
Veri�cation of Knowledge Bases based onContainment CheckingAlon Y. Levy�Dept. of Computer Science and EngineeringUniversity of WashingtonSeattle, Washington, 98195alon@cs.washington.edu
Marie-Christine RoussetDept. of Computer Science (L.R.I)C.N.R.S & University of Paris SudBuilding 490, 91405 Orsay Cedex, Francemcr@lri.lri.frAbstractBuilding complex knowledge based applications requires encoding largeamounts of domain knowledge. After acquiring knowledge from domain ex-perts, much of the e�ort in building a knowledge base goes into verifyingthat the knowledge is encoded correctly. A knowledge base is veri�ed ifit can be shown that certain constraints always hold between the inputsand the outputs. We consider the knowledge base veri�cation problem forHorn rule knowledge bases and for three kinds of constraints: I/O con-sistency constraints, I/O dependency constraints and Input completenessconstraints. For the �rst two cases, we establish tight complexity resultson the problem, and show in what cases it is decidable. In the third case,we show that the problem is, in general, undecidable, and we identify twodecidable cases. In our analysis we show how the properties of the problemvary depending on the presence of recursion in the Horn rules, the presenceof the interpreted predicates =, �, < and 6=, and the presence of negationin the antecedents of the rules. Our approach to the veri�cation problem isbased on showing a close relationship to the problem of query containment,studied in the database literature. This connection also provides novel al-gorithms for the knowledge base veri�cation problem. Finally, we providethe �rst algorithm for verifying hybrid knowledge bases that combine theexpressive power of Horn rules and the description logic ALCNR.Keywords: knowledge base veri�cation, description logics, Horn rules, database theory,query containment, hybrid languages.�The work was done while this author was at AT&T Laboratories, Florham Park, New Jersey.1

1 IntroductionBuilding complex knowledge based applications requires modeling and representing largeamounts of knowledge. It is crucial to verify that the resulting knowledge base (KB) is correctand complete with respect to the actual knowledge that it is intended to model. Naturally,notions of correctness and completeness of a KB are impossible to capture completely by aformal de�nition. However, when the knowledge base is represented in a declarative logicalformalism, it is possible to declaratively state various classes of constraints. This givesrise to the problem of automatically verifying these constraints, called the knowledge baseveri�cation, validation and testing problem (VVT). Informally, a knowledge base accepts a setof inputs (e.g., a set of ground facts in a Horn rule knowledge base). The inference mechanismof the knowledge base computes the outputs, i.e., the set of facts that can be inferred fromthe inputs and the content of the knowledge base. Given this view of the operation of aknowledge base, several classes of constraints can arise. For example, constraints can describerestrictions on legal inputs to or legal outputs from the knowledge base. Alternatively,constraints can describe dependencies between inputs and outputs. The problem of verifyingthe constraints varies depending on the representation language used in the knowledge baseand on the form in which the constraints are speci�ed.In this paper we consider the VVT problem within a uni�ed logical framework. Weconsider three classes of constraints, and therefore three instances of the VVT problem:1. I/O Consistency: these constraints specify legal inputs and outputs for the knowl-edge base. In this case, we want to verify that whenever the inputs to the knowledgebase are legal, then the outputs will be legal as well. This class of constraints hasreceived the most attention in the VVT literature.2. I/O dependencies: these constraints specify dependencies between the contents ofthe input and the corresponding outputs. In this case, we want to verify that thesedependencies hold for any legal input to the knowledge base.3. Input completeness: this class represents an especially important instance of theI/O consistency problem. In this class we specify when an input is legal by providingconstraints on its completeness. That is, a constraint states that the presence of onefact in the input must imply the presence of another fact in the same input. This classof constraints is especially useful for specifying test cases. Testing a knowledge basew.r.t. a set of test cases is a widespread method for verifying its correctness.We consider the VVT problem for knowledge bases speci�ed as function-free Horn rules.Horn rule languages have formed the basis for many Arti�cial Intelligence applications aswell as the basis for deductive and active database models. Function-free Horn rules area natural representation language in many application domains, and are attractive becausethey are a tractable subset of �rst order logic for which several practically e�cient inferenceprocedures have been developed. 2

We provide novel algorithms and complexity results for the three instances of the VVTproblem mentioned above.The main tool we use to obtain our results is the connection that we establish betweenthe VVT problem and the problem of query containment, that has been extensively studiedin the database literature (e.g., [7, 1, 28, 16, 29, 36, 8, 32, 21, 22]). We show that viewing theVVT problem from the perspective of query containment provides a uniform view of the VVTproblem which covers the di�erent cases mentioned above. Speci�cally, our contributions arethe following:1. We show that for function-free Horn rule KBs, the I/O consistency and I/O depen-dency problems can be reformulated in terms of query containment. This connectionenables us to provide the �rst unifying characterization of the I/O consistency andI/O dependency problems. It also provides a novel application of query containmentalgorithms.2. As a result of the above connection, we obtain fundamental results on the complexityof the VVT problems, as well as novel algorithms for its solution. Our results considerthe cases in which the function-free Horn rules may be recursive, may contain theinterpreted predicates =, �, < and 6=, and may have some limited forms of negation inthe antecedents. Broadly speaking, our results show that when the Horn rules are notrecursive, the VVT problems are decidable, and the results provide tight complexitybounds on the problem. We also show how the complexity depends on the exact formof the Horn rules. When the Horn rules are recursive, the VVT problem is undecidable.In contrast, previous work (e.g., [13, 25, 2]) provided complexity results for particularalgorithms (as opposed to complexity of the problem itself). Furthermore, previoustreatments were limited to the I/O consistency problem, and only for some cases ofnon recursive Horn rules.3. We provide the �rst sound and complete algorithm for verifying hybrid knowledgebases, combining the expressive powers of function-free Horn rules and the descriptionlogic ALCNR [3, 6] (this hybrid language, carin, is described in [20, 19]). Descriptionlogics are useful in this context because they are especially designed to model andexpress constraints on domains with a rich hierarchical structure. Previous work [17,26] provided only incomplete algorithms for verifying such knowledge bases.4. Finally, we consider the I/O completeness problem, and show that it is related to theproblem of inference of tuple-generating dependencies (tgd's) [34]. This relationshipshows that in general, the VVT problem in the presence of I/O completeness constraintsis undecidable. We identify the class of separable tgd's, and show that for that classit is possible to translate the tgd inference problem to the query containment problemfor queries over hybrid knowledge bases. As a result, we obtain (1) a new case in whichthe VVT problem is decidable in the presence of I/O completeness constraints, and(2) a new case in which the inference problem of tgd's is decidable.3

