Verification of Knowledge Bases based on
Containment Checking

Alon Y. Levy* Marie-Christine Rousset
Dept. of Computer Science and Engineering Dept. of Computer Science (L.R.I)
University of Washington C.N.R.S & University of Paris Sud
Seattle, Washington, 98195 Building 490, 91405 Orsay Cedex, France
alon@cs.washington.edu mer@lri.ri.fr
Abstract

Building complex knowledge based applications requires encoding large
amounts of domain knowledge. After acquiring knowledge from domain ex-
perts, much of the effort in building a knowledge base goes into verifying
that the knowledge is encoded correctly. A knowledge base is verified if
it can be shown that certain constraints always hold between the inputs
and the outputs. We consider the knowledge base verification problem for
Horn rule knowledge bases and for three kinds of constraints: I/O con-
sistency constraints, I/O dependency constraints and Input completeness
constraints. For the first two cases, we establish tight complexity results
on the problem, and show in what cases it is decidable. In the third case,
we show that the problem is, in general, undecidable, and we identify two
decidable cases. In our analysis we show how the properties of the problem
vary depending on the presence of recursion in the Horn rules, the presence
of the interpreted predicates =, <, < and #, and the presence of negation
in the antecedents of the rules. Our approach to the verification problem is
based on showing a close relationship to the problem of query containment,
studied in the database literature. This connection also provides novel al-
gorithms for the knowledge base verification problem. Finally, we provide
the first algorithm for verifying hybrid knowledge bases that combine the
expressive power of Horn rules and the description logic ALCNR.

Keywords: knowledge base verification, description logics, Horn rules, database theory,
query containment, hybrid languages.

*The work was done while this author was at AT&T Laboratories, Florham Park, New Jersey.

1 Introduction

Building complex knowledge based applications requires modeling and representing large
amounts of knowledge. It is crucial to verify that the resulting knowledge base (KB) is correct
and complete with respect to the actual knowledge that it is intended to model. Naturally,
notions of correctness and completeness of a KB are impossible to capture completely by a
formal definition. However, when the knowledge base is represented in a declarative logical
formalism, it is possible to declaratively state various classes of constraints. This gives
rise to the problem of automatically verifying these constraints, called the knowledge base
verification, validation and testing problem (VVT). Informally, a knowledge base accepts a set
of inputs (e.g., a set of ground facts in a Horn rule knowledge base). The inference mechanism
of the knowledge base computes the outputs, i.e., the set of facts that can be inferred from
the inputs and the content of the knowledge base. Given this view of the operation of a
knowledge base, several classes of constraints can arise. For example, constraints can describe
restrictions on legal inputs to or legal outputs from the knowledge base. Alternatively,
constraints can describe dependencies between inputs and outputs. The problem of verifying
the constraints varies depending on the representation language used in the knowledge base
and on the form in which the constraints are specified.

In this paper we consider the VVT problem within a unified logical framework. We
consider three classes of constraints, and therefore three instances of the VVT problem:

1. I/O Consistency: these constraints specify legal inputs and outputs for the knowl-
edge base. In this case, we want to verify that whenever the inputs to the knowledge
base are legal, then the outputs will be legal as well. This class of constraints has
received the most attention in the VVT literature.

2. I/O dependencies: these constraints specify dependencies between the contents of
the input and the corresponding outputs. In this case, we want to verify that these
dependencies hold for any legal input to the knowledge base.

3. Input completeness: this class represents an especially important instance of the
I/O consistency problem. In this class we specify when an input is legal by providing
constraints on its completeness. That is, a constraint states that the presence of one
fact in the input must imply the presence of another fact in the same input. This class
of constraints is especially useful for specifying test cases. Testing a knowledge base
w.r.t. a set of test cases is a widespread method for verifying its correctness.

We consider the VVT problem for knowledge bases specified as function-free Horn rules.
Horn rule languages have formed the basis for many Artificial Intelligence applications as
well as the basis for deductive and active database models. Function-free Horn rules are
a natural representation language in many application domains, and are attractive because
they are a tractable subset of first order logic for which several practically efficient inference
procedures have been developed.

We provide novel algorithms and complexity results for the three instances of the VV'T
problem mentioned above.

The main tool we use to obtain our results is the connection that we establish between
the VV'T problem and the problem of query containment, that has been extensively studied
in the database literature (e.g., [7, 1, 28, 16, 29, 36, 8, 32, 21, 22]). We show that viewing the
VVT problem from the perspective of query containment provides a uniform view of the VVT
problem which covers the different cases mentioned above. Specifically, our contributions are
the following:

1. We show that for function-free Horn rule KBs, the I/O consistency and 1/O depen-
dency problems can be reformulated in terms of query containment. This connection
enables us to provide the first unifying characterization of the I/O consistency and
[/O dependency problems. It also provides a novel application of query containment
algorithms.

2. As a result of the above connection, we obtain fundamental results on the complexity
of the VV'T problems, as well as novel algorithms for its solution. Our results consider
the cases in which the function-free Horn rules may be recursive, may contain the
interpreted predicates =, <, < and #, and may have some limited forms of negation in
the antecedents. Broadly speaking, our results show that when the Horn rules are not
recursive, the VVT problems are decidable, and the results provide #ight complexity
bounds on the problem. We also show how the complexity depends on the exact form
of the Horn rules. When the Horn rules are recursive, the VV'T problem is undecidable.
In contrast, previous work (e.g., [13, 25, 2]) provided complexity results for particular
algorithms (as opposed to complexity of the problem itself). Furthermore, previous
treatments were limited to the I/O consistency problem, and only for some cases of
non recursive Horn rules.

3. We provide the first sound and complete algorithm for verifying hybrid knowledge
bases, combining the expressive powers of function-free Horn rules and the description
logic ALCNR [3, 6] (this hybrid language, carin, is described in [20, 19]). Description
logics are useful in this context because they are especially designed to model and
express constraints on domains with a rich hierarchical structure. Previous work [17,
26] provided only incomplete algorithms for verifying such knowledge bases.

4. Finally, we consider the I/O completeness problem, and show that it is related to the
problem of inference of tuple-generating dependencies (tgd’s) [34]. This relationship
shows that in general, the VVT problem in the presence of /O completeness constraints
is undecidable. We identify the class of separable tgd’s, and show that for that class
it is possible to translate the tgd inference problem to the query containment problem
for queries over hybrid knowledge bases. As a result, we obtain (1) a new case in which
the VVT problem is decidable in the presence of 1/O completeness constraints, and
(2) a new case in which the inference problem of tgd’s is decidable.

The paper is organized as follows. Sections 2 and 3 provide the basic definitions of the
problem we consider. Section 4 establishes the relationship between the VVT and the query
containment problems, and Section 5 describes the novel complexity results concerning the
/O consistency and 1/0 dependency problems. Section 6 introduces hybrid knowledge bases,
and extends our results to this case. Section 7 considers the VVT problem in the presence
of input completeness constraints, and its relationship to the problem of inferring tgd’s. In
section 8, our work is compared to related work and some perspectives for future work are
presented.

2 Preliminaries

A knowledge base is intended to model a space of problems and their solutions. An input
to a knowledge base is a set of facts which represents a particular problem instance that
can be provided by a user. The corresponding output is the set of facts that are entailed
by the union of the knowledge base and the given input. It represents the solution that the
knowledge base provides for that problem instance.

