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hierarchies of classes of objects. The computational and expressive properties of descriptionlogics have been extensively studied. Several systems have been built based on descriptionlogics (e.g., classic [8], loom [28], back [31], kris [5]), and they have been used in severalapplications (e.g., [38, 37]).A description logic is a subset of �rst order logic with equality. In a description logic wede�ne sets of objects (referred to as concepts) as unary relations, and we de�ne relationshipsbetween objects as binary relations (called roles). Concepts are de�ned by the necessaryand su�cient conditions satis�ed by objects in the set. These conditions are expressed byconcept descriptions that are built from a set of constructors. For example, the descriptionParent u (8 child:Smart) describes the instances of the concept Parent, all of whose childrenare instances of the class Smart. Similarly, some description logics allow role descriptions inaddition to concept descriptions. Description logic knowledge bases contain a terminologyin which we de�ne the set of concepts and roles used in the knowledge base. Descriptionlogics and their properties vary depending on the set of allowed constructors and the kindsof statements allowed in the knowledge base. Much of the research in description logicshas concentrated on algorithms for determining subsumption relations between concepts,satis�ability of knowledge bases and for checking membership of an object in a concept.Horn rules and descriptions logics are two orthogonal subsets of �rst order logic [7].Several applications, such as combining information from multiple heterogeneous sources,modeling complex physical devices, signi�cantly bene�t from combining the expressive powerof both formalisms. Starting from the KRYPTON language [9], several works have consideredthe design of hybrid representation languages that combine rules with description logics (e.g.,[17, 14, 2, 29]).This paper describes carin, a novel family of languages, that extend Horn rules with theexpressive power of description logics. carin knowledge bases contain both a set of Hornrules and a description-logic terminology. carin combines the two formalisms by allowingthe concepts and roles, de�ned in the terminology, to appear as predicates in the antecedentsof the Horn rules. carin is distinguished from previous hybrid languages in that we allowboth the roles and concepts to appear in the Horn rules. In contrast, previous languages(e.g., AL-Log [14]) only allow the usage of concepts as typing constraints on variables thatalready appear elsewhere in the rules.The semantics of carin is derived naturally from the semantics of its component lan-guages. The key problem in developing such a hybrid language is designing a sound andcomplete inference procedure for answering queries in the language. As already observed forthe simpler language AL-Log [14], combining standard Horn rule inference procedures withintermediate terminological reasoning steps does not result in a complete inference procedurefor AL-Log, and therefore the same applies to carin knowledge bases. The reason for theincompleteness is that Horn rule reasoning procedures apply each rule in isolation, and theytry to instantiate the antecedent of the rule in order to derive its consequent.In this paper we address the reasoning problem in carin. We consider carin for the casein which the description logic is ALCNR, (referred to as carin-ALCNR). ALCNR is themost expressive decidable implemented description logic [5]. For the Horn-rule component,we consider function-free Horn rules. Our results distinguish the case of nonrecursive Horn2



rules from the case of recursive Horn rules in carin knowledge bases.In the nonrecursive case, we show that a single step of applying a Horn rule needsto be replaced by a more sophisticated reasoning step. We isolate this step and refer toit as existential entailment. Speaking informally, the existential entailment problem is todecide whether the antecedent of a Horn rule, together with a description logic terminologylogically entail the disjunction of the antecedents of a set of Horn rules. We describe anexistential entailment algorithm for ALCNR. The existential entailment algorithm entailsseveral important results:� It provides a sound and complete inference procedure for nonrecursive carin knowledgebases in which the description logic component is ALCNR.� A particular and important case of the above is that we provide the �rst algorithm foranswering arbitrary conjunctive queries over an ALCNR knowledge base.� It provides an algorithm for rule subsumption over ALCNR, which is an importantbuilding block in several query optimization algorithms.� The existential entailment algorithm can be combined with the constrained-resolutionalgorithm described by B�urckert [12] to yield a refutation complete SLD-resolutionalgorithm for recursive carin-ALCNR.1In the recursive case, we show how the decidability of the reasoning problem dependson the constructors allowed and on the form of the Horn rules. In particular, we show thefollowing:� Reasoning in recursive carin-ALCNR is undecidable. We show that in each of thefollowing cases by itself, the reasoning problem is undecidable:{ the description logic contains the constructor (8R:C),{ the description logic contains the constructor (� nR), or{ the terminology contains terminological cycles and either the constructor (9R:C)or (� nR).These results are signi�cant because the constructors leading to undecidability are atthe core of most description logics.� We identify two ways of restricting the sentences in the knowledge base for which weestablish sound and complete inference procedures:{ The �rst restriction concerns the description logic. We show that if the descriptionlogic does not contain the constructors (8R:C) and (� nR), and the terminol-ogy contains only concept de�nitions that are acyclic, the reasoning problem isdecidable.1Recall that a refutation complete algorithm will terminate if the query is entailed by the knowledge base,but may not terminate otherwise. 3



{ The second restriction concerns the form of the Horn rules. We show that ifthe rules are role-safe, then recursive Horn rules can be combined with all ofALCNR, and reasoning is still decidable. Role-safe rules require that in everyrole atom at least one variable that appears in the atom also appears in an atomof a base predicate (i.e., a predicate that does not appear in the consequent of aHorn rule, and is not a concept or role predicate). It should be noted that thisrestriction covers some of the common usages of recursive rules (e.g., expressinggraph connectivity).carin has several advantages that are important in applications. The added expressivepower of carin w.r.t. its component languages enables us to express rich constraints onclasses of objects in a form of a concept hierarchy while still having the ability to usepredicates of arbitrary arity, and the ability to express arbitrary joins between relations.In addition, carin provides a query language over description logic knowledge bases inwhich more traditional queries can be expressed. In particular, it is possible to expressconjunctive queries, unions of conjunctive queries and recursive queries. In contrast, queriesover description logic knowledge bases have been limited to membership and subsumptionqueries. Both of these features in carin were key to the design of the Information Manifoldsystem [22] that combines information from multiple heterogeneous sources. Furthermore,conjunctive queries and unions thereof are the basic building block of most database querylanguages (e.g., SQL). Therefore, the ability to answer conjunctive queries over descriptionlogics is important when we consider systems that combine description logics with traditionaldatabases. Finally, the ability to answer subsumption queries between conjunctive queries incarin has been important in developing novel algorithms for knowledge base veri�cation [25].We elaborate on the applications of carin in Section 8.The paper is organized as follows. Section 2 presents the carin family of languages, andillustrates the novel kinds of inferences that can be made in the language. Section 3 describesan algorithm for existential entailment that is at the heart of several reasoning algorithms forcarin. Section 4 considers inference in non recursive carin knowledge bases, and shows howexistential entailment is used for a sound and complete inference procedure for non recursivecarin-ALCNR. Section 5 describes several cases in which allowing recursive Horn rulesin carin knowledge bases leads immediately to undecidability of the reasoning problem.Sections 6 and 7 describe cases in which there exist sound and complete algorithms forreasoning in carin in the presence of recursive Horn rules. Section 8 concludes with relatedwork and discussion.2 The carin Languagescarin is a family of languages, each of which combines a description logic L with Hornrules. We denote a speci�c language in carin by carin-L. A carin-L knowledge base(KB) contains three components, the �rst is a description-logic terminology, the second is aset of Horn rules and the third is a set of ground facts. The terminology is a set of statementsin L about concepts and roles in the domain. Concepts and roles from the terminology can4



also appear as predicates in the antecedents of the Horn rules and in the ground facts.Predicates that do not appear in the terminology are called ordinary predicates. Ordinarypredicates can be of any arity. We describe each component below.2.1 Terminological Component in carinThe terminological component of a carin-L knowledge base contains a set of formulas inthe description logic L. A description logic contains unary relations (called concepts) whichrepresent sets of objects in the domain and binary relations (called roles) which describerelationships between objects. Expressions in the terminology are built from concept androle names and from concept and role descriptions, which denote complex concepts and roles.Descriptions are built from the set of constructors of L. Here we consider carin languagesin which the description logic component is any subset of the language ALCNR [11]. De-scriptions in ALCNR are de�ned using the following syntax (A denotes a primitive conceptname, Pi's denote primitive role names, C and D represent concept descriptions and Rdenotes a role description):C;D! A j (primitive concept)> j ? j (top, bottom)C uD j C tD j (conjunction, disjunction):C j (complement)8R:C j (universal quanti�cation)9R:C j (existential quanti�cation)(� nR) j (� nR) (number restrictions)R! P1 u : : :u Pm (role conjunction)The sentences in the terminological component �T of a carin knowledge base � areeither concept de�nitions, concept inclusions2 or role de�nitions. A concept de�nition is astatement of the formA := D, where A is a concept name and D is a concept description. Weassume that a concept name appears on the left hand side of at most one concept de�nition.An inclusion statement is of the form C v D, where C and D are concept descriptions.Intuitively, a concept de�nition associates a de�nition with a name of a concept. An inclusionstates that every instance of the concept C must be an instance of D. A role de�nition is aformula of the form P := R, where P is a role name and R is a role description. In ALCNRrole descriptions are limited to conjunctions of atomic roles.A concept name A is said to depend on a concept name B if B appears in the conceptde�nition of A. A set of concept de�nitions is said to be cyclic if there is a cycle in thedependency relation. When the terminology contains only concept de�nitions and has nocycles we can unfold the terminology by iteratively substituting every concept name withits de�nition. As a result, we obtain a set of concept de�nitions, where all the concepts thatappear in the right hand sides do not appear on the left hand side of any de�nition.2A concept de�nition can also be given by two inclusion statements. However, we single out conceptde�nitions here because they will be of special interest later on.5



The semantics of the terminological component is given via interpretations. An interpre-tation I contains a non-empty domainOI . It assigns a unary relation CI to every concept in�T , and a binary relation RI over OI�OI to every role R in �T . The extensions of conceptand role descriptions are given by the following equations: (]fSg denotes the cardinality ofa set S):>I = OI , ?I = ;, (C uD)I = CI \DI ,(C tD)I = CI [DI , (:C)I = OI n CI,(8R:C)I = fd 2 OI j 8e : (d; e) 2 RI ! e 2 CIg(9R:C)I = fd 2 OI j 9e : (d; e) 2 RI ^ e 2 CIg(� nR)I = fd 2 OI j ]fe j (d; e) 2 RIg � ng(� nR)I = fd 2 OI j ]fe j (d; e) 2 RIg � ng(P1 u : : : u Pm)I = P I1 \ : : : \ P ImAn interpretation I is a model of �T if CI � DI for every inclusion C v D in theterminology, AI = DI for every concept de�nition A := D, and P I = RI for every rolede�nition P := R. We say that C is subsumed by D w.r.t. �T if CI � DI in every model Iof �T .Example 2.1: Consider the following terminology, T1:european u american v?european-associate := 9associate.europeanamerican-associate := 9associate.americanno-fellow-company := 8associate.: americaninternational-company := european-associate t american-associateThe concepts european and american are primitive concepts, and the �rst inclusion statesthat they are disjoint. The concept european-associate (respectively, american-associate) isde�ned to be the set of individuals that have at least one �ller of the role associate, which is amember of european (respectively, american). The concept no-fellow-company is de�ned to bethe set of individuals that have as �llers of the role associate only individuals which are notmember of american. The concept international-company represents the set of individuals thatbelong either to european-associate or to american-associate. As an example of a subsumptionrelationship that can be inferred from the terminology, the concept european-associate uamerican-associate is subsumed by (� 2 associate). The subsumption holds because instancesof the �rst concept are required to be instance of both european-associate and of american-associate, and therefore to have both an American associate and a European associate.However, since European and American companies are disjoint sets, it entails that instancesof european-associate u american-associate have at least two associates. 22.2 Horn Rules and Ground Facts in carinHorn rule component: The Horn-rule component �R of a carin knowledge base �contains a set of Horn rules that are logical sentences of the form:p1( �X1) ^ : : : ^ pn( �Xn)) q( �Y )6



where �X1; : : : ; �Xn; �Y are tuples of variables or constants. We require that the rules are safe,i.e., a variable that appears in �Y must also appear in �X1[ : : :[ �Xn. The predicates p1; : : : ; pnmay be either concept or role names, or ordinary predicates that do not appear in �T . Recallthat ordinary predicates can be of any arity. The predicate q must be an ordinary predicate.It should be noted that carin Horn rules are more general than previous languages such asAL-log [14], where, in addition to ordinary predicates, only concept predicates were allowedin the rules, and a variable appearing in a concept atom had to appear in an atom of anordinary predicate in the antecedent.An ordinary predicate p is said to depend on an ordinary predicate q if q appears in theantecedent of a Horn rule whose consequent is p. A set of rules are said to be recursive ifthere is a cycle in the dependency relation among ordinary predicates.Ground fact component: The ground-fact component of a carin knowledge base con-tains a set of ground atomic facts of the form p(�a) where �a is a tuple of constants and p iseither a concept, role or ordinary predicate.Example 2.2: As an example of a carin-ALCNR knowledge base, we can consider theterminology T1, with the following rules,R1, using the ordinary predicatesmade-by, monopolyand price:r1 : made-by(X,Y) ^ no-fellow-company(Y) ) price(X,usa,high)r2 : made-by(X,Y) ^ associate(Y,Z) ^ american(Z) ^ monopoly(Y,X,usa) ) price(X,usa,high).and the following ground facts:A1 : fmade-by(a,b), monopoly(b,a,usa), american-associate(b)g 22.3 Semantics of carinThe semantics of carin is derived in a natural way from the semantics of its componentslanguages. An interpretation I contains a non-empty domainOI . The interpretation assignsto every constant a in � an object aI 2 OI , and a relation of arity n over the domain OI toevery predicate of arity n in �. An interpretation I is a model of a knowledge base � if itis a model of each of it components. Models of the terminological component were de�nedin Section 2.1. An interpretation I is a model of a rule r if, whenever � is a mapping fromthe variables of r to the domain OI , such that �( �Xi) 2 pIi for every atom of the antecedentof r, then �( �Y ) 2 qI, where q( �Y ) is the consequent of r. Finally, I is a model of a groundfact p(�a) if �aI 2 pI . We make the unique names assumption, i.e., if a and b are constants in�, then aI 6= bI.Remark 2.1: It should be noted that carin does not allow concept and role atomsto appear in the consequents of the rules because of the underlying assumption that theterminological component completely describes the hierarchical structure in the domain, andtherefore, the rules should not allow to make new inferences about that structure. 27



