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Abstract. We present KGRAM (Knowledge Graph Abstract Machine),
an engine to query and mashup linked data. It interprets an abstract
language generalizing SPARQL 1.1 to query not only RDF but a larger
family of knowledge graph models. KGRAM comes with an API which
corresponds to the abstract primitives of this query language and to the
abstract graph data structures. The evaluation function of this virtual
graph machine only manipulates those abstract structures.
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1 Introduction

Graph structures are multiplying on the web: social networks, service compo-
sitions, clickstreams, thesauri and type hierarchies, frequent patterns, timelines
and workflows, communication networks, information flows, etc. These struc-
tured metadata form typed graphs: nodes and arcs of these graphs are labeled
with types that can support inferences and enrich their use. These typed graphs
and the operations they support are our main topic of research. These typed
graph not only support logical reasoning but can also be seen as metric spaces
to pilot approximate reasoning and querying, or as indexes of knowledge in
distributed environments, or as models to make interfaces more intelligible to
end-users, or as new frameworks for social structures analysis. We intend to
generalize these results to address the growing diversity of graphs on the web.

Here we present the foundations of the open-source platform KGRAM (Knowl-
edge Graph Abstract Machine) dedicated to the querying and mashup of linked
data graphs. It results from an abstraction process we conducted to propose a
generic solution to the problem of querying oriented labelled multigraphs like
RDF data while addressing the multiplication of coexisting knowledge represen-
tation languages. It provides unifying reasoning mechanisms for querying various
knowledge graph models [5]. The abstract graph model of KGRAM builds upon
the results of the GRIWES project to which we participated [1].
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KGRAM is designed as the interpreter of an abstract language which gen-
eralizes SPARQL 1.1, including aggregate functions, subqueries, negation and
property paths. It enables us to query different graph models and even more any
model — provided that it is capable of producing a graph view of its data —, e.g.
XML, relational databases. To achieve this genericity, KGRAM is designed with
a strict distinction between the interpreter of the query language and the data
graph manager. KGRAM’s API reflects both the abstract primitives of the query
language and the abstract graph data model. Its interpreter is connected to one
or several graph managers implementing KGRAM’s interface and its evaluation
function only manipulates the abstract graph structures of KGRAM’s interface.

This genericity of KGRAM makes it interoperable in the sense that it en-
ables it to exploit graphs coming from different models by connecting different
graph managers and constraint evaluators implementing the same interfaces.
In the simplest case, KGRAM enables to match oriented labelled multigraphs
— by supplying a basic implementation of a comparator of node and edge la-
bels. As further described later in this paper, we also developed three other
implementations of KGRAM interfaces which take into account the semantics of
graphs; one matches conceptual graphs with constraints and the two other ones
query RDF graphs, one of them with SPARQL 1.0 and the other with an ex-
tension of SPARQL 1.1. KGRAM’s genericity and interoperability also allow us
to distribute the storage and the processing to scale an application or integrate
heterogeneous sources for instance.

In this paper we focus on the theoretical foundations of the abstract graph
model and the associated virtual graph machine that specified the implemen-
tation of KGRAM. We first present in section 2 KGRAM’s abstract graph
model. Section 3 is dedicated to KGRAM’s abstract query language and its
interpreter.In section 4 we present the KGRAM’s application programming in-
terface (API) and we show how to use it to build web applications to the querying
and mashup of distributed and heterogenous data. We summarize in section 5
KGRAM’s capabilities and discuss its limitations.

2 A Graph-based Knowledge Representation Model

Our generic graph-based knowledge representation framework piles up three lay-
ers of abstraction [1]: The structure layer gathers and defines the basic math-
ematical structures (e.g. an oriented acyclic labeled graph) that are used to
characterize the primitives for knowledge representation. The knowledge layer
factorizes recurrent knowledge representation primitives (e.g. a fact) that can be
shared across specific KR languages. The language gathers definitions specific to
languages (e.g. an RDF triple).