Informally speaking, we say that a knowledge base is verified if, for any set of input facts,
the input facts together with the corresponding outputs facts satisfy a set of constraints that
are known to hold on the domain. We first describe the form of knowledge bases we consider
in this paper.

We consider knowledge bases that include a set of function-free Horn rules, i.e., logical
sentences of the form:

pl(Xl) A /\pn(Xn) = Q(Y)a

where Xi,...,X,,Y are tuples of variables or constants. We require that the rules be safe,
i.e., a variable that appears in ¥ must also appear in X; U...UX,. We distinguish the set of
base predicates as those predicates that do not appear in the consequents of the Horn rules.

Recursive rules: Given a set of rules R, we can define a dependency graph, whose nodes
are the predicates appearing in R. In the graph, we insert an arc from the node of predicate
() to the node of predicate P if () appears in the antecedent of a rule whose consequent
predicate is P. The rules are said to be recursive if there is a cycle in the dependency graph.

When the rules are not recursive, we can unfold them. That is, obtain a logically equiv-
alent set of rules such that the only predicates appearing in the antecedents of the rules are
base predicates. It should be noted that the process of unfolding can result in an exponential
number of rules. However, the exponent is only in the depth of the set of rules (as opposed
to being exponential in the number of rules).

In our discussion we consider two extensions of Horn rules:

Negation on base predicates: in this case, some atoms in the antecedents are negated.
We require:

e that the predicate of a negated atom be a base predicate, and

e that all the variables appearing in a negated atom appear elsewhere in a positive atom
in the antecedent.

Interpreted predicates: in this case the predicates <, <, = and #, may also occur in
the antecedent of the rules. These predicates are called interpreted predicates. We require
that the variables appearing in atoms of interpreted predicates also appear elsewhere in
the antecedent in a positive atom of a non interpreted predicate. We assume that these
predicates have the obvious interpretations.
All of these extensions will affect the complexity results and the corresponding algorithms.
In our discussion, we often refer to the set of rules that are relevant to a given predicate:

Definition 1: Given a set of Horn rules R and a predicate P appearing in R, the set of
rules relevant to P in R, denoted by Rules(P) is the minimal subset of R that satisfy the
following conditions:

1. If P is the predicate in the consequent of the rule r, then r € Rules(P)

2. If the predicate QQ appears in a rule v € Rules(P), then any rule whose consequent has
Q is also in Rules(P).

The set of rules relevant to a rule r is defined to be the set of rules relevant to the predicate
in the consequent of r. O

Inputs and outputs: An input (i.e., problem instance) is specified by ground atomic facts
G for some of the base predicates. The output of a set of rules R, w.r.t. an input G includes
the set of ground facts g such that GUR entails g. We define the entailment relation below.

Semantics: The semantics of our knowledge bases is given by interpretations. An inter-
pretation I of a knowledge base A contains a non empty domain O. It assigns an n-ary
relation P! over the domain O! to every n-ary predicate P € A, and an element a! € O! to
every constant a € A. We make the unique-names assumption, i.e., if @ # b, then a! # b’.

An interpretation I is a model of a Horn rule r if, whenever « is a mapping from the
variables of 7 to the domain O, such that a(X;) € P/ for each positive atom P;(X;) in the
antecedent of 7, and «(X;) ¢ P/ for each negative atom —P;(X;) in the antecedent of r, then
a(Y) € ¢', where q(Y) is the consequent of r.

An interpretation I is a model of a set of rules R if it is a model of every rule r € R.

Given a set of rules R and an input set of ground facts G, an atom @(a) is entailed by
R UG (denoted RU G = Q(a)) if and only if a’ € Q' for every interpretation I that is a
model of R and G.

Given an interpretation for the constants in R U GG, there is a unique model I,,;, that is
the intersection of all models of R and G. It should be noted that under our definition,
R UG E Q(a) if and only if Q(a) is satisfied in I,,;,. Furthermore, I,,;, can be obtained

in a constructive way by successive applications of the Horn rules, starting from the ground

facts in the knowledge base, until we cannot derive any new facts. I,,;, is called the minimal
fixpoint model of R U G.

The notion of entailment of an atom from R U G naturally extends to any sentence C of
first-order logic.

3 The VVT Problem

In its most general form, the VV'T problem is to decide whether a set of constraints, rep-
resented by a logical sentence, is satisfied for every input to the knowledge base. Formally,
this can be stated as follows.

Definition 2: Let R be a set of Horn rules, and let C be a sentence in first-order logic.
The rules R are verified w.r.t C iff for any set of input facts G, RUG |=C. O

In general, when the constraint C may be an arbitrary first-order logic sentence, it follows
from the undecidability of entailment in first-order logic, that the VVT problem is also
undecidable. The purpose of this paper is to investigate several classes of constraints C that
are useful in practice and for which we show that the verification problem is decidable. In
what follows, we describe the cases that we consider, and relate them to the general case
given by Definition 2.

3.1 I/0 Consistency Constraints

In the first class of constraints, we specify constraints on legal inputs and outputs. A
knowledge base is considered to be verified if whenever the inputs are legal, then the outputs
are also legal. This is the class of constraints that has received most attention in previous
work in the knowledge engineering community.

Formally, consistency constraints on legal inputs and outputs are specified by Horn rules.
These rules, which may be considered part of the knowledge base, define semantic incon-
sistency on inputs and outputs by two special predicates of arity 0, P;, and P,,;. A set of
input facts G is considered to be a legal input if R UG [£ Pj,. Similarly, the corresponding
output of R UG is said to be legal if RUG = Py,

The VVT problem w.r.t. I/O consistency constraints is defined as follows.

Definition 3: Let R be a set of Horn rules containing the predicates Py, and P,,; describing

constraints on legal inputs and outputs, respectively. The rules R are said to be verified w.r.t.
Py, and P, iff for any set of input facts G for which R UG [E Py, then RUG [~ Py O

This 1/O consistency VVT problem corresponds to the instance of Definition 2, where
the sentence C'is P,,; = P,.

It should be noted that the verification problem is not equivalent to the unsatisfiability
of the logical sentence R A P,,; A = P;,. The sentence R A P,,; N =P, is satisfiable if there

is some model that satisfies each rule in R and P,,; and —P;,. However, the rules are not
verified only if there is a minimal fizpoint model of R A P,,; A = P;,. In cases where all the
rules are not recursive and unfolded, the verification problem can be formulated as a problem
of logical entailment. In fact, the results we present in the subsequent sections can also be
viewed as providing the complexity of these specialized forms of entailment.

Definition 3 differs slightly from related definitions proposed in the literature (e.g., [13,
25, 14, 23]). The definition in those works did not distinguish between the predicates P, and
P,.;, and used a single bad predicate for defining illegal inputs and outputs. As we discuss
in Section 8, previous definitions can be easily reformulated in our framework. Furthermore,
our formulation makes the relationship with the query containment problem more explicit.