2.4 Reasoning in carinThe reasoning problem we address in carin is the following:Given a carin knowledge base � and a ground atomic query of the form p(�a),where p can be any predicate, and �a is a tuple of constants, does � j= p(�a)?The following example shows some of the additional inferences that can be drawn fromcarin rules but not from either of its sublanguages alone.Example 2.3: Suppose we have the carin knowledge base T1 [ A1 [ R1. The followingentailment holds: T1 [ A1 [ R1 j= price(a; usa; high):The fact american-associate(b) and T1 entail that b has some associate that is an american.Therefore, even though no rule of R1 can be totally instantiated on A1, the missing conjunctsof r2 are entailed by A1 [ T1.As another example, suppose we have the ground facts:A2 : fmade-by(a,b),monopoly(b,a,usa), international-company(b)g.The following entailment holds:T1 [ A2 [ R1 j= price(a; usa; high):Here, T1 [ A2 does not entail the antecedent of any single rule in R1. However, we canmake the inference by reasoning by cases: (1) if b has at least one American associate, thenprice(a,usa,high) will follow because the antecedent of rule r2 will be entailed, as explainedabove. (2) if b has no American associate, then no-fellow-company(b) will be entailed, andprice(a,usa,high) will follow from r1. 2The above examples illustrated that there are two aspects of traditional Horn rule infer-ence mechanisms that make them inadequate for carin knowledge bases. The �rst aspectis that they consider each rule in isolation, and the second aspect is that for each rule theytry to instantiate the antecedent in order to derive the consequent. The example with A1showed that a KB may entail the antecedent of a rule without the antecedent being instan-tiated in the KB. The example with A2 showed that a KB may entail the disjunction ofthe antecedents of two rules without entailing either of them. These problems have alsobeen observed in [14], even when role predicates were not allowed in the rules. Therefore,to enable complete reasoning in carin, the process of instantiating a single rule needs to bereplaced by an algorithm that decides whether a set of ground facts and a terminology entailsthe disjunction of the antecedents of a set of Horn rules. In the next section we formalizethis decision problem as the existential entailment problem, and describe an algorithm forsolving it. In Section 4 we show that the existential entailment algorithm stands at the coreof several reasoning problems in carin. 8



3 Existential Entailment Algorithm for ALCNRFormally, the existential entailment problem for a description logic L is the following.De�nition 3.1: (existential entailment) Let T be a terminology in the description logicL, and let Q be a sentence of the form Q1 _ : : : _ Qn. Assume that � and Q1; : : : ; Qn areexistential sentences of the form(9 �Y ) p1( �Y1) ^ : : : ^ pm( �Ym)where p1; : : : ; pm are either roles or concepts appearing in T , �Y ; �Y1; : : : ; �Ym are tuples ofvariables and constants, and �Y � �Y1[ : : :[ �Ym. The variables that do not appear existentiallyquanti�ed in Q or � are considered universally quanti�ed. Any variable that appears in Qmust also appear in �.The existential entailment problem is to decide whether� [ T j= Q1 _ : : : _ Qn: 2The existential entailment problem is important in our context for the following reasons:� In the case in which � is a conjunction of ground atomic facts, existential entailmentenables us to deduce whether the disjunction of the antecedents of a set Horn rules isentailed from the ground facts.3� When n = 1, existential entailment amounts to subsumption of conjunctive queriesover the description logic. In contrast to subsumption of concepts, this problem hasnot been considered in previous work.It is important to emphasize that the existential entailment problem cannot be reduced to asatis�ability problem of an ALCNR knowledge base, because the negation of the sentenceQ cannot be expressed in an ALCNR knowledge base. Therefore, the algorithm in [11] doesnot su�ce.We describe an existential entailment algorithm for the language ALCNR. Our algo-rithm is based on the technique of constraint systems, also used in [11] for a satis�abilitychecking of ALCNR knowledge bases and previously in [33, 15]. Informally, in our setting,a constraint system represents a set of models of �[T . The algorithm begins with an initialconstraint system, S�, constructed from � [ T . The initial constraint system representsthe set of all models of � [ T . The algorithm then applies a set of propagation rules thatgenerate a set of completions. Each completion is a re�nement of the initial constraint sys-tem, in which some implicit constraints have been made explicit, and some non-deterministicchoices have been made. Some completions contain explicit clashes, (e.g., they state that anindividual belongs both to a class and to its complement), and are then clearly unsatis�able.Each clash-free completion represents a subset of the models of � [ T , and together they3We will see later that entailing antecedents of carin rules is not complicated by the fact that theycontain ordinary predicates in addition to concepts and roles.9



provide a �nite representation of all the models of � [ T . The important property of ourcompletions is that checking whether the formula Q is entailed from a clash-free completioncan be done by checking whether the formula is satis�ed in one canonical model of the com-pletion. Therefore, to check whether Q is entailed by �[T , it su�ces to check the canonicalmodels of each of the clash-free completions. To summarize, our algorithm has four steps:1. build an initial constraint system S� from � [ T ,2. apply the propagation rules to S� to obtain a set of completions, S,3. for every clash-free completion S 2 S, build a canonical interpretation IS, and4. check whether Q is satis�ed in all the canonical interpretations that have been con-structed.The key di�culty in designing the algorithm (and other algorithms based on constraintsystems) is to de�ne the termination condition for the second step, in such a way that theresulting completions have the desired properties.Constraint SystemsWe begin by introducing the elements of constraint systems. Formally, a constraint systemis a non-empty set of constraints of the form s : C, sP t, 8x:x : C, and s 6 := t, where C is aconcept description and P is a primitive role name.We denote the set of variables and constants that appear in Q or in � by V. From thispoint on, we refer to elements of V as individuals. In describing constraint systems, weintroduce a new alphabet of variable symbols W, with a well-founded total ordering �W.The alphabet W is disjoint from V. We denote elements of W by the letters u; v; w; x; y; z.The term object refers to elements of V [W (i.e., either variables or individuals). Objectsare denoted by the letters s; t. Elements in V are denoted by the letters a; b.Suppose S is a constraint system andR is a role de�ned by the descriptionR = P1u: : :uPk(k � 1). We say that an object t is an R-successor of an object s in S, if sP1t; : : : ; sPkt 2 S.We say that t is a direct successor of s in S, if it is the R-successor for some role R inS. The successor relationship denotes the transitive closure of the direct-successor relation.The direct-predecessor and the predecessor relations are the inverses of direct-successor andsuccessor, respectively. We say that s and t are separated in S if s 6 := t 2 S. Finally, wedenote by S[x=s] the constraint system obtained from S by replacing each occurrence of thevariable x by the object s.For a variable v in a constraint system S, we de�ne the function �(S; v) := fC j v : C 2Sg. Two variables v;w 2 S are said to be concept-equivalent if �(S; v) = �(S;w). Intuitively,two variables are concept-equivalent in S if, as far as the constraints in S are concerned, theyhave the same properties, and therefore, unless they are separated in S, they may denotethe same element in the domain. The function � plays an important role in the terminationcondition of the algorithm. A constraint system contains a clash, if it contains10



� fs :?g, or� fs : A; s : :Ag, or� fs : (� nR)g [ fsP1ti; : : : ; sPkti j i 2 1::n+ 1g [ fti 6 := tj j i; j 2 1::n+ 1; i 6= jg whereR = P1 u : : : u Pk.The semantics of constraint systems is given by interpretations, mapping each element sof V [W to an element �I (s) in the domain OI , and specifying extensions for the conceptsand roles. An interpretation satis�es the constraint s : C if �I(s) 2 CI , the constraint sRtif (�I(s); �I(t)) 2 RI , the constraint s 6 := t if �I(s) 6= �I(t), and the constraint 8x:x : Cif CI = OI . An interpretation I is a model of a constraint system S if it satis�es everyconstraint in S. Note that a constraint system with a clash is unsatis�able.3.1 The AlgorithmWe �rst describe the algorithm for the case in which � contains no variables, and therefore,because of the unique names assumption, all individuals in � are necessarily mapped todistinct objects in the domain. A minor modi�cation to the algorithm to accommodatevariables is described in the end of this section. Without loss of generality, we can supposethat T contains only inclusion statements and role de�nitions. We describe the di�erentsteps of the algorithm.3.1.1 Creating the Initial Constraint SystemWe �rst construct the initial constraint system S� from � [ T . Assume � is of the formp1(�a1) ^ : : : ^ pn(�an). We construct S� as follows.A1. For every i 2 [1::n], if pi(�ai) is of the form C(a), we put a : C in S�.A2. For every i 2 [1::n], if pi(�ai) is of the form R(a; b) we put aP1b; : : : ; aPmb in S�, ifR = P1 u : : : u Pm (or simply aRb if R is a primitive role).A3. For every inclusion statement C v D in T , we add 8x:x : :C tD to S�.A4. For every pair of individuals a and b in �, we add a 6 := b to S�.A5. For every concept C that appears in Q, we add the constraint 8x:x : C t :C to S�.It should be noted that the last set of constraints (which is not added in [11]) is neededbecause our algorithm is meant to test entailment and not satis�ability. These constraintshave the e�ect that in every completion S that our algorithm generates, S j= C(s) orS j= :C(s) for every object s, and concept C that appears in Q.4 We assume that all theconcepts in a constraint system are simple, i.e., the only complements they contain are of4Adding this set of constraints has the same e�ect of adding the choose-rule used in [20, 4], which forcesevery object in the constraint system to belong either to a concept or to its negation.11



the form :A where A is the name of a primitive concept. As shown in [15], every ALCNRconcept can be transformed into an equivalent simple concept in linear time.The following observation follows immediately from the de�nitions. Intuitively, it showsthat S� is an accurate representation of � [ T in terms of constraint systems. Note thatinterpretations of �[T and of S� are comparable because they have the same object constantsand relations.Observation 3.1: An interpretation I is a model of � [ T if and only if it is a model ofS�. 23.1.2 Applying the Propagation RulesThe next step of the algorithm is to apply the set of propagation rules shown in Figure 1to the constraint system S� (these are the same propagation rules as in [11]). Informally,each propagation rule corresponds to one of the constructors in ALCNR. For example,rule 3 propagates the constraints implied by the 8R:C constructor onto a �ller, while rule 5creates additional variables in a constraint system to ensure that the (� nR) constraint issatis�ed. Rules 2 and 6 are said to be non-deterministic rules, and all the others are said tobe deterministic rules. Two of the propagation rules are generating rules because they addnew variables to the constraint system.The Termination ConditionA naive application of the propagation rules may not terminate. Therefore, rules 4 and 5are applied only on variables that are not blocked. A key point in designing an algorithmbased on constraint systems, and where our use of constraint systems di�ers from [11], isthe de�nition of blocked variables. To illustrate the subtlety involved, we �rst illustrate thestandard use (e.g, as used in [11]) of constraint systems with an example.Example 3.1: Consider the terminology T2 consisting of the single inclusion C v 9R:C,and �2 = C(a). That is, the instances of C must have at least one �ller of R that is also aninstance of C.Figure 2 shows the application of the propagation rules to this example. The initialconstraint system is S�2 = fa : C;8x:x : :C t 9R:Cg, whose constraints correspond to �2and the inclusion statement. The �rst constraint states that a is an instance of C, and thesecond constraint states that every individual is an instance of :C t 9R:C.The �rst propagation rule that is applied (rule 7) instantiates the second constraint withthe individual a. It creates the constraint system S1 = S�2 [ fa : :C t 9R:Cg. Because ofthe disjunction, two successor constraint systems to S1 can be created (using rule 2), onein which a : :C is added to S1, and the other in which a : 9R:C is added. Since the �rstone is unsatis�able, we only consider the second one further: S2 = S1 [ fa : 9R:Cg. Thesystem S2 implies that a has a �ller on the role R, therefore, a generating rule (rule 4)is applied, which adds a new variable v1 to S2 with the appropriate constraints, to obtain12