2.1 Structure Layer

Entity-Relation graphs. Our core representation primitive is intended to de-
scribe a set of entities and relationships between these entities; it is called an
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Entity-Relation graph (ERGraph). An entity is anything that can be the topic of
a conceptual representation. A relationship, or simply relation, might represent
a property of an entity or might relate two or more entities. The relations can
have any number of arguments including zero and these arguments are totally
ordered. In graph theoretical terms, an ERGraph is an oriented hypergraph,
whose nodes represent entities and whose hyperarcs represent relations between
these entities. A hypergraph has a natural graph representation associated with
it: a bipartite graph, with two kinds of nodes representing entities and relations,
and edges linking a relation node to the entity nodes arguments of the relation.

Definition 1. An ERGraph is a 4-tuple G = (EG, RG, nG, lG) where:

– EG and RG are two disjoint finite sets respectively, of nodes called entities
and of hyperarcs called relations,

– nG : RG → EG
∗; r 7→ (e1, ..., ek) associates to each relation a finite tuple of

entities. We note nGi
(r) = ei the ith argument of r,

– lG : EG ∪RG → L is a labelling function of entities and relations.

At the structure level, the labels of nodes and relations are just elements of a set
L that can be defined in intension or in extension. They get a meaning at the
knowledge level. It is sometimes useful to distinguish some entities of a graph.
For this purpose we define a second core primitive, called λ-ERGraph.

Definition 2. A λ-ERGraph λG is a couple of an ERGraph G and a tuple of
entities of G: λG = ((e1, . . . ek), G), ei ∈ EG. k is the size of λG and e1, . . . ek
are said distinguished in G.

Mapping between ERGraphs. Mapping entities of graphs is a fundamental
operation for reasoning with ERGraphs.

Definition 3. Let G and H be two ERGraphs. An EMapping from H to G is
a partial function M : EH → EG.

By default an EMapping is partial. This enables us to manipulate and reason on
EMappings during the process of mapping graphs. When this process is finished,
the EMapping — if any — is total.

We define the proof of a mapping as a kind of reification of the mapping: it
provides a static view over the dynamic operation of mapping, enabling us to
access information relative to the state of the mapping.

Definition 4. Let G and H be two ERGraphs, and M an EMapping from H to
G. The EProof of M is a set ME = {(eH , eG) ∈ EH × EG | eG = M(eH)}.

We identify specific mappings preserving some characteristics of the graphs.
An ERMapping constrains the graph structures being mapped: it is an EMap-
ping that maps each relation in H to a relation in G with the same arity. An
EMapping<X> constrains the labelling of entities in the graphs being mapped:
it is an EMapping that satisfies a compatibility relation X on entities labels. An
ERMapping<X> is both an ERMapping and an EMapping<X>. A Homomor-
phism is a total ERMapping. Proofs are defined for each of these EMappings.
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Definition 5. Let G and H be two ERGraphs, and M an EMapping from H to
G. Let H ′ be the subERGraph of H induced by M−1(EG). An ERProof of M is
a couple P = (ME ,MR) where:
- ME is the EProof of M ,
- MR = {(r1, r′1), . . . (rk, r

′
k)} with {r1, . . . rk} = R′H and ∀i = 1 . . . k, r′i ∈M(ri).

Definition 6. Let G and H be two ERGraphs, and M an EMapping from H to
G. The EProofX of M is a set MEX = {(e1, e′1, p1), . . . (ek, e

′
k, pK)} where:

- {(e1, e′1), . . . (ek, e
′
k)} is the EProof of M ,

- ∀i, 1 ≤ i ≤ k, pi is a proof of (lG(M(r)), lH(r)) ∈ X.

We make no assumptions on the structure of pi nor on the means to obtain it.
A system for comparing labels should be able to produce such proofs.

Definition 7. Let G and H be two ERGraphs, and M an EMapping from H
to G. An ERProof<X> of M is a couple P = (MEX ,MRX) where MEX is the
EProof<X> of M and MRX = {(r1, r′1, p1), . . . (rk, r

′
k, pK)} where:

- {(r1, r′1), . . . (rk, r
′
k)} is the second element of an ERProof of M ,

- ∀i, 1 ≤ i ≤ k, pi is a proof of (lG(M(r)), lH(r)) ∈ X.