Example 1: We use the following illustrative example throughout the paper. Consider a
domain of approving curricula for college students. The university has two disjoint types of
students, engineering and humanities students, whose instances are described by the unary
predicates EngStud and HumStud. Courses are either basic or advanced, described by the
predicates Basic and Adv, and they are either engineering courses or humanities courses,
described by EngCourse and HumCourse. Inputs describe which courses the student wants
to take, and which courses the student has already taken. The atom Want(s, ¢) denotes that
student s wants to take course ¢ during the current year, and Prev(s,c) denotes that s has
already taken ¢ in a previous year. The output is the set of courses that the student will
take. The atom Take(s,c) denotes that s will take course ¢. The atom PrereqO f(cy,cs)
denotes that ¢y is a prerequisite course for ¢;. The atom Year(s, n) denotes that the student
s is registered in the year n, and Mandatory(c,n) denotes that the course ¢ is mandatory
for the year n. The following rules describe our domain.

r: Want(s, ¢) A Qualifies(s,c) = Take(s,c)
ry : PrereqOf(ci, c2) A Prev(s, cs) = Qualifies(s,c)
r3 : Year(s,n) A Mandatory(c,n) = Take(s, c)

Rule r; says that students can take a course they want if they are qualified for it. Rule
ry says that students are qualified for a course if they took one of its prerequisite courses.
Finally, rule r3 guarantees that students will take the courses that are mandatory for their
year.

The following is the output constraint rule stating that humanities students cannot take
advanced engineering courses:

ry : HumStud(s) A Adv(c) A EngCourse(c) A Take(s,c) = Poy.

The following two rules describe the input constraints specifying that engineering students
are disjoint from humanities students, and that students do not want to take courses they
have already taken.

r5 : EngStud(s) A HumStud(s) = Py,
re : Want(s,c) N Prev(s,c) = P,

Our knowledge base is not verified, because we can have a legal input (w.r.t the input
constraints that we consider), for which we can derive a incorrect output. Specifically,
consider the following legal input:

{Want(Sy, Cy), HumStud(Sy), Adv(Cy), Prev(Sy, Cy), PrereqO f(Cy, Cv), EngCourse(Cy)}

The student S; wants to take the advanced engineering course Cy. S qualifies for the
course by having taken the prerequisite C. In this case, the knowledge base would entail
Take(Sy,Cy), which entails P,,, i.e., the output is incorrect.

The knowledge base designer can correct the problem by either modifying the knowledge
base (e.g., refining the rule ry), or by adding an input constraint, for example, the one stating
that humanities students are never interested in advanced engineering courses. O

3.2 1I/0 Dependency Constraints

A second class of constraints, which is not expressible by 1/O consistency constraints, includes
constraints expressing dependencies which are known to exist between legal inputs and their
corresponding outputs. The following example illustrates such constraints.

Example 2: Suppose we want to express the constraint on the domain of our example
that students who are in their first two years and who have previously taken one advanced
course must take at least one basic course. Formally we could state that constraint with the
following logical formula:

Vs[de(Student(s) A Prev(s,c) A Adv(c) A Year(s,n) An < 2) = Jc(Basic(c) A Take(s,c))]

In our framework, we formulate such a constraint by introducing two special predicates
In and Out, defining the left hand side and the right hand side of the above implication,
respectively. The two predicates can be defined by the following rules:

Student(s) A Prev(s,c) A Adv(c) A Year(s,n) An < 2= In(s)
Basic(c) A Take(s, c) = Out(s)

The I/O dependency constraint holds if the following implication holds for every set of
inputs:

Vs(In(s) = Out(s)).
O

I/O dependency constraints have not been considered in previous work on the VV'T prob-
lem. On the other hand, in the program verification literature (e.g. [10]), such formulations
are standard. That is, they attempt to check whether for any input satisfying some pre-
conditions, the outputs of the program satisfy certain postconditions. The definition of the
VVT problem w.r.t. I/O dependency constraint is similar in spirit.

Formally, we assume that the 1/O dependency constraints are specified by a set of Horn
rules defining a set of pairs of predicates (Iny, Outy), ..., (In;, Out;). For every i, the predi-
cates I'n; and Out; have the same arity. Intuitively, the constraints specify that for any input
and any tuple a that is in the extension of In;, the tuple a must also be in the extension of
Out;.

The VVT problem w.r.t. I/O dependency constraints is defined as follows.

Definition 4: Let R be a set of Horn rules which includes rules defining the pairs of
predicates (Iny, Outy), ..., (In;, Out)) describing 1/O dependency constraints. The rules R
are said to be verified w.r.t. the 1/0O dependency constraints iff, for each i € [1...1], and for
any set of input facts G, if RUG = In;(a), then RUG = Out;(a). O

This 1/O dependency VVT problem corresponds to the instance of Definition 2, where
the sentence C' is z
i=1
It should be noted that using a similar formalization, we can specify O/I dependency
constraints, i.e., constraints expressing dependencies of the inputs based on the outputs.

3.3 Input Completeness Constraints

In the first class of I/O consistency constraints we specified the set of legal inputs as those for
which the predicate P;, is not inferred. The definition of the predicate P;, was given by a set
of Horn rules. The class of input completeness constraints enables a richer specification of
the set of legal inputs. Formally, input completeness constraints are given by tuple generating
dependencies (tgd’s) [11, 4, 40], which are sentences of the form:

VX[G2)p1(X1, Z) Ao A pa(Xn, Zn) = (V)@ (X1, VD) A A (X, Vo))

The predicates py,...,Pn,q1, ..., qn are required to be base predicates, and their argu-
ments are either variables or constants. The tuples X; and X/ are subsets of the tuple X
and denote the variables that appear both in the left hand side and the right hand side and
that are universally quantified, whereas the tuples Z; (respectively, Yl) denote the variables
that are existentially quantified in the left hand side (respectively, the right hand side). In
the examples, when there is no ambiguity, we omit the universal quantifier: the variables
that are common to the left hand side and the right hand side are implicitly universally
quantified.

Intuitively, such a constraint specifies that if the left hand side of the sentence holds in
the input, then the input must also contain facts that satisfy the right hand side.

Example 3: Suppose we want to express the constraint stating that engineering students
who want to take an advanced humanities course must have previously taken a basic hu-
manities course. Formally, we could state the constraint with the following sentence which
is a tgd:

(Je) EngStud(s) A Want(s,c) A Adv(c) AN HumCourse(c)
= (Je1)Prev(s, c1) A Basic(c) N HumCourse(ey). O

Definition 5: Let R be a set of Horn rules which includes rules:
e defining output constraints by a predicate P,,;, and
e input constraints by a set of tgd’s, P.

The rules R are said to be verified w.r.t. input completeness constraints and output constraint
iff, for any set of input facts G, if RUG = @, then RUG B~ Py O

The input-completeness VV'T problem corresponds to the case of Definition 2 where the
sentence C is ® = = P,,;.

4 Verification and Query Containment

Our approach to solving the verification problem is based on showing a close connection
to the problem of query containment, that has been considered in the database literature
(7, 1, 28, 16, 29, 36, 8, 32, 21, 22]. In this section we formalize the connection between the
VVT problem and the query containment problem in the presence of I/O consistency and
I/O dependency constraints. As a result, in Section 5 we obtain novel algorithms for solving
these problems as well as the fundamental complexity results concerning it. In Section 7 we
reconsider the VVT problem in the presence of input completeness constraints, and relate it
to a problem of tgd entailment [11, 4, 40]. Since the tgd entailment problem is undecidable
under very restrictive conditions, we identify subcases of the VVT problem that can be
reformulated in terms of query containment in a hybrid language.

The query containment problem is to decide whether in any minimal fixpoint model
of a set of Horn rules the extension of one predicate contains the extension of another.
The problem has been extensively considered in database theory because it is an important
technique for query optimization [34, 29] and related problems [21, 18, 33, 35]. Formally,
given a set of Horn rules R and a (finite) set of ground facts G, we can entail a (finite) set
of ground atomic facts for every predicate P € R. We denote by PR(G) the set of tuples a,
such that R UG = P(a). If P is a proposition, i.e., a predicate of arity 0, then PR(G) is
the set containing the empty list if R UG |= P, and the empty set otherwise.

