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Abstract

Probabilistic graphical models, in particular Bayesiaft- ne
works, are useful models for representing statistical pat-
terns in propositional domains. Recent work develops ef-
fective techniques for learning these models directly from
data. However these techniques apply only to attributaeval
(i.e., flat) representations of the daRxobabilistic relational
models(PRMs) allow us to represent much richer depen-
dency structures, involving multiple entities and the rela
tions between them; they allow the properties of an entity
to depend probabilistically on properties related entities.

PRMs represent a generic dependence, which is then instan-

tiated for specific circumstances, i.e., for a particularafe
entities and relations between them. Friedretal. showed

how to learn PRMs from relational data, and presented tech-

nigues for learning both parameters and probabilistic depe
dency structure for the attributes in a relational modelteHe

we examine the benefit that class hierarchies can provide

PRMs. We show how the introduction of subclasses allows
us to use inheritance and specialization to refine our models
We show how to learn PRMs with class hierarchies (PRM-
CH) in two settings. In the first, the class hierarchy is pro-

vided, as part of the input, in the relational schema for the
domain. In the second setting, in addition to learning the
PRM, we must learn the class hierarchy. Finally we dis-

cuss how PRM-CHs allow us to build models that can repre-
sent models for both particular instances in our domain, and

classes of objects in our domain, bridging the gap between a

class-based model and an attribute-value-based model.

1 Introduction

Probabilistic graphical models, in particular Bayesiat ne
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build a Bayesian network that represents the preferences of
a single viewer, which has a random variable for each TV
program. Each person in the training set has a vector that
represents the TV programs that they have watched, and
their ratings for that show. From this data set, we can learn
a Bayesian network that represents the correlations betwee
their preferences for the different programs. Thus, wedoul
learn that the user’s rating of one program, say “Seinfeld”,
depends on his ratings for the programs that are its parents
in the learned network, say “Friends” and “Frasier”. Breese
et al. (1998) compare this approach to other collaborative
filtering approaches and show that it is superior in its apili

to predict TV-show preferences.

This approach is limited in that it models only the rela-
tionships between instances of one class, the TV programs.
We cannot model broad dependencies, such as whether a
person enjoys sitcom reruns depends on whether they watch
prime-time sitcoms. In addition, we cannot model rela-
tionships between people. For example, if my roommate
watches “LA Law”, | am more likely to pull up a chair and
watch also.

Probabilistic relational model¢PRMSs) (Koller and Pf-
effer 1998) allow us to represent richer dependency struc-
tures, involving multiple entities and the relations betwe
them; they allow the attributes of an entity to depend prob-
abilistically on properties ofelatedentities. PRMs model
the domain at thelasslevel; i.e., all instances in the same
class share the same dependency model. This model is then
instantiated for particular situations. For example, a per
son’s ratings for a TV program can depend both on the
attributes of the person and the attributes of the program.

works, are useful models for representing statistical pat- FOra given situation, involving some set of people and pro-
terns in propositional domains. Recent work (Cooper and 9rams, this dependency model will be used several times.
Herskovits 1992; Heckerman 1998) develops effective tech- This allows us, for example, to use the properties and rat-
niques for learning these models directly from data. These ings of one person to reach conclusions about the properties

techniques are now well-developed, and have been applied ©f & program (e.g., how funny it is), and thereby to reach

ever, they are significantly limited in that they can be ap-

plies only to attribute-value, or flat, representationstaf t

data. Any richer relational structure in the domain cannot

be modeled.

Consider, the problem of building a model of television

like it.

Friedmaret al. (1999) showed how to learn PRMs from
relational data, and presented techniques for learniniy bot
parameters and probabilistic dependency structure for the
attributes in a relational model. This learning algorithxa e

viewers and the shows that they enjoy. One approach is to ploits the fact that the models are constructed at the class



level. Thus, an observation concerning one user and one ground which includes the definition of a probabilistic rela
program is used to refine the class model applied to all users tional model.

and all programs, hence making much broader use of our
data.

However, this class-based approach also has disadvan-

2 Probabilistic Relational Models
A probabilistic relational model (PRMjpecifies a template

tages: all elements of the same class must use the samefor a probability distribution over a database. The tem-
model. Thus, for example, we cannot have the rating of a plate includes a relational component, that describesgthe r
user for documentaries depend on one set of parents, and|ational schema for our domain, and a probabilistic compo-

his ratings for comedies depend on another. In particular,
we cannot have the rating for “Seinfeld” depend on the rat-

ing for “Friends”: The dependendency model for these two

ratings must be identical, and we cannot have the rating for
“Friends” depending on itself.