The proof of a homomorphism is an ERProof<X>.

Constraints System for Mappings. An EMapping constraint system is a
function C that sets additional conditions that an EMapping must satisfy in
order to be correct.

Definition 8. A constraint system for an EMapping M from H to G is a func-
tion C which applies to the triple E = (H,P, V ) called environment, with P the
proof of M and V a binary relation associating to variables vi a unique entity
or relation of H. C(E) ∈ {true, false, unknown, error}.

An EMapping M satisfies (resp. violates) a constraint system C if C evaluates
to true (resp. false) on the environment associated to M .

2.2 Knowledge Layer

In our architecture, a knowledge base B is defined by a vocabulary, one or several
bases of facts and a base of queries. We define these notions in terms of the
structure layer defined above.

Definition 9. A vocabulary is a tuple V = (U =
⋃

1≤i≤k Vi)≤1,...≤q
where Vi

are k sets of elements and ≤i are q preorders on U .

Definition 10. A fact is an ERGraph. A base of facts is a set of facts.

Every ERGraph G respects lG : EG ∪RG → L where L is constructed from the
set U of elements of the vocabulary V of the knowledge base.
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Definition 11. A query is a couple Q = (q, C) of a λ-ERGraph q and a Con-
straint system C. A base of queries is a set of Queries.

The λ-expression identifies the variables for which the values are searched when
mapping the query with a fact. The answers to a query depend on the kind of
EMapping used to query the base.

Definition 12. Let Q = (((e1, . . . ek), G), C) be a query and F be a fact. A =
(a1, . . . ak) is a T -answer to Q in F iff there exists an EMapping M of type T
from G to F satisfying C such that M(ei) = ai .

The proof of a T -answer is the proof of the EMapping of that T -answer.

2.3 Language Layer

When considering a particular knowledge representation language its primitives
are defined in terms of the knowledge layer of our model [1]. For instance, when
considering the rdf/s language, an rdf triple < s, p, v > is defined as a relation
rp in a ERGraphG such that nG(rp) = (es, ep, ev). In the next section we propose
an abstract machine based on this knowledge level of our model.

3 A Generic Query Language and its Interpreter

3.1 KGRAM’s Generic Query Language

Abstract Syntax. The abstract syntax of KGRAM’s query language is given
by the following grammar:

QUERY ::= query(NODE *, EXP)

EXP ::= QUERY

| NODE | EDGE | PATH | FILTER

| and(EXP, EXP) | union(EXP, EXP)

| option(EXP) | not(EXP) | exist(EXP)

| graph(NODE, EXP)

NODE ::= node(label)

EDGE ::= edge(label, NODE *)

PATH ::= path(RegExp, NODE, NODE)

FILTER ::= filter(FilterExp)

Overview of the Language Constructs. The query expression in KGRAM’s
query language corresponds to the query defined in the knowledge layer of our
graph-based KR model. Its parameters exp and node represent the expression
to evaluate and the nodes for which bindings are searched; they correspond in
our KR model to the λ-ERGraph which composes a query. The constraint of the
query corresponds to a filter expression embedded in the exp expression.

Here is an example of an expression asking to query for authors and titles of
documents. Its parameter exp is an and() expression and its parameters node
are ?x and ?title.
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query({node(’?x’), node(’?title’)},

and(edge(’hasCreated’, {node(’?x’), node(’?doc’)}),

edge(’hasTitle’, {node(’?doc’), node(’?title’)})))

A query expression also allows nested queries which evaluation determines
bindings for the rest of the evaluation of the embedding query.

node and edge expressions enable to query for nodes or n-ary relations
(hyperarcs) in a hypergraph. The label parameter of a node or edge expression
represents the identifier of a node or an edge in a graph.