1. S !u fs : C1; s : C2g [ Sif 1. s : C1 u C2 is in S,2. s : C1 and s : C2 are not both in S.2. S !t fs : Dg [ Sif 1. s : C1 t C2 is in S,2. neither s : C1 nor s : C2 are in S,3. D = C1 or D = C2.3. S !8 ft : Cg [ Sif 1. s : 8R:C is in S,2. t is an R-successor of s,3. t : C is not in S.4. S !9 fsP1y; : : : ; sPky; y : Cg [ S1. s : 9R:C is in S,2. R = P1 u : : : u Pk,3. y is a new variable,4. there is no t such that t is an R-successor of s in S and t : C is in S,5. if s is not blocked.5. S !� fsP1yi; : : : ; sPkyi j i 2 1::ng [ fyi 6 := yj j i; j 2 1::n; i 6= jg [ Sif 1. s : (� nR) is in S,2. R = P1 u : : : u Pk;3. y1; : : : ; yn are new variables,4. there do not exist n pairwise separated R-successors of s in S,5. if s is not blocked.6. S !� S[y=t]if 1. s : (� nR) is in S,2. s has more than n R-successors in S,3. y; t are two R-successors of s which are not separated7. S !8x fs : Cg [ Sif 1. 8x:x : C is in S,2. s appears in S,3. s : C is not in S. Figure 1: Propagation rules.S3 = S2 [ faRv1; v1 : Cg. Then, the same sequence of propagation rules that were appliedto a are also applied to v1, to obtain the following constraint system: S4 = S3 [ fv1 ::C t 9R:C; v1 : 9R:C; v1Rv2; v2 : Cg. At this point, the same propagation rules could beapplied to v2. However, v1 and v2 satisfy the same constraints in S4. Hence, v2 is said to beblocked by v1, and the propagation terminates.The canonical model I of S4 which is considered in [11] is built as follows. The domainof I is fa; v1; v2g, and the extensions of the relations are: CI = fa; v1; v2g, and RI =f(a; v1); (v1; v2); (v2; v2)g. 13



The above illustrated the termination condition used in [11], which was designed espe-cially to check satis�ability of an ALCNR knowledge base. The subtle point in the algorithmis that when building the canonical model, �llers to the blocked variables have to be assigned.Above, a �ller for role R had to be assigned to v2. In doing so, cycles were introduced inthe canonical model that do not exist in every model of S4. For example, if the query Qwere 9x1; x2; x3R(x2; x1)^R(x3; x1)^R(x2; x3), it would be satis�ed in the canonical model,even though it is not entailed by S4. However, we want to use the canonical interpretationto check which formulas are satis�ed in all models of the completion. To avoid this problem,we develop a termination condition that depends on the query, and that guarantees that theresulting canonical model is su�cient for checking the entailment of the query. 21a:C8 x. x:: C t 9R.C!8xa: :C t 9R.CXXXXXXX������� !t S1a: :Cclash a: 9R.C!9 S2a R v1v1:C!8x S3v1::Ct 9R.CXXXXXXX������� !tv1:9R.C!9 v1::Cclashv1 R v2v2:C!8xv2::C t 9R.CXXXXXXX������� !tv2::Cclash v2:9R.C S4Figure 2: The trace of the application of propagation rules to Example 3.1. In the �gure,we only show the constraints that are added to the constraint system at every step. Nodesmarked with clash represent unsatis�able constraint systems.Examining the propagation rules reveals that if we only consider the variables in a con-straint system, it forms a forest of trees. Speci�cally, if we consider a graph whose nodes arethe variables and there is an arc from a node x to y if y is a direct successor of x, then the14



graph is a forest of trees. This follows from the fact that rules 4 and 5 generate new nodesin the forest, and rule 6 only uni�es two successors of the same node. The other rules donot add nodes or edges to the graph. We can de�ne the depth of a variable in a constraintsystem to be its depth in the tree to which it belongs. Given this structure, we can de�nethe notion of n-tree equivalence among variables in a constraint system.De�nition 3.2: The n-tree of a variable v is the tree that includes the variable v and itssuccessors, whose distance from v is at most n direct-successor arcs. We denote the set ofvariables in the n-tree of v by Vn(v).Two variables v;w 2 S are said to be n-tree equivalent in S if there is an isomorphism : Vn(v)! Vn(w), such that�  (v) = w,� for every s; t 2 Vn(v); sP t 2 S if and only if  (s)P (t) 2 S, and� for every s 2 Vn(v); �(S; (s)) = �(S; s).2 Intuitively, two variables are n-tree equivalent if the trees of depth n of which they areroots are isomorphic. We denote by DQ the maximum number of literals in any of the Qi's.If there exist two n-tree equivalent variables, v and w, such that w �W v, then we saythat w is a witness of v. The leaves of the n-tree of v will be deemed blocked. Figure 3illustrates the relationship between the witness and the blocked variables.
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blocked variable

witness of v

Figure 3: A variable x is blocked if it is the leaf of an n-tree rooted at v, and v has a witnessw. h is an isomorphism from the n-tree of v to the n-tree of w. In a canonical interpretation,we will have an implicit tuple (x; t), where t is a successor of h(x).
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De�nition 3.3: (witness) A variable w is a witness of a variable v if� w is DQ-tree equivalent to v,� v is not in the DQ-tree of w, and� there is no other variable z, such that z �W w, and z satis�es the �rst two conditions.2De�nition 3.4: A variable x is said to be blocked if it is a leaf of a DQ-tree whose root isv, and v has a witness. 2In order for the algorithm to detect correctly the blocked variables, the propagation rulesare applied according to the following strategy:� Apply a rule to a variable only if no rule is applicable to an individual.� Apply a rule to a variable x only if there is no rule applicable to a variable y, such thaty �W x.� Apply a generating rule only if a non-generating rule cannot be applied.As in [11], a variable can be deemed blocked only after the strategy above permits toapply to it a generating rule, and every variable is blocked by a single witness. It should benoted that once a generating rule has been applied to a variable v in a constraint systemS, the value of �(S 0; v) will be the same as �(S; v) in any constraint system resulting fromapplying propagation rules to S (Lemma 3.2 in [11]). A constraint system is said to be acompletion when no propagation rule applies to it.3.1.3 Building the Canonical InterpretationGiven a completion S, we de�ne its canonical interpretation IS as follows:1. OIS := fs j s is an object in Sg.2. �IS (s) := s3. For a primitive concept A, s 2 AIS if and only if s : A 2 S.4. (s; t) 2 RIS if and only if(a) sRt 2 S, or(b) s is blocked, v is the root of the DQ-tree of which s is a leaf, w is the witness of v, is an isomorphism between the DQ-trees rooted with v and w, and  (s)Rt 2 S(in this case, s would correspond to x in Figure 3).16



The extensions of the complex concepts are computed using the equations in Section 2.1.The following lemma is proved in exactly the same way as in [11] (Theorem 3.6), by notingthat if s is a blocked variable in a constraint system S, then �(S; s) = �(S; (s)).Lemma 3.2: Let S be a clash-free completion of S�, and let IS be its canonical interpreta-tion. Then, IS is a model of S. 2We can therefore refer to the canonical interpretation of a clash-free completion as itscanonical model. We distinguish two kinds of binary tuples in the extensions of the relationsin the canonical model. The tuples that are added because of the second clause (i.e., becauseof s being blocked) are called implicit tuples, and the others are called explicit tuples. Implicittuples are put only in the canonical model, and would not necessarily appear in every modelof S.3.1.4 Checking the Canonical InterpretationsThe algorithm returns that � [T j= Q if and only if Q is satis�ed in the canonical interpre-tations of all the clash-free completions of S�.Example 3.2: Continuing our example, with the query 9x1; x2; x3R(x2; x1) ^ R(x3; x1) ^R(x2; x3). Using our de�nition of blocked variables, the propagation rules would also generatethe variables v3; : : : ; v8 using the same sequence of rule applications that applied to v1 andv2 (see Figure 4). The variable v1 is then recognized as the witness of v5. The variable v8would be deemed blocked, because it is the leaf of a 3-tree rooted in v5, and the 3-treesrooted in v1 and v5 are isomorphic. Therefore, the canonical model of the completion wouldhave the implicit tuple (v8; v5) in RIS (because  (v8) = v4 and v4Rv5 2 S). The query Q isnot satis�ed in the canonical interpretation, and therefore is not entailed by T2 [ �2. 2
v1 v2 v3 v4 v5 v6 v7 v8a

3-tree isomorphic 3-tree

witness of v5 blockedFigure 4: The application of the propagation rules with our termination condition to Exam-ple 3.1. In this example, we consider 3-trees. The 3-tree of v5 is isomorphic to the 3-tree ofv1. Therefore, the variable v8 (which is a leaf of the 3-tree of v5) is blocked. In the canonicalinterpretation we have the implicit tuple (v8; v5).Allowing Variables in �Recall that so far we have assumed that � does not contain any variables, and hence, whenwe create S� from � we make use of the unique names assumption. Therefore S� only17



represents those models of � in which each constant is mapped to a distinct object in theinterpretation. When � contains variables, � may have models in which two variables aremapped to the same object in the domain. To check entailment in this case we need to applythe algorithm to any homomorphism h on �. A homomorphism h maps the variables of � tovariables or constants appearing in �. If Q is entailed from Sh(�)[T for any homomorphismh, then Q is entailed from S� [ T .3.2 Proof of Correctness and ComplexityIn this section we prove the correctness of the existential entailment algorithm and discussits complexity. The structure of the proof is as follows. Theorem 3.3 establishes the basicproperty of our termination condition and of the resulting completions. It shows that tocheck that a formula is entailed from a completion, it su�ces to check that the formula issatis�ed in the canonical interpretation of the completion. Next, we show that a formula isentailed from � [ T if and only if it is entailed from all the clash-free completions of S�.Finally, we show that the application of the propagation rules terminates. For clarity, themore tedious proofs are postponed to the appendix.Theorem 3.3: Let S be a clash-free completion of S�, and let IS be its canonical model.If IS j= Q, then S j= Q. 2Proof: Since IS j= Q, and Q = Q1 _ : : :_Qn, one of the Qi's must be satis�ed in IS. Wecan assume without loss of generality that it is Q1. Suppose Q1 is of the form(9 �X) l1( �X1) ^ : : : ^ lm( �Xm):Given a variable x in Q1, we de�ne its connected component Vx as the minimal set of variablesthat satisfy the following conditions:� x 2 Vx,� If y and z appear in the same role atom in Q1, and z 2 Vx, then y 2 Vx.We denote by Lx the set of literals in Q1 that include variables in Vx. Since Q1 is satis�edin IS, there must be a mapping �0 from the variables of Q1 to OIS , such that for every i,1 � i � m, �0( �Xi) 2 lISi .Our proof proceeds in two steps:1. First we show that we can modify �0 to a mapping �, such that �( �Xi) 2 lISi , and �( �Xi)is an explicit tuple in lISi , for every i, 1 � i � m. Recall that the explicit tuples are theones that must be in the canonical interpretation (given the mapping of the objects,�IS ) in order for the canonical interpretation to be a model, while the choice of theimplicit tuples is, to some extent, arbitrary.2. In the second step, we use the mapping � to show that Q1 will be satis�ed in everymodel of S. 18



Step 1: If �0 makes use of implicit tuples in IS, then there must be some variables x inQ1 such that �0(x) is a blocked variable in S. For each such variable x, let us consider eachconnected component Vx of x in Q1. We �rst note the following properties.1. There is no variable z 2 Vx, such that �0(z) is an individual in S.If this were not true, it would entail that there is a chain of direct-successor arcs oflength at most DQ�1 from an individual in S to a blocked variable in S. Such a chaincannot exist because every blocked variable is the leaf of a DQ-tree whose root is avariable in S.2. Let Gx be the graph whose nodes are variables of Vx, and which contains an arc fromy to z if there is a atom R(y; z) in Lx. Let �0(Gx) denote the image of Gx under themapping �0:There is no cycle in �0(Gx) and therefore there is no cycle in Gx.Since all variables in Vx are mapped by �0 to variables in S, the only way that therecan be a cycle in �0(Gx) is if it were caused by an implicit tuple in IS. By de�nition,an implicit link goes from a blocked variable s to a variable t such that� s is a leaf of a DQ whose root is v,� v has a witness w, and� the predecessor of t is a leaf in the DQ-tree rooted in w.Since De�nition 3.4 requires that a variable v not be in the DQ tree of its witness,it follows that the distance between t and s is at least the distance between s and v.Hence, the distance between s and t is at least DQ, and therefore, since �0(Gx) andGx have at most DQ edges, they cannot contain a cycle (see Figure 3).Let x1; : : : ; xk be a topological ordering on the variables of Gx, (which is well de�nedbecause Gx is acyclic). We consider a sequence of variable mappings from Gx to OIS ,�0; �1; : : : ; �k. For every mapping we show that:� �i is a satisfaction mapping for Q1, i.e., for every j, 1 � j � m, �i( �Yj) 2 lISj , and� the only possible implicit tuples in �i(Gx) emanate from the �i(xi); : : : ; �i(xk).The desired mapping � is simply de�ned to be �k. Note that for �0, the properties holdtrivially. We show how to construct �i+1 from �i.Let y be lowest variable in the topological ordering of Gx, such that �i(y) is blocked inS. We denote by Y the set of variables that are the leaves of the same DQ-tree of which yis a leaf. We can distinguish three sets of links in �i(Gx):A1. links emanating from ancestors of variables in Y,A2. links emanating from variables in Y, and19



