
From Instances to Classes in Probabilistic Relational Models

Lise Getoor
Computer Science Dept.

Stanford University
Stanford, CA 94305

getoor@cs.stanford.edu

Daphne Koller
Computer Science Dept.

Stanford University
Stanford, CA 94305

koller@cs.stanford.edu

Nir Friedman
School of Computer Sci. & Eng.

Hebrew University
Jerusalem, 91904, Israel

nir@cs.huji.ac.il

Abstract

Probabilistic graphical models, in particular Bayesian net-
works, are useful models for representing statistical pat-
terns in propositional domains. Recent work develops ef-
fective techniques for learning these models directly from
data. However these techniques apply only to attribute-value
(i.e., flat) representations of the data.Probabilistic relational
models(PRMs) allow us to represent much richer depen-
dency structures, involving multiple entities and the rela-
tions between them; they allow the properties of an entity
to depend probabilistically on properties ofrelatedentities.
PRMs represent a generic dependence, which is then instan-
tiated for specific circumstances, i.e., for a particular set of
entities and relations between them. Friedmanet al. showed
how to learn PRMs from relational data, and presented tech-
niques for learning both parameters and probabilistic depen-
dency structure for the attributes in a relational model. Here
we examine the benefit that class hierarchies can provide
PRMs. We show how the introduction of subclasses allows
us to use inheritance and specialization to refine our models.
We show how to learn PRMs with class hierarchies (PRM-
CH) in two settings. In the first, the class hierarchy is pro-
vided, as part of the input, in the relational schema for the
domain. In the second setting, in addition to learning the
PRM, we must learn the class hierarchy. Finally we dis-
cuss how PRM-CHs allow us to build models that can repre-
sent models for both particular instances in our domain, and
classes of objects in our domain, bridging the gap between a
class-based model and an attribute-value-based model.

1 Introduction
Probabilistic graphical models, in particular Bayesian net-
works, are useful models for representing statistical pat-
terns in propositional domains. Recent work (Cooper and
Herskovits 1992; Heckerman 1998) develops effective tech-
niques for learning these models directly from data. These
techniques are now well-developed, and have been applied
to a variety of research and commercial applications. How-
ever, they are significantly limited in that they can be ap-
plies only to attribute-value, or flat, representations of the
data. Any richer relational structure in the domain cannot
be modeled.

Consider, the problem of building a model of television
viewers and the shows that they enjoy. One approach is to

build a Bayesian network that represents the preferences of
a single viewer, which has a random variable for each TV
program. Each person in the training set has a vector that
represents the TV programs that they have watched, and
their ratings for that show. From this data set, we can learn
a Bayesian network that represents the correlations between
their preferences for the different programs. Thus, we could
learn that the user’s rating of one program, say “Seinfeld”,
depends on his ratings for the programs that are its parents
in the learned network, say “Friends” and “Frasier”. Breese
et al. (1998) compare this approach to other collaborative
filtering approaches and show that it is superior in its ability
to predict TV-show preferences.

This approach is limited in that it models only the rela-
tionships between instances of one class, the TV programs.
We cannot model broad dependencies, such as whether a
person enjoys sitcom reruns depends on whether they watch
prime-time sitcoms. In addition, we cannot model rela-
tionships between people. For example, if my roommate
watches “LA Law”, I am more likely to pull up a chair and
watch also.

Probabilistic relational models(PRMs) (Koller and Pf-
effer 1998) allow us to represent richer dependency struc-
tures, involving multiple entities and the relations between
them; they allow the attributes of an entity to depend prob-
abilistically on properties ofrelatedentities. PRMs model
the domain at theclasslevel; i.e., all instances in the same
class share the same dependency model. This model is then
instantiated for particular situations. For example, a per-
son’s ratings for a TV program can depend both on the
attributes of the person and the attributes of the program.
For a given situation, involving some set of people and pro-
grams, this dependency model will be used several times.
This allows us, for example, to use the properties and rat-
ings of one person to reach conclusions about the properties
of a program (e.g., how funny it is), and thereby to reach
conclusions about the chances that another viewer would
like it.

Friedmanet al. (1999) showed how to learn PRMs from
relational data, and presented techniques for learning both
parameters and probabilistic dependency structure for the
attributes in a relational model. This learning algorithm ex-
ploits the fact that the models are constructed at the class



level. Thus, an observation concerning one user and one
program is used to refine the class model applied to all users
and all programs, hence making much broader use of our
data.