The paper is organized as follows. Sections 2 and 3 provide the basic de�nitions of theproblem we consider. Section 4 establishes the relationship between the VVT and the querycontainment problems, and Section 5 describes the novel complexity results concerning theI/O consistency and I/O dependency problems. Section 6 introduces hybrid knowledge bases,and extends our results to this case. Section 7 considers the VVT problem in the presenceof input completeness constraints, and its relationship to the problem of inferring tgd's. Insection 8, our work is compared to related work and some perspectives for future work arepresented.2 PreliminariesA knowledge base is intended to model a space of problems and their solutions. An inputto a knowledge base is a set of facts which represents a particular problem instance thatcan be provided by a user. The corresponding output is the set of facts that are entailedby the union of the knowledge base and the given input. It represents the solution that theknowledge base provides for that problem instance.Informally speaking, we say that a knowledge base is veri�ed if, for any set of input facts,the input facts together with the corresponding outputs facts satisfy a set of constraints thatare known to hold on the domain. We �rst describe the form of knowledge bases we considerin this paper.We consider knowledge bases that include a set of function-free Horn rules, i.e., logicalsentences of the form: p1(�X1) ^ : : : ^ pn(�Xn)) q(�Y);where �X1; : : : ; �Xn; �Y are tuples of variables or constants. We require that the rules be safe,i.e., a variable that appears in �Y must also appear in �X1[: : :[�Xn. We distinguish the set ofbase predicates as those predicates that do not appear in the consequents of the Horn rules.Recursive rules: Given a set of rules R, we can de�ne a dependency graph, whose nodesare the predicates appearing in R. In the graph, we insert an arc from the node of predicateQ to the node of predicate P if Q appears in the antecedent of a rule whose consequentpredicate is P . The rules are said to be recursive if there is a cycle in the dependency graph.When the rules are not recursive, we can unfold them. That is, obtain a logically equiv-alent set of rules such that the only predicates appearing in the antecedents of the rules arebase predicates. It should be noted that the process of unfolding can result in an exponentialnumber of rules. However, the exponent is only in the depth of the set of rules (as opposedto being exponential in the number of rules).In our discussion we consider two extensions of Horn rules:Negation on base predicates: in this case, some atoms in the antecedents are negated.We require:� that the predicate of a negated atom be a base predicate, and4

� that all the variables appearing in a negated atom appear elsewhere in a positive atomin the antecedent.Interpreted predicates: in this case the predicates �, <, = and 6=, may also occur inthe antecedent of the rules. These predicates are called interpreted predicates. We requirethat the variables appearing in atoms of interpreted predicates also appear elsewhere inthe antecedent in a positive atom of a non interpreted predicate. We assume that thesepredicates have the obvious interpretations.All of these extensions will a�ect the complexity results and the corresponding algorithms.In our discussion, we often refer to the set of rules that are relevant to a given predicate:De�nition 1: Given a set of Horn rules R and a predicate P appearing in R, the set ofrules relevant to P in R, denoted by Rules(P) is the minimal subset of R that satisfy thefollowing conditions:1. If P is the predicate in the consequent of the rule r, then r 2 Rules(P)2. If the predicate Q appears in a rule r 2 Rules(P), then any rule whose consequent hasQ is also in Rules(P).The set of rules relevant to a rule r is de�ned to be the set of rules relevant to the predicatein the consequent of r. 2Inputs and outputs: An input (i.e., problem instance) is speci�ed by ground atomic factsG for some of the base predicates. The output of a set of rules R, w.r.t. an input G includesthe set of ground facts g such that G[R entails g. We de�ne the entailment relation below.Semantics: The semantics of our knowledge bases is given by interpretations. An inter-pretation I of a knowledge base � contains a non empty domain OI . It assigns an n-aryrelation P I over the domain OI to every n-ary predicate P 2 �, and an element aI 2 OI toevery constant a 2 �. We make the unique-names assumption, i.e., if a 6= b, then aI 6= bI .An interpretation I is a model of a Horn rule r if, whenever � is a mapping from thevariables of r to the domain OI , such that �(�Xi) 2 P Ii for each positive atom Pi(�Xi) in theantecedent of r, and �(�Xi) 62 P Ii for each negative atom :Pi(�Xi) in the antecedent of r, then�(�Y) 2 qI, where q(�Y) is the consequent of r.An interpretation I is a model of a set of rules R if it is a model of every rule r 2 R.Given a set of rules R and an input set of ground facts G, an atom Q(�a) is entailed byR [G (denoted R [G j= Q(�a)) if and only if �aI 2 QI for every interpretation I that is amodel of R and G.Given an interpretation for the constants in R [G, there is a unique model Imin that isthe intersection of all models of R and G. It should be noted that under our de�nition,R [G j= Q(�a) if and only if Q(�a) is satis�ed in Imin. Furthermore, Imin can be obtainedin a constructive way by successive applications of the Horn rules, starting from the ground5

facts in the knowledge base, until we cannot derive any new facts. Imin is called the minimal�xpoint model of R [G.The notion of entailment of an atom from R[G naturally extends to any sentence C of�rst-order logic.3 The VVT ProblemIn its most general form, the VVT problem is to decide whether a set of constraints, rep-resented by a logical sentence, is satis�ed for every input to the knowledge base. Formally,this can be stated as follows.De�nition 2: Let R be a set of Horn rules, and let C be a sentence in �rst-order logic.The rules R are veri�ed w.r.t C i� for any set of input facts G, R [G j= C. 2In general, when the constraint C may be an arbitrary �rst-order logic sentence, it followsfrom the undecidability of entailment in �rst-order logic, that the VVT problem is alsoundecidable. The purpose of this paper is to investigate several classes of constraints C thatare useful in practice and for which we show that the veri�cation problem is decidable. Inwhat follows, we describe the cases that we consider, and relate them to the general casegiven by De�nition 2.3.1 I/O Consistency ConstraintsIn the �rst class of constraints, we specify constraints on legal inputs and outputs. Aknowledge base is considered to be veri�ed if whenever the inputs are legal, then the outputsare also legal. This is the class of constraints that has received most attention in previouswork in the knowledge engineering community.Formally, consistency constraints on legal inputs and outputs are speci�ed by Horn rules.These rules, which may be considered part of the knowledge base, de�ne semantic incon-sistency on inputs and outputs by two special predicates of arity 0, Pin and Pout. A set ofinput facts G is considered to be a legal input if R [G 6j= Pin. Similarly, the correspondingoutput of R[G is said to be legal if R [G 6j= Pout.The VVT problem w.r.t. I/O consistency constraints is de�ned as follows.De�nition 3: Let R be a set of Horn rules containing the predicates Pin and Pout describingconstraints on legal inputs and outputs, respectively. The rules R are said to be veri�ed w.r.t.Pin and Pout i� for any set of input facts G for which R [G 6j= Pin, then R[G 6j= Pout. 2This I/O consistency VVT problem corresponds to the instance of De�nition 2, wherethe sentence C is Pout) Pin.It should be noted that the veri�cation problem is not equivalent to the unsatis�abilityof the logical sentence R ^ Pout ^ :Pin. The sentence R ^ Pout ^ :Pin is satis�able if there6

is some model that satis�es each rule in R and Pout and :Pin. However, the rules are notveri�ed only if there is a minimal �xpoint model of R ^ Pout ^ :Pin. In cases where all therules are not recursive and unfolded, the veri�cation problem can be formulated as a problemof logical entailment. In fact, the results we present in the subsequent sections can also beviewed as providing the complexity of these specialized forms of entailment.De�nition 3 di�ers slightly from related de�nitions proposed in the literature (e.g., [13,25, 14, 23]). The de�nition in those works did not distinguish between the predicates Pin andPout, and used a single bad predicate for de�ning illegal inputs and outputs. As we discussin Section 8, previous de�nitions can be easily reformulated in our framework. Furthermore,our formulation makes the relationship with the query containment problem more explicit.Example 1: We use the following illustrative example throughout the paper. Consider adomain of approving curricula for college students. The university has two disjoint types ofstudents, engineering and humanities students, whose instances are described by the unarypredicates EngStud and HumStud. Courses are either basic or advanced, described by thepredicates Basic and Adv, and they are either engineering courses or humanities courses,described by EngCourse and HumCourse. Inputs describe which courses the student wantsto take, and which courses the student has already taken. The atomWant(s; c) denotes thatstudent s wants to take course c during the current year, and Prev(s; c) denotes that s hasalready taken c in a previous year. The output is the set of courses that the student willtake. The atom Take(s; c) denotes that s will take course c. The atom PrereqOf(c1; c2)denotes that c2 is a prerequisite course for c1. The atom Y ear(s; n) denotes that the students is registered in the year n, and Mandatory(c; n) denotes that the course c is mandatoryfor the year n. The following rules describe our domain.r1 : Want(s; c) ^Qualifies(s; c)) Take(s; c)r2 : PrereqOf(c1; c2) ^ Prev(s; c2)) Qualifies(s; c1)r3 : Y ear(s; n) ^Mandatory(c; n)) Take(s; c)Rule r1 says that students can take a course they want if they are quali�ed for it. Ruler2 says that students are quali�ed for a course if they took one of its prerequisite courses.Finally, rule r3 guarantees that students will take the courses that are mandatory for theiryear.The following is the output constraint rule stating that humanities students cannot takeadvanced engineering courses:r4 : HumStud(s) ^ Adv(c) ^ EngCourse(c) ^ Take(s; c)) Pout.The following two rules describe the input constraints specifying that engineering studentsare disjoint from humanities students, and that students do not want to take courses theyhave already taken.r5 : EngStud(s) ^HumStud(s)) Pinr6 : Want(s; c) ^ Prev(s; c)) Pin 7