A3. links between descendents of variables in Y.Let v be the root of the DQ-tree whose leaf is y, and let  be the isomorphism betweenv and its witness. We de�ne �i+1 as follows:B1. for a variable z that is either in Y or is an ancestor of a variable in Y, �i+1(z) =  (�i(z))B2. for the other variables �i+1 is identical to �i.First, we show that �i+1 is a satisfaction mapping for Q1. Consider two cases for aconjunct lj( �Yj) of Q1:� if lj is a concept, then in case B1, since  conserves concept equivalence, it guaranteesthat �i( �Yj) 2 lISj if and only if �i+1( �Yj) 2 lISj . In B2 the claim holds trivially.� if lj is a role atom, then case A3 is trivial since �i+1 does not a�ect the descendents ofvariables in Y. Case A1 follows from the de�nition of n-tree equivalence. Case A2 isthe one in which �i( �Yj) is an implicit tuple in IS of the form (s; t), where ( (s); t) isan explicit tuple in IS. By the construction of �i+1 it follows that �i+1( �Yj) is ( (s); t),and therefore the claim follows.Finally, note that for any variable z in Y or that is an ancestor of a variable in Y,the tuples of the form (�i+1(z); t) are explicit tuples in IS. Hence, by a simple inductionon i it can be shown that the only possible implicit tuples in �i+1(Gx) emanate from the�i+1(xi+1); : : : ; �i+1(xk). 2Step 2: Let I be a model of S. To complete the proof we need to show that I j= Q1. Todo that, we need to �nd a mapping � from the variables of Q1 to the domain of I, such that�( �Xi) 2 lIi for every i, 1 � i � m.Since I is a model of S, it means that there exists a mapping � from the objects ofS to the domain of I such that if v : C 2 S, then �I (v) 2 CI , and if sRt 2 S, then(�I(s); �I(t)) 2 RI . Let the mapping � be de�ned by �(x) = �I (�(x)). We show that forevery i, 1 � i � m, �( �Xi) 2 lIi . There are two cases:� The literal li( �Xi) is unary, i.e., of the form C(x). In this case, �(x) 2 CIS . Recallthat s : C 2 S or s : :C 2 S for any concept C appearing in Q, and therefore, itmust be the case that �(x) : C 2 S. Therefore, since I is a model of S, it follows that�I(�(x)) 2 lIi .� The second case is when the literal li( �Xi) is of the formR(x; y). In this case, (�(x); �(y))is an explicit tuple of the canonical model IS, which means that �(x)R�(y) 2 S, andtherefore, (�I(�(x)); �I(�(y))) 2 RI .2 The next step in proving the correctness of our algorithm is to show that the union of theclash-free completions of S� is equivalent to S�. This is formalized by the following lemma.20



Lemma 3.4: Let S be a constraint system, and let S be the set of all possible constraintsystems obtainable from S using a propagation rule r (if r is a deterministic propagationrule, then S is a singleton set). Then, S j= Q if and only if, for all S 0 2 S, S 0 j= Q 2The proof of the lemma appears in the appendix. The following corollary shows thatentailment of Q can be checked by verifying entailment in each of the clash-free completionsof S�. The corollary follows by iteratively applying Lemma 3.4.Corollary 3.5: Let S be a constraint system, and let S be the set of all its clash-freecompletions. Then, S j= Q if and only if for every S 0 2 S, S 0 j= Q. 2The following lemma shows that our algorithm always terminates.Lemma 3.6: Given the constraint system S�, the application of the propagation rules willterminate. 2Proof: The number of times that a propagation rule can be applied to an object in a con-straint system is bounded by the size of the terminology. Each application of a propagationrule adds a number of successor variables which is also bounded by the size of the termi-nology (speci�cally, the largest number appearing in the number restrictions). Therefore, inorder to show that the algorithm terminates, it su�ces to show that there is a bound on thedepth of the variables in a constraint system.To bound the depth, we show that there is a �nite numberN of non isomorphicDQ-trees.Hence, the depth of a variable in a constraint system is bounded by (N +1)DQ. To see why,suppose there would be a variable v of depth (N + 1)DQ with a successor w. The variablev would be a leaf of a sequence of N + 1 non-overlapping DQ-trees. Therefore, there wouldde�nitely be two of them that are DQ-tree equivalent, and therefore, either v or one of itsancestors would be blocked, and w would not be generated. We now derive a bound on thevalue of N . We use the following notation:� B denotes the size of S�, i.e., the sum of the sizes of the constraints in S�.� C� denotes the set concept descriptions that appear in either in S� or as subdescriptionsof concept descriptions in S�, and C denotes the cardinality of the set C�. Note thatC is linear in the size of S�.� r denotes the number of di�erent role names in C�, and rmax denotes the maximalnumber appearing in the number restrictions in S� (and is 1 if there are no numberrestrictions or if only 0 appears in S�).We derive a (generous) upper bound on the maximal number of non-isomorphic n-trees,denoted by qn. The value of N is qDQ.For n = 0, the number of di�erent n-trees is at most 2C, corresponding to the di�erentpossible values for the function �(S; v). 21



Consider the number of possible n-trees for n > 0. The root v of such a tree has atmost 2C di�erent possible values for the �(S; v). Consider a single role R. The root vcan have at most Crmax direct successors of R. This is because the number of times agenerating rule can be applied to v is at most C and each application can add at most rmaxsuccessors. Each successor can be the root of an (n � 1)-tree. Hence, there are O(2Cqmn�1)non isomorphic subtrees in the case when v has exactly m direct successors of R and noother direct successors.Since there are (Crmax) + 1 possible choices for the number of direct successors of Rfor v, and each choice is bounded by Crmax, then, if we consider a single role, there areO(2CCrmaxqCrmaxn�1 ) non isomorphic n-trees rooted at v.Finally, since we can repeat the above process for every role R in S�, and there are rroles, we obtain qn = O(2C (CrmaxqCrmaxn�1 )r):To simplify notation, let x = 2C(Crmax)r and a = rCrmax. The equation can be rewrittenas: qn = O(x(qn�1)a)Unfolding the equation yields:qn = O((x1+a:::+an�1)(q0)an) = O((x2C)an):Returning to our original notation, we obtainqn = O((22C(Crmax)r)(rCrmax)n2The following theorem establishes the correctness of our algorithm.Theorem 3.7: T [� j= Q holds if and only if Q is satis�ed in the canonical interpretationof every clash-free completion of S�. 2Proof: only if: Suppose S is a clash-free completion of S� and in the canonical interpre-tation IS of S, IS 6j= Q. Since, by Lemma 3.2, IS is a model of S, it follows that S 6j= Q.Therefore, by Corollary 3.5 and Observation 3.1, � [ T 6j= Q.if: Let S be the set of clash-free completions of S�, and suppose that for every S 2 S,the canonical interpretation IS of S satis�es Q. By Theorem 3.3 it follows that S j= Q forevery S 2 S. By Corollary 3.5 it follows that S� j= Q, and therefore, by Observation 3.1, itfollows that � [ T j= Q. 23.2.1 ComplexityThe proof of Lemma 3.6 shows that the number of non-isomorphic DQ-trees is at mostdoubly exponential in the size of the � [ T . The number of variables in a DQ-tree is alsoat most doubly exponential in the size of � [ T , because the depth of the tree is DQ and22



the branching factor of the tree is possibly exponential in the size of � [ T (note that thebranching factor is exponential because we are assuming that the numbers in the numberrestrictions are encoded in binary form).In the worst case, a constraint system will contain an n-tree for every n-tree equivalenceclass and for each such tree, all the leaves will have n-trees as well. Hence, the maximalnumber of objects in a completion of S� is at most doubly exponential in the size of � [ T .Checking that the sentence Q is satis�ed in a canonical interpretation takes time at mostexponential in the size of Q, and polynomial in the size of the canonical interpretation (thisis the time needed to evaluate a conjunctive query over a database).In a similar way to what was shown in [11], it can be shown that the time to construct acompletion is doubly exponential in the size of � [ T . Consequently, the time complexity ofchecking that � [ T 6j= Q is non-deterministic doubly exponential in the size of � [ T , andtriply exponential in the size of � [ T [Q.It is important to emphasize that the source of one exponent in the complexity analysisis the fact that the numbers appearing in the number restrictions in � [ T are encoded inbinary form. If we assume a unary encoding of numbers, or if we assume that the magnitudethe numbers is bounded by the size of � [T (which is very likely if � are the ground atomicfacts in the knowledge base, as we see in the next section), then the time-complexity ofdetermining � [ T 6j= Q is non-deterministic exponential time. The time complexity of theexistential entailment problem in this case is deterministic doubly exponential time (theentailment problem requires checking all completions, and there are a doubly exponentialnumber of completions). The complement of the existential entailment problem we consideris at least as hard as the KB-satis�ability problem considered in [11]. The algorithm giventhere has a time complexity of non-deterministic exponential time, though they assume thatnumbers are encoded in binary form.It should be noted that it is not always necessary to apply the existential entailmentalgorithm based on DQ-tree equivalence of variables. In fact, the only problem that thecanonical interpretation IS can introduce is to contain a cycle that does not exist in everymodel of S. We can view each Qi as a graph, where the nodes are the variables of Qi andthere is an arc from x to y if there is a literal of the form R(x; y) in Qi. We can considerNQi to be the length of the longest path (without node repetition) that exists in Qi. Theexistential entailment algorithm can be applied using the N -tree equivalence relation, whereN is the maximalNQi for Qi 2 Q.5 Finally, we note that we have provided only a worst-casecomplexity analysis, and the issue of optimization is beyond the scope of this paper.4 Uses of the Existential Entailment AlgorithmThe existential entailment algorithm is a key tool for reasoning in carin. In this sectionwe describe two important uses of existential entailment. First, in Section 4.1 we show thatthe existential entailment algorithm provides the basis for a sound and complete reasoningalgorithm for nonrecursive carin-ALCNR knowledge bases. In Section 4.2 we show that5We thank Werner Nutt for pointing out this optimization to us.23



the existential entailment algorithm also provides a sound and complete algorithm for querycontainment over ALCNR.4.1 Sound and Complete Reasoning for Non Recursive carin-ALCNRWhen Horn rules are not recursive, they are equivalent to a union of conjunctive queries.Given this equivalence, we can develop a sound and complete inference procedure for nonrecursive carin-ALCNR based on the existential entailment algorithm. In this section wedescribe our algorithm in detail. It should be noted that the algorithm does not actuallyunfold the rules for performing reasoning.Rule Unfolding: Given a set of Horn rules, we can iteratively unfold them. In an unfoldingstep of a rule r we consider a conjunct in the antecedent of the form p( �X), and a rule r1whose consequent is of the form p( �Y ). We consider the most general uni�er � of p( �X) andp( �Y ), i.e., �(p( �Y )) = �(p( �X)). The result of the unfolding step is the rule in which theantecedent is �(ant(r1))[ �(ant(r)) n �(p( �X)), where ant(r) denotes the antecedent of a ruler. The consequent of the rule is �(h), where h is the consequent of r. Note that if a variablev appears in the antecedent of r1 and not in its head, then � will map it to a fresh variablethat appears nowhere else. When the Horn rules are not recursive, the process of unfoldingwill terminate.Example 4.1: If we have the rules:r1 : p(X) ^ p(Y) ) r(X,Y)r2 : e(X,Y) ^ d(Y) ) p(X)then one step of unfolding r1 can result in the ruler0 : e(X,Z) ^ d(Z) ^ p(Y) ) r(X,Y). 2Given the Horn rules in a carin-ALCNR knowledge base �, we denote by U(�) themaximal size (i.e., number of conjuncts) of a rule that can be obtained by unfolding rules in�. Note that U(�) may be exponential in the depth6 of rules in �. Note that the rules donot actually have to be unfolded in order to determine U(�).Given a knowledge base � and a query p(�a), the algorithm for reasoning in non recursivecarin-ALCNR proceeds in two steps:6the depth of a set of rules is the maximal derivation depth of the literals appearing in the rules. Let q( �X)a literal: if q is a base predicate, depth (q( �X)) = 0 ; if q is not a base predicate, it appears as a consequentof some rules, let p1( �X1); : : : ; pn( �Xn) the literals appearing in the antecedent of those rules: depth(q( �X )) =1 +Maxfdepth(p1( �X1)); : : : ; depth(p1( �Xn))g 24