The FilterExp parameter of a filter places constraints on the searched
nodes in the graph which is queried. It is a boolean expression following a con-
straint language interpreted by a filter evaluator given to KGRAM:

FilterExp ::= Variable | Constant | Term

Term ::= Oper(FilterExp *)

Oper ::= ’<’ | ’<=’ | ’>=’ | ’=’ | ’!=’ | ’+’ | ’-’ | ’*’ | ’/’

| ’&’ | ’|’ | ’!’ | FunctionName

node, edge and filter are primitives that correspond to interfaces of
KGRAM (c.f. section 4).

A path expression is a generalization of an edge expression. It allows us to
query for paths of binary relations between two nodes in a graph. The RegExp

parameter is a regular expression describing a set of relation paths. A path
can consist of one relation or one relation path ( * operator) any times or a
sequence of relations or relation paths ( / operator), with possible alternatives
( | operator):

RegExp ::= label | RegExp ’*’ | RegExp’/’RegExp | RegExp’|’RegExp

Here is a query with a path expression to retrieve the elements of a list:

query({node(’?y’)}, path(rdf:rest*/rdf:first, node(’?x’), node(’?y’)))

An and (resp. union) is available to express a conjunction (resp. disjunction)
between two expressions. An option expression makes optional the existence
of solutions to some expression in the search of solutions to a query. A not

expression expresses negation as failure. An exist expression restrains the search
to the first solution retrieved. A graph expression can be used to specify the
graph upon which the query is evaluated, otherwise a default graph is considered.

From Graph Homomorphism to SPARQL 1.1. Depending on the primi-
tives we consider, we can define various query languages with KGRAM’s abstract
language. For instance the node and edge expressions enable us to express the
query language of the Simple Conceptual Graph model [8, 3]. By including fil-
ter expressions, we can express conceptual graphs with constraints [2].

The expressions node, edge, filter, and(), union(), option() and graph()
enable us to express the core of the SPARQL select-where query pattern
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extended to n-ary relations. The exist() expression corresponds to the ask query
pattern of SPARQL. The query() and path() expressions capture the notions of
nested query and relation path that can be found in SPARQL 1.1. SPARQL 1.1.
agregates can also be expressed in KGRAM’s language through pairs of a node
and a filter as arguments of a query() expression.

3.2 KGRAM’s Generic Interpreter

Natural Semantics of KGRAM’s query language. Natural Semantics [6]
is a semantics specification formalism originally used for programming languages
where axioms and inference rules characterize each language construct. An in-
ference rule is applied within an environment and produces one or several new
environments. In the case of KGRAM, an environment represents a set of bind-
ings of query variables with values. It corresponds to an ERProof in our KR
model. The rules we established for KGRAM’s query language describe the evo-
lution of the environment (initially empty) during the evaluation of an expression
building up a query. More precisely an expression in a query is evaluated in an
environment comprising a valuation of the variables occuring in the query and
bound to nodes of the graph which is queried. These bindings come from former
evaluations of other expressions of the KGRAM language occuring in the query.
The evaluation of an expression may produce several environments in case of
multiple solutions. In that case the next expressions in the query are then eval-
uated in each of these environments. Once all the expressions of a query have
been evaluated, each resulting environment corresponds to a retrieved solution.

Rules 1 and 2 describe the evolution of the environment during the evaluation
of an expression of KGRAM’s language. A list of environments is described by its
first element ENV and the list of its other environments LENV. The evaluation
of an expression EXP in each environment of the list ENV.LENV produces a
list of environments LENV’.LENV” where LENV’ comes from the evaluation
of EXP in ENV and where LENV” comes from the evaluation of EXP in each
environment of LENV, recursively applying rules 1 and 2.