Our knowledge base is not veri�ed, because we can have a legal input (w.r.t the inputconstraints that we consider), for which we can derive a incorrect output. Speci�cally,consider the following legal input:fWant(S1; C2); HumStud(S1); Adv(C2); P rev(S1; C1); P rereqOf(C2; C1); EngCourse(C2)gThe student S1 wants to take the advanced engineering course C2. S1 quali�es for thecourse by having taken the prerequisite C1. In this case, the knowledge base would entailTake(S1; C2), which entails Pout, i.e., the output is incorrect.The knowledge base designer can correct the problem by either modifying the knowledgebase (e.g., re�ning the rule r2), or by adding an input constraint, for example, the one statingthat humanities students are never interested in advanced engineering courses. 23.2 I/O Dependency ConstraintsA second class of constraints, which is not expressible by I/O consistency constraints, includesconstraints expressing dependencies which are known to exist between legal inputs and theircorresponding outputs. The following example illustrates such constraints.Example 2: Suppose we want to express the constraint on the domain of our examplethat students who are in their �rst two years and who have previously taken one advancedcourse must take at least one basic course. Formally we could state that constraint with thefollowing logical formula:8s[9c(Student(s) ^ Prev(s; c) ^ Adv(c) ^ Y ear(s; n) ^ n � 2)) 9c(Basic(c) ^ Take(s; c))]In our framework, we formulate such a constraint by introducing two special predicatesIn and Out, de�ning the left hand side and the right hand side of the above implication,respectively. The two predicates can be de�ned by the following rules:Student(s) ^ Prev(s; c) ^ Adv(c) ^ Y ear(s; n) ^ n � 2) In(s)Basic(c) ^ Take(s; c)) Out(s)The I/O dependency constraint holds if the following implication holds for every set ofinputs: 8s(In(s)) Out(s)):2 I/O dependency constraints have not been considered in previous work on the VVT prob-lem. On the other hand, in the program veri�cation literature (e.g. [10]), such formulationsare standard. That is, they attempt to check whether for any input satisfying some pre-conditions, the outputs of the program satisfy certain postconditions. The de�nition of theVVT problem w.r.t. I/O dependency constraint is similar in spirit.8

Formally, we assume that the I/O dependency constraints are speci�ed by a set of Hornrules de�ning a set of pairs of predicates (In1; Out1); : : : ; (Inl; Outl). For every i, the predi-cates Ini and Outi have the same arity. Intuitively, the constraints specify that for any inputand any tuple �a that is in the extension of Ini, the tuple �a must also be in the extension ofOuti.The VVT problem w.r.t. I/O dependency constraints is de�ned as follows.De�nition 4: Let R be a set of Horn rules which includes rules de�ning the pairs ofpredicates (In1; Out1); : : : ; (Inl; Outl) describing I/O dependency constraints. The rules Rare said to be veri�ed w.r.t. the I/O dependency constraints i�, for each i 2 [1 : : : l], and forany set of input facts G, if R [G j= Ini(�a), then R [G j= Outi(�a). 2This I/O dependency VVT problem corresponds to the instance of De�nition 2, wherethe sentence C is l̂i=18 �Xi(Ini(�Xi)) Outi(�Xi)):It should be noted that using a similar formalization, we can specify O/I dependencyconstraints, i.e., constraints expressing dependencies of the inputs based on the outputs.3.3 Input Completeness ConstraintsIn the �rst class of I/O consistency constraints we speci�ed the set of legal inputs as those forwhich the predicate Pin is not inferred. The de�nition of the predicate Pin was given by a setof Horn rules. The class of input completeness constraints enables a richer speci�cation ofthe set of legal inputs. Formally, input completeness constraints are given by tuple generatingdependencies (tgd's) [11, 4, 40], which are sentences of the form:8 �X[(9 �Z)p1(�X1; �Z1) ^ : : : ^ pn(�Xn; �Zn)) (9 �Y)q1(�X 01; �Y1) ^ : : : ^ qm(�X 0m; �Ym)]:The predicates p1; : : : ; pn; q1; : : : ; qm are required to be base predicates, and their argu-ments are either variables or constants. The tuples �Xi and �X 0i are subsets of the tuple �Xand denote the variables that appear both in the left hand side and the right hand side andthat are universally quanti�ed, whereas the tuples �Zi (respectively, �Yi) denote the variablesthat are existentially quanti�ed in the left hand side (respectively, the right hand side). Inthe examples, when there is no ambiguity, we omit the universal quanti�er: the variablesthat are common to the left hand side and the right hand side are implicitly universallyquanti�ed.Intuitively, such a constraint speci�es that if the left hand side of the sentence holds inthe input, then the input must also contain facts that satisfy the right hand side.Example 3: Suppose we want to express the constraint stating that engineering studentswho want to take an advanced humanities course must have previously taken a basic hu-manities course. Formally, we could state the constraint with the following sentence whichis a tgd: 9

(9c)EngStud(s) ^Want(s; c) ^ Adv(c) ^HumCourse(c)) (9c1)Prev(s; c1) ^ Basic(c1) ^HumCourse(c1): 2De�nition 5: Let R be a set of Horn rules which includes rules:� de�ning output constraints by a predicate Pout, and� input constraints by a set of tgd's, �.The rules R are said to be veri�ed w.r.t. input completeness constraints and output constrainti�, for any set of input facts G, if R [G j= �, then R[G 6j= Pout. 2The input-completeness VVT problem corresponds to the case of De�nition 2 where thesentence C is �) :Pout.4 Veri�cation and Query ContainmentOur approach to solving the veri�cation problem is based on showing a close connectionto the problem of query containment, that has been considered in the database literature[7, 1, 28, 16, 29, 36, 8, 32, 21, 22]. In this section we formalize the connection between theVVT problem and the query containment problem in the presence of I/O consistency andI/O dependency constraints. As a result, in Section 5 we obtain novel algorithms for solvingthese problems as well as the fundamental complexity results concerning it. In Section 7 wereconsider the VVT problem in the presence of input completeness constraints, and relate itto a problem of tgd entailment [11, 4, 40]. Since the tgd entailment problem is undecidableunder very restrictive conditions, we identify subcases of the VVT problem that can bereformulated in terms of query containment in a hybrid language.The query containment problem is to decide whether in any minimal �xpoint modelof a set of Horn rules the extension of one predicate contains the extension of another.The problem has been extensively considered in database theory because it is an importanttechnique for query optimization [34, 29] and related problems [21, 18, 33, 35]. Formally,given a set of Horn rules R and a (�nite) set of ground facts G, we can entail a (�nite) setof ground atomic facts for every predicate P 2 R. We denote by PR(G) the set of tuples �a,such that R [G j= P (�a). If P is a proposition, i.e., a predicate of arity 0, then PR(G) isthe set containing the empty list if R [G j= P , and the empty set otherwise.De�nition 6: Let R be a set of Horn rules, and let P1 and P2 be two predicates of thesame arity in R. The predicate P1 is contained in P2, denoted by P1 � P2, i� for any set ofground atomic facts G, PR1 (G) � PR2 (G). 2The following theorem formalizes the connection between the veri�cation problem (w.r.tboth to I/O consistency and I/O dependency constraints) and the query containment prob-lem. 10