In this work, we propose methods for discovering useful
refinements of a PRM’'s dependency model. We begin in
Section 3 by defining’robabilistic Relational Models with
Class HierarchiegPRMs-CH). PRMs-CH extend PRMs by
including class hierarchies over the classes. Subclasses a
low us to specialize the probabilistic model for some in-

nent, that describes the probabilistic dependencies tidt h
in our domain. A PRM, together with a particular database
of objects and relations, defines a probability distribatio
over the attributes of the objects and the relations.

2.1 Relational Schema

A schema for a relational model describes a satlagses
X = X,,...,X,. Each class is associated with a set of
descriptive attributeand a set ofeference slots.

The set of descriptive attributes of a claksis denoted
A(X). Attribute A of classX is denotedX. A, and its do-

stances of the class. For example, we might consider sub- main of values is denotet (X.4). We assume here that

classes of TV programs, such as documentaries, dramas,

domains are finite. For example, therson class might

newcasts, and sitcoms. The budget of sitcoms (a subclasshave the descriptive attribute®ex Age Height Income

of TV programs) may depend on their popularity, whereas etc. The domain foPerson.Agemight be{child, young-
the budget of newscasts (another subclass of TV programs) gdui, middle-aged, senipr

may depend on the venue of the associated TV network.
Subclassing allows us to model probabilistic dependencies
at the appropriate level of detail. For example, we can have

The set of reference slots of a cla¥sis denotedR (X).
We use similar notationX.p, to denote the reference slot
of X. Each reference slgtis typed, i.e., the schema spec-

the parents of the budget attribute in the sitcom subclass be ifies the range type of object that may be referenced. More

different than the parents of the same attribute in the doc-
umentary subclass. In addition, as we show, subclassing

formally, for eachp in X, the domain type cdPom|[p] = X
and the range typBange[p] = Y, whereY is some class

allows additional dependency paths to be representedinthein x. A slot p denotes a function frofom[p] = X to

model, that would not be allowed in a PRM that does not

Range[p] = Y. For example, we might have a clab¥-

support subclasses. For example, whether | watch sitcoms Program with the reference slobn-Networkwhose range

may depend on whether | watch documentaries. PRMs-CH
provide a general mechanism that allow us to define a rich
set of dependencies. In fact, they provide the basic repre-
sentational power that will allow us to model dependency
models for individuals (as done in Bayesian Networks) and
dependency models for categories of individuals (as done
in PRMs).

We next turn in Section 4 to some of the practical is-
sues involved in learning PRMs-CH. First, we examine the
case where the class hierarchy is given as input, in the re-
lational schema. Our learning task is then simply to choose
the appropriate level at which to model the probabilistic de
pendencies — at the class level, or specialized according

is the clasdNetwork. For clarity, in some situations it is
useful to specify both the name of the reference slot and
the class of the object that to which it refers; for example if
each network has an owner slot that is a company then we
use the notatiohetwork.Ownegompany -

It is often useful to distinguish between antity and a
relationship as in entity-relationship diagrams. In our lan-
guage, classes are used to represent both entities and rela-
tionships. Thus, entities such as people and TV programs
are represented by classes, but a relationship suvbtas
which relates people to TV shows, is also be represented
as a class, with reference slots to the cléssson and the
classTV-Program. This approach, which blurs the distinc-

to some subclass. We then turn to the case where the classtion between entities and relationships, is common, and al-

hierarchy is not provided, and in addition to learning the
probabilistic model, we must also discover the structure of
the class hierarchy.

In Section 5, we present some preliminary experimen-
tal results illustrating how we have expanded the space of
probabilistic models considered by our learning algorithm
and how this allows us to learn more expressive and more
accurate models. We conclude in Section 6 with some dis-
cussion and future work.

But, before turning to our new research, which begins in

lows us to accommodate descriptive attributes that are as-
sociated with the relation, such &anking We use the
generic ternobjectto refer both to entities and to relation-
ships.