Definition 6: Let R be a set of Horn rules, and let P, and P, be two predicates of the
same arity in R. The predicate Py is contained in Py, denoted by P, C Py, iff for any set of
ground atomic facts G, PF(G) C PF(G). O

The following theorem formalizes the connection between the verification problem (w.r.t

both to I/O consistency and I/O dependency constraints) and the query containment prob-
lem.

10

Theorem 1: Let R be a set of Horn rules, possibly with negated base predicates and possibly
with interpreted predicates. Suppose R includes:

e the predicate Py, and P,y defining input and output constraints, and/or

e the predicates (Iny, Outy), ..., (Ing, Outy) defining 1/0 dependency constraints.
Then,

1. the rules R are verified w.r.t. the 1/O consistency constraints Py, and P,y if and only
the containment P,,; C P, holds.

2. the rules R are verified w.r.t. the /0 dependency constraints (Iny, Outy), ..., (Ing, Outy,)
if and only if the containment In; C Out; holds for i, 1 <1 < k.

O

Proof: Consider the first part of the theorem. Suppose the containment P,,; C FP;, holds.
Then for every set of ground facts G, if RUG [P,,; then RUG = P;,. Therefore, if G is a
correct input (i.e., RUG ¥ P,), then it will only entail correct outputs (i.e., RUG % Poyy).

For the other direction, suppose R is verified w.r.t. the I/O consistency constraints, and
let G be a set of ground facts. If R UG = P,y, then G yields incorrect outputs. However,
since R is verified, it means that G is not a valid input, i.e., RUG = P;,. Hence, P,,; C Pj,.

Consider the second part of the theorem. Suppose the containment I'n; C Out; holds for
every 7. Then for every set of ground facts G, Inf(G) C OutR(G). That means that for
every tuple a such that R UG = In;(a), then R UG = Out;(a). Therefore, R is verified
w.r.t the dependency constraints defined by In; and Out;.

For the second direction, suppose R is verified w.r.t. the I/O dependency constraints In;
and Out;. By definition, for any set of input facts G, if RUG = In;(a), then RUG = Out;(a).
Therefore, In®(G) C OutF(G), and In; is contained in Out;. O

Theorem 1 shows a direct reduction, in both directions, between the VVT problem and
the problem of query containment. Therefore, we can take advantage of a collection of
algorithms developed for query containment in order to address the VVT problem. In
addition, the correspondence between the VV'T problem and the query containment problem
provides a detailed understanding of the complexity of the VVT problem. This analysis is
given in the next section. It should be emphasized that previous work on the VVT problem
did not consider the complexity of the problem, but only of specific algorithms.

5 The Complexity of the VVT Problem

In our complexity analysis we distinguish the case in which the Horn rules contain no inter-
preted predicates and no negation from the case in which they do. We assume that when the
set of rules Rules(P;,) and Rules(P,,;) are not recursive, then they are unfolded. The size
of the rules in R refers to the maximal size of a single rule in R. The complexity analysis
for the the first case is given as follows.

11

Corollary 5.1: Let R be a set of Horn rules without interpreted predicates or negation.
Let P;, and P,,; be predicates in R describing input and output constraints, respectively.
The complezity of the VV'T problem in the presence of 1/0 consistency constraints is the
following.

1. If the rules Rules(P,,;) are not recursive, then the verification problem is NP-Complete
in the size of the rules in Rules(Py,) and Rules(P,,) and polynomial in the number
of rules in Rules(Py,) and Rules(Pyy;).

2. If the rules Rules(P,y,;) are recursive, and the rules Rules(Py,) are not recursive, then
the verification problem is complete for doubly exponential time in the size of the rules
in Rules(Py,) and Rules(P,,;) and polynomial in the number of rules in Rules(Py,)
and Rules(P,y;).-

3. If both sets of rules Rules(Py,) and Rules(P,,) are recursive, then the verification
problem is undecidable.

The following provides the complexity of the VVT problem in the presence of 1/O de-
pendency constraints.

Corollary 5.2: Let R be a set of Horn rules without interpreted predicates or negation. Let
(Iny, Outy), ..., (Ing, Outy) be predicates in R describing 1/O dependency constraints. Let
R ger denote the set of rules Rules(Iny)U...URules(Ing)U Rules(Outy)U. ..U Rules(Outy).
The complexity of the VV'T problem in the presence of 1/O dependency constraints is the
following.

1. If the rules Rules(In;) are not recursive for 1 < i < k, then the verification problem
1s NP-Complete in the size of the rules in Rye and polynomial in the number of rules
m RRel-

2. If for some i, 1 < i <k, rules Rules(In;) are recursive, but for every i, 1 <i <k, at
most one of Rules(In;) or Rules(Out;) are recursive, then the verification problem is
complete for doubly exponential time in the size of the rules in Rge and polynomial in
the number of rules in Rye.

3. If, for some i, both sets of rules In; and Out; are recursive, then the verification problem
is undecidable.

It should be noted that the above corollaries and the associated query containment algo-
rithms provide the first complete algorithms and complexity results for the VVT problems
in the presence of recursive Horn rules. Note that in all the parts of the above corollaries,

12

the rules in R that are not relevant to the consistency or dependency constraints may be
recursive, without affecting the complexity of the VVT problem. Algorithms for the query
containment problem for Horn rules without interpreted predicates and negation are given
in [7, 28, 29, §].

The algorithm and complexity results for the first case of each of the corollaries follows
from [28]. The complexity results of the second case follow from [8]. The undecidability
results follows from [32].

The correspondence between the VV'T problem and the query containment problem also
enables us to provide the first complete algorithms and complexity results for verifying Horn
rule knowledge bases that include the interpreted order predicates <, <, = and # in the
antecedents of the rules, and negation on the base predicates, and enables us to show how
they differ from the simpler case of Corollaries 5.1 and 5.2. The following corollaries provide
a precise characterization of the complexity of the verification problem in this case.

Corollary 5.3: Let R be a set of Horn rules, possibly with the interpreted predicates <, <,
= and # and negation. Let Py, and P,y be predicates in R defining 1/0 consistency con-
straints, respectively. The complexity of the VV'T problem in the presence of 1/0 consistency
constraints is the following.

1. If both sets of rules Rules(Py,) and Rules(Ppy,) are not recursive, then the verification
problem is 11 -Complete in the size of the rules in Rules(Py,) and Rules(P,y,). The
complexity is polynomial in the number of rules in Rules(Py,) and Rules(Ppy;).

2. If the rules in Rules(Py,) are recursive and Rules(P,y) are not recursive, then the
verification problem is decidable and it is complete for 11T in the size of the rules in
Rules(P;,) and Rules(P,,). The complexity is polynomial in the number of rules in

Rules(Py,) and Rules(Pyy;).

3. If the rules in Rules(P,,;) are recursive, then the verification problem is undecidable.

The following is the analogous result for the I/O dependency problem.

Corollary 5.4: Let R be a set of Horn rules, possibly with the interpreted predicates <, <,
= and # and negation. Let (Iny, Outy),. .., (Ing, Outy) be predicates in R describing 1/0
dependency constraints. Let Rpe denote the set of rules Rules(Ing) U ...U Rules(Ing)U
Rules(Out)U ...U Rules(Outy). The complexity of the VVT problem in the presence of
I/0 dependency constraints is the following.