Theorem 1: Let R be a set of Horn rules, possibly with negated base predicates and possiblywith interpreted predicates. Suppose R includes:� the predicate Pin and Pout de�ning input and output constraints, and/or� the predicates (In1; Out1); : : : ; (Ink; Outk) de�ning I/O dependency constraints.Then,1. the rules R are veri�ed w.r.t. the I/O consistency constraints Pin and Pout if and onlythe containment Pout � Pin holds.2. the rulesR are veri�ed w.r.t. the I/O dependency constraints (In1; Out1); : : : ; (Ink; Outk)if and only if the containment Ini � Outi holds for i, 1 � i � k.2Proof: Consider the �rst part of the theorem. Suppose the containment Pout � Pin holds.Then for every set of ground facts G, if R[G j= Pout then R[G j= Pin. Therefore, if G is acorrect input (i.e., R[G 6j= Pin), then it will only entail correct outputs (i.e., R[G 6j= Pout).For the other direction, suppose R is veri�ed w.r.t. the I/O consistency constraints, andlet G be a set of ground facts. If R [G j= Pout, then G yields incorrect outputs. However,since R is veri�ed, it means that G is not a valid input, i.e., R[G j= Pin. Hence, Pout � Pin.Consider the second part of the theorem. Suppose the containment Ini � Outi holds forevery i. Then for every set of ground facts G, InRi (G) � OutRi (G). That means that forevery tuple �a such that R [G j= Ini(�a), then R [G j= Outi(�a). Therefore, R is veri�edw.r.t the dependency constraints de�ned by Ini and Outi.For the second direction, suppose R is veri�ed w.r.t. the I/O dependency constraints Iniand Outi. By de�nition, for any set of input factsG, ifR[G j= Ini(�a), thenR[G j= Outi(�a).Therefore, InRi (G) � OutRi (G), and Ini is contained in Outi. 2Theorem 1 shows a direct reduction, in both directions, between the VVT problem andthe problem of query containment. Therefore, we can take advantage of a collection ofalgorithms developed for query containment in order to address the VVT problem. Inaddition, the correspondence between the VVT problem and the query containment problemprovides a detailed understanding of the complexity of the VVT problem. This analysis isgiven in the next section. It should be emphasized that previous work on the VVT problemdid not consider the complexity of the problem, but only of speci�c algorithms.5 The Complexity of the VVT ProblemIn our complexity analysis we distinguish the case in which the Horn rules contain no inter-preted predicates and no negation from the case in which they do. We assume that when theset of rules Rules(Pin) and Rules(Pout) are not recursive, then they are unfolded. The sizeof the rules in R refers to the maximal size of a single rule in R. The complexity analysisfor the the �rst case is given as follows. 11

Corollary 5.1: Let R be a set of Horn rules without interpreted predicates or negation.Let Pin and Pout be predicates in R describing input and output constraints, respectively.The complexity of the VVT problem in the presence of I/O consistency constraints is thefollowing.1. If the rules Rules(Pout) are not recursive, then the veri�cation problem is NP-Completein the size of the rules in Rules(Pin) and Rules(Pout) and polynomial in the numberof rules in Rules(Pin) and Rules(Pout).2. If the rules Rules(Pout) are recursive, and the rules Rules(Pin) are not recursive, thenthe veri�cation problem is complete for doubly exponential time in the size of the rulesin Rules(Pin) and Rules(Pout) and polynomial in the number of rules in Rules(Pin)and Rules(Pout).3. If both sets of rules Rules(Pin) and Rules(Pout) are recursive, then the veri�cationproblem is undecidable.2 The following provides the complexity of the VVT problem in the presence of I/O de-pendency constraints.Corollary 5.2: Let R be a set of Horn rules without interpreted predicates or negation. Let(In1; Out1); : : : ; (Ink; Outk) be predicates in R describing I/O dependency constraints. LetRRel denote the set of rules Rules(In1)[: : :[Rules(Ink)[Rules(Out1)[: : :[Rules(Outk).The complexity of the VVT problem in the presence of I/O dependency constraints is thefollowing.1. If the rules Rules(Ini) are not recursive for 1 � i � k, then the veri�cation problemis NP-Complete in the size of the rules in RRel and polynomial in the number of rulesin RRel.2. If for some i, 1 � i � k, rules Rules(Ini) are recursive, but for every i, 1 � i � k, atmost one of Rules(Ini) or Rules(Outi) are recursive, then the veri�cation problem iscomplete for doubly exponential time in the size of the rules in RRel and polynomial inthe number of rules in RRel.3. If, for some i, both sets of rules Ini and Outi are recursive, then the veri�cation problemis undecidable.2 It should be noted that the above corollaries and the associated query containment algo-rithms provide the �rst complete algorithms and complexity results for the VVT problemsin the presence of recursive Horn rules. Note that in all the parts of the above corollaries,12

the rules in R that are not relevant to the consistency or dependency constraints may berecursive, without a�ecting the complexity of the VVT problem. Algorithms for the querycontainment problem for Horn rules without interpreted predicates and negation are givenin [7, 28, 29, 8].The algorithm and complexity results for the �rst case of each of the corollaries followsfrom [28]. The complexity results of the second case follow from [8]. The undecidabilityresults follows from [32].The correspondence between the VVT problem and the query containment problem alsoenables us to provide the �rst complete algorithms and complexity results for verifying Hornrule knowledge bases that include the interpreted order predicates �, <, = and 6= in theantecedents of the rules, and negation on the base predicates, and enables us to show howthey di�er from the simpler case of Corollaries 5.1 and 5.2. The following corollaries providea precise characterization of the complexity of the veri�cation problem in this case.Corollary 5.3: Let R be a set of Horn rules, possibly with the interpreted predicates �, <,= and 6= and negation. Let Pin and Pout be predicates in R de�ning I/O consistency con-straints, respectively. The complexity of the VVT problem in the presence of I/O consistencyconstraints is the following.1. If both sets of rules Rules(Pin) and Rules(Pout) are not recursive, then the veri�cationproblem is �P2 -Complete in the size of the rules in Rules(Pin) and Rules(Pout). Thecomplexity is polynomial in the number of rules in Rules(Pin) and Rules(Pout).2. If the rules in Rules(Pin) are recursive and Rules(Pout) are not recursive, then theveri�cation problem is decidable and it is complete for �P2 in the size of the rules inRules(Pin) and Rules(Pout). The complexity is polynomial in the number of rules inRules(Pin) and Rules(Pout).3. If the rules in Rules(Pout) are recursive, then the veri�cation problem is undecidable.2 The following is the analogous result for the I/O dependency problem.Corollary 5.4: Let R be a set of Horn rules, possibly with the interpreted predicates �, <,= and 6= and negation. Let (In1; Out1); : : : ; (Ink; Outk) be predicates in R describing I/Odependency constraints. Let RRel denote the set of rules Rules(In1) [: : :[Rules(Ink)[Rules(Out1)[: : :[Rules(Outk). The complexity of the VVT problem in the presence ofI/O dependency constraints is the following.1. If all the rules in RRel are not recursive, then the veri�cation problem is �P2 -Completein the size of the rules in RRel and polynomial in the number of rules in RRel.13