However, this class-based approach also has disadvan-
tages: all elements of the same class must use the same
model. Thus, for example, we cannot have the rating of a
user for documentaries depend on one set of parents, and
his ratings for comedies depend on another. In particular,
we cannot have the rating for “Seinfeld” depend on the rat-
ing for “Friends”: The dependendency model for these two
ratings must be identical, and we cannot have the rating for
“Friends” depending on itself.

In this work, we propose methods for discovering useful
refinements of a PRM’s dependency model. We begin in
Section 3 by definingProbabilistic Relational Models with
Class Hierarchies(PRMs-CH). PRMs-CH extend PRMs by
including class hierarchies over the classes. Subclasses al-
low us to specialize the probabilistic model for some in-
stances of the class. For example, we might consider sub-
classes of TV programs, such as documentaries, dramas,
newcasts, and sitcoms. The budget of sitcoms (a subclass
of TV programs) may depend on their popularity, whereas
the budget of newscasts (another subclass of TV programs)
may depend on the venue of the associated TV network.
Subclassing allows us to model probabilistic dependencies
at the appropriate level of detail. For example, we can have
the parents of the budget attribute in the sitcom subclass be
different than the parents of the same attribute in the doc-
umentary subclass. In addition, as we show, subclassing
allows additional dependency paths to be represented in the
model, that would not be allowed in a PRM that does not
support subclasses. For example, whether I watch sitcoms
may depend on whether I watch documentaries. PRMs-CH
provide a general mechanism that allow us to define a rich
set of dependencies. In fact, they provide the basic repre-
sentational power that will allow us to model dependency
models for individuals (as done in Bayesian Networks) and
dependency models for categories of individuals (as done
in PRMs).

We next turn in Section 4 to some of the practical is-
sues involved in learning PRMs-CH. First, we examine the
case where the class hierarchy is given as input, in the re-
lational schema. Our learning task is then simply to choose
the appropriate level at which to model the probabilistic de-
pendencies — at the class level, or specialized according
to some subclass. We then turn to the case where the class
hierarchy is not provided, and in addition to learning the
probabilistic model, we must also discover the structure of
the class hierarchy.

In Section 5, we present some preliminary experimen-
tal results illustrating how we have expanded the space of
probabilistic models considered by our learning algorithm,
and how this allows us to learn more expressive and more
accurate models. We conclude in Section 6 with some dis-
cussion and future work.

But, before turning to our new research, which begins in
Section 3, the next section reviews some necessary back-

ground which includes the definition of a probabilistic rela-
tional model.

2 Probabilistic Relational Models
A probabilistic relational model (PRM)specifies a template
for a probability distribution over a database. The tem-
plate includes a relational component, that describes the re-
lational schema for our domain, and a probabilistic compo-
nent, that describes the probabilistic dependencies that hold
in our domain. A PRM, together with a particular database
of objects and relations, defines a probability distribution
over the attributes of the objects and the relations.

2.1 Relational Schema
A schema for a relational model describes a set ofclasses,X = X1; : : : ; Xn. Each class is associated with a set of
descriptive attributesand a set ofreference slots1.

The set of descriptive attributes of a classX is denotedA(X). AttributeA of classX is denotedX:A, and its do-
main of values is denotedV (X:A). We assume here that
domains are finite. For example, thePerson class might
have the descriptive attributesSex, Age, Height, Income,
etc. The domain forPerson.Agemight befchild, young-
adult, middle-aged, seniorg.

The set of reference slots of a classX is denotedR(X).
We use similar notation,X:�, to denote the reference slot�
of X . Each reference slot� is typed, i.e., the schema spec-
ifies the range type of object that may be referenced. More
formally, for each� in X , the domain type ofDom[�℄ = X
and the range typeRange[�℄ = Y , whereY is some class
in X . A slot � denotes a function fromDom[�℄ = X toRange[�℄ = Y . For example, we might have a classTV-
Program with the reference slotOn-Networkwhose range
is the classNetwork. For clarity, in some situations it is
useful to specify both the name of the reference slot and
the class of the object that to which it refers; for example if
each network has an owner slot that is a company then we
use the notationNetwork:OwnerCompany.

It is often useful to distinguish between anentity and a
relationship, as in entity-relationship diagrams. In our lan-
guage, classes are used to represent both entities and rela-
tionships. Thus, entities such as people and TV programs
are represented by classes, but a relationship such asVote,
which relates people to TV shows, is also be represented
as a class, with reference slots to the classPerson and the
classTV-Program. This approach, which blurs the distinc-
tion between entities and relationships, is common, and al-
lows us to accommodate descriptive attributes that are as-
sociated with the relation, such asRanking. We use the
generic termobjectto refer both to entities and to relation-
ships.