In addition to the explicit reference slots of a class, we
also allow the construction of derived reference slots. One

We note that there is a direct mapping between our notion of
class and the tables used in a relational database. Ouiitascr
attributes correspond to standard attributes in the tadid, our
reference slots correspond to attributes that are foreeys kkey

Section 3, the next section reviews some necessary back- attributes of another table).



of the most basic derived reference slots isitiverse For
each reference slqi, we can define an inverse slpt!,
which is interpreted as the inverse functionepofNote that

if p is a many-to-one function, then its inverse takes on val-
ues that are sets of objects. Another type of derived refer-
ence slot is &lot chain which allows us to compose slots,
defining functions from objects to other objects to which
they are not directly related. More precisely, we define a
slot chainpy, . .. , p; be a sequence of slots (inverse or oth-
erwise) such that for al, Range[p;] = Dom][p;;+1]. For
example TV-Program.NetworkOwnercan be used to de-
note the company that owns the network which produces
a TV program. AndPerson.(Voteke ') can be used to

denote the set of votes that a person has made. For no-

tational convenience, we allow the derived reference slots

a relational schema& is defined as follows. For each class
X € X and each descriptive attribute € A(X), we have:

e a set ofparentsPa X.4) = {U;,...,U;}, where each
U; has the formX.B or X.r.B, wherer is a slot chain;

e aconditional probability distribution (CPDjhat repre-
sentsP (X.A | P X.A)).1

Given a relational skeletan,., a PRMII specifies a prob-
ability distribution over a set of instantiatioffsconsistent

with o,
PTlo..m =] I 11

P(z.A | Pgz.A))
XeXzecOor(X) ACA(X)

(1)

to be have names associated, which can then be used as For this definition to specify a coherent probability dis-

shorthand. For example, we can replace the unintuitive
Person.(Votekee ') with the shorthan®erson.Votes

The semantics of this language is straightforward. In
an instantiatioriZ, eachX is associated with a set of ob-
jects O (X). For each attributed € A(X) and each
r € OF(X), T specifies a valua.A € V(X.A). For
each reference slgt € R(X), Z specifies a value.p €
O (Range[p]). Fory € O (Range[p]), we usey.p! to
denote the set of entitiegr € O (X) : z.p = y}. The
semantics of a slot chain = p;.... .p; are defined via
straightforward composition. Fof € A(Range[p,]) and
r € OT(X), we definez.7.A to be themultisetof values
y.A fory in the setr.7.

Finally, therelational skeletono, specifies the set of ob-
jects in all classes, as well as all the relationships thit ho
between them. In other words, it specifi@g(X) for each
X, and for each object € 07 (X), it specifies the values
of all of the reference slots.p.

2.2 Probabilistic Model

A probabilistic relational modell specifies a probabil-
ity distribution over all instantiationg of the relational
schema. It consists of two components: the qualitative de-
pendency structure§, and the parameters associated with
it, 6s. The dependency structure is defined by associating
with each attributeX. A a set ofparentsPa X . A).

A parent of X.A can have the formX.r.B, for some
(possibly empty) slot chaim. To understand the seman-
tics of this dependence, recall thatr. A is a multiset of
valuesS in V(X.7.A). We use the notion odggregation
from database theory to define the dependence on a mul-
tiset; thus,z.A will depend probabilistically on some ag-
gregate property/(S). There are many natural and useful
notions of aggregation, such asedianor mode We allow
X.A to have as a parent( X.7.B); foranyz € X, z.A
will depend on the value of(z.7.B).

The quantitative part of the PRM specifies the parameter-
ization of the model. Given a set of parents for an attribute,
we can define a local probability model by associating with
it a conditional probability distribution (CPD)For each at-
tribute we have a CPD that specifi$X. A | P X.A)).

Definition 1: A probabilistic relational model (PRMI) for

tribution over instantiations, we must ensure that our prob
bilistic dependencies are acyclic, so that a random vagiabl
does not depend, directly or indirectly, on its own value. To
verify acyclicity, we construct anbject dependency graph
G,,. Nodes in this graph correspond to descriptive at-
tributes of entities. LefX.7.B be a parent ofX. A in our
probabilistic dependency schema; for egch z.7, we de-
fine an edge i, : y.B —,, z.A. We say that a depen-
dency structureS is acyclic relative to a relational skele-
ton o, if the directed graplty,, is acyclic. WhenGG,,, is
acyclic, we can use the chain rule to ensure that Eq. (1) de-
fines a legal probability distribution (as done, for example
in Bayesian networks).