2. If the rules Rules(In1); : : : ; Rules(Ink) are not recursive, but some of the rules inRules(Out1); : : : ; Rules(Outk) are recursive, then the veri�cation problem is decidableand it is complete for �P2 in the size of the rules in RRel, and polynomial in the numberof rules in RRel.3. If some of the rules in Rules(In1); : : : ; Rules(Ink) are recursive, then the problem isundecidable.2 It is important to note that in the above corollaries there is an asymmetry between therules de�ning Pin (Ini) and those de�ning Pout (Outi) (which follows from the analogousasymmetry in the analysis of the query containment problem). An algorithm and the uppercomplexity bound for the �rst part of Corollaries 5.3 and 5.4 follow from [16]. The algorithmand upper bound complexity result for the second cases is given in [21]. The lower boundfor the �rst part of the corollaries and the undecidability result follow from [37]. Finally, wenote that the VVT problem considered here would remain decidable also if the rules havefunction symbols, as long as the rules are not recursive. However, if we allow negation onpredicates other than base predicates, then the VVT problem is undecidable, even when therules are not recursive.Negation and Input Completeness Constraints: In our discussion we have consideredcases in which the Horn rules contain negated base predicates in their antecedents. Exceptfor providing additional modeling power as a representation language, negation can also beused for expressing certain kinds of input completeness constraints. The following exampleillustrates such a usage.Example 4: Suppose we want to express the following input completeness constrainton the domain of our example: for second-year students, all the courses that they havetaken previously were mandatory courses. This constraint can be speci�ed by the followingsentence: Prev(s; c) ^ Y ear(s; 2))Mandatory(c; 1):Note that in this example, Mandatory is a base predicate, and therefore the constraintspeci�es a condition on the completeness of the input.The constraint, speci�ed in this form, is a special case of a tuple-generating dependency.However, using negation on base predicates, this sentence can be translated to the followingHorn rule de�ning Pin:Prev(s; c) ^ Y ear(s; 2) ^ :Mandatory(c; 1)) Pin:As a result, verifying the set of rules in the presence of such input completeness constraintscan be done using the techniques described in this section for the VVT problem in thepresence of I/O consistency constraints. It is easy to see that this transformation can be14

done for any tuple generating dependency that does not contain existential variables on theright-hand side. Obviously, an analogous transformation can be done for certain kinds ofO/I dependency constraints. 26 Verifying Hybrid Knowledge BasesHorn rule languages are well suited to capture �ne-grained relational knowledge but theyare not expressive enough to model complex structural knowledge. In contrast, descriptionlogics are a family of representation languages that have been designed especially to modelrich hierarchies of classes of objects. Several applications, such as combining informationfrom multiple heterogeneous sources, modeling complex physical devices, signi�cantly bene�tfrom combining the expressive power of both formalisms. In this section we consider hybridknowledge bases using the carin family of languages, which was designed to extend Hornrules with the expressive power of description logics.We show that the correspondence between the VVT problem and the query containmentproblem also enables us to provide the �rst sound and complete algorithm for verifyinghybrid knowledge bases.Aside from being a more expressive language for domain modeling, the expressive powerof carin provides two other advantages in the context of the VVT problem:� Description logics provide a natural way to express constraints on predicates appearingin the Horn rules, such as disjointness and subsumption between predicates.� As we show in the next section, the added expressive power of carin enables us toexpress a class of input completeness constraints, and therefore to solve the VVTproblem in the presence of that class of constraints.We begin by introducing the syntax and semantics of the carin languages.6.1 CARIN Knowledge Basescarin is a family of languages, each of which combines a description logic L with Horn rules.We denote a speci�c language in carin by carin-L. A set of rules in carin-L contains twocomponents, the �rst is a description-logic terminology, and the second is a set of function-free extended Horn rules. The terminology is a set of statements in L about concepts androles in the domain. Extended Horn rules are rules in which concept and role descriptions canappear as predicate names in the antecedents. Predicate names appearing in the Horn rulesthat do not appear in the terminology are called ordinary predicates. Ordinary predicatescan be of any arity. In this paper we consider the language carin-ALCNR. We brieyreview the description logic ALCNR [3, 6] below.
15

6.1.1 The Description Logic ALCNRA description logic contains unary relations (called concepts) which represent sets of ob-jects in the domain and binary relations (called roles) which describe relationships betweenobjects. Expressions in the terminology are built from concept and role names and fromconcept and role descriptions, which denote complex concepts and roles. Descriptions inALCNR are de�ned using the following syntax (A denotes a primitive concept name, Pi'sdenote primitive role names, C and D represent concept descriptions and R denotes a roledescription):C;D! A j (primitive concept)> j ? j (top, bottom)C uD j C tD j (conjunction, disjunction):C j (complement)8R:C j (universal quanti�cation)9R:C j (existential quanti�cation)(� nR) j (� nR) (number restrictions)R! P1 u : : : u Pm (role conjunction)The sentences in a terminological component of a knowledge base are either conceptinclusions or role de�nitions. A concept inclusion is of the form C v D, where C and Dare concept descriptions. Intuitively an inclusion states that every instance of the conceptC must be an instance of D. A role de�nition is a formula of the form P := R, where P isa role name and R is a role description.Semantics of ALCNR: The semantics of a terminology T is given via interpretations.An interpretation I contains a non empty domain OI . It assigns a unary relation CI toevery concept in T , and a binary relation RI over OI � OI to every role R in T . Theextensions of concept and role descriptions are given by the following equations: (]S denotesthe cardinality of a set S):>I = OI?I = ;(C uD)I = CI \DI(C tD)I = CI [DI(:C)I = OI nCI(8R:C)I = fd 2 OI j 8e : (d; e) 2 RI ! e 2 CIg(9R:C)I = fd 2 OI j 9e : (d; e) 2 RI ^ e 2 CIg(� nR)I = fd 2 OI j]fe j (d; e) 2 RIg � ng(� nR)I = fd 2 OI j]fe j (d; e) 2 RIg � ng(P1 u : : : u Pm)I = P I1 \ : : : \ P ImAn interpretation I is a model of a terminology T if CI � DI for every inclusion C v Din the terminology, and P I = RI for every role de�nition P := R. We say that C is subsumedby D w.r.t. T if CI � DI in every model I of T .16

6.1.2 Semantics of carin:The semantics of a set of extended Horn rules is de�ned in exactly the same way as inSection 2. The only subtle point to note is that we always consider atoms of conceptpredicates to be positive atoms. For example, the atom :A(x) is considered to be a positiveatom whose predicate name is :A, which is a concept in ALCNR. We do not allow negatedatoms of roles in the Horn rules.Given a set of extended Horn rules R, and a terminology T , we de�ne entailment asfollows. Given a set of ground facts G for the ordinary predicates, the concepts and theroles, and given a query of the form Q(�a), where Q can be any ordinary predicate, conceptor role, we say that R[T [G j= Q(�a) if �aI 2 QI for every interpretation I such that:� I is a model of R[T , and� for every atom P (�b) 2 G, then �bI 2 P I, and� for every ordinary base predicate E and tuple �b, �bI 2 EI only if E(�b) 2 G.Sound and complete entailment algorithms for carin-ALCNR are given in [19, 20]. Notethat when the Horn rules are recursive, the entailment problem for carin-ALCNR is notdecidable [20].The following example illustrates the use of carin for expressing more complex I/O de-pendency constraints.Example 5: Suppose we want to express an I/O dependency constraint stating that allthe students of a given year who have previously taken only basic courses, have to takean advanced course. Using predicates In and Out, it can be stated by the two followingsentences. Note that the �rst sentence cannot be expressed as a Horn rule, even with negationon base predicates:Student(s) ^ 8c[Prev(s; c)) Basic(c)]) In(s)Adv(c) ^ Take(s; c)) Out(s)In carin, we express this constraint by de�ning the following terminology and extended rule:C v 8Prev:Basic8Prev:Basic v CStudent(s) ^ C(s)) In(s): 2In [19] we describe an algorithm for query containment for non recursive carin-ALCNRrules. That algorithm entails the following result.Corollary 6.1: Let R be a set of extended Horn rules in carin-ALCNR without interpretedpredicates, and T be a terminology in ALCNR. Assume that the magnitude of the integers17