In addition to the explicit reference slots of a class, we
also allow the construction of derived reference slots. One

1We note that there is a direct mapping between our notion of
class and the tables used in a relational database. Our descriptive
attributes correspond to standard attributes in the table,and our
reference slots correspond to attributes that are foreign keys (key
attributes of another table).



of the most basic derived reference slots is theinverse. For
each reference slot�, we can define an inverse slot��1,
which is interpreted as the inverse function of�. Note that
if � is a many-to-one function, then its inverse takes on val-
ues that are sets of objects. Another type of derived refer-
ence slot is aslot chain, which allows us to compose slots,
defining functions from objects to other objects to which
they are not directly related. More precisely, we define a
slot chain�1; : : : ; �k be a sequence of slots (inverse or oth-
erwise) such that for alli, Range[�i℄ = Dom[�i+1℄. For
example,TV-Program:Network:Ownercan be used to de-
note the company that owns the network which produces
a TV program. AndPerson:(VoterVote

�1) can be used to
denote the set of votes that a person has made. For no-
tational convenience, we allow the derived reference slots
to be have names associated, which can then be used as
shorthand. For example, we can replace the unintuitive
Person:(VoterVote

�1) with the shorthandPerson:Votes.
The semantics of this language is straightforward. In

an instantiationI, eachX is associated with a set of ob-
jectsOI(X). For each attributeA 2 A(X) and eachx 2 OI(X), I specifies a valuex:A 2 V (X:A). For
each reference slot� 2 R(X), I specifies a valuex:� 2OI(Range[�℄). For y 2 OI(Range[�℄), we usey:��1 to
denote the set of entitiesfx 2 OI(X) : x:� = yg. The
semantics of a slot chain� = �1: : : : :�k are defined via
straightforward composition. ForA 2 A(Range[�k℄) andx 2 OI(X), we definex:�:A to be themultisetof valuesy:A for y in the setx:� .

Finally, therelational skeleton, �r specifies the set of ob-
jects in all classes, as well as all the relationships that hold
between them. In other words, it specifiesO�(X) for eachX , and for each objectx 2 O�(X), it specifies the values
of all of the reference slotsx:�.

2.2 Probabilistic Model
A probabilistic relational model� specifies a probabil-
ity distribution over all instantiationsI of the relational
schema. It consists of two components: the qualitative de-
pendency structure,S, and the parameters associated with
it, �S . The dependency structure is defined by associating
with each attributeX:A a set ofparentsPa(X:A).

A parent ofX:A can have the formX:�:B, for some
(possibly empty) slot chain� . To understand the seman-
tics of this dependence, recall thatx:�:A is a multiset of
valuesS in V (X:�:A). We use the notion ofaggregation
from database theory to define the dependence on a mul-
tiset; thus,x:A will depend probabilistically on some ag-
gregate property(S). There are many natural and useful
notions of aggregation, such asmedianor mode. We allowX:A to have as a parent(X:�:B); for any x 2 X , x:A
will depend on the value of(x:�:B).

The quantitative part of the PRM specifies the parameter-
ization of the model. Given a set of parents for an attribute,
we can define a local probability model by associating with
it a conditional probability distribution (CPD). For each at-
tribute we have a CPD that specifiesP (X:A j Pa(X:A)).
Definition 1: A probabilistic relational model (PRM)� for

a relational schemaS is defined as follows. For each classX 2 X and each descriptive attributeA 2 A(X), we have:� a set ofparentsPa(X:A) = fU1; : : : ; Ulg, where eachUi has the formX:B orX:�:B, where� is a slot chain;� a conditional probability distribution (CPD)that repre-
sentsP�(X:A j Pa(X:A)).
Given a relational skeleton�r, a PRM� specifies a prob-

ability distribution over a set of instantiationsI consistent
with �r:P (I j �r;�) = YX2X Yx2O�r (X) YA2A(X)P (x:A j Pa(x:A))

(1)

For this definition to specify a coherent probability dis-
tribution over instantiations, we must ensure that our proba-
bilistic dependencies are acyclic, so that a random variable
does not depend, directly or indirectly, on its own value. To
verify acyclicity, we construct anobject dependency graphG�r . Nodes in this graph correspond to descriptive at-
tributes of entities. LetX:�:B be a parent ofX:A in our
probabilistic dependency schema; for eachy 2 x:� , we de-
fine an edge inG�r : y:B !�r x:A. We say that a depen-
dency structureS is acyclic relative to a relational skele-
ton �r if the directed graphG�r is acyclic. WhenG�r is
acyclic, we can use the chain rule to ensure that Eq. (1) de-
fines a legal probability distribution (as done, for example,
in Bayesian networks).