The definition of the object dependency graph is specific
to the particular skeleton at hand: the existence of an edge
fromy.B to z.A depends on whethgre .7, which in turn
depends on the interpretation of the reference slots. Thus,
it allows us to determine the coherence of a PRM only rel-
ative to a particular relational skeleton. When we are eval-
uating different possible PRMs as part of our learning al-
gorithm, we want to ensure that the dependency structure
S we choose results in coherent probability modelssioy
skeleton. We provide such a guarantee usirgaas de-
pendency graphwhich describes all possible dependencies
among attributes. In this graph, we have an (intra-object)
edgeX.B — X.Aif X.BisaparentofX A. If v(X.7.B)
is a parent ofX. 4, andY” = Range[7], we have an (inter-
object) edgeV.B — X.A. A dependency graph strati-
fiedif it contains no cycles. If the dependency graphSof
is stratified, then it defines a legal model for any relational
skeletorg, (Friedmaret al. 1999).

3 PRMs with Class Hierarchies

In this section, we describe refinements of our probalzlisti
model using class hierarchies. To motivate our extensions,
consider a simple PRM for the TV program domain. Let us
restrict attention to the three clas$®rson, TV-Program,
andVote. We can have the attributes \@bte depending on
attributes of the person voting (via the sl\dite.Voter) and

on attributes of the program (via the shdbte.Program.
However, given the attributes of all the people and the pro-
grams in the model, the different votes are (conditionally)



independent and identically distributed. By contrasthia t
BN model for this domain, each program could have a dif-

ferent dependency model; we could even have one depend

on the other.

3.1 Class Hierarchies

Our aim is to refine the notion of a class, suchTas
Program, into finer subclasses, such as “sitcoms”, “dra-
mas”, “documentaries”, etc. Moreover, we want to allow
recursive refinements of this structure. So that we might re-
fine “dramas” into the subclasses “legal dramas”, “medical
dramas”, and “soap operas”.

Formally, we introduce the notion of a probabilistic class
hierarchy, similar to that introduced in (Koller and Pfeffe
1997; 1998). We assume that the original set of classes
define, at the schema level, the structure of an object (at-
tributes and slots associated with it). Unlike the subclass
mechanism in (Koller and Pfeffer 1997; 1998), subclasses
do not change this structure.

A hierarchyH[X] for a classX consists of two parts, a
finite set of subclasse¥X] and a partial orderingk over
C[X] defining theclass hierarchy The setC[X] specifies
the set of subclasses &f. For each value € C[X], we
have a subclas¥ .. The hierarchy is defined using a partial
ordering< onC[X]. Fore,d € C[X], if ¢ < d, we say that
X. is adirect subclas®f X4, andX, is adirect superclass
of X.. We require that< define a tree directed to some
root T, whereClassT corresponds to the original class
We define<* to be the reflexive transitive closure ef; if
¢ <* d, we say thatX, is a subclass oK.

For example we may have the clas§V-
Program and its direct subclasse$V-Programg.qm
TV-Programg,ama and TV-Programy,cumentary
The subclass TV-Programg,,,,, might, in turn,
have the direct subclassesTV-Programey,.grama
TV'PrOgrammedical—drama and TV'PrOgramsoap—opera
We have thafl' V-Program ,cgicar-aramalS @ direct subclass
of TV-Program, ., and a subclass (but not a direct one)
of the root clas§ V-Program.

We define the leaves of the hierarchy to be Hasic
subclassedenotedbasiq H[X]). We achieve subclassing
for a class X by requiring that there be an additional
subclass indicator attribut&.Class that determines the
basic class to which an object belongs. We note that
each object belongs to precisely one basic class. Thus,
if ¢ is a subclass, the®?(X,) contains all objects
xz € X for which z.Class <* ¢, i.e., all objects that
are in some basic class which is a subclassc.of In
our example, TV-Program has a subclass indicator
variable TV-Program.Classwith the five possible values
{sitcom documentarysoapoperalegal-dramamedical-drama.

Subclasses allow us to make finer distinctions when con-
structing a probabilistic model. In particular, they allow
to specializeCPDs for different subclasses in the hierarchy.

Definition 2: A probabilistic relational model with sub-
class hierarchys defined as follows. For each cla¥se X
we have

a class hierarchyl [ X] = (C[X], <);

e a subclass indicator attributeX.Class such that
V(X.Clasg = basid H[X]);

a set of parents and a CPD faéf.Class(as in Defini-
tion 1).

for each subclass € C[X] and attributed € A(X) we
have either

— a set of parents PaX.A) and a CPD that describes
P(X.A | Pa&(X.A)); or

— aninheritedindicator that specifies that the CPD for
X.A in ¢ is inherited from its direct superclass. The
root of the hierarchy cannot have the inherited indica-
tor.