1. If all the rules in Rge are not recursive, then the verification problem is TIL -Complete
in the size of the rules in R and polynomial in the number of rules in Rge.

13

2. If the rules Rules(Iny),..., Rules(Ing) are not recursive, but some of the rules in
Rules(Outy), ..., Rules(Outy) are recursive, then the verification problem is decidable
and it is complete for 113 in the size of the rules in Ry, and polynomial in the number
of rules in Rie.

3. If some of the rules in Rules(Iny),..., Rules(Ing) are recursive, then the problem is
undecidable.

It is important to note that in the above corollaries there is an asymmetry between the
rules defining P;, (In;) and those defining P,,; (Out;) (which follows from the analogous
asymmetry in the analysis of the query containment problem). An algorithm and the upper
complexity bound for the first part of Corollaries 5.3 and 5.4 follow from [16]. The algorithm
and upper bound complexity result for the second cases is given in [21]. The lower bound
for the first part of the corollaries and the undecidability result follow from [37]. Finally, we
note that the VVT problem considered here would remain decidable also if the rules have
function symbols, as long as the rules are not recursive. However, if we allow negation on
predicates other than base predicates, then the VV'T problem is undecidable, even when the
rules are not recursive.

Negation and Input Completeness Constraints: In our discussion we have considered
cases in which the Horn rules contain negated base predicates in their antecedents. Except
for providing additional modeling power as a representation language, negation can also be
used for expressing certain kinds of input completeness constraints. The following example
illustrates such a usage.

Example 4: Suppose we want to express the following input completeness constraint
on the domain of our example: for second-year students, all the courses that they have
taken previously were mandatory courses. This constraint can be specified by the following
sentence:

Prev(s,c) A Year(s,2) = Mandatory(c,1).

Note that in this example, Mandatory is a base predicate, and therefore the constraint
specifies a condition on the completeness of the input.

The constraint, specified in this form, is a special case of a tuple-generating dependency.
However, using negation on base predicates, this sentence can be translated to the following
Horn rule defining P;,:

Prev(s,c) AYear(s,2) N ~Mandatory(c,1) = P,.

As a result, verifying the set of rules in the presence of such input completeness constraints
can be done using the techniques described in this section for the VVT problem in the
presence of 1/O consistency constraints. It is easy to see that this transformation can be

14

done for any tuple generating dependency that does not contain existential variables on the
right-hand side. Obviously, an analogous transformation can be done for certain kinds of
O/1 dependency constraints. O

6 Verifying Hybrid Knowledge Bases

Horn rule languages are well suited to capture fine-grained relational knowledge but they
are not expressive enough to model complex structural knowledge. In contrast, description
logics are a family of representation languages that have been designed especially to model
rich hierarchies of classes of objects. Several applications, such as combining information
from multiple heterogeneous sources, modeling complex physical devices, significantly benefit
from combining the expressive power of both formalisms. In this section we consider hybrid
knowledge bases using the carin family of languages, which was designed to extend Horn
rules with the expressive power of description logics.

We show that the correspondence between the VVT problem and the query containment
problem also enables us to provide the first sound and complete algorithm for verifying
hybrid knowledge bases.

Aside from being a more expressive language for domain modeling, the expressive power
of cariN provides two other advantages in the context of the VVT problem:

e Description logics provide a natural way to express constraints on predicates appearing
in the Horn rules, such as disjointness and subsumption between predicates.

e As we show in the next section, the added expressive power of cariN enables us to
express a class of input completeness constraints, and therefore to solve the VVT
problem in the presence of that class of constraints.

We begin by introducing the syntax and semantics of the carin languages.

6.1 CARIN Knowledge Bases

cariN is a family of languages, each of which combines a description logic £ with Horn rules.
We denote a specific language in cariNv by carin-L£. A set of rules in carin-£ contains two
components, the first is a description-logic terminology, and the second is a set of function-
free extended Horn rules. The terminology is a set of statements in £ about concepts and
roles in the domain. Extended Horn rules are rules in which concept and role descriptions can
appear as predicate names in the antecedents. Predicate names appearing in the Horn rules
that do not appear in the terminology are called ordinary predicates. Ordinary predicates
can be of any arity. In this paper we consider the language carin-ALCNR. We briefly
review the description logic ALCNR [3, 6] below.

15

6.1.1 The Description Logic ALCNR

A description logic contains unary relations (called concepts) which represent sets of ob-
jects in the domain and binary relations (called roles) which describe relationships between
objects. Expressions in the terminology are built from concept and role names and from
concept and role descriptions, which denote complex concepts and roles. Descriptions in
ALCNR are defined using the following syntax (A denotes a primitive concept name, P;’s
denote primitive role names, C' and D represent concept descriptions and R denotes a role
description):

C,D— Al (primitive concept)
T 1| (top, bottom)
cCnD|CUuD | (conjunction, disjunction)
-C' | (complement)
VR.C | (universal quantification)
JR.C | (existential quantification)
(> nR) | (< nR) (number restrictions)
R— P M...MP, (role conjunction)

The sentences in a terminological component of a knowledge base are either concept
inclusions or role definitions. A concept inclusion is of the form C' & D, where C' and D
are concept descriptions. Intuitively an inclusion states that every instance of the concept
C must be an instance of D. A role definition is a formula of the form P := R, where P is
a role name and R is a role description.

Semantics of ALCNR: The semantics of a terminology 7 is given via interpretations.
An interpretation I contains a non empty domain O'. It assigns a unary relation C' to
every concept in 7, and a binary relation R’ over O x O to every role R in 7. The
extensions of concept and role descriptions are given by the following equations: (§S denotes
the cardinality of a set S):

— 0!
1r=0
(CnD)Y=ctnD!

(CuD)y=ctubp!

(~C) =0"\C’

(VR.C) ={d e O |Ve: (d,e) e RT - ec C'}
(AR.CY ={d e O |3e: (d,e) e R" Ne € C'}
(> nR) ={de O | t{e| (d,e) € R} > n}
(< nR)Y ={de O |t{e]| (de) € RI} <n}
(... P) =PIn...nPL

An interpretation I is a model of a terminology 7 if C! C D! for every inclusion C' C D
in the terminology, and P’ = R’ for every role definition P := R. We say that C is subsumed
by D wrt. T if C' C D' in every model I of 7.

16

6.1.2 Semantics of carin:

The semantics of a set of extended Horn rules is defined in exactly the same way as in
Section 2. The only subtle point to note is that we always consider atoms of concept
predicates to be positive atoms. For example, the atom —A(x) is considered to be a positive
atom whose predicate name is = A, which is a concept in ALCNR. We do not allow negated
atoms of roles in the Horn rules.

Given a set of extended Horn rules R, and a terminology 7, we define entailment as
follows. Given a set of ground facts G for the ordinary predicates, the concepts and the
roles, and given a query of the form ((a), where) can be any ordinary predicate, concept
or role, we say that RU7T UG |= Q(a) if a’ € Q' for every interpretation I such that:

e [is a model of RU 7, and
e for every atom P(b) € G, then b’ € P’ and
e for every ordinary base predicate E and tuple b, b’ € E! only if E(b) € G.

Sound and complete entailment algorithms for carin-ALCN R are given in [19, 20]. Note
that when the Horn rules are recursive, the entailment problem for carin-ALCNR is not
decidable [20].