1. We let � be the set of ground facts in � of role and concept predicates, �r be the setof ground facts of ordinary predicates in �, and �r be the set of Horn rules in �.We apply the propagation rules to S� with U(�)-tree equivalence as the terminationcondition. Note that S� contains 8x:x : C t:C for every concept predicate appearingin the rules.2. In each completion S, we compute extensions of the ordinary predicates by evaluatingthe Horn rules of � using a traditional Horn rule reasoning algorithm. We pay specialattention to how we perform lookups. If we are performing a lookup for a fact ofthe form C(a) where C is a concept description (i.e., trying to determine whetherS j= C(a)), we check whether aIS 2 CIS . Lookups for role atoms are done similarly.Lookups for atoms of ordinary predicates are done from �r. A bottom-up procedurefor evaluating the Horn rules is shown in Figure 5.procedure horn-evaluate(�, IS)/� � is a carin-ALCNR KB, and IS is a canonical interpretation of a completion of S� . �//� The procedure computes eIS for the ordinary predicates e 2 �. �/Extend the domain OIS to include all the constants that appear in �.for every ordinary predicate e 2 �, eIS = f�a j e(�a) 2 �rg.while new tuples are being added to the extensions do:Let r be a Horn rule in �r of the form l1( �X1) ^ : : :^ lm( �Xm)) q( �X).Let  be a mapping from the variables of r to OIS .if the following holds for i, 1 � i � m, then add  ( �X) to qIS :if li is an ordinary predicate and  ( �Xi) 2 lISi , orif li is a role predicate R, such that R = P1 u : : :u Pk and  ( �Xi) 2 P ISj for 1 � j � k, orif li is a concept predicate and  (Xi) 2 lISi .return the extensions of the ordinary predicates of �.end.Figure 5: An algorithm for bottom-up evaluation of Horn rules in a given completion.A query of the form p(�a) is entailed by � if and only if �a is in the extension of p for everyclash-free completion S. Formally, our algorithm entails the following result:Theorem 4.1: Let � be a carin-ALCNR knowledge base whose Horn rules are notrecursive. Let p(�a) be a ground atomic query, where p is either a concept, role or ordinarypredicate. The problem of determining whether � j= p(�a) is decidable. 2The complexity of the decision procedure is the same as the complexity of the existentialentailment algorithm because the evaluation of the Horn rules in each completion takes timethat is polynomial in the size of the completion. It is interesting to note that complexity of25



entailment algorithm is in Co-NP, as a function of the number of ground facts in �. Thisfollows because the size of each completion is linear in the number of ground facts in �, andchecking whether q(�a) is entailed by a canonical model can be done in time polynomial inthe size of the completion.Proof: Given a clash-free completion S, and its canonical interpretation IS, the processof computing the extension of the ordinary predicates e�ectively computes an interpretationfor �. We denote this interpretation by IS�. It is easy to see that since IS is a model of� [ T , then IS� is a model of all of �.We �rst prove the completeness of the algorithm. Suppose there exists a clash-freecompletion S of S� such that in the evaluation of the Horn rules, we do not compute a isnot in the extension of p in IS�. Since IS� is a model of �, it follows that � 6j= p(�a).The soundness of our algorithm is a consequence of the following three claims:1. The existential entailment algorithm described in Section 3 can be extended trivially tothe case in which � is a set of ground facts, and both Q and � may contain ground factsof ordinary predicates (of any arity). Note that such ground facts do not play any rolein the propagation phase. Hence, since the termination condition of the propagationphase of our algorithm was based on U(�)-tree equivalence, it follows that if IS is acanonical interpretation, then IS [�r can be used for correctly checking satisfaction ofexistential sentences with U(�) atoms or less, even if they contain atoms of ordinarypredicates.2. In a similar fashion to the proof of Lemma 3.4 and using Observation 3.1, it can beshown that for a ground fact p(�a),� j= p(�a) , �r [ S j= p(�a) for every clash-free completion S of S�.3. Finally, we need to show that our procedure for computing the extensions of the ordi-nary predicates from a canonical interpretation IS and �r has the property that �a is inthe extension of p if and only if S [�r j= p(�a).Suppose that we derived that �a is in the extension of p from IS [ �r. In this case, p(�a)has a derivation tree d. A derivation tree has p(�a) as its root, and its child r0 is theinstantiation of a rule in r 2 �r that was used in the �nal step of deriving p(�a). Thechildren of r0 are the atoms in its antecedent, and their children are the rules usedto derive them, etc. The leaves of the tree are either ground atomic facts of ordinarypredicates in �g, or concept or role atoms that were looked up in IS. The number ofleaves in the tree is at most U(�). Given the tree, it is possible to construct one ruler1 with the following properties:D1. r1 is the result of unfolding rules in �r, and hence �r j= r1,D2. there is a mapping � from the variables of r1 to the constants in �, such that �maps the consequent of r1 to p(�a), and the atoms in the antecedent of r1 to factsin IS [ �r,D3. the number of atoms in the antecedent of r1 is at most U(�).26



Because of D2, the existential entailment algorithm would entail the antecedent of r1from IS [ �r. Because of D3, it follows that the antecedent of r1 is entailed by S [ �r.Hence, because of D1, it follows that �r [ S [ �r j= p(�a). 2Remark 4.2: An important consequence of Theorem 4.1 is that we obtain the �rst al-gorithm for answering arbitrary conjunctive queries (with existentially quanti�ed variables)from an ALCNR knowledge base. In contrast, previous algorithms only considered answer-ing membership and subsumption queries. We note that conjunctive queries are the basisunderlying database query languages such as SQL. 2Example 4.2: We illustrate the algorithm on the rules and ground facts given in Section 2.Note that in this case the predicates made-by and monopoly are ordinary predicates.r1 : made-by(X,Y) ^ no-fellow-company(Y) ) price(X,usa,high)r2 : made-by(X,Y) ^ associate(Y,Z) ^ american(Z) ^ monopoly(Y,X,usa) ) price(X,usa,high).A2 : fmade-by(a,b),monopoly(b,a,usa), international-company(b)gRecall that the terminology contains the de�nition:no-fellow-company := 8associate.: americaninternational-company := european-associate t american-associate.Figure 6 shows the trace of the application of propagation rules to the initial constraintsystem. The constraints in each node are the ones that are added to the parent constraintsystem as a result of applying the propagation rule. For clarity, we only show the constraintsthat are important for our explanation. The �rst constraint in node 1 comes from the groundfact international-company(b), and the second constraint comes from the instantiation of rule 7to the concept no-fellow-company t :no-fellow-company. In applying the propagation rules,the disjunction rule (rule 2) is �rst applied to b and the top disjunction in node 1, yieldingnodes 2 and 3. In node 2 the disjunction rule is applied again to b the second disjunctionin node 1. In node 4 we apply the existential rule to produce v2 and then the universal-quanti�cation rule to assert v2::american. In node 5 we apply the existential rule twice, onceto produce v3 and once for v4.Now we compute the extensions of the ordinary predicates in the di�erent completions.In this case �r contains the facts made-by(a,b) and monopoly(b,a,usa). In node 7, no-fellow-company(b) is satis�ed and therefore price(a,usa,high) is derivable by rule r1. In the com-pletions of nodes 8 and 6 b has an American associate, and therefore price(a,usa,high) isderivable by rule r2. 2 27



1b:(9associate.americant9associate.european)b:(8associate.:americant9associate.american)XXXXXXX������� !t2b:9associate.european���� HHHH!t 3b:9associate.american!94b:8 associate.:american!9;!87b associate v2v2:europeanv2::american 5b:9associate.american!9;!98b associate v3v3:europeanb associate v4v4:american 6b associate v1v1:americanFigure 6: The trace of the application of propagation rules to the initial constraint system.4.2 Query Containment over ALCNRThe second important usage of the existential entailment algorithm is to provide the �rstsound and complete algorithm for containment of conjunctive queries over ALCNR. Indatabase systems, algorithms for query containment play an important role in several queryoptimization techniques [32] and related problems (e.g., rewriting queries using views [21],semantic query optimization [10, 27], detecting independence of queries from updates [26]).Therefore, extending these algorithms for conjunctive queries over description logics enablesto extend optimization techniques to a setting involving description logics. In particular, [6]uses our query containment algorithm to extend algorithms for rewriting queries using viewsto views and queries expressed in description logics.Formally, a conjunctive query over an ALCNR terminology T is an expression of theform (9 �Y ) p1( �Y1) ^ : : : ^ pm( �Ym);where the pi's are either concepts or role predicates that appear in T . The tuples �Y ; �Y1; : : : ; �Ymare tuples of variables and constants, and �Y � �Y1 [ : : : [ �Ym. The distinguished variables�X = X1; : : : ;Xn of a conjunctive query are the variables that do not appear in �Y . Given aset of ground atomic facts, G, for concept and role predicates, the answer to the conjunctivequery from G [ T is any tuple of the form a1; : : : ; an, such thatG [ T j= (9 �Y ) p1( ( �Y1)) ^ : : : ^ pm( ( �Ym));where  maps Xi to ai.De�nition 4.1: Let Q1 and Q2 be two conjunctive queries over an ALCNR terminologyT with the same number of distinguished variables. The query Q1 is contained in Q2 if, for28



any set of ground facts G for the concept and role predicates in T , the set of answers for Q1from G [ T is a subset of the answers for Q2 from G [ T . 2The following theorem follows from the existential entailment algorithm by noting thatT [Q1 j= Q2 if and only if Q1 is contained Q2.Theorem 4.3: Let Q1 and Q2 be two conjunctive queries over an ALCNR terminology T ,with the same number of distinguished variables. The problem of determining whether Q1 iscontained in Q2 is decidable. 2Using existential entailment for recursive carin-ALCNR: As noted by B�urckert,7the existential entailment algorithm can be combined with constrained SLD-resolution [12]to provide a goal directed backward chaining algorithm on arbitrary (even recursive) carin-ALCNR Horn rules. This procedure will yield a refutation complete procedure for carin-ALCNR knowledge bases. That is, given a knowledge base � and a query p(�a), the algorithmwill terminate if � [ :p(�a) is not satis�able, but may not terminate otherwise. In the nextsections we consider the problem of obtaining a complete reasoning algorithm for recursivecarin knowledge bases.5 Recursive carin-ALCNRIn the previous section we showed that the reasoning problem is decidable for non recursivecarin knowledge bases. We now consider what happens when the Horn rules are recursive.Recall that the reasoning problem for recursive function-free Horn rules without a terminol-ogy (i.e., datalog) is decidable [35] (and is even polynomial in the number of ground facts inthe knowledge base).We �rst show that the reasoning problem is undecidable for recursive carin-ALCNRknowledge bases. In fact, we show that the reasoning problem becomes undecidable simplyby introducing either the constructor 8R:C or the constructor (� nR). This result isinteresting because these two constructors are generally considered to be at the core of mostdescription logics.In the next section we show that without these constructors we obtain a sublanguageof carin-ALCNR (called carin-marc) for which the reasoning problem is decidable evenwhen the Horn rules are recursive, as long as the terminology contains only concept de�-nitions and they are acyclic. In Section 7 we describe another way of restricting the Hornrules (without restricting the description logic) such that the reasoning problem remainsdecidable.The following theorem shows that if the description logic contains either the constructor8R:C or (� nR), then the reasoning problem is undecidable.7personal communication. 29



Theorem 5.1: The problem of determining whether � j= p(�a) is undecidable, when � is acarin-L knowledge base with recursive function-free Horn rules, � has an acyclic termino-logical component that contains only concept de�nitions, and L is either1. the description logic that includes only the constructor 8R:C, or2. the description logic that includes only the constructor (� nR).2 The following theorem shows that introducing arbitrary (possibly cyclic) inclusion state-ments also causes the reasoning problem to be undecidable.Theorem 5.2: The problem of determining whether � j= p(�a) is undecidable, when � is acarin-L knowledge base with recursive function-free Horn rules, the terminological compo-nent of � allows arbitrary inclusion statements and L includes either only the constructor9R:C or only the constructor (� nR). 2The proofs of both theorems, given in the appendix, are obtained by encoding the exe-cution of a Turing machine as a knowledge base of the form allowed in the theorems. Hence,we obtain a reduction from the halting problem to our decision problem.6 Decidable Subset of Recursive carin-ALCNRWe now show that in the language resulting from removing the constructors 8R:C and(� nR) and not allowing terminological cycles the reasoning problem is decidable. Speci�-cally, we consider the language carin-marc that includes the constructors u, t, (� nR),9R:C and negation on primitive concepts.8 Furthermore, carin-marc allows only conceptde�nitions in the terminological component (i.e., no inclusions or role de�nitions), and theymust be acyclic. In what follows we describe a sound and complete inference procedure forcarin-marc. Our algorithm proceeds in two steps:1. We �rst apply a set of propagation rules to an initial constraint system obtained fromthe knowledge base. The propagation rules we use are a variation on those used inSection 3. As before, the union of the completions will be equivalent to the originalknowledge base.2. Next, we evaluate the (possibly recursive) Horn rules in every completion. We showthat a fact p(�a) is entailed by the knowledge base if and only if it is entailed in each ofthe completions that we construct. In the evaluation of the Horn rules we use a specialprocedure to check entailment of a ground atom of a concept or role predicate.8Note that allowing arbitrary negation would allow us to express the constructors 8R:C and (� nR).30



6.1 The Inference Algorithm6.1.1 Building the Initial Constraint SystemThroughout the algorithm, we assume that all the concept de�nitions in � are unfolded.Given a knowledge base � whose terminology is T , the algorithm begins by constructing aninitial constraint system S� as follows. If C(a) is a ground fact in �, where C is de�ned in�T by C := D, we add a : D to S� (if C does not have a de�nition in �T , then we simplyadd a : C to S�). If R(a; b) 2 �, then we add aRb to S�. Finally, for every pair of constants(a; b) in � we add the constraint a 6 := b to S�.6.1.2 Propagation PhaseThe propagation rules we apply are shown in Figure 7. Rules 1 and 2 are the same as thoseshown in Section 3. Rule 3 is similar to rule 4 in Section 3, except that it does not necessarilycreate a new variable in the constraint system. It non-deterministically chooses either oneof the existing successors of s, or adds a new successor. Rule 4, which is a variant of rule 5in Section 3, adds to s only the minimal number of R-successors needed in order to satisfythe � constraint (as opposed to the rule in Section 3 that adds n R-successors even whens already has R-successors). Rule 5 is the choose rule that enforces every object to be aninstance of a primitive concept or of its negation.A constraint system is said to have a clash if it contains both s : A and s : :A. Asbefore, a constraint system is considered to be a completion when no propagation rule canbe applied to it. We apply the rules using the same strategy as before.Remark 6.1: One may ask at this point why we needed to design a new set of rulesrather than simply taking the subset of the rules used in Section 3 for the constructors wekept in carin-marc. The reason is that in Section 3, when rules 4 and 5 (i.e., !� and!9) create too many successors for an object, then the application of the rule !� wouldensure (by equating some of the successors) that there is no clash-free completion in whichthe � number-restriction is violated. However, since we do not have the !� rule (sincecarin-marc does not have the � constructor), we need to modify the generating rules toensure that only the minimal number of new objects is created.It should be noted that rules 3 and 4 of this section could be used in Section 3. However,since rule 3 is both non deterministic and a generating rule, it will often lead to a largernumber of completions.Finally, another important property of the propagation rules in this section is the follow-ing. When a successor variable v is generated in a constraint system, it is guaranteed thatthe size of the constraints on v are smaller than the size of the constraints on the predecessor.Therefore, the application of the propagation rules is guaranteed to terminate without theneed for an explicit termination condition. As a result, the construction of the canonicalinterpretations will also be simpler (we will not need any implicit links, because we don'thave blocked variables). 2 31