We defineP(X.A | P&(X.A)) to be the CPD associated
with A in X4, whered is the most specialized superclass of
¢ (which may ber itself) such that the CPD oX. A ind is
not marked with the inherited indicatd.

With the introduction of subclass hierarchies, we can re-
fine our probabilistic dependencies. Before each attribute
X_.A had an associated CPD. Now, if we like, we can spe-
cialize the CPD for an attribute within particular subclass
We can associate a different CPD with the attributes of dif-
ferent subclasses. For examglg-Programg.,,Budget
may have a different conditional distribution from
TV-Programy.mentaryBUdget Further, the distribution for
each of the attributes may depend on a completely differ-
ent set of parents. Continuing our discussion from the in-
troduction, if the budget of sitcoms depends on their pop-
ularity, thenTV-Programg,.,, Budgetwould have as par-
entsTV-Programg.,,Popularity. However, for documen-
taries, the budget depends on the venue of the broadcast-
ing network — cable public-broadcast or commercial-
broadcastthen,TV-Programy,ementaryBUdgetwould have
the parenfV-Program yocumentaryON-Networkvenue

3.2 Refined Slot References

At first glance, the increase in representational power pro-
vided by supporting subclasses is deceptively small. It
seems that little more than an extra constructed type vari-
able has been added, and that the structure that is exploited
by the new sub-classed CPDs could just as easily have
been provided using structured CPDs, such as the tree-
structured CPDs or decision graphs (Boutikral. 1996;
Chickeringet al. 1997).

However the representational power has been extended
in a very important way. Certain dependency structures that
would have been disallowed in the original framework are
now allowed. These dependencies appear circular when ex-
amined only at the class level; however, when refined and
modeled at the subclass level, they are no longer cyclic.
One way of understanding this phenomenon is that, once
we have refined the class, the subclass information allows
us to disentangle and order the dependencies.



Returning to our earlier example, suppose the we have individual watches “Seinfeld”). The latter model is essen-

the classe¥oter, TV-Program andVote. Vote has refer-
ence slotPersonand TV-Programand an attributdrank-
ing that gives the score that a person has given for a TV

tially the same as the Bayesian network models learned by
(Breeseet al. 1998) in the context of collaborative filtering.
In addition, the new flexibility in defining refined slot ref-

program. Suppose we want to model a correlation between erences allows us to make interesting combinations of these

a person’s votes for documentaries and his votes for soap types of dependencies. For example, whether an individual

operas. (This correlation might be a negative one.) In the watches a particular show (e.g., “All My Children”) can be

unrefined model, we do not have a way of referring to a enough to predict whether she watches a whole other type

person’s votes for some particular subset of programs; we of shows (e.g., documentaries).

can only consider aggregates over a person’s entire set of

votes. Furthermore, even if we could introduce such a de- 3.3 Probabilistic Dependency Model

pendence, the dependency graph would show a dependence ) ) ) ]

of Vote.Rankon itself. At some level, the introduction of a class hierarchy intro-
The introduction of subclasses of TV programs provides duces no substantial difficulties — the semantics of the

us with a way of isolating a person’s votes on some subset Mmodel remain unchanged. Given a relational skeleton

of programs. In particular, we can try to introduce a de- and subclass information for each object, a PRMiTHy

pendence o¥/otegocumentaryRANKON VOtesoap-operaRanNK In spemﬁes a probabl!lty distribution over a set of instantia

order to allow this type dependency, we need a mechanism tionsZ consistent witty, :

for constructing slot chains that restrict the types of otge

along the path to belong to specific subclasses. Recall thata P(7 | o,., 1) = H H

reference slop is a function fromDom ] to Rangel[p], i.e. X €07 (X.)

from X to Y. We can introduceefinement®f a slot ref- Clas

erence by restricting the types of the objects in the domain P(x.Class| Pgz.Class) H P(z.A| Pa~"¥z.4))

and range. A€ A(X)

Definition 3: Let p be a reference slot of with rangeY'.

Let ¢ andd be particular subclasses &f andY respec-
tively. A refined slot referencg. 4 for p to c andd is a
function fromX to Y.