The following example illustrates the use of carin for expressing more complex 1/O de-
pendency constraints.

Example 5: Suppose we want to express an I/O dependency constraint stating that all
the students of a given year who have previously taken only basic courses, have to take
an advanced course. Using predicates In and Out, it can be stated by the two following
sentences. Note that the first sentence cannot be expressed as a Horn rule, even with negation
on base predicates:

Student(s) AVe|Prev(s, ¢) = Basic(c)] = In(s)
Adv(c) N Take(s,c) = Out(s)

In cariN, we express this constraint by defining the following terminology and extended rule:

C C VPrev.Basic
VPrev.Basic C C

Student(s) A C(s) = In(s). O

In [19] we describe an algorithm for query containment for non recursive carin-ALCNR
rules. That algorithm entails the following result.

Corollary 6.1: Let R be a set of extended Horn rules in cariN-ALCN R without interpreted
predicates, and T be a terminology in ALCNR. Assume that the magnitude of the integers

17

used in the number restrictions in 7T is bounded by the size of T. Assume that R includes
rules defining the predicates Py, and Py, describing 1/0 consistency constraints, respectively.

If both sets of rules Rules(Py,) and Rules(P,y,;) are not recursive then the VV'T problem
w.r.t. I/O consistency constraints is decidable in time that is doubly exponential in the size of
the rules in Rules(Py,) and Rules(P,y) and the size of T, and is polynomial in the number
of rules in Rules(Py,) and Rules(Pyy). O

A similar corollary can be stated for the VVT problem w.r.t. I/O dependency constraints.

7 VVT in the Presence of Input Completeness Con-
straints

In this section we consider the VV'T problem in the presence of input completeness con-
straints. Unfortunately, since the entailment problem of tgd’s is undecidable [38, 15], it
follows immediately that the VVT problem in the presence of input completeness and 1/0O
completeness constraints is undecidable. In this section we identify the class of separable
tgds, for which we show that the problem is decidable. The key to obtaining our result is
an algorithm for translating a set of separable tgd’s into a set of extended Horn rules in
cAriN, and therefore obtaining a reduction of the the VVT problem in the presence of input
completeness constraints to the VVT problem in the presence of I/O consistency constraints
in cariN. The following is an example of our method.

Example 6: Suppose we want to express the input completeness constraint stating that
engineering students, who want to take an advanced humanities course, must have previously
taken a basic humanities course. Formally, this constraint can be stated using the following
tgd:

EngStud(s) N Want(s,c) N Adv(c) N HumCourse(c)
= (Je¢1)Prev(s, c1) A Basic(cy) AN HumCourse(cy).

The idea behind the translation is to create a concept description that describes the set
of students that do not satisfy the right hand side of the tgd. We begin by considering the
predicates Basic and HumCourse as primitive classes in a terminology, and the predicate
Prev as a role. The description Basic T HumC'ourse denotes the class of objects that are
basic humanities courses. The class Cj4q can be defined by the description VPrev.—(Basicl
HumCourse) which denotes precisely the class of objects, such that all fillers of the role
Prev do not belong to the class Basic " HumCourse. We now use the class Ciyq as a
predicate in an extended Horn rule.

The result of our translation would be the terminology containing the following two
inclusion statements:

Ciga © VPrev.—(Basic 1 HumCourse)
VPrev.~(Basicl HumCourse) T Ciyq

18

The tgd would be translated into the following extended Horn rule, defining the predicate
Pin:
EngStud(s) N Want(s,c) A Adv(c) N HumCourse(c) A Ciga(s) = Ppp. O

In what follows, we formally define the class of separable tgd’s and then describe the
transformation algorithm.

Separable TGD'’s

Suppose T' is a tgd of the form ¢ = ¢. Given the sentence ¢, we can define a graph g, as
follows. The nodes in the graph are the variables of ¢, and there is an arc from a variable X
to a variable Y if there is an atom of the form R(X,Y’), where R is a binary predicate. A
mazimal path in gy is a path Xy, ..., X,,, such that there is no arc emanating from X,, and
no arcs coming into X;. A prefix p; of a path p is a subpath of p that has the same initial
point.

Definition 7: Let T be a tgd of the form ¢ = ¢, such that ¢ mentions only unary and
binary predicates. T is a separable tgd iff:

1. g4 15 acyclic,
2. a variable that appears in 1) can only appear in the beginning of a mazimal path in g4,

3. all the variables in ¢ that appear in the beginning of a maximal path also appear in),
and

4. if two mazimal paths in g4 share a variable X, then X appears only in their common
prefic.
O

The intuition behind Definition 7 is that the right-hand side of a separable TGD (i.e., the
formula ¢) can be equivalently rewritten as a conjunction of cr-formulas, defined as follows:

Definition 8: A formula f is a cr-formula on the variable X if it has the following form.:
CiLX)N . ANCL(X)ANT Y, L YR [RU(XG YD) A ALY A ARG (X, Yo) A frn(Yon)]

where Cy,...,C, are concepts, Ry, ..., R, are roles and f1(Y1),..., fm(Ym) are cr-formulas
on Y1, ..., Y., respectively. Note that either m or n may be 0. O

Observation 2: Let T be a separable tgd of the form ¢ = ¢, such that the variables
common to ¢ and ¢ are Xy,...,X,. Then, ¢ is logically equivalent to a sentence of the form
fi A... A fn, such that for all

1. f; is a cr-formula on X,
2. X, appears only in f;, and

3. if i # 7, then f; and f; do not share any variables.
(Il

19

The Transformation Algorithm

In Figure 1 we show the algorithm for transforming a given separable TGD. The output of
the algorithm is a terminology and a set of extended Horn rules defining FP;,, i.e., defining
an input consistency constraint.

procedure tgd-to-horn(7")
/* T is a separable tgd of the form i) = ¢. x/

/* The algorithm returns a set of extended Horn rules and a terminology. */

for every variable X € ¢ define a concept Cx as follows:

Let C4,...,Cj be the literals appearing in unary atoms in ¢ containing X.
if X appears only in the end of maximal paths then Cx = C;M...MC; (or T if [=0).
else

Let Y1,..., Y, be the variables in {Y | R(X,Y) € ¢}.
for every Y € {Y;,...,Y;} do:

Let Roley y be the conjunction of the roles in the set {R | R(X,Y) € ¢}.
Cx = (3 Rolexyyl.oyl) ... 0 (E| Rolex,yk.Cyk) ncyn...nd.

return the terminology D; C —~Cx,, ~Cx, C D;, and the rules ¢ A D;(X;) = Py,
where X1q,..., X, are the variables that appear in the beginning of maximal paths in ¢.

end tgd-to-horn.

Figure 1: Algorithm for translating a set of separable tgd’s to a set of extended Horn rules
with a terminology.

Example 7: Considering our example tgd

EngStud(s) N Want(s,c) A Adv(c) A HumCourse(c)
= (Je1)Prev(s, c1) A Basic(c) N HumCourse(ey).

The right hand side of the tgd contains one maximal path s — ¢;. The algorithm will com-
pute C., = Basic HumCourse. The concept for s is Cy = 3 Prev.(Basic1 HumCourse).
Procedure tgd-to-horn will return the terminology

Dy C —3 Prev.(Basic M HumCourse)
=3 Prev.(Basic 1 HumCourse) C Dy,

and the rule

EngStud(s) N Want(s,c) AN Adv(c) N HumCourse(c) A Dyi(s) = Py,. O

20

The following theorem shows that our algorithm returns a terminology and an input
consistency constraint that are equivalent to the original tgd. That is, for any set of inputs,
if the tgd T is violated, then the predicate P;, will be entailed as a result of adding the
terminology and rules computed by procedure tgd-to-horn(7).