1. S !u fs : C1; s : C2g [ Sif 1. s : C1 u C2 is in S,2. s : C1 and s : C2 are not both in S.2. S !t fs : Dg [ Sif 1. s : C1 t C2 is in S,2. neither s : C1 nor s : C2 are in S,3. D = C1 or D = C2.3. S !9 fsRy; y : Cg [ fy 6 := x j x 2 sRg [ S1. s : 9R:C is in S,2. there is no t such that t is an R-successor of s in S and t : C is in S,3. y is a new variable or one of the existing R-successors of s in S.4. sR is Succ(s; R) n y.4. S !� fsRy1; : : : ; sRyn0g [ fyi 6 := yj j 1 � i; j � n0; i 6= jg [ fyi 6 := x j x 2 Succ(s; R); 1� i � n0g [ Sif 1. s : (� nR) is in S,2. s has exactly m R-successors in S, and n =m + n0,3. y1; : : : ; yn0 are new variables,4. there is no l > n, such that s : (� l R) is in S.5. S !: fs : Dg [ Sif 1. A is a primitive concept and both s : A and s : :A are not in S,2. D = A or D = :A.Figure 7: Propagation rules for recursive carin-marc. Succ(s;R) denotes the set of R-successors of s. 1c1:9associate.:americanc1 associate c2, c2:americant9associate.americanc2 associate c3, c3::americanXXXXXXX������� !t2c2:9associate.american���� HHHH!9 3c2:american���� HHHH!94c3:americanclash 5associate(c2,v1)v1 6 := c3, v1:american���� HHHH!9 8c2::americanclash 9c1 associate v3v3 6 := c2, v3::american6c2::american 7c1 associate v2v2 6 := c2, v2::americanFigure 8: The application of propagation rules on S�1. Note that in every node we showonly the facts that were added to the constraint system. Under every node we show whichpropagation rule was applied to obtain its children.32



Example 6.1: Consider the knowledge base �1 containing the following terminology:american-associate := 9associate.americanforeign-associate := 9associate.:americanallied-company := american t american-associateconglomerate := (� 2 associate)the ground facts:foreign-associate(c1), associate(c1,c2), allied-company(c2), associate(c2,c3), :american(c3).and the rules:r1 : associate(X,Y) ) sameGroup(X,Y)r2 : sameGroup(X,Z) ^ sameGroup(Z,Y) ) sameGroup(X,Y)r3 : foreign-associate(X) ^ conglomerate(X) ^ sameGroup(X,Y) ) TaxLaw(Y,USA,Domestic)r4 : american-associate(X) ^ associate(X,Y) ) TaxLaw(Y,USA,Domestic).The initial constraint system S�1 includes:c1 associate c2, c2 associate c3, c3::american, c2: americant 9associate.american, andc1:9associate.:american.Figure 8 shows the application of the propagation rules to the initial constraint system.We apply the !t rule to c2, resulting in two possible constraint systems: node 2 (in whichc2:9 associate.american is added), and node 3 (in which c2:american is added). In node 2 weapply the rule !9 to c2. The constraint c2:9 associate.american implies that c2 has at leastone �ller on the role associate that is American. There are two options. This �ller may bean existing one, i.e., c3, as in node 4, however, this causes a contradiction with an existingconstraint c3::american. The second option is that there is another �ller, v1, as in node 5.Since node 4 is contradictory, we do not consider it further. In node 5 we apply the rule!9to c1. The constraint c1:9associate.:american implies that c1 has at least one �ller on therole associate that is not American. Once again, there are two options, resulting in nodes 6and 7. Similarly, we expand node 3 by applying the !9 to c1. 26.1.3 Horn Rule Evaluation StepIn the second step of the algorithm we create a set of ground facts for every completion, andevaluate the Horn rule using a procedure described below.Given a clash-free completion S, we create a set of ground facts �S in a straightforwardway as follows. The set of predicate names in �S includes all the descriptions appearing inS and the set of ordinary predicates and roles in �. First, �S contains all of the groundfacts in �. Second, we add to �S facts corresponding to the constraints in S. Speci�cally,if v : D 2 S, where D is a description, then we add D(v) to �S. If sRt 2 S, we add R(s; t)to �S and if v 6 := u 2 S we add v 6= u to �S .33



Given a completion S and a query q(�a), we determine whether �S j= q(�a) using theconditions stated in the theorem below. Essentially, the theorem speci�es how to entaila ground atom of a concept or role predicate. Entailment of ground atoms of ordinarypredicates is done in the same fashion as in standard Horn reasoning algorithms. Ouralgorithm will return that the query q(�a) is entailed from � if and only if it is entailedfrom �S for each clash-free completion S of S�. The proof of the theorem is given in theappendix.Theorem 6.2: Let S be a clash-free completion resulting from applying the propagationrules on S�. Let �S be the the set of ground facts constructed for S.� If C(s) is an atom, where C is a concept name de�ned in �T by the description D,�S j= C(s) if and only if:{ D is primitive or a negation of a primitive concept, and D(s) 2 �S, or{ D = (� nR), and s has at least n R-successors in S, or{ D = 9R:C, and s has an R-successor t such that �S j= C(t), or{ D = C1 u C2, and �S j= C1(s) and �S j= C2(s), or{ D = C1 t C2, and �S j= C1(s) or �S j= C2(s).� If R is a role, then �S j= R(s; t), if and only if R(s; t) 2 �S,� If p is an ordinary predicate, �S j= p(�a), if and only if p(�a) 2 S or, there exists aHorn rule r 2 � of the form p1( �X1)^ : : :^ pn( �Xn)) p( �Y ) and a mapping  from thevariables of r to constants, such that  ( �Y ) = �a, and �S j=  (pi( �Xi)), for i, 1 � i � n.2Example 6.2: We illustrate the phase of evaluation of the Horn rules on two completionsshown in Figure 8. Consider the completion described in node 9. The set of ground factsconstructed for it, �9, contains the following facts that are originally in S�1 :(9associate.:american)(c1), (american t 9associate.american)(c2),associate(c1, c2), associate(c2 c3), :american(c3),and the following facts that correspond to constraints added during the propagation phase:american(c2), associate(c1, v3), :american(v3), v3 6= c2 .The facts sameGroup(c1,c2) and sameGroup(c2,c3) are entailed by r1, and therefore rule r2entails sameGroup(c1,c3). Since company c1 has two �llers on the role associate (c2 and v3),it is an instance of conglomerate. It is also given that c1 is an instance of foreign-associate,and therefore, rule r3 entails TaxLaw(c3,USA,Domestic).Consider the completion in node 6 that has the following facts in addition to those fromthe initial database: 34



(9associate.american)(c2), associate(c2,v1), american(v1), :american(c2), v1 6= c3.In this completion company c2 is an instance of american-associate, therefore, rule r4entails TaxLaw(c3,USA,Domestic). In fact, TaxLaw(c3, USA, Domestic) is entailed in allthe clash-free completions, and therefore, it is entailed by �1. 26.2 Proof of Correctness and ComplexityIn addition to Theorem 6.2, the key to proving the correctness of the algorithm is thefollowing lemma, which is an analog of Lemma 3.4. The proof of the lemma is given in theappendix. We denote by �g the set of ground facts of ordinary predicates in �.Lemma 6.3: Let S be a clash-free constraint system generated by applying a (possiblyempty) sequence of propagation rules to S�. Let S1; : : : ; Sl be the constraint systems that canbe generated from S by applying one of the propagation rules. Let q(�a) be a ground atom.Then, S [�r j= q(�a) if and only if Si [�r [�g j= q(�a) for every i, 1 � i � l. 2The soundness and completeness of our algorithm is established by the following theorem:Theorem 6.4: Let � be a carin-marc knowledge base. � j= q(�a) if and only if �S [�r [�g j= q(�a) for every S that is a clash-free completion of S�. 2Proof: Since we unfolded the concept de�nitions when creating S� it follows thatM(�) =M(S�[�r[�g). By induction on the application of the propagation rules in the �rst phaseof the algorithm, Lemma 6.3 implies that � j= q(�a) if and only if S [ �r [�g j= q(�a) forevery clash-free completion S of S�. Since �S is equivalent to S [�g, Theorem 6.2 entailsthat � j= q(�a) if and only if �S [�r j= q(�a) for every clash free completion S of S�. 26.2.1 ComplexityThe complexity of reasoning in carin-marc is given by the following theorem:Theorem 6.5: Let � be a carin-marc knowledge base. Deciding whether � j= q(�a) isco-NP-Complete in the number of ground facts in �, and polynomial in the number of Hornrules in �. If the numbers in the number restrictions in � are encoded in unary form, theentailment problem is CO-NP-Complete in the size of the terminology of �. 2Proof: We begin with the complexity in the number of Horn rules in �. The size andthe number of completions is independent of the number of Horn rules. In each completionwe can compute the least �xed point model by a bottom-up evaluation of the Horn rules,which is polynomial in the number of rules.Consider the number of ground facts in �. The number of times a propagation rule canbe applied to an object in a constraint system is polynomial in the size of the terminology,and does not depend on the number of ground facts in �. Each application of a propagation35



rule adds a constant number of constraints. Furthermore, if s is a successor of an individuala in a constraint system S, then the distance of s from a is bounded by the size of the largestconcept in the terminology. Therefore, the number of objects in a completion is linear in thenumber of ground facts in �, and hence every completion is obtained by a linear numberof applications of propagation rules. This entails that the size of each completion is linearin the number of ground facts. To show that a query q(�a) is not entailed from �, we needto �nd one completion S of S� in which q(�a) is not part of the least �xed point model of�S [�r. Computing the least �xed point model can be done in time polynomial in the sizeof the completion, and therefore, showing that � 6j= q(�a) is in NP.To prove the NP-hardness result we use a reduction from the NP-complete problem 3-SAT. We encode a 3-SAT propositional theory �p by a carin-marc knowledge base � usinga relationR(clauseNumber; positionInClause; signOfLiteral; variableNumber):For example, if fp1;:p2; p4g is the �rst clause in �p, then � will include the ground factsR(1; 1; P lus; 1), R(1; 2;Minus; 2) and R(1; 3; P lus; 4).A truth value assignment for a propositional theory is given by the concept A. The atomA(v) denotes that variable v is assigned True.In addition to the ground facts for R, � contains 8 rules (corresponding to the 8 di�erentforms of a clause) that de�ne a predicate NS. The ground atom NS(n) denotes that clausen is not satis�ed under the current variable assignment. For example, the following ruleconsiders clauses in which the �rst literal is positive and the second two are negative:R(n; 1; P lus; v1) ^ R(n; 2;Minus; v2) ^R(n; 3;Minus; v3)^ :A(v1) ^A(v2) ^A(v3)) NS(n).Finally, we have the ruleNS(n)) NSAT .NSAT is entailed only when one of the clauses is not satis�ed. It is easy to see thatif there is some satisfying assignment to the variables of �p, we can build an extension forthe concept A that includes exactly the propositions that are mapped to True. From thisextension of A, we can build a model of � in which NSAT is not satis�ed. On the otherhand, if any assignment to the variables of �p always causes one of the clauses not to besatis�ed, then � j= NSAT . Note that the size of � is linear in the size of �p.Finally, consider the size of the terminology. The hardness result follows from thecomplexity of concept unsatis�ability in ALU [33]. Given a concept C, the entailmentC(a) j= False holds if and only if C is not satis�able. As in our analysis above, if thenumbers in the number restrictions are encoded in unary form, then the size of each com-pletion is polynomial in the size of the terminology. Checking entailment of ground atomin a completion can also be done in time polynomial in the size of the terminology. Hence,the bottom-up evaluation of the rules can be done in time polynomial in the size of theterminology. Therefore, non-entailment is in NP. 236