However, the problem of ensuring that our probabilis-
tic dependency structure is acyclic (and hence defines a co-
herent probability model) has become a little more compli-
cated. As before, we can build the class dependency graph.
Now, however, there is a node in the graph for each at-
tribute of each subclassy,..A; for each class we have a
nodeX.Class As before, we have an eddé..B — X ..A
if X..B is a parent ofX..A. In addition, if the CPD for
X.Ais specialized by or one of its non-root superclasses,
then we have an edg€.Class— X..A. If v(X..7.B) is
a parent ofX..A, andY; = Range[r], we have an edge
Y;.B — X..A. In addition, for any refined slot refer-
encep. ;- along the chairr, we introduce an edge from
Z.Classto X..A, whereZ = Dom|[p].

Once again, we can show that if this dependency graph
is stratified it defines a coherent probabilistic model.

e .pq =yif z € X.andy € Yy andz.p = y.
o If z & X, thenz.p. 4y = y is undefined.
e Likewise, ify ¢ Yy, theny.(p(..qy ") is undefined i

Returning to our earlier example suppose that we
have subclasses oFV-Program, TV-Programgqcmentary
and TV-Programg,,, opera 1N @ddition, suppose we also
have subclasses &fote Votegocumentary@nd VOt€soap-opera
To get from a person to their votes, we use the in-
verse of slot referencPerson.\Votes Now we can con-
struct refinements d?erson.Votes VoteSperson, votedocumenta
and VoteSperson Votesopopery -~ LEL US Name these slots
Documentary-Voteand Soap-Votes To specify the
dependency of votes for documentaries on votes for
we can say thatVotegocumentayRank has a parent
~v(VotegocumentaryPErsonSoap-VoteRank.

The introduction of subclasses brings the benefit that we
(l;an now provu_jg a smooth transition fromthe PRM, a (;Ia_ss- 4 Learning PRMs

ased probabilistic model, to models that are more similar

to Bayesian networks. To see this, suppose our subclassWe start with a brief review of the approach of (Friedman
hierarchy for TV programs is very “deep” and starts with et al. 1999) to learning PRMs with attribute uncertainty.
the general class and ends in the most refined levels with We then describe a new algorithm for learning PRMs with
the names of particular TV programs. Thus, at the most re- class hierarchies. We examine two scenarios: in one case
fined version of the model we can define the preferences the class hierarchies are given as part of the input and in the
of a person by either class based dependency (the prob- other, in addition to learning the PRM, we also must learn
ability of watching sitcoms depends whether the individ- the class hierarchy. The learning algorithms use the same
ual watches soap operas) or show based dependency (thecriteria for scoring the models, however the search space is
probability of watching “Frasier” depends on whether the significantly different.

Theorem 4: LetIIo gy be a PRM-CH with a stratified de-
pendency graph. Let,. be an relational skeleton. Then the
PRM andos, uniquely define a probability distribution over
instantiationsZ.



4.1 Review

We separate the learning problem into two basic questions:
how to evaluate the “goodness” of a candidate structure,
and how to search the space of legal candidate structures.
We consider each question separately.

For scoring candidate structures, we adapt Bayesian
model selectiofHeckerman 1998). We compute the poste-
rior probability of a structureS given an instantiatior?.
Using Bayes rule, we have th&(S | Z,0) x P(Z |
S,0)P(S | o). This score is composed of two main
parts: the prior probability ofS, and the probability of
the instantiation assuming the structureSis By making
fairly reasonable assumptions about the prior probahublfity
structures and parameters, this second term catebem-
posedinto a product of terms. Each term in the decom-
posed form measures how well we predict the values of
X_.A given the values of its parents. Moreover, the term
for P(X.A | u) depends only on thsufficient statistics
Cx.alv, u], that count the number of entities withA = v
and Péz.A) = u. These sufficient statistics can be com-
puted using standard relational database queries.

To find a high-scoring structure, we use a phased search
procedure. At thekth phase of the search, we allow de-
pendency models where parents use slot chains of length at
mostk. Thus, at phase 0, we allow as parentsXorl only
parents within the clas¥ ; at phase 1, we allow parents that
are of the formX.p. A; etc. We only expand slot chains in
directions that seem to have promising dependencies.

Within each iteration, we use a search procedure that
considers operatots such as adding, deleting, or reversing
edges in the dependency model The search procedure
performs greedy hill-climbing search in this space, using
the Bayesian score to evaluate models.

