag, then a € ¢Ms. Next, we
compute the least fixed point model of the ordinary predicates that satisfies the Horn rules,
and contains the extensions of the role and concept predicates as defined above. This model
can be computed by a bottom-up evaluation of the Horn rules. By induction on the size of
the descriptions appearing in concept atoms in Ag, and because S is a completion, it can be
shown that Mg is a model of Ag.

We begin the proof with the case of concept atoms, and consider the different forms of
concepts. In the proof, Mg acts as a counterexample model for the only-if direction.

e Consider an atom of the form A(s), where A is a primitive concept. If A(s) € Ag,
then clearly As = A(s). If A(s) € Ag, then Mg is a model of Ag in which A(s) is not
satisfied, and hence Ag £ A(s). The same argument holds for an atom of the form
—A(s), where A is a primitive concept.

e Consider an atom of the form (> n R)(s). If s has at least n R-successors in S,
then, Ag |= (> n R)(s). This follows because all R-successors of a given object in a
constraint system are separated from each other (note that this property holds in the
initial constraint system and is conserved by the application of rules 3 and 4). If s does
not have n R-successors in 5, then Mg is again a counterexample model that shows

that Ag £ (> n R)(s).
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e Consider an atom of the form (3 R.C)(s). If s has an R-successor t € S, such that
Ag = C(1), then clearly Ag = (3 R.C)(s), because R(s,t) € Ag. As before, if there is

no such ¢, then My is a counterexample model to the entailment.

e For an atom of the form (Cy M C3)(s), it follows trivially that it is entailed by Ag if
and only if Ag = C1(s) and Ag | Cs(s).

e For an atom of the form (Cy U C3)(s), it follows trivially that it is entailed by Ag if
As = Ci(s) or Ag |= Cy(s). If neither entailments hold, then Mg is a counter example
to both of them, and therefore, Mg = (Cy U Cy)(s).

For role atoms, if R(s,t) € Ag, then Ag = R(s,t). If not, then Mg is a counter example
model.

For atoms of ordinary predicates, the atoms that can be entailed by the condition in
the theorem are exactly those that would be computed in the least fixed point model and
therefore satisfied in Ms. Every model of AgU A, that agrees with Mg on the extensions of
concept and role predicates must satisfy at least ground atoms in the minimal fixed-point
model. Hence, if a ground atom is not part of the least fixed pointed model, then it is not
entailed by Ag. O

Proof of Lemma 6.3: In the proof we will consider the relationship between models of
S and those of S7,...,95;. Note that given a model M of S, it is always possible to extend
M to a model M" of SUA, UA,. That is, M and M’ are identical on the extensions of
concepts and roles, and o™’ is an extension of o™ . Furthermore, we can consider the unique
least fixpoint model of SUA, UA,. We denote the set of models of S by M(S). In the proof
we consider one case for each propagation rule.

Rule 1: In this case, [ = 1 and S; = S U {s : C1,s : (3}, where s is the constant on
which the rule was applied. It suffices to show that M(S) = M(51). Clearly, since S C 51,
M(S) D M(S1). Let M be a model of S. Since M |= s : C; M Cy, then M = s : Cy and
M = s: Cy. Therefore M € M(S), and hence M(S) = M(5y).

Rules 2 and 5: In these cases, [ = 2, and the claim follows from the observation that

M(S) = M(S;) U M(S,).

Rule 3: Suppose s has m R-successors in S, vy,...,v,. In this case, [ is m + 1. For 2,
1<i<m, S;=5U{v;: C},and 5,11 = SU{sRv,v: C}, where v is a new variable.
Assume SUA,UA, = ¢g(a), and let M be a model of S;UA,UA, for some ¢, 1 <7 < m+1.
Since S; 2 5, it follows that M is a model of S U A, U A, and therefore M |= ¢(a).
Assume S;UA,UA, |= ¢(a) for all ¢, 1 < ¢ < m+1, and let M be a model of SUA, UA,.
We need to show that M |= ¢(a). Since (3 R.C)(s) € S there exists some 0 € OM such that
(sM,0) € RM and o € CM. There are two possible cases. In the first case, there exists an
i, 1 <7 < m, such that v € CM. In that case, M is a model of S; U A,, and therefore a
model of ¢(a). In the second case, vM ¢ CM for all 4, 1 < i < m. In this case, we can define
a model M’ for 11 UA, UA, as follows. The models M and M’ differ only by extending

a™ to v by setting on/(v) = 0. Since the only siblings of v are vy, ..., v,,, all the inequalities
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involving v are satisfied, and therefore M’ is a model of S,,,41 UA, UA,. Furthermore, since
M’ = q(a) then M |= ¢(a) (because we have not changed the extensions of the relations).

Rule 4: In this case, [ =1, and S1 = SU{sRy; |t € L.onof U{y; £ y; | 1 < 1,5, < ng, i #
JyU{y; # x|z € sp,1 < i < ng}, where yq,...,y,, are new variables, and n = ng + m.
Clearly, since S C 57, then M(S) 2 M(S1), and therefore, if S U A, UA, E ¢(a) then
S1UA,UA, = g(a). For the other direction, assume S; U A, UA, = ¢g(a), and let M be a
model of 5. We need to show that M |= ¢(a). As before, we show that we can find a model
M’ of S; that differs from M only by extending o™ to yi,...,y,, (but the extensions of
the relations do not change). Since M |= (> n R)(s), there are n objects, oy,...,0, € OM
such that (s™,0;) € RM. However, since s has exactly m R-successors in S, we can find a

1-1 mapping ¥ from yy,...,yn, to 01,...,0,, such that if ¢ is an R-successor of s in .5, then

aM(t) # p(y;) for 1, 1 <1 < ng. Therefore, all the disequalities that are added to S in S;

are satisfied if we take ¥ to be the extension of ™. O
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