used in the number restrictions in T is bounded by the size of T . Assume that R includesrules de�ning the predicates Pin and Pout, describing I/O consistency constraints, respectively.If both sets of rules Rules(Pin) and Rules(Pout) are not recursive then the VVT problemw.r.t. I/O consistency constraints is decidable in time that is doubly exponential in the size ofthe rules in Rules(Pin) and Rules(Pout) and the size of T , and is polynomial in the numberof rules in Rules(Pin) and Rules(Pout). 2A similar corollary can be stated for the VVT problem w.r.t. I/O dependency constraints.7 VVT in the Presence of Input Completeness Con-straintsIn this section we consider the VVT problem in the presence of input completeness con-straints. Unfortunately, since the entailment problem of tgd's is undecidable [38, 15], itfollows immediately that the VVT problem in the presence of input completeness and I/Ocompleteness constraints is undecidable. In this section we identify the class of separabletgds, for which we show that the problem is decidable. The key to obtaining our result isan algorithm for translating a set of separable tgd's into a set of extended Horn rules incarin, and therefore obtaining a reduction of the the VVT problem in the presence of inputcompleteness constraints to the VVT problem in the presence of I/O consistency constraintsin carin. The following is an example of our method.Example 6: Suppose we want to express the input completeness constraint stating thatengineering students, who want to take an advanced humanities course, must have previouslytaken a basic humanities course. Formally, this constraint can be stated using the followingtgd:EngStud(s) ^Want(s; c) ^ Adv(c) ^HumCourse(c)) (9c1)Prev(s; c1) ^Basic(c1) ^HumCourse(c1):The idea behind the translation is to create a concept description that describes the setof students that do not satisfy the right hand side of the tgd. We begin by considering thepredicates Basic and HumCourse as primitive classes in a terminology, and the predicatePrev as a role. The description Basic u HumCourse denotes the class of objects that arebasic humanities courses. The class Ctgd can be de�ned by the description 8Prev::(BasicuHumCourse) which denotes precisely the class of objects, such that all �llers of the rolePrev do not belong to the class Basic u HumCourse. We now use the class Ctgd as apredicate in an extended Horn rule.The result of our translation would be the terminology containing the following twoinclusion statements:Ctgd v 8Prev::(Basic uHumCourse)8Prev::(Basic uHumCourse) v Ctgd 18

The tgd would be translated into the following extended Horn rule, de�ning the predicatePin: EngStud(s) ^Want(s; c) ^ Adv(c) ^HumCourse(c) ^ Ctgd(s)) Pin. 2In what follows, we formally de�ne the class of separable tgd's and then describe thetransformation algorithm.Separable TGD'sSuppose T is a tgd of the form) �. Given the sentence �, we can de�ne a graph g� asfollows. The nodes in the graph are the variables of �, and there is an arc from a variable Xto a variable Y if there is an atom of the form R(X; Y), where R is a binary predicate. Amaximal path in g� is a path X1; : : : ; Xn, such that there is no arc emanating from Xn andno arcs coming into X1. A pre�x p1 of a path p is a subpath of p that has the same initialpoint.De�nition 7: Let T be a tgd of the form) �, such that � mentions only unary andbinary predicates. T is a separable tgd i�:1. g� is acyclic,2. a variable that appears in can only appear in the beginning of a maximal path in g�,3. all the variables in � that appear in the beginning of a maximal path also appear in ,and4. if two maximal paths in g� share a variable X, then X appears only in their commonpre�x.2 The intuition behind De�nition 7 is that the right-hand side of a separable TGD (i.e., theformula �) can be equivalently rewritten as a conjunction of cr-formulas, de�ned as follows:De�nition 8: A formula f is a cr-formula on the variable X if it has the following form:C1(X) ^ : : : ^ Cn(X) ^ 9 Y1; : : : ; Ym[R1(X; Y1) ^ f1(Y1) ^ : : : ^ Rm(X; Ym) ^ fm(Ym)]where C1; : : : ; Cn are concepts, R1; : : : ; Rm are roles and f1(Y1); : : : ; fm(Ym) are cr-formulason Y1; : : : ; Ym, respectively. Note that either m or n may be 0. 2Observation 2: Let T be a separable tgd of the form) �, such that the variablescommon to � and are X1; : : : ; Xn. Then, � is logically equivalent to a sentence of the formf1 ^ : : : ^ fn, such that for all i:1. fi is a cr-formula on Xi,2. Xi appears only in fi, and3. if i 6= j, then fi and fj do not share any variables.2 19

The Transformation AlgorithmIn Figure 1 we show the algorithm for transforming a given separable TGD. The output ofthe algorithm is a terminology and a set of extended Horn rules de�ning Pin, i.e., de�ningan input consistency constraint.procedure tgd-to-horn(T)/� T is a separable tgd of the form) �. �//� The algorithm returns a set of extended Horn rules and a terminology. �/for every variable X 2 � de�ne a concept CX as follows:Let C1; : : : ; Cl be the literals appearing in unary atoms in � containing X.if X appears only in the end of maximal paths then CX = C1 u : : : u Cl (or > if l = 0).elseLet Y1; : : : ; Yk be the variables in fY j R(X;Y) 2 �g.for every Y 2 fY1; : : : ; Ykg do:Let RoleX;Y be the conjunction of the roles in the set fR j R(X;Y) 2 �g.CX = (9 RoleX;Y1 :CY1) u : : : u (9 RoleX;Yk :CYk) u C1 u : : : u Cl.return the terminology Di v :CXi , :CXi v Di, and the rules ^Di(Xi)) Pin;where X1; : : : ;Xn are the variables that appear in the beginning of maximal paths in �.end tgd-to-horn.Figure 1: Algorithm for translating a set of separable tgd's to a set of extended Horn ruleswith a terminology.Example 7: Considering our example tgdEngStud(s) ^Want(s; c) ^ Adv(c) ^HumCourse(c)) (9c1)Prev(s; c1) ^Basic(c1) ^HumCourse(c1):The right hand side of the tgd contains one maximal path s! c1. The algorithm will com-pute Cc1 = BasicuHumCourse. The concept for s is Cs = 9 Prev:(BasicuHumCourse).Procedure tgd-to-horn will return the terminologyD1 v :9 Prev:(Basic uHumCourse):9 Prev:(Basic uHumCourse) v D1,and the ruleEngStud(s) ^Want(s; c) ^ Adv(c) ^HumCourse(c) ^D1(s)) Pin. 220