The definition of the object dependency graph is specific
to the particular skeleton at hand: the existence of an edge
fromy:B tox:A depends on whethery 2 x:� , which in turn
depends on the interpretation of the reference slots. Thus,
it allows us to determine the coherence of a PRM only rel-
ative to a particular relational skeleton. When we are eval-
uating different possible PRMs as part of our learning al-
gorithm, we want to ensure that the dependency structureS we choose results in coherent probability models forany
skeleton. We provide such a guarantee using aclass de-
pendency graph, which describes all possible dependencies
among attributes. In this graph, we have an (intra-object)
edgeX:B ! X:A if X:B is a parent ofX:A. If (X:�:B)
is a parent ofX:A, andY = Range[� ℄, we have an (inter-
object) edgeY:B ! X:A. A dependency graph isstrati-
fied if it contains no cycles. If the dependency graph ofS
is stratified, then it defines a legal model for any relational
skeleton�r (Friedmanet al. 1999).

3 PRMs with Class Hierarchies
In this section, we describe refinements of our probabilistic
model using class hierarchies. To motivate our extensions,
consider a simple PRM for the TV program domain. Let us
restrict attention to the three classesPerson, TV-Program,
andVote. We can have the attributes ofVote depending on
attributes of the person voting (via the slotVote.Voter) and
on attributes of the program (via the slotVote.Program).
However, given the attributes of all the people and the pro-
grams in the model, the different votes are (conditionally)



independent and identically distributed. By contrast, in the
BN model for this domain, each program could have a dif-
ferent dependency model; we could even have one depend
on the other.

3.1 Class Hierarchies
Our aim is to refine the notion of a class, such asTV-
Program, into finer subclasses, such as “sitcoms”, “dra-
mas”, “documentaries”, etc. Moreover, we want to allow
recursive refinements of this structure. So that we might re-
fine “dramas” into the subclasses “legal dramas”, “medical
dramas”, and “soap operas”.

Formally, we introduce the notion of a probabilistic class
hierarchy, similar to that introduced in (Koller and Pfeffer
1997; 1998). We assume that the original set of classes
define, at the schema level, the structure of an object (at-
tributes and slots associated with it). Unlike the subclass
mechanism in (Koller and Pfeffer 1997; 1998), subclasses
do not change this structure.

A hierarchyH [X ℄ for a classX consists of two parts, a
finite set of subclassesC[X ℄ and a partial ordering� overC[X ℄ defining theclass hierarchy. The setC[X ℄ specifies
the set of subclasses ofX . For each value 2 C[X ℄, we
have a subclassX. The hierarchy is defined using a partial
ordering� onC[X ℄. For; d 2 C[X ℄, if  � d, we say thatX is adirect subclassof Xd, andXd is adirect superclass
of X. We require that� define a tree directed to some
root>, whereClass> corresponds to the original classX .
We define�� to be the reflexive transitive closure of�; if �� d, we say thatX is a subclass ofXd.

For example we may have the classTV-
Program and its direct subclassesTV-Programsitcom,
TV-Programdrama, and TV-Programdocumentary.
The subclass TV-Programdrama might, in turn,
have the direct subclassesTV-Programlegal-drama,
TV-Programmedical-drama, and TV-Programsoap-opera.
We have thatTV-Programmedical-drama is a direct subclass
of TV-Programdrama, and a subclass (but not a direct one)
of the root classTV-Program.

We define the leaves of the hierarchy to be thebasic
subclasses, denotedbasic(H [X ℄). We achieve subclassing
for a classX by requiring that there be an additional
subclass indicator attributeX:Class that determines the
basic class to which an object belongs. We note that
each object belongs to precisely one basic class. Thus,
if  is a subclass, thenOI(X) contains all objectsx 2 X for which x:Class �� , i.e., all objects that
are in some basic class which is a subclass of. In
our example, TV-Program has a subclass indicator
variableTV-Program:Classwith the five possible valuesfsitcom; documentary; soapopera; legal-drama;medical-dramag.

Subclasses allow us to make finer distinctions when con-
structing a probabilistic model. In particular, they allowus
to specializeCPDs for different subclasses in the hierarchy.

Definition 2: A probabilistic relational model with sub-
class hierarchyis defined as follows. For each classX 2 X
we have

� a class hierarchyH [X ℄ = (C[X ℄;�);� a subclass indicator attributeX:Class such thatV (X:Class) = basic(H [X ℄);� a set of parents and a CPD forX:Class (as in Defini-
tion 1).� for each subclass 2 C[X ℄ and attributeA 2 A(X) we
have either

– a set of parents Pa(X:A) and a CPD that describesP (X:A j Pa(X:A)); or
– an inherited indicator that specifies that the CPD forX:A in  is inherited from its direct superclass. The

root of the hierarchy cannot have the inherited indica-
tor.