4.2 Class Hierarchies Provided in Schema

We now turn to learning PRMs with class hierarchies. We
begin with the simpler scenario, where we assume that the
class hierarchy is given as part of input.

As in (Friedmaret al. 1999), we restrict attention to fully

observable data sets. Hence, we assume that, in our training

set, the class of each object is given. Without this assump-
tion, the subclass indicator attribute would play the rdle o
a hidden variable, greatly complicating the learning algo-
rithm.

As discussed above, we need a scoring function that al-
lows us to evaluate different candidate structures, and a

to apply to models involving a class hierarchy. Then, we in-
troduce two new sets of operators. The first set allows us to
refine and abstract the CPDs of attributes in our model, us-
ing our class hierarchy to guide us. The second set, allows
us to refine the existing parents of an attribute by refining
one of the slots used in the chain.

As in our definition of a PRM-CH, each attribute for each
subclass is associated with a CPD. The CPD can either be
marked as ‘inherited’ or ‘specialized’. Initially, only ¢h
CPD for attributes ofX+ are marked as specialized; all
the other CPDs are ‘inherited’. Our original search oper-
ators — those that add and delete parents — can be applied
to attributes at all levels of the class hierarchy. However,
we only allow parents to be added and deleted from at-
tributes whose CPDs that have been specialized. Note that
any change to the parents of an attribute is propagated to
any descendents of the attribute whose CPDs are marked as
inherited from this attribute.

Next, we introduce operatorSpecialize and Inherit.

If X..A currently has an inherited CPD, we can apply
Specialize(X¢.A). This has two effects. First, it recom-
putes the parameters of that CPD to utilize only the suffi-
cient statistics of the subclass To understand this point,
assume thak .. A was being inherited fronX ; prior to the
specialization. The CPD of;.A was being computed us-
ing all objects inO% (X,). After the change, the CPD will
be computed using just the objects™ (X.). The second
effect of the operator is that it makes the CPD modifiable,
in that we can now add new parents or delete them. The
Inherit operator has the opposite effect.

The second set of operators that we introduce refine and
abstract the parents of an attribute. This relies on the con-
struction of refined slot chains described earlier. Suppose
7.B is currently a parent oK. A. Let p be some slot used
in 7, and letp . 4y be one of its possible refinements. The
Refine-Parent operator can replace in 7 with p. 4. We
also define the complementary operatdrstract-Parent,
which generalizes a slot in the parent slot chain.

4.3 Learning Subclass Hierarchies

We next examine the case where the subclass hierarchies
are not given as part of the input. In this case, we will learn
them at the same time we are learning the PRM.

As above, we wish to avoid the problem of learning from
partially observable data. Hence, we need to assume that
the basic subclasses are observed in the training set. At

search procedure that searches over the space of possibldirst glance, this requirement seems incompatible with our

structures.

The scoring function remains largely unchanged. For
each object in each class(, we have the basic subclass
to which it belongs. For each attributeof this object, the
probabilistic model then specifies the subcldsg X from
which ¢ inherits the CPD ofX.A. Thenz.A contributes
only to the sufficient statistics for the CPD &f;. A. With
that recomputation of the sufficient statistics, the Bagesi
score can now be computed unchanged.

Next we extend our search algorithm to make use of the
subclass hierarchy. First, we extend our existing opesator

task definition: if the class hierarchy is not known, how can
we observe subclasses in the training data? We resolve this
problem by defining our class hierarchy based on the stan-
dard class attributes. For example, TV programs might be
associated with an attribute specifying the genre — sitcom,
drama, or documentary. If our search algorithm decides
that this attribute is a useful basis for forming subclasses
we would define subclasses based in a deterministic way on
its values. Another attribute might be the nationality of th
network — English, American, or French. The algorithm
might choose to refine the class hierarchy by partitioning



sitcoms according to the values of this attribute. Note,that We defined a rather simple class hierarchy for Votes,
in this case, the class hierarchy depends on an attribute of abased on the genre of the MovieAction-Votes,
related class, not the class itself. Romance-Votes, Comedy-Votes andOther-Votes. We