The following theorem shows that our algorithm returns a terminology and an inputconsistency constraint that are equivalent to the original tgd. That is, for any set of inputs,if the tgd T is violated, then the predicate Pin will be entailed as a result of adding theterminology and rules computed by procedure tgd-to-horn(T).Theorem 3: Let R be a set of extended Horn rules in carin, and let T be a separable tgd.Let � be the set of extended Horn rules and the terminology returned by procedure tgd-to-horn(T). Then, for any set of inputs G, R [G j= :T if and only if � [R [G j= Pin.2Proof: The proof is based on the fact that the following logical equivalence holds, whereX1; : : : ; Xn are the variables that are common to � and , and CX1 ; : : : ; CXn are the conceptsmentioned in the procedure tgd-to-horn.8X1; : : : ; Xn [� � CX1(X1) u : : : u CXn(Xn)] (1)Recall that � also contains variables other than X1; : : : ; Xn, which are existentially quan-ti�ed. Observation 2 enables us to reformulate � as a conjunction of cr-formulas. An induc-tion on the size of the cr-formulas, shows that algorithm tgd-to-horn creates a concept CXiwhich is logically equivalent to the cr-formula of Xi. Hence, Equation 1 holds.For the �rst direction of the theorem, suppose that R [G j= :T . That is, for everymodel I of R [G, there exists an assignment �I of the variables X1; : : : ; Xn, such thatI 6j= �I(�) and I j= �I() and hence, because of Equation 1, there exists a j, 1 � j � n suchthat I 6j= �I(CXj(Xj)). The terminology returned by procedure tgd-to-horn implies thatI j= �I(DXj(Xj)). Since the rule ^DXi(Xi)) Pin is in �, it follows that I j= Pin. Sincethis holds for every model I, it follows that � [R [G j= Pin.For the other direction, suppose that � [R [G j= Pin. Assume by contradictionthat R [G 6j= :T . Therefore, there exists a model I of R [G such that for every variableassignment � forX1; : : : ; Xn, either I 6j= �() or I j= �(�). If I 6j= �(), then I 6j= Pin, becauseall the rules involving Pin have in their antecedent. If I j= �(�), then, by Equation 1,I 6j= �(Di(Xi)) for every i, 1 � i � n. In this case it also follows that I 6j= Pin, becauseevery rule involving Pin has a Di atom in its antecedent. Hence, it must be the case thatR [G j= :T . 28 ConclusionsThis paper described a new perspective on the problem of verifying Horn-rule knowledgebases, by relating it to the problem of query containment. This relationship had two ma-jor results. First, it enabled us to unify di�erent aspects of the VVT problem, namely, I/Oconsistency constraints, I/O dependency constraints, and to a certain extent, input complete-ness constraints. Second, the relationship provided the core computational characterizationof these instances of the VVT problem. In particular, we showed how the complexity of the21

problem depends on the properties of the Horn rules, including the presence of interpretedpredicates, negation on base predicates and recursion. Furthermore, we obtained the �rstsound and complete algorithm for verifying hybrid rules in a language combining Horn rulesand description logics. Finally, we have also shown that by using containment in the contextof hybrid knowledge bases, it is possible to obtain new decidability results concerning theproblem of entailment of tuple-generating dependencies.8.1 Related workIn this paper we considered three forms of the VVT problem. Only the VVT problem in thepresence of I/O consistency constraints has received signi�cant attention in the literature. Asfor the other forms of the problem, we are the �rst to treat input completeness constraints,and I/O dependency constraints were considered only very little. In particular, the need forverifying a knowledge base w.r.t. I/O dependency constraints has been pointed out in [24, 12].It should be noted that testing a knowledge base w.r.t. a set of test cases can be seen as avery restricted case of the I/O dependency VVT problem, but the algorithms considered toperform such testing simply apply the KB to the (�nite set of) test cases.We now compare our work to the related work on the I/O consistency VVT problemalong several axes.The form and semantics of the rules: This paper considered only rules whose semanticsis given within �rst-order logic.Several works have considered the veri�cation of OPS5-style production rules (e.g, [30,14, 31]). In such rules, the right hand side of the rules is an action that may also deletefacts. Ginsberg and Williamson [14] identi�ed a subset of OPS5 rules that can be analyzedas logical rules, and presented an algorithm to do so. Their work did not consider recursiverules or interpreted predicates.Veri�cation of non recursive logical rule knowledge bases has originally been considered byGinsberg [13] and Rousset [25]. A sound and complete algorithm for verifying non recursiveHorn rules with interpreted predicates was given in [23, 39]. As stated earlier, these worksdid not establish the complexity of the veri�cation problem. In particular, the complexity ofthe algorithms presented in [23, 39] was shown to be exponential time (by a simple reductionfrom the complexity of the ATMS algorithm being used). In contrast, our work provides atight complexity bound on this problem which is �2p.Some of the subtleties involved in verifying hybrid knowledge bases have been pointed outin [17, 26]. Our work provides the �rst sound and complete algorithm for verifying hybridknowledge bases.De�nition of the veri�cation problem: On the surface, our de�nition of the VVTproblem in the presence of I/O consistency constraints varies slightly from previous de�ni-tions (e.g., [25, 13, 14, 23]). The de�nition in those works did not distinguish between thepredicates Pin and Pout. Instead they used a single predicate, called bad, to de�ne illegal sets22

of ground facts. The ground facts for which bad was de�ned could be either a set of inputs,or the set of facts inferred from the knowledge base (which includes the inputs). A set ofrules is said to be veri�ed if, for any set of inputs, the knowledge base does not entail bad. Itis easy to reformulate this de�nition of the VVT problem into our formalism. In particular,in rules de�ning bad that contain only base predicates in their antecedents we replace badby Pin. In the other rules, bad is replaced by Pout.Loiseau and Rousset [23] describe a variant on the above de�nition. They identify asubset of the rules in the knowledge base �sure as being sure rules (e.g., rules that have beenpreviously veri�ed). A knowledge base � is said to be veri�ed if for any set of inputs G, ifG [�sure 6j= bad, then G [� 6j= bad. This de�nition can be reformulated in our frameworkas follows. We consider every rule r de�ning bad. If Rules(r) � �sure, then we replace badin the consequent of r by Pin. Otherwise, we replace bad by Pout.Veri�cation algorithms: In this paper we relate the VVT problem to the problem ofquery containment, and therefore show that algorithms for query containment can be usedfor the VVT problem and vice versa. It is instructive to take a closer look at the actualalgorithms used in the literature for each of these problems. In the VVT community, mostof the work has used algorithms based on Assumption-based Truth Maintenance Systems(ATMS) [9]. In the database community, containment algorithms are usually explained interms of representative databases. There are several points to note in a comparison:1. The exposition of the query containment algorithms in the literature has usually beenfor the purpose of analyzing the complexity of the problem. However, in the casesof non recursive Horn rules, an implementation of the query containment algorithmwould actually be very similar to an implementation based on ATMS. In this case, thecontribution of our work is mostly the establishment of the complexity of the VVTproblem.2. In order to apply ATMS techniques for recursive rules, one has to devise a terminationcondition for the generation of labels (or unfoldings). In this case, the termination con-dition described in [8] can be used as a basis for developing an ATMS-based algorithmfor VVT.3. For hybrid knowledge bases, no extension of ATMS algorithms has been considered.In this case, the only existing algorithm is the one based on query containment [19].8.2 Future workThere are two main directions in which our framework should be extended. As mentionedabove, one direction is to explore in more detail the algorithmic aspects of the correspondencebetween the query containment and the VVT problem. The other direction is to �nd otherfamilies of constraints for which the corresponding VVT problem can be reformulated asa query containment problem. In particular, one class of constraints that is very useful in23