We defineP (X:A j Pa(X:A)) to be the CPD associated
with A in Xd, whered is the most specialized superclass of (which may be itself) such that the CPD ofX:A in d is
not marked with the inherited indicator.

With the introduction of subclass hierarchies, we can re-
fine our probabilistic dependencies. Before each attributeX:A had an associated CPD. Now, if we like, we can spe-
cialize the CPD for an attribute within particular subclass.
We can associate a different CPD with the attributes of dif-
ferent subclasses. For exampleTV-Programsitcom:Budget
may have a different conditional distribution from
TV-Programdocumentary:Budget. Further, the distribution for
each of the attributes may depend on a completely differ-
ent set of parents. Continuing our discussion from the in-
troduction, if the budget of sitcoms depends on their pop-
ularity, thenTV-Programsitcom:Budgetwould have as par-
entsTV-Programsitcom:Popularity. However, for documen-
taries, the budget depends on the venue of the broadcast-
ing network — cable, public-broadcast, or commercial-
broadcast; then,TV-Programdocumentary:Budgetwould have
the parentTV-Programdocumentary:On-Network:Venue.

3.2 Refined Slot References

At first glance, the increase in representational power pro-
vided by supporting subclasses is deceptively small. It
seems that little more than an extra constructed type vari-
able has been added, and that the structure that is exploited
by the new sub-classed CPDs could just as easily have
been provided using structured CPDs, such as the tree-
structured CPDs or decision graphs (Boutilieret al. 1996;
Chickeringet al. 1997).

However the representational power has been extended
in a very important way. Certain dependency structures that
would have been disallowed in the original framework are
now allowed. These dependencies appear circular when ex-
amined only at the class level; however, when refined and
modeled at the subclass level, they are no longer cyclic.
One way of understanding this phenomenon is that, once
we have refined the class, the subclass information allows
us to disentangle and order the dependencies.



Returning to our earlier example, suppose the we have
the classesVoter, TV-Program andVote. Vote has refer-
ence slotsPersonandTV-Programand an attributeRank-
ing that gives the score that a person has given for a TV
program. Suppose we want to model a correlation between
a person’s votes for documentaries and his votes for soap
operas. (This correlation might be a negative one.) In the
unrefined model, we do not have a way of referring to a
person’s votes for some particular subset of programs; we
can only consider aggregates over a person’s entire set of
votes. Furthermore, even if we could introduce such a de-
pendence, the dependency graph would show a dependence
of Vote.Rankon itself.

The introduction of subclasses of TV programs provides
us with a way of isolating a person’s votes on some subset
of programs. In particular, we can try to introduce a de-
pendence ofVotedocumentary:Rankon Votesoap-opera:Rank. In
order to allow this type dependency, we need a mechanism
for constructing slot chains that restrict the types of objects
along the path to belong to specific subclasses. Recall that a
reference slot� is a function fromDom[�℄ toRange[�℄, i.e.
from X to Y . We can introducerefinementsof a slot ref-
erence by restricting the types of the objects in the domain
and range.

Definition 3: Let � be a reference slot ofX with rangeY .
Let  andd be particular subclasses ofX andY respec-
tively. A refined slot reference�h;di for � to  andd is a
function fromX to Y .� x:�h;di = y if x 2 X andy 2 Yd andx:� = y.� If x 62 X, thenx:�h;di = y is undefined.� Likewise, if y 62 Yd, theny:(�h;di�1) is undefined.

Returning to our earlier example suppose that we
have subclasses ofTV-Program, TV-Programdocumentary

and TV-Programsoap-opera. In addition, suppose we also
have subclasses ofVote Votedocumentaryand Votesoap-opera.
To get from a person to their votes, we use the in-
verse of slot referencePerson:Votes. Now we can con-
struct refinements ofPerson:Votes, VoteshPerson;Votedocumentaryi
and VoteshPerson;Votesoap-operai. Let us name these slots
Documentary-Voteand Soap-Votes. To specify the
dependency of votes for documentaries on votes for
we can say thatVotedocumentary:Rank has a parent(Votedocumentary:Person:Soap-Votes:Rank).