7 carin-ALCNR with Role-Safe RulesIn this section we describe another way of obtaining a subset of carin-ALCNR for whichsound and complete inference is possible for recursive function-free rules, while still allowingall the constructors of ALCNR and arbitrary inclusion statements in the terminology. Thesubset language is obtained by restricting the Horn rules in the knowledge base to be role-safe, as we de�ne below. Role-safe rules restrict the way in which variables can appear inrole atoms in the rules. This restriction is similar in spirit to the safety condition which iswidely employed in database query languages for queries containing interpreted predicates(e.g., �, < 6=) [35]. Furthermore, many classical uses of recursion (e.g., connectivity ongraphs whose edges are represented by ordinary predicates) can be expressed by role-saferules. An ordinary predicate e is said to be a base predicate in � if e does not appear in theconsequent of any Horn rule in �.De�nition 7.1: A rule r is said to be role-safe if for every atom of the form R(x; y) inthe antecedent, where R is a role, then either x or y appear in an atom of a base predicatein the antecedent of r. 2The following theorem shows that the reasoning problem in carin-ALCNR is decidablewhen all the Horn rules in the KB are role-safe.Theorem 7.1: Let � be a carin-ALCNR knowledge base in which all Horn rules arerole-safe. The problem of determining whether � j= q(�a) is decidable. 2It should be noted that carin-ALCNR with role-safe rules is a strictly more expressivelanguage than AL-Log [14], since AL-Log only allows concept atoms in the Horn rules. Thecomplexity of reasoning with role-safe rules is co-NP-Complete in the number of ground factsin �, polynomial in the number of Horn rules in �, and doubly exponential in the size ofthe terminology of �.Proof: The inference algorithm is exactly the one we used in Section 4 for non recursivecarin-ALCNR knowledge bases, except that we use 0-tree equivalence as the terminationcondition (i.e., the same condition as in [11]), and in the Horn-rule evaluation phase, therules may be recursive.The key to the proof of soundness is to note that in the bottom-up evaluation of theHorn rules we do not make use of the implicit tuples in IS, but only of explicit tuples. To seethis, consider a mapping  from the variables of a rule r 2 �r to objects in OIS . If R(x; y)is an atom in the antecedent of r, then either x or y appears in an atom of a base predicatein the antecedent of r, and therefore, either  (x) or  (y) is an individual in S. Since thereare no arcs from individuals to blocked variables, then both  (x) and  (y) are not blockedvariables, and therefore ( (x);  (y)) is an explicit tuple in IS.Since the explicit tuples must exist in every model of S, the facts we infer for the ordinarypredicates are entailed by S. As for completeness, if we have a clash-free completion fromwhich we could not derive q(�a), then it provides an example model of � in which q(�a) is notentailed. 2 37



Example 7.1: We illustrate the algorithm with the following simple example. Considera knowledge base �2 that contains the concept C, the role R, and the ordinary binarypredicates e and p. The terminology has the single cyclic inclusion statement C v 9R:C,and we have the ground facts C(a); C(b); e(a; b) and e(b; c). Finally, we have the rules:s1 : e(x; y) ^R(x; z)) p(x; y)s2 : p(x; z) ^ p(z; y)) p(x; y).The propagation step would create the completion that includes the following constraintsin addition to those in the initial constraint system: aRv1, v1 : C, v1Rv2, v2 : C, bRu1, u1 : C,u1Ru2 and u2 : C, where v1, v2, u1 and u2 are newly created variables in the constraint system.We create a model I of the completion as follows. The domain of I is fa; b; c; v1; v2; u1; u2g.The interpretations of the concepts and roles areCI = fa; b; v1; v2; u1; u2g,RI = f(a; v1); (v1; v2); (v2; v2); (b; u1); (u1; u2); (u2; u2)g.The interpretation of e is taken directly from the ground facts in �2: eI = f(a; b); (b; c)g.Finally, the interpretation of p is constructed from the rules in �2: pI = f(a; b); (b; c); (a; c)g.Therefore, �2 entails p(a; b), p(b; c) and p(a; c). The important point is to note that theextension of R includes the tuples (v2; v2) and (u2; u2) that are not explicit in the completion,but are necessary in order to obtain a �nite model, while satisfying the inclusion C v9R:C. However, because of the fact that the rules are role-safe, these tuples are not used incomputing the extension of p. 28 ConclusionsWe described carin, a family of representation languages that combine the expressive powerof Horn rules and description logics. We addressed the issue of designing sound and completeinference procedures for carin knowledge bases. We identi�ed the core inference problem ofexistential entailment, and showed that it is central to several reasoning problems in carin.We described an existential entailment algorithm for ALCNR. As a result, we obtaineda sound and complete algorithm for reasoning in non recursive carin-ALCNR knowledgebases, and an algorithm for query containment over ALCNR. We have shown that ingeneral, the reasoning problem for recursive carin-ALCNR knowledge bases is undecidable,and identi�ed the constructors of ALCNR causing the undecidability. Finally, we haveshown two ways in which recursive carin-ALCNR knowledge bases can be restricted whileobtaining sound and complete reasoning.carin has already proved useful in two contexts. In [22] it is shown how the expressivepower of carin has been key to the development of the Information Manifold system thatcombines information from multiple autonomous and heterogeneous data sources. In par-ticular, the ability to combine relations of arbitrary arity (which are needed when modelingrelational databases) with a hierarchy of concepts expressed in a description logic terminol-ogy has proved very useful in that application. In contrast, related systems (e.g., SIMS [3],38



Razor [16]) use only description logics or only Horn rules. Furthermore, the ability to answerconjunctive queries over a description logic knowledge base, and to decide query containmentwere a key in developing the architecture of the system. Deciding containment of conjunctivequeries is the key building block in determining which data sources are relevant to a userquery [22].Another use of carin for the problem of knowledge base veri�cation is described in [25].In that paper, the knowledge base veri�cation problem is shown to be related to the querycontainment problem studied in the database literature [35]. Our query containment algo-rithm extends containment algorithms to conjunctive queries over description logic knowl-edge bases. Consequently, this algorithm enables verifying hybrid knowledge bases containingboth Horn rules and description logics. Furthermore, we have shown in [25] that our querycontainment algorithm also enables us to deal with tuple-generating dependencies. Tuplegenerating dependencies (tgd's) are logical sentences of the form9 �Xp1( �X1) ^ : : : ^ pn( �Xn)) 9 �Y q1( �Y1) ^ : : : ^ qm( �Ym):Tgd's are useful in expressing integrity constraints on rule-based knowledge bases. Veri-fying the correctness of a set of rules requires reasoning about entailment among tgd's (i.e.,deciding whether one tgd entails another). The entailment problem for tgd's is known tobe undecidable in general [36, 18]. In [25] we show that in some cases, entailment betweentgd's can be translated into query containment of conjunctive carin queries. As a result,we obtain new decidability results for the entailment problem for tgds.Related WorkSeveral other works have discussed the integration of Horn rules and description logics. Someworks (e.g., AL-log [14], TaxLog [1], LIFE [2, 30]) had the goal of using a description logicor other object-oriented component as a typing language on the variables already appearingin the rules (which could also be recursive). For example, in AL-log [14], which is mostclosely related to carin, only unary predicates from the description logic are allowed inthe Horn rules, and the variables used in atoms of concepts must appear in atoms of ordi-nary predicates as well. AL-log allows recursive Horn rules, but a weaker description logic,ALC, and it is shown in [14] that the reasoning problem is decidable in the language. Otherworks (e.g., [9, 19]) considered a more tight integration of the two formalisms. For exam-ple, KRYPTON [9] combined an assertional component (more expressive than Horn rules)with a less expressive description logic than ALCNR. The reasoning engine was modi�edby either adding resolution steps to consider the inferences sanctioned by the terminologi-cal component, or by modifying the uni�cation operation underlying the resolution engine.These approaches are either incomplete or guarantee only refutation completeness.LIFE [2] is also a language whose goal is to combine logic programming with a structureoriented component. However, the LIFE structure-oriented component is composed of  -terms that di�er from description logics in several signi�cant ways. The idea of  -terms,rooted in the functional programming paradigm, is to represent subtyping in record-like datastructures. On one hand, they are more limited than description logics and closer to feature39



logics [34], since they only allow attributes, i.e functional roles (as opposed to roles withmultiple �llers). For example, number restrictions and existential statements about role�llers that are standard in description logics are not expressible in  -terms. On the otherhand, the variables in  -terms enable to express complex coreferences constraints, which canonly be expressed in a limited fashion using the same-as constructor in description logics.9A di�erent approach to integrating rules and description logics is to add rules as an addi-tional constructor (e.g., classic [8], back [31], loom [28]). These works allowed only rulesof a restricted form: C(x)) D(x), where C and D are concepts. Furthermore, the rules aregenerally not integrated in subsumption inferences but they are just used to derive additionalknowledge about concept instances. MacGregor [29] and Yen [39] describe algorithms fordetermining rule-speci�city and classi�cation of arbitrary predicates in LOOM, which are aninstance of the existential entailment problem described here. However, since subsumptionin LOOM is undecidable, their algorithms are not complete either.Our analysis of carin focussed on the time complexity of the reasoning problem. Weshowed that for carin-marc, the complexity is co-NP Complete in the number of groundfacts. The question arises whether there exists subset of carin that are able to express allqueries in coNP. Recently, Cadoli et al. [13] investigated the expressive power of carin, andshowed that there are certain classes of second order formulas, such that even a relativelysimple subset of carin, role-safe carin-marc is able to express all queries in those classes.Future WorkIt is important to emphasize that the focus of this paper has been on the question of decid-ability of the reasoning problem in carin-ALCNR. Our work raises the important issueof how to e�ciently reason in systems based on carin. One direction to investigate isto �nd subsets of carin-ALCNR for which the resulting language is more tractable thancarin-ALCNR. A second direction is to �nd practically e�cient methods for implementingreasoning in carin.One of the possible optimizations we plan to consider is to reduce the size and numberof the completions created by the algorithm by employing a termination condition in thespirit of the one proposed in [4]. In that work, Baader et al. use a termination condition thatmodi�es the one used by [11], by not requiring a blocked variable to have the same value forthe � function as its witness, but rather have a subset of the � value of its witness. Clearly,employing this more relaxed condition reduces the number of objects in a completion. Inour context, we need to extend the condition of [4] to n-tree equivalence.We have already found two applications of carin in information integration and inveri�cation of knowledge bases. We are currently looking into applying carin as a repre-sentational tool for modeling physical devices, for describing ontologies, and for databaseapplications such as datawarehousing and schema integration.9One main reason for the limited coreference constraints in description logics is that subsumption becomesundecidable when coreference constraints are applied to roles with multiple �llers.40



9 AppendixProof of Lemma 3.4: We prove the claim for each of the propagation rules. We begin withthe non generating and deterministic rules, for which the set S is a singleton set containingthe constraint system S 0. We show that I is a model of S if and only if I is a model of S 0,and therefore the lemma holds for these rules.Trivially, every model of S 0 is a model of S because S contains a subset of the constraintsof S 0. For the other direction, let I be a model of S. There are several cases:� Rule 1: If I is a model of S and s : C1 u C2 2 S, then �I(s) 2 [C1 u C2]I, therefore,by de�nition, �I(s) 2 CI1 and �I(s) 2 CI2 . Since S 0 = S [ fs : C1; s : C2g, then I is amodel of S 0.� Rule 3: Since the propagation rule is applied, and I is a model of S, there exist s andt such that (�I(s),�I(t)) 2 RI . Since s : 8R:C 2 S, by the de�nition of the extensionof 8R:C, �I(t) 2 CI , and therefore, since S 0 = S [ ft : Cg, I is a model of S 0.� Rule 7: In this case, S 0 = S [ s : C. However, 8x:x : C 2 S, therefore, I is a model ofS0.We now consider the other propagation rules. Consider rule 2, and let S1 and S2 be thetwo constraint systems that can be obtained by applying the rule to S. The set of modelsof S is the union of the models of S1 and S2, and therefore the claim of the lemma holds.Consider rule 4, and let S 0 be the single constraint system resulting from applying therule to S. Denote by y the variable that is added to the constraint system S while applyingthe rule to the variable s. Note that any model I 0 of S 0 is obtained from a model I of S byextending the mapping �I to the new variable y. Let I be a model of S. For one directionof the lemma, it su�ces to show that I 0 j= Q for every model I 0 of S 0 that is obtained from Iby extending �I to y. Since I j= Q, there is a mapping � from the variables and constants ofQ to OI that maps every literal in one of the Qi's to a tuple in extensions of the relations inI. The same mapping � will be valid in I 0 as well, because the set of tuples in the extensionsis the same as in I. Therefore I 0 j= Q.For the other direction, suppose that S 0 j= Q, and we show that S j= Q. Let I be a modelof S. Since I is a model of S, there must be some object o 2 OI , such that (�I(s); o) 2 RI ,and o 2 CI . Consider the interpretation I 0 obtained by extending I by �I 0(y) = o. Clearly,I 0 is a model of S 0. Therefore, I j= Q, because I 0 j= Q and the models I and I 0 have identicalrelation extensions.The proof for rule 5 is similar to that of rule 4. As before, every model of S 0 is obtainedfrom a model of S by extending �I to y1; : : : ; yn. If I is a model of S and I 0 is a model ofS0 that is obtained from I, then, in the same way shown for rule 4, if I j= Q then I 0 j= Q.For the other direction, suppose S 0 j= Q, and we show that S j= Q. Let I be a model ofS, and therefore there are distinct objects o1; : : : ; on in OI , such that (�I(s); oi) 2 RI , for i,1 � i � n. Consider the interpretation I 0 obtained by extending I by �I 0(yi) = oi. I 0 is amodel of S 0, and therefore, as before I j= Q. 41