Theorem 3: Let R be a set of extended Horn rules in cariN, and let T" be a separable tgd.
Let A be the set of extended Horn rules and the terminology returned by procedure tgd-to-
horn(T'). Then, for any set of inputs G, RUG = =T if and only if AURUG £ Py,.
(I

Proof: The proof is based on the fact that the following logical equivalence holds, where
Xy,..., X, are the variables that are common to ¢ and ¢, and Cx,,...,Cx, are the concepts
mentioned in the procedure tgd-to-horn.

VX1, Xy (6= O, (X0) 1. .1 Cx, (X)) (1)

Recall that ¢ also contains variables other than X, ..., X,,, which are existentially quan-
tified. Observation 2 enables us to reformulate ¢ as a conjunction of cr-formulas. An induc-
tion on the size of the cr-formulas, shows that algorithm tgd-to-horn creates a concept C'x,
which is logically equivalent to the c,.-formula of X;. Hence, Equation 1 holds.

For the first direction of the theorem, suppose that R UG = —T. That is, for every
model I of R U G, there exists an assignment #; of the variables Xy,..., X}, such that
I #6;(¢) and I = 0;(¢)) and hence, because of Equation 1, there exists a j, 1 < j < n such
that I }~= 0;(Cx,(X;)). The terminology returned by procedure tgd-to-horn implies that
I = 0;(Dx,(X;)). Since the rule 1) A Dx,(X;) = Py, is in A, it follows that I = P,. Since
this holds for every model I, it follows that A UR UG |= P,.

For the other direction, suppose that A UR UG = P,,. Assume by contradiction
that R UG f= —T. Therefore, there exists a model I of R U G such that for every variable
assignment 6 for Xy, ..., X, either I £ 0(¢) or I = 6(¢p). If I |~ 6(¢), then I = Py, because
all the rules involving P, have ¢ in their antecedent. If I = 0(¢), then, by Equation 1,
I = 0(D;(X;)) for every i, 1 < i < n. In this case it also follows that I [~ P,,, because
every rule involving P;, has a D; atom in its antecedent. Hence, it must be the case that
RUGE-T. O

8 Conclusions

This paper described a new perspective on the problem of verifying Horn-rule knowledge
bases, by relating it to the problem of query containment. This relationship had two ma-
jor results. First, it enabled us to unify different aspects of the VVT problem, namely, 1/0O
consistency constraints, [/O dependency constraints, and to a certain extent, input complete-
ness constraints. Second, the relationship provided the core computational characterization
of these instances of the VV'T problem. In particular, we showed how the complexity of the

21

problem depends on the properties of the Horn rules, including the presence of interpreted
predicates, negation on base predicates and recursion. Furthermore, we obtained the first
sound and complete algorithm for verifying hybrid rules in a language combining Horn rules
and description logics. Finally, we have also shown that by using containment in the context
of hybrid knowledge bases, it is possible to obtain new decidability results concerning the
problem of entailment of tuple-generating dependencies.

8.1 Related work

In this paper we considered three forms of the VVT problem. Only the VVT problem in the
presence of /O consistency constraints has received significant attention in the literature. As
for the other forms of the problem, we are the first to treat input completeness constraints,
and 1/0O dependency constraints were considered only very little. In particular, the need for
verifying a knowledge base w.r.t. I/O dependency constraints has been pointed out in [24, 12].
It should be noted that testing a knowledge base w.r.t. a set of test cases can be seen as a
very restricted case of the [/O dependency VVT problem, but the algorithms considered to
perform such testing simply apply the KB to the (finite set of) test cases.

We now compare our work to the related work on the I/O consistency VVT problem
along several axes.

The form and semantics of the rules: This paper considered only rules whose semantics
is given within first-order logic.

Several works have considered the verification of OPS5-style production rules (e.g, [30,
14, 31]). In such rules, the right hand side of the rules is an action that may also delete
facts. Ginsberg and Williamson [14] identified a subset of OPS5 rules that can be analyzed
as logical rules, and presented an algorithm to do so. Their work did not consider recursive
rules or interpreted predicates.

Verification of non recursive logical rule knowledge bases has originally been considered by
Ginsberg [13] and Rousset [25]. A sound and complete algorithm for verifying non recursive
Horn rules with interpreted predicates was given in [23, 39]. As stated earlier, these works
did not establish the complexity of the verification problem. In particular, the complexity of
the algorithms presented in [23, 39] was shown to be exponential time (by a simple reduction
from the complexity of the ATMS algorithm being used). In contrast, our work provides a
tight complexity bound on this problem which is HZ'

Some of the subtleties involved in verifying hybrid knowledge bases have been pointed out
in [17, 26]. Our work provides the first sound and complete algorithm for verifying hybrid
knowledge bases.

Definition of the verification problem: On the surface, our definition of the VVT
problem in the presence of 1/O consistency constraints varies slightly from previous defini-
tions (e.g., [25, 13, 14, 23]). The definition in those works did not distinguish between the
predicates P, and P,,;. Instead they used a single predicate, called bad, to define illegal sets

22

of ground facts. The ground facts for which bad was defined could be either a set of inputs,
or the set of facts inferred from the knowledge base (which includes the inputs). A set of
rules is said to be verified if, for any set of inputs, the knowledge base does not entail bad. It
is easy to reformulate this definition of the VV'T problem into our formalism. In particular,
in rules defining bad that contain only base predicates in their antecedents we replace bad
by P;,. In the other rules, bad is replaced by P,,;.

Loiseau and Rousset [23] describe a variant on the above definition. They identify a
subset of the rules in the knowledge base Ay, as being sure rules (e.g., rules that have been
previously verified). A knowledge base A is said to be verified if for any set of inputs G, if
G U Agyre = bad, then G U A [~ bad. This definition can be reformulated in our framework
as follows. We consider every rule r defining bad. If Rules(r) C Agyye, then we replace bad
in the consequent of r by P;,. Otherwise, we replace bad by P,,;.

Verification algorithms: In this paper we relate the VVT problem to the problem of
query containment, and therefore show that algorithms for query containment can be used
for the VVT problem and vice versa. It is instructive to take a closer look at the actual
algorithms used in the literature for each of these problems. In the VV'T community, most
of the work has used algorithms based on Assumption-based Truth Maintenance Systems
(ATMS) [9]. In the database community, containment algorithms are usually explained in
terms of representative databases. There are several points to note in a comparison:

1. The exposition of the query containment algorithms in the literature has usually been
for the purpose of analyzing the complexity of the problem. However, in the cases
of non recursive Horn rules, an implementation of the query containment algorithm
would actually be very similar to an implementation based on ATMS. In this case, the
contribution of our work is mostly the establishment of the complexity of the VVT
problem.

2. In order to apply ATMS techniques for recursive rules, one has to devise a termination
condition for the generation of labels (or unfoldings). In this case, the termination con-
dition described in [8] can be used as a basis for developing an ATMS-based algorithm
for VVT.

3. For hybrid knowledge bases, no extension of ATMS algorithms has been considered.
In this case, the only existing algorithm is the one based on query containment [19].