The introduction of subclasses brings the benefit that we
can now provide a smooth transition from the PRM, a class-
based probabilistic model, to models that are more similar
to Bayesian networks. To see this, suppose our subclass
hierarchy for TV programs is very “deep” and starts with
the general class and ends in the most refined levels with
the names of particular TV programs. Thus, at the most re-
fined version of the model we can define the preferences
of a person by either class based dependency (the prob-
ability of watching sitcoms depends whether the individ-
ual watches soap operas) or show based dependency (the
probability of watching “Frasier” depends on whether the

individual watches “Seinfeld”). The latter model is essen-
tially the same as the Bayesian network models learned by
(Breeseet al. 1998) in the context of collaborative filtering.

In addition, the new flexibility in defining refined slot ref-
erences allows us to make interesting combinations of these
types of dependencies. For example, whether an individual
watches a particular show (e.g., “All My Children”) can be
enough to predict whether she watches a whole other type
of shows (e.g., documentaries).

3.3 Probabilistic Dependency Model

At some level, the introduction of a class hierarchy intro-
duces no substantial difficulties — the semantics of the
model remain unchanged. Given a relational skeleton�r,
and subclass information for each object, a PRM-CH�CH
specifies a probability distribution over a set of instantia-
tionsI consistent with�r:P (I j �r;�) =YX Yx2O�r (X)P (x:Classj Pa(x:Class)) YA2A(X)P (x:A j Pax:Class(x:A))

However, the problem of ensuring that our probabilis-
tic dependency structure is acyclic (and hence defines a co-
herent probability model) has become a little more compli-
cated. As before, we can build the class dependency graph.
Now, however, there is a node in the graph for each at-
tribute of each subclass,X:A; for each class we have a
nodeX:Class. As before, we have an edgeX:B ! X:A
if X:B is a parent ofX:A. In addition, if the CPD forX:A is specialized by or one of its non-root superclasses,
then we have an edgeX:Class! X:A. If (X:�:B) is
a parent ofX:A, andYd = Range[� ℄, we have an edgeYd:B ! X:A. In addition, for any refined slot refer-
ence�he;f `i along the chain� , we introduce an edge fromZ:ClasstoX:A, whereZ = Dom[�℄.

Once again, we can show that if this dependency graph
is stratified, it defines a coherent probabilistic model.

Theorem 4: Let �CH be a PRM-CH with a stratified de-
pendency graph. Let�r be an relational skeleton. Then the
PRM and�r uniquely define a probability distribution over
instantiationsI.

4 Learning PRMs
We start with a brief review of the approach of (Friedman
et al. 1999) to learning PRMs with attribute uncertainty.
We then describe a new algorithm for learning PRMs with
class hierarchies. We examine two scenarios: in one case
the class hierarchies are given as part of the input and in the
other, in addition to learning the PRM, we also must learn
the class hierarchy. The learning algorithms use the same
criteria for scoring the models, however the search space is
significantly different.



4.1 Review
We separate the learning problem into two basic questions:
how to evaluate the “goodness” of a candidate structure,
and how to search the space of legal candidate structures.
We consider each question separately.

For scoring candidate structures, we adapt Bayesian
model selection(Heckerman 1998). We compute the poste-
rior probability of a structureS given an instantiationI.
Using Bayes rule, we have thatP (S j I; �) / P (I jS; �)P (S j �). This score is composed of two main
parts: the prior probability ofS, and the probability of
the instantiation assuming the structure isS. By making
fairly reasonable assumptions about the prior probabilityof
structures and parameters, this second term can bedecom-
posedinto a product of terms. Each term in the decom-
posed form measures how well we predict the values ofX:A given the values of its parents. Moreover, the term
for P (X:A j u) depends only on thesufficient statistics
CX:A[v;u℄, that count the number of entities withx:A = v
and Pa(x:A) = u. These sufficient statistics can be com-
puted using standard relational database queries.

To find a high-scoring structure, we use a phased search
procedure. At thekth phase of the search, we allow de-
pendency models where parents use slot chains of length at
mostk. Thus, at phase 0, we allow as parents forX:A only
parents within the classX ; at phase 1, we allow parents that
are of the formX:�:A; etc. We only expand slot chains in
directions that seem to have promising dependencies.

Within each iteration, we use a search procedure that
considers operators! such as adding, deleting, or reversing
edges in the dependency modelS. The search procedure
performs greedy hill-climbing search in this space, using
the Bayesian score to evaluate models.

4.2 Class Hierarchies Provided in Schema
We now turn to learning PRMs with class hierarchies. We
begin with the simpler scenario, where we assume that the
class hierarchy is given as part of input.

As in (Friedmanet al. 1999), we restrict attention to fully
observable data sets. Hence, we assume that, in our training
set, the class of each object is given. Without this assump-
tion, the subclass indicator attribute would play the role of
a hidden variable, greatly complicating the learning algo-
rithm.