Finally, consider rule 6, and suppose the constraint system S 0 was obtained from S byreplacing y by t. In this case, every model I of S can be obtained from a model I 0 of S 0 byextending �I 0 to y. For the �rst direction, suppose S 0 j= Q for every S 2 S, and let I bea model of S. We need to show that I j= Q. Since I is obtained from extending a modelI 0 of some S 2 S, the same variable mapping from the variables of Q to OI 0 that showsthat I 0 j= Q will show that I j= Q. For the second direction, suppose S j= Q, and let I 0 bea model of S 0 2 S. We need to show that I 0 j= Q. Let I be the model of S obtained byextending �I 0 by setting �I(y) to �I 0(t). It can be checked that I is indeed a model of S,because any constraint involving y in S appears in S 0 as constraints where y is replaced byt. Therefore, the same variable mapping that shows I j= Q will show that I 0 j= Q. 2The proof of Theorem 5.1 is easier to illustrate after the proof of Theorem 5.2.Proof of Theorem 5.2: We begin with the case in which the description logic containsonly the constructor 9R:C. We reduce the halting problem of a Turing machine TM to theentailment problem. We assume without loss of generality that TM begins with the emptystring on its tape. The initial state of TM is Q0 and its halting state is Qh. An execution of aTuring machine can be described by a set of con�gurations, each describing the tape contents,head position and state of the machine at a given time point. We encode the con�gurations ofTM by a carin knowledge base �. Con�guration times and tape positions are representedby instances of concept integer in our encoding. The role succ(x; y) is intended to representthat y is the successor integer to x. The knowledge base � includes the following statementsabout integers:integer(1),integer v 9succ:integer.The relation lt(x; y) is intended to represent that x is less than y, and is de�ned by thefollowing recursive rules in �:succ(x; y)) lt(x; y).succ(x; z) ^ lt(z; y)) lt(x; y).The relation state(t; q) is intended to represent that the machine is in state q at time t.The relation headPos(t; p) is intended to represent that the machine's head is at position pon the input tape at time t, and the relation tape(t; p; s) is intended to represent that in timet, the tape has the symbol s in position p. The following ground facts describe the initialstate of the machine:state(1; Q0), headPos(1; 1),integer(t)) tape(1; t; ""):Next we describe the rules corresponding to the transitions of the Turing machine TM .The rules for transitions di�er slightly depending on whether the head is moved to the leftor to the right, so below we describe the rules for the transition �(Q;A) = (Q0; A0;)), i.e.,when the machine is in state Q and reading the symbol A, the machine writes the symbolA0 on the tape, moves one place to the right and goes into state Q0.42



The rules need to describe: (1) the change of state, (2) change of head position, and (3)changes to the tape. The rule for change of state is the following:r1 : integer(c) ^ integer(c1) ^ succ(c; c1) ^ state(c;Q)^ headPos(c; p) ^ tape(c; p;A))state(c1; Q0).The rule for changing the head position is:r2 : integer(c) ^ integer(c1) ^ succ(c; c1)^ state(c;Q)^ headPos(c; p) ^ succ(p; p1)^tape(c; p;A)) headPos(c1; p1).The rule for changing the contents of the tape is:r3 : integer(c) ^ integer(c1) ^ succ(c; c1)^ state(c;Q)^ headPos(c; p) ^ tape(c; p;A))tape(c1; p;A0).The following rules are needed to state what did not change on the tape: (the �rst rule takescare of the symbols to the right of the head and the second takes care of those to its left).r4 : integer(c) ^ integer(c1) ^ succ(c; c1)^ state(c;Q)^ headPos(c; p) ^ tape(c; p;A)^lt(p; y) ^ tape(c; y; x)) tape(c1; y; x).r5 : integer(c) ^ integer(c1) ^ succ(c; c1)^ state(c;Q)^ headPos(c; p) ^ tape(c; p;A)^lt(y; p) ^ tape(c; y; x)) tape(c1; y; x).Finally, the following rule de�nes a predicate query:r6 : integer(c1) ^ state(c1; Qh) ^ lt(1; c1)) query.The proof of Theorem 5.2 follows from the following claim:Claim: The machine TM halts on the empty string if and only if � j= query. 2Proof: We �rst de�ne the intended model,M , of �. The domain ofM includes the integers,the states of TM , and symbols in the alphabet of TM . The extension of integer includesexactly all the integers greater or equal to 1, and the extension of succ is (i; i+1), for everyi � 1. The extensions of state, headPos and tape are the minimal model of � that includesthe extension of integer and succ, and in which (1; Q0) 2 stateM and (1; 1) 2 headPosM .Note that this model is unique.It is easy to prove by induction that M describes exactly the execution of TM , i.e.,� TM is in state q at time i if and only if (i; q) 2 stateM,� The head of TM is in position p at time i if and only if (i; p) 2 headPosM , and� The tape contains the symbol a in position p at time i if and only if (i; p; a) 2 tapeM .43



We begin with the if direction. If � j= query, there is an integer j, for which the ruler6 is satis�ed. At time j the machine will be in the halting state. Therefore, we have shownthat if � j= query then TM halts on the empty string.Consider the only-if direction. Assume that the machine TM halts, and let M1 be amodel of �. We need to show that M1 j= query. We de�ne a mapping  from the integersto the domain of M1, OM1 . We de�ne  (1) = 1M1 . We de�ne the mapping for the otherintegers inductively. Since M1 is a model of � (and therefore of the inclusion statement),there exists at least one element s in the domain of M1, such that (1M1; s) 2 succM1. Wechoose one such s arbitrarily and de�ne  (2) = s. Similarly, we de�ne the mapping forthe integers greater than 2. Note that it is possible that  (i) =  (j) for some i 6= j. Thefollowing claims follow by induction on i:� If TM is in state Q at time i, then ( (i); QM1) 2 stateM1,� If the head of TM is in position p at time i, then ( (i);  (p)) 2 headPosM1 ,� If the tape contains the symbol A in position p at time i, then ( (i);  (p); AM1) 2tapeM1.This induction claim holds for i = 1 because of the facts in � that describe the initialstate. The inductive step follows by examining the rule corresponding to the transition thatTM takes in time i, and noting that the induction hypothesis guarantees that the antecedentof the rule is satis�ed. Note thatM1 does not necessarily encode the execution of the machineprecisely, but contains the tuples that describe the execution. Consequently, since TM haltsafter N steps, query will follow by the substitution x!  (N) in rule r6.Consider the second case of the theorem, i.e., the case in which the description logiccontains the constructor (� nR). In this case, in our construction of � we replace theinclusion integer v 9succ:integer by the inclusion > v (� 1 succ). In the proof, thenew inclusion guarantees that we can construct the mapping  for every integer (becauseevery object has a successor). In order for the intended model to satisfy the inclusion> v (� 1 succ) for objects that are not instances of integer, we add to the model a newobject fin, such that (fin; fin) is in the extension of succ, and (o; fin) is also in the extensionof succ for every object o which is not in the extension of integer. The rest of the proof issimilar to the previous case. 2Proof of Theorem 5.1: Consider the case in which L has only the constructor (� nR).We de�ne �1 which is a slight modi�cation of � of the previous proof as follows. Therole predicate integer in � is now an ordinary predicate in �1, and �1 does not have anyinclusion statements. Instead of the inclusion statements, �1 contains the following Hornrules:s1 : integer(x) ^ succ(x; y)) integer(y)s2 : integer(x) ^ (� 0 succ)(x)) query.The �rst direction of the proof is the same as before, using the intended model M for�1. Note that the second atom in the antecedent of s2 is not satis�ed in M . For the other44



direction, consider a modelM1 of �1. There are two cases. If we can construct the mapping from the integers to OM1 as before (i.e., there is an in�nite sequence of integers), the sameproof holds, and therefore,M1 j= query. If not, then there is some integer n, such that thereis no tuple of the form ( (n); j) in succM1 and  (n) 2 integerM1. Therefore, since M1 is amodel of s2, it must be the case that M1 j= query.Consider the case in which L contains only the constructor 8R:C. We de�ne �2 bymodifying �1 as follows. Instead of the rule s2 we add the following rule:s3 : integer(x) ^ (8 succ:B)(x)) query.where B is a new concept predicate. In the proof, the intended model M of �2 will havethe empty extension for B. The proof of the �rst direction follows as before, because theantecedent of s3 is never satis�ed inM . For the other direction, consider a modelM1 of �2. IfM1 is a model in which there is some element o 2 integerM1 such that o 2 (8 succ:B)M1, thenM1 j= query because of s3. If not, then every element o 2 integerM1 must have a successor,i.e., there must exist an o1 such that (o; o1) 2 succM1 (otherwise, o 2 (8 succ:B)M1). Hence,we can build the mapping  as in the previous proofs, and show that M1 j= query. 2Proof of Theorem 6.2: Let S be a clash-free completion of S� and let �S be the set ofground facts constructed for S. Recall that �r denotes the set of Horn rules in �. We de�nea canonical model MS for �S [ �r. The domain of MS includes all the constants in �S,and for each constant sMS = s. The extensions of the relations are de�ned as follows. If Ais a primitive concept, then s 2 AMS if and only if A(s) 2 �S. For a role R, (s; t) 2 RMSif and only if R(s; t) 2 �S. The extensions of the complex concepts are determined by theequations in Section 2.1. The extension of each of the ordinary predicates inMS is determinedas follows. We begin with the ground facts in S�, i.e., if e(�a) 2 �S, then �a 2 eMS . Next, wecompute the least �xed point model of the ordinary predicates that satis�es the Horn rules,and contains the extensions of the role and concept predicates as de�ned above. This modelcan be computed by a bottom-up evaluation of the Horn rules. By induction on the size ofthe descriptions appearing in concept atoms in �S, and because S is a completion, it can beshown that MS is a model of �S.We begin the proof with the case of concept atoms, and consider the di�erent forms ofconcepts. In the proof, MS acts as a counterexample model for the only-if direction.� Consider an atom of the form A(s), where A is a primitive concept. If A(s) 2 �S,then clearly �S j= A(s). If A(s) 62 �S, then MS is a model of �S in which A(s) is notsatis�ed, and hence �S 6j= A(s). The same argument holds for an atom of the form:A(s), where A is a primitive concept.� Consider an atom of the form (� nR)(s). If s has at least n R-successors in S,then, �S j= (� nR)(s). This follows because all R-successors of a given object in aconstraint system are separated from each other (note that this property holds in theinitial constraint system and is conserved by the application of rules 3 and 4). If s doesnot have n R-successors in S, then MS is again a counterexample model that showsthat �S 6j= (� nR)(s). 45



� Consider an atom of the form (9R:C)(s). If s has an R-successor t 2 S, such that�S j= C(t), then clearly �S j= (9R:C)(s), because R(s; t) 2 �S. As before, if there isno such t, then MS is a counterexample model to the entailment.� For an atom of the form (C1 u C2)(s), it follows trivially that it is entailed by �S ifand only if �S j= C1(s) and �S j= C2(s).� For an atom of the form (C1 t C2)(s), it follows trivially that it is entailed by �S if�S j= C1(s) or �S j= C2(s). If neither entailments hold, thenMS is a counter exampleto both of them, and therefore, MS 6j= (C1 t C2)(s).For role atoms, if R(s; t) 2 �S, then �S j= R(s; t). If not, then MS is a counter examplemodel.For atoms of ordinary predicates, the atoms that can be entailed by the condition inthe theorem are exactly those that would be computed in the least �xed point model andtherefore satis�ed inMS . Every model of �S [�r that agrees with MS on the extensions ofconcept and role predicates must satisfy at least ground atoms in the minimal �xed-pointmodel. Hence, if a ground atom is not part of the least �xed pointed model, then it is notentailed by �S. 2Proof of Lemma 6.3: In the proof we will consider the relationship between models ofS and those of S1; : : : ; Sl. Note that given a model M of S, it is always possible to extendM to a model M 0 of S [ �r [ �g. That is, M and M 0 are identical on the extensions ofconcepts and roles, and �M 0 is an extension of �M . Furthermore, we can consider the uniqueleast �xpoint model of S [�r[�g. We denote the set of models of S byM(S). In the proofwe consider one case for each propagation rule.Rule 1: In this case, l = 1 and S1 = S [ fs : C1; s : C2g, where s is the constant onwhich the rule was applied. It su�ces to show that M(S) = M(S1). Clearly, since S � S1,M(S) � M(S1). Let M be a model of S. Since M j= s : C1 u C2, then M j= s : C1 andM j= s : C2. Therefore M 2M(S1), and hence M(S) =M(S1).Rules 2 and 5: In these cases, l = 2, and the claim follows from the observation thatM(S) =M(S1) [M(S2).Rule 3: Suppose s has m R-successors in S, v1; : : : ; vm. In this case, l is m + 1. For i,1 � i � m, Si = S [ fvi : Cg, and Sm+1 = S [ fsRv; v : Cg, where v is a new variable.Assume S[�r[�g j= q(�a), and letM be a model of Si[�r[�g for some i, 1 � i � m+1.Since Si � S, it follows that M is a model of S [�r [�g, and therefore M j= q(�a).Assume Si[�r[�g j= q(�a) for all i, 1 � i � m+1, and letM be a model of S[�r[�g.We need to show that M j= q(�a). Since (9R:C)(s) 2 S there exists some o 2 OM such that(sM ; o) 2 RM , and o 2 CM . There are two possible cases. In the �rst case, there exists ani, 1 � i � m, such that vMi 2 CM . In that case, M is a model of Si [ �r, and therefore amodel of q(�a). In the second case, vMi 62 CM for all i, 1 � i � m. In this case, we can de�nea modelM 0 for Sm+1 [�r [�g as follows. The models M and M 0 di�er only by extending�M to v by setting �M 0(v) = o. Since the only siblings of v are v1; : : : ; vm, all the inequalities46
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