8.2 Future work

There are two main directions in which our framework should be extended. As mentioned
above, one direction is to explore in more detail the algorithmic aspects of the correspondence
between the query containment and the VVT problem. The other direction is to find other
families of constraints for which the corresponding VV'T problem can be reformulated as
a query containment problem. In particular, one class of constraints that is very useful in

23

practice (and has received little attention in the VVT literature) is output completeness
constraints.

Verifying a knowledge base is only the first step in assisting its designer. When a knowl-
edge base has been deemed as not verified, the system should aide the designer in debugging
the knowledge base. An important direction that we are pursuing is to adapt the algorithms
we have considered in such a way that they show the designer the flaws in the knowledge
base. In particular, the algorithms we described can be modified to return a counter example
set of inputs in cases in which the knowledge base is not verified. An interesting tradeoff
in this case is whether to present the user with a counter example set of inputs, or to show
her how the inconsistency in the knowledge base can be derived. The latter approach, for
hybrid knowledge bases has been considered in [27]. Finally, the system can also propose to
the designer refinements to the knowledge base that would make it consistent [5, 41].

References

[1] Alfred Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalence of relational expres-
sions. SIAM Journal of Computing, (8)2:218 246, 1979.

[2] Marc Ayel and Marie-Christine Rousset, editors. Proceedings of the FEuropean Sym-
posium on Verification and Validation of Knowledge Based Systems, EUROVAV-95,
1995.

(3] F. Baader and B. Hollunder. A terminological knowledge representation system with
complete inference algorithm. In In Proceedings of the Workshop on Processing Declara-
tive Knowledge, PDK-91, Lecture Notes in Artificial Intelligence, pages 67 86. Springer-
Verlag, 1991.

[4] Catriel Beeri and Moshe Vardi. A proof procedure for data dependencies. Journal of
the ACM, 31(4):718 741, 1984

[5] Fatma Bouali, Stephane Loiseau, and Marie-Christine Rousset. Verification and revision
of rule bases. In Proceedings of the 17th British Computer Society Conference on Fxpert
Systems, Cambridge, United Kingdom, 1997.

[6] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning in
terminological knowledge representation systems. Journal of Artificial Intelligence Re-
search, 1:109 138, 1993.

7] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing, pages 77-90, 1977.

24

[10]
[11]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Surajit Chaudhuri and Moshe Vardi. On the equivalence of recursive and nonrecur-
sive datalog programs. In The Proceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, San Diego, CA., pages 55 66,
1992.

Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28, 1986.
E.W Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

R. Fagin. Horn clauses and database dependecies. Journal of the ACM, 29(4):952-983,
1982.

D. Fensel, A Schonegge, R. Groenboom, and B. Wielenga. Specification and verifica-
tion of kbs. In Proceedings of the ECAI-96 workshop on Validation, Verification and
Refinement of KBS, 1996.

Allen Ginsberg. Knowledge base reduction: A new approach to checking knowledge
bases for inconsistency and redundancy. In Proceedings of the Seventh National Con-
ference on Artificial Intelligence, 1988.

Allen Ginsberg and Keith Williamson. Inconsistency and redundancy checking for quasi-
first-order-logic knowledge bases. International Journal of Expert Systems: Research
and Applications, 6, 1993.

Y. Gurevich and H. R. Lewis. The inference problem for template dependencies. In
Proceedings of the First ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 221 229, 1982.

A. Klug. On conjunctive queries containing inequalities. Journal of the ACM, pages
35(1): 146-160, 1988.

Sunro Lee and Robert M. O’Keefe. Subsumption anomalies in hybrid knowledge bases.
International Journal of Fxpert Systems: Research and Applications, 6, 1993.

Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answer-
ing queries using views. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Jose, CA, 1995,

Alon Y. Levy and Marie-Christine Rousset. CARIN: a representation language integrat-
ing rules and description logics. In Proceedings of the European Conference on Artificial
Intelligence, Budapest, Hungary, 1996.

Alon Y. Levy and Marie-Christine Rousset. The limits on combining recursive horn rules
and description logics. In Proceedings of the AAAI Thirteenth National Conference on
Artificial Intelligence, 1996.

25

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In Proceedings of
the 19th VLDB Conference, Dublin, Ireland, pages 171 181, 1993.

Alon Y. Levy and Dan Suciu. Deciding containment for queries with complex objects
and aggregations. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, Tucson, Arizona., 1997.

Stephane Loiseau and Marie-Christine Rousset. Formal verification of knowledge bases
focused on consistency: Two experiments based on ATMS techniques. International
Journal of Expert Systems: Research and Applications, 6, 1993.

Christine Pierret. Correctness of methods w.r.t problem specifications. In Proceedings
of the ECAI-96 workshop on Validation, Verification and Refinement of KBS, 1996.

Marie-Christine Rousset. On the consistency of knowledge bases: the COVADIS system.
In Proceedings of the 8th European Conference on Artificial Intelligence (ECAI 88),
Munich, Germany, 1988.

Marie-Christine Rousset. Knowledge formal specifications for formal verification: a pro-
posal based on the integration of different logical formalisms. In Proceedings of the 11th
European Conference on Artificial Intelligence (ECAI 94), Amsterdam, Netherlands,
1994.

Marie-Christine Rousset and Pascale Hors. Modeling and verifying complex objects:
A declarative approach based on description logics. In Proceedings of the European
Conference on Artificial Intelligence, Budapest, Hungary, 1996.

Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the union
and difference operators. Journal of the ACM, 27(4):633 655, 1981.

Yehoshua Sagiv. Optimizing datalog programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 659 698. Morgan Kaufmann, Los
Altos, CA, 1988.

James G. Schmolze and Wayne Snyder. A tool for testing confluence of production
rules. In Proceedings of the European Symposium on Validation and Verification of

KBS, EUROVAV-95, 1995.

James G. Schmolze and Wayne Snyder. Detecting redundant production rules. In
Proceedings of the AAAI Fourteenth National Conference on Artificial Intelligence, 1997.

Oded Shmueli. Equivalence of datalog queries is undecidable. Journal of Logic Pro-
gramming, 15:231 241, 1993.

Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. The GMAP: A
versatile tool for physical data independence. VLDB Journal, 5(2):101 118, 1996.

26

[34]

[35]

[36]

37]

38]

[39]

[40]

[41]

Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, Volumes I, I1.
Computer Science Press, Rockville MD, 1989.

Jeffrey D. Ullman. Information integration using logical views. In Proceedings of the
International Conference on Database Theory, 1997.

Ron van der Meyden. The complexity of querying indefinite data about linearly or-
dered domains. In The Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Diego, CA., pages 331 345, 1992.

Ron van der Meyden. The Complexity of Querying Indefinite Information: Defined
Relations Recursion and Linear Order. PhD thesis, Rutgers University, New Brunswick,
New Jersey, 1992.

Moshe Vardi. The implication and finite implication problems for typed template de-
pendencies. Journal of Computer and System Sciences, 28(1):3-28, 1984.

Keith Williamson and Mark Dahl. Knowledge base reduction for verifying rule bases
containing equations. In Proceedings of the AAAI-93 workshop on Validation and Ver-
ification of KBS, 1993.

M. Yannakakis and C. H. Papadimitriou. Algebric dependencies. Journal of Computer
and System Sciences, 25(1):2-41, 1980.

Neli Zlatareva. Explaining anomalies as a basis for KB refinement. In Proceedings of
the ECAI-96 workshop on Validation, Verification and Refinement of KBS, 1996.

27