As discussed above, we need a scoring function that al-
lows us to evaluate different candidate structures, and a
search procedure that searches over the space of possible
structures.

The scoring function remains largely unchanged. For
each objectx in each classX , we have the basic subclass
to which it belongs. For each attributeA of this object, the
probabilistic model then specifies the subclassd of X from
which  inherits the CPD ofX:A. Thenx:A contributes
only to the sufficient statistics for the CPD ofXd:A. With
that recomputation of the sufficient statistics, the Bayesian
score can now be computed unchanged.

Next we extend our search algorithm to make use of the
subclass hierarchy. First, we extend our existing operators

to apply to models involving a class hierarchy. Then, we in-
troduce two new sets of operators. The first set allows us to
refine and abstract the CPDs of attributes in our model, us-
ing our class hierarchy to guide us. The second set, allows
us to refine the existing parents of an attribute by refining
one of the slots used in the chain.

As in our definition of a PRM-CH, each attribute for each
subclass is associated with a CPD. The CPD can either be
marked as ‘inherited’ or ‘specialized’. Initially, only the
CPD for attributes ofX> are marked as specialized; all
the other CPDs are ‘inherited’. Our original search oper-
ators — those that add and delete parents — can be applied
to attributes at all levels of the class hierarchy. However,
we only allow parents to be added and deleted from at-
tributes whose CPDs that have been specialized. Note that
any change to the parents of an attribute is propagated to
any descendents of the attribute whose CPDs are marked as
inherited from this attribute.

Next, we introduce operatorsSpeialize and Inherit.
If X:A currently has an inherited CPD, we can applySpeialize(X:A). This has two effects. First, it recom-
putes the parameters of that CPD to utilize only the suffi-
cient statistics of the subclass. To understand this point,
assume thatX:A was being inherited fromXd prior to the
specialization. The CPD ofXd:A was being computed us-
ing all objects inOI(Xd). After the change, the CPD will
be computed using just the objects inOI(X). The second
effect of the operator is that it makes the CPD modifiable,
in that we can now add new parents or delete them. TheInherit operator has the opposite effect.

The second set of operators that we introduce refine and
abstract the parents of an attribute. This relies on the con-
struction of refined slot chains described earlier. Suppose�:B is currently a parent ofX:A. Let � be some slot used
in � , and let�h;di be one of its possible refinements. TheRe�ne-Parent operator can replace� in � with �h;di. We
also define the complementary operatorAbstrat-Parent,
which generalizes a slot in the parent slot chain.

4.3 Learning Subclass Hierarchies
We next examine the case where the subclass hierarchies
are not given as part of the input. In this case, we will learn
them at the same time we are learning the PRM.

As above, we wish to avoid the problem of learning from
partially observable data. Hence, we need to assume that
the basic subclasses are observed in the training set. At
first glance, this requirement seems incompatible with our
task definition: if the class hierarchy is not known, how can
we observe subclasses in the training data? We resolve this
problem by defining our class hierarchy based on the stan-
dard class attributes. For example, TV programs might be
associated with an attribute specifying the genre — sitcom,
drama, or documentary. If our search algorithm decides
that this attribute is a useful basis for forming subclasses,
we would define subclasses based in a deterministic way on
its values. Another attribute might be the nationality of the
network — English, American, or French. The algorithm
might choose to refine the class hierarchy by partitioning



sitcoms according to the values of this attribute. Note that,
in this case, the class hierarchy depends on an attribute of a
related class, not the class itself.

We implement this approach by requiring that the sub-
class indicator attribute be a deterministic function of its
parents. These parents are the attributes used to define the
subclass hierarchy. In our example,TV-Program:Class
would have as parentsTV-Program:Genre and TV-
Program.Network.Nationality. Note that, as the function
defining the subclass indicator variable is required to be de-
terministic, the subclass is effectively observed in the train-
ing data (due to the assumption that all other attributes are
observed).

We restrict attention to decision-tree CPDs. The leaves in
the decision tree represent the basic subclasses, and the at-
tributes used for splitting the decision tree are the parents of
the subclass indicator variable. We can allow binary splits
that test whether an attribute has a particular value, or, ifwe
find it necessary, we can allow a split on all possible values
of an attribute.

The decision tree gives a simple algorithm for determin-
ing the subclass of an object. In order to build the deci-
sion tree during our search, we introduce a new operatorSplit(X; ;X:�:B), where is a leaf in the current decision
tree forX:ClassandX:�:B is the attribute on which we
will split that subclass.