We implement this approach by requiring that the sub- learned two different models, one that made use of the class
class indicator attribute be a deterministic function af it  hierarchy (Figure 2) and one that did not (Figure 1). We
parents. These parents are the attributes used to define thethen evaluated the models on five different test sets. Note
subclass hierarchy. In our exampl€y-Program.Class that, in relational data, different test sets have markdty
would have as parent§V-Program.Genre and TV- ferent structure, so trying the model on different test sets
Program.Network.Nationality Note that, as the function ~ might result in very different answers. Each test set had
defining the subclass indicator variable is required to be de 1000 votes, and approximately 100 movies and 115 peo-

terministic, the subclass is effectively observed in théntr ple. The average log-likelihood of the test set fbwas
ing data (due to the assumption that all other attributes are -12079 with a standard deviation of 475.68. The model
observed). with class hierarchied]cy, performed much better, with

We restrict attention to decision-tree CPDs. The leaves in average log-likelihood of -10558 and a standard deviation
the decision tree represent the basic subclasses, and the atof 433.10. Using a standard t-test, we obtain thaty is
tributes used for splitting the decision tree are the pareht ~ better tharil with well over 99% confidence interval.
the subclass indicator variable. We can allow binary splits ~ Looking more closely at the qualitative difference

that test whether an attribute has a particular value, oreif in_structure between the two models, we see that the
find it necessary, we can allow a split on all possible values PRM-CH is a much richer model. For example the
of an attribute. dependency model fovote.Rankcannot be represented

The decision tree gives a simple algorithm for determin- Without making use of the class hierarchy to both refine
ing the subclass of an object. In order to build the deci- the attributes and refine the allowable slot chains. For
sion tree during our search, we introduce a new operator €xample, we learn a dependence ‘dfteromanceRank
Split(X, ¢, X.7.B), wherec is a leaf in the current decision ~ 0N VOt€romancePersonComedy-VoteRank  whereas
tree for X.Classand X.7.B is the attribute on which we  VOteacionRank depends on VoteactionPersonGender
will split that subclass. Not only are these two dependency models different, but

Note that this step expands the space of models that canthey would be cyclic if interpreted as a standard PRM.
be considered, but in isolation does not change the score Note that in the PRM shown in Figure 1, there is no
of the model. Thus, if we continue to use a purely greedy dependency betweerote.Rankand attributes oPerson,
search, we would never take these steps. There are sev-SO the PRM that uses class hierarchies allows us to discover
eral approaches for addressing this problem. One is to use dépendencies on properties Bérson that we could not
some lookahead for evaluating the quality of such a step. Uncover before.

Another is to use various heuristics for guiding us towards

worthwhile splits. For example, if an attribute is the com- 6 Conclusions

mon parent of many other attributes withlf., it may be a
good candidate on which to split.

The other operatorsSpecialize, Inherit, Refine-Parent
andAbstract-Parent remain the same; they simply use the
subclasses defined by the decision tree.

In the paper, we have proposed a method for making use
of class hierarchies while learning PRMs. Class hierar-
chies give us additional leverage for refining our probabili

tic models. They allow us to automatically disentangle our
dependency model, allowing us to construct acyclic depen-
o dencies between elements within the same class. They also
5 Preliminary Results allow us to span the spectrum between class level and in-
stance level dependency models.

However, using class hierarchies significantly expands an
already complex search algorithm. The search space for
PRMs-CH is much, much larger. In this paper, we describe
a general search algorithm. However, a key to the success of
the algorithm is the discovery of useful heuristics to guide
the search. In future work, we intend to explore the space of
possible heuristics, and to test empirically which heigsst
work well on real-world problems.

We now present some preliminary results related to our ap-
proach. We have not yet implemented the full search algo-
rithm; however we have compared the expressive power of
models with subclasse$i{ ) to our standard PRMs that
do not support the refinement of class definitiof. (

We present results for a dataset that we have constructed
from information about movies from the Internet Movie
Databasgand information about people’s ratings of movies
from the Each Movie dataset We extended the demo-
graphic information we had for the people by including cen-
sus information available for a person’s zip-code. Theghre References
classes arélovie, Person, andVotes. The training set C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
contained 1467 movies, 5210 people and 243,333 votes.  cgnext-specific independence in Bayesian networks. In

2(©1990-2000 Internet Movie Database Limited Proc. UAI pages 115-123, August 1996.
3http:/ivww.research.digital.com/SRC/EachMovie J. Breese, D. Heckerman, and C. Kadie. Empirical analy-
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Figure 2:Tlc . The links between vote rankings follows a slot chain, fropeason’s ranking on one class of movies to the
person’s ranking on another class of movies.
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