practice (and has received little attention in the VVT literature) is output completenessconstraints.Verifying a knowledge base is only the �rst step in assisting its designer. When a knowl-edge base has been deemed as not veri�ed, the system should aide the designer in debuggingthe knowledge base. An important direction that we are pursuing is to adapt the algorithmswe have considered in such a way that they show the designer the aws in the knowledgebase. In particular, the algorithms we described can be modi�ed to return a counter exampleset of inputs in cases in which the knowledge base is not veri�ed. An interesting tradeo�in this case is whether to present the user with a counter example set of inputs, or to showher how the inconsistency in the knowledge base can be derived. The latter approach, forhybrid knowledge bases has been considered in [27]. Finally, the system can also propose tothe designer re�nements to the knowledge base that would make it consistent [5, 41].References[1] Alfred Aho, Yehoshua Sagiv, and Je�rey D. Ullman. Equivalence of relational expres-sions. SIAM Journal of Computing, (8)2:218{246, 1979.[2] Marc Ayel and Marie-Christine Rousset, editors. Proceedings of the European Sym-posium on Veri�cation and Validation of Knowledge Based Systems, EUROVAV{95,1995.[3] F. Baader and B. Hollunder. A terminological knowledge representation system withcomplete inference algorithm. In In Proceedings of the Workshop on Processing Declara-tive Knowledge, PDK-91, Lecture Notes in Arti�cial Intelligence, pages 67{86. Springer-Verlag, 1991.[4] Catriel Beeri and Moshe Vardi. A proof procedure for data dependencies. Journal ofthe ACM, 31(4):718{741, 1984.[5] Fatma Bouali, Stephane Loiseau, and Marie-Christine Rousset. Veri�cation and revisionof rule bases. In Proceedings of the 17th British Computer Society Conference on ExpertSystems, Cambridge, United Kingdom, 1997.[6] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning interminological knowledge representation systems. Journal of Arti�cial Intelligence Re-search, 1:109{138, 1993.[7] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries inrelational databases. In Proceedings of the Ninth Annual ACM Symposium on Theoryof Computing, pages 77{90, 1977.
24

[8] Surajit Chaudhuri and Moshe Vardi. On the equivalence of recursive and nonrecur-sive datalog programs. In The Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego, CA., pages 55{66,1992.[9] Johan de Kleer. An assumption-based TMS. Arti�cial Intelligence, 28, 1986.[10] E.W Dijkstra. A Discipline of Programming. Prentice Hall, 1976.[11] R. Fagin. Horn clauses and database dependecies. Journal of the ACM, 29(4):952{983,1982.[12] D. Fensel, A Schonegge, R. Groenboom, and B. Wielenga. Speci�cation and veri�ca-tion of kbs. In Proceedings of the ECAI-96 workshop on Validation, Veri�cation andRe�nement of KBS, 1996.[13] Allen Ginsberg. Knowledge base reduction: A new approach to checking knowledgebases for inconsistency and redundancy. In Proceedings of the Seventh National Con-ference on Arti�cial Intelligence, 1988.[14] Allen Ginsberg and Keith Williamson. Inconsistency and redundancy checking for quasi-�rst-order-logic knowledge bases. International Journal of Expert Systems: Researchand Applications, 6, 1993.[15] Y. Gurevich and H. R. Lewis. The inference problem for template dependencies. InProceedings of the First ACM SIGACT-SIGMOD-SIGART Symposium on Principlesof Database Systems, pages 221{229, 1982.[16] A. Klug. On conjunctive queries containing inequalities. Journal of the ACM, pages35(1): 146{160, 1988.[17] Sunro Lee and Robert M. O'Keefe. Subsumption anomalies in hybrid knowledge bases.International Journal of Expert Systems: Research and Applications, 6, 1993.[18] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answer-ing queries using views. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGARTSymposium on Principles of Database Systems, San Jose, CA, 1995.[19] Alon Y. Levy and Marie-Christine Rousset. CARIN: a representation language integrat-ing rules and description logics. In Proceedings of the European Conference on Arti�cialIntelligence, Budapest, Hungary, 1996.[20] Alon Y. Levy and Marie-Christine Rousset. The limits on combining recursive horn rulesand description logics. In Proceedings of the AAAI Thirteenth National Conference onArti�cial Intelligence, 1996. 25

[21] Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In Proceedings ofthe 19th VLDB Conference, Dublin, Ireland, pages 171{181, 1993.[22] Alon Y. Levy and Dan Suciu. Deciding containment for queries with complex objectsand aggregations. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Sym-posium on Principles of Database Systems, Tucson, Arizona., 1997.[23] Stephane Loiseau and Marie-Christine Rousset. Formal veri�cation of knowledge basesfocused on consistency: Two experiments based on ATMS techniques. InternationalJournal of Expert Systems: Research and Applications, 6, 1993.[24] Christine Pierret. Correctness of methods w.r.t problem speci�cations. In Proceedingsof the ECAI-96 workshop on Validation, Veri�cation and Re�nement of KBS, 1996.[25] Marie-Christine Rousset. On the consistency of knowledge bases: the COVADIS system.In Proceedings of the 8th European Conference on Arti�cial Intelligence (ECAI 88),Munich, Germany, 1988.[26] Marie-Christine Rousset. Knowledge formal speci�cations for formal veri�cation: a pro-posal based on the integration of di�erent logical formalisms. In Proceedings of the 11thEuropean Conference on Arti�cial Intelligence (ECAI 94), Amsterdam, Netherlands,1994.[27] Marie-Christine Rousset and Pascale Hors. Modeling and verifying complex objects:A declarative approach based on description logics. In Proceedings of the EuropeanConference on Arti�cial Intelligence, Budapest, Hungary, 1996.[28] Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the unionand di�erence operators. Journal of the ACM, 27(4):633{655, 1981.[29] Yehoshua Sagiv. Optimizing datalog programs. In Jack Minker, editor, Foundations ofDeductive Databases and Logic Programming, pages 659{698. Morgan Kaufmann, LosAltos, CA, 1988.[30] James G. Schmolze and Wayne Snyder. A tool for testing conuence of productionrules. In Proceedings of the European Symposium on Validation and Veri�cation ofKBS, EUROVAV-95, 1995.[31] James G. Schmolze and Wayne Snyder. Detecting redundant production rules. InProceedings of the AAAI Fourteenth National Conference on Arti�cial Intelligence, 1997.[32] Oded Shmueli. Equivalence of datalog queries is undecidable. Journal of Logic Pro-gramming, 15:231{241, 1993.[33] Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. The GMAP: Aversatile tool for physical data independence. VLDB Journal, 5(2):101{118, 1996.26

[34] Je�rey D. Ullman. Principles of Database and Knowledge-base Systems, Volumes I, II.Computer Science Press, Rockville MD, 1989.[35] Je�rey D. Ullman. Information integration using logical views. In Proceedings of theInternational Conference on Database Theory, 1997.[36] Ron van der Meyden. The complexity of querying inde�nite data about linearly or-dered domains. In The Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGARTSymposium on Principles of Database Systems, San Diego, CA., pages 331{345, 1992.[37] Ron van der Meyden. The Complexity of Querying Inde�nite Information: De�nedRelations Recursion and Linear Order. PhD thesis, Rutgers University, New Brunswick,New Jersey, 1992.[38] Moshe Vardi. The implication and �nite implication problems for typed template de-pendencies. Journal of Computer and System Sciences, 28(1):3{28, 1984.[39] Keith Williamson and Mark Dahl. Knowledge base reduction for verifying rule basescontaining equations. In Proceedings of the AAAI-93 workshop on Validation and Ver-i�cation of KBS, 1993.[40] M. Yannakakis and C. H. Papadimitriou. Algebric dependencies. Journal of Computerand System Sciences, 25(1):2{41, 1980.[41] Neli Zlatareva. Explaining anomalies as a basis for KB re�nement. In Proceedings ofthe ECAI-96 workshop on Validation, Veri�cation and Re�nement of KBS, 1996.

27