Note that this step expands the space of models that can
be considered, but in isolation does not change the score
of the model. Thus, if we continue to use a purely greedy
search, we would never take these steps. There are sev-
eral approaches for addressing this problem. One is to use
some lookahead for evaluating the quality of such a step.
Another is to use various heuristics for guiding us towards
worthwhile splits. For example, if an attribute is the com-
mon parent of many other attributes withinX, it may be a
good candidate on which to split.

The other operators,Speialize, Inherit, Re�ne-Parent
andAbstrat-Parent remain the same; they simply use the
subclasses defined by the decision tree.

5 Preliminary Results

We now present some preliminary results related to our ap-
proach. We have not yet implemented the full search algo-
rithm; however we have compared the expressive power of
models with subclasses (�CH) to our standard PRMs that
do not support the refinement of class definitions (�).

We present results for a dataset that we have constructed
from information about movies from the Internet Movie
Database2 and information about people’s ratings of movies
from the Each Movie dataset3. We extended the demo-
graphic information we had for the people by including cen-
sus information available for a person’s zip-code. The three
classes areMovie, Person, andVotes. The training set
contained 1467 movies, 5210 people and 243,333 votes.

2 c1990-2000 Internet Movie Database Limited
3http://www.research.digital.com/SRC/EachMovie

We defined a rather simple class hierarchy for Votes,
based on the genre of the Movie,Action-Votes,
Romance-Votes, Comedy-Votes andOther-Votes. We
learned two different models, one that made use of the class
hierarchy (Figure 2) and one that did not (Figure 1). We
then evaluated the models on five different test sets. Note
that, in relational data, different test sets have markedlydif-
ferent structure, so trying the model on different test sets
might result in very different answers. Each test set had
1000 votes, and approximately 100 movies and 115 peo-
ple. The average log-likelihood of the test set for� was
-12079 with a standard deviation of 475.68. The model
with class hierarchies,�CH , performed much better, with
average log-likelihood of -10558 and a standard deviation
of 433.10. Using a standard t-test, we obtain that�CH is
better than� with well over 99% confidence interval.

Looking more closely at the qualitative difference
in structure between the two models, we see that the
PRM-CH is a much richer model. For example the
dependency model forVote:Rank cannot be represented
without making use of the class hierarchy to both refine
the attributes and refine the allowable slot chains. For
example, we learn a dependence ofVoteRomance:Rank
on VoteRomance:Person:Comedy-Votes:Rank, whereas
VoteAction:Rank depends on VoteAction:Person:Gender.
Not only are these two dependency models different, but
they would be cyclic if interpreted as a standard PRM.
Note that in the PRM shown in Figure 1, there is no
dependency betweenVote:Rankand attributes ofPerson,
so the PRM that uses class hierarchies allows us to discover
dependencies on properties ofPerson that we could not
uncover before.

6 Conclusions
In the paper, we have proposed a method for making use
of class hierarchies while learning PRMs. Class hierar-
chies give us additional leverage for refining our probabilis-
tic models. They allow us to automatically disentangle our
dependency model, allowing us to construct acyclic depen-
dencies between elements within the same class. They also
allow us to span the spectrum between class level and in-
stance level dependency models.

However, using class hierarchies significantly expands an
already complex search algorithm. The search space for
PRMs-CH is much, much larger. In this paper, we describe
a general search algorithm. However, a key to the success of
the algorithm is the discovery of useful heuristics to guide
the search. In future work, we intend to explore the space of
possible heuristics, and to test empirically which heuristics
work well on real-world problems.

References
C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks. In
Proc. UAI, pages 115–123, August 1996.

J. Breese, D. Heckerman, and C. Kadie. Empirical analy-



Figure 1: A PRM for the Movie domain.

Figure 2:�CH . The links between vote rankings follows a slot chain, from aperson’s ranking on one class of movies to the
person’s ranking on another class of movies.



sis of predictive algorithms for collaborative filtering. In
Proc. UAI, 1998.

D. M. Chickering, D. Heckerman, and C. Meek. A
Bayesian approach to learning Bayesian networks with lo-
cal structure. InProc. UAI, pages 80–89, 1997.

G. F. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data.Ma-
chine Learning, 9:309–347, 1992.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learn-
ing probabilistic relational models. InProc. IJCAI, 1999.

D. Heckerman. A tutorial on learning with Bayesian net-
works. In M. I. Jordan, editor,Learning in Graphical
Models. MIT Press, Cambridge, MA, 1998.

D. Koller and A. Pfeffer. Object-oriented Bayesian net-
works. InProc. UAI, 1997.

D. Koller and A. Pfeffer. Probabilistic frame-based sys-
tems. InProc. AAAI, 1998.