ENV ` EXP → nil ∧ LENV ` EXP → LENV ′

ENV. LENV ` EXP → LENV ′ (1)

ENV ` EXP → LENV ′ ∧ LENV ` EXP → LENV ′′

ENV. LENV ` EXP → LENV ′. LENV ′′ (2)

Rules 3 and 4 govern the evaluation of expressions for searching a node or
an edge in a graph. They specify that the evaluation of such an expression
in an environment ENV requires to compute the list of environments LENV
capturing the possible matching of node or edge in the graph which is queried
and to merge ENV and LENV. These two operations are synthesized in the rule
bases match and merge which specify the semantics of the comparator of edge
labels and the environment manager of KGRAM (see the next subsection).

match(ENV ` NODE → LENV ) ∧ merge(ENV,LENV → LENV ′)

ENV ` NODE → LENV ′ (3)
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match(ENV ` EDGE → LENV ) ∧ merge(ENV,LENV → LENV ′)

ENV ` EDGE → LENV ′ (4)

Rules 5 and 6 define the way to evaluate a filter expression. The rule
base eval is relative to the evaluation of the boolean expression by which a
filter expression is parameterized; it exploits the bindings of the query variables
embedded in the current environment ENV. Rule 5 specifies that if this boolean
expression is evaluated to false then an empty environment list (nil) is produced:
there is no solution. Rule 6 specifies that otherwise the produced list contains a
single element which is the current environment using the list operator.

eval(ENV ` F : false)

ENV ` filter(F ) → nil
(5)

eval(ENV ` F : true)

ENV ` filter(F ) → list ENV
(6)

We will see in the next subsection that the rules associated to these three
expressions of the query language — node, edge and filter — are the keystone
of the algorithm of KGRAM interpreter.

Rules 7 and 8 define the way to evaluate a and expression. Rule 7 specifies
that the evaluation of one argument expression of an expression and in the
current environment produces a list of environments in which the other argument
expression is evaluated. The list of environments produced by this last evaluation
provides the result of the evaluation of the expression and as a whole. Rule 8
specifies that when the evaluation of the first argument expression produces an
empty environment ( no solution to this expression), it is useless to evaluate the
other one (no solution to the expression and as a whole).

ENV ` A → LENV ∧ LENV ` B → LENV ′

ENV ` and(A,B) → LENV ′ (7)

ENV ` A → nil

ENV ` and(A,B) → nil
(8)

Rule 9 defines the way to evaluate a union expression. It specifies that the
environments produced by the evaluation of a union expression in an environ-
ment ENV is the concatenation of those produced in ENV by evaluating each
of the argument expressions of the union expression.

ENV ` A → LENV ∧ ENV ` B → LENV ′

ENV ` union(A,B) → LENV . LENV ′ (9)

Rules 10 and 11 define the way to evaluate an option expression.

ENV ` A → LENV

ENV ` option(A) → LENV
(10)

ENV ` A → nil

ENV ` option(A) → list ENV
(11)

Rules 12 and 13 define the way to evaluate a not expression.

ENV ` A → nil

ENV ` not(A) → list ENV
(12)

ENV ` A → LENV

ENV ` not(A) → nil
(13)
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Rules 14 and 15 define the way to evaluate an exist expression.

ENV ` A → nil

ENV ` exist(A) → nil
(14)

ENV ` A → LENV

ENV ` exist(A) → list ENV
(15)

Rule 16 defines the way to evaluate a query expression. It specifies that to
evaluate query(LNODE, EXP), bindings of the nodes in the argument LNODE
of the expression are extracted from the current environment ENV : the select
rule base specifies this operation. The expression EXP is then evaluated in the
produced environment ENV’. The bindings of LNODE are then extracted from
the environments LENV’ produced by this evaluation (by using the same basic
select rule base) and they are merged with the initial environment ENV (using
the rule base merge already encountered in rules 3 and 4). A query expression
“nested” into another one thus shares with the latter the only nodes contained
in its list of node parameters.

select(ENV ` LNODE → ENV ′) ∧ ENV ′ ` EXP → LENV ′ ∧
select(LENV ′ ` LNODE → LENV ′′) ∧merge(ENV,LENV ′′ → LENV )

ENV ` query(LNODE,EXP ) → LENV
(16)

Rule 17 defines the way to evaluate a graph expression. It specifies that the
result of the evaluation of graph(G’, EXP) is the one of the evaluation of the
expression EXP on G’. The argument G’ is a node that represents the name of
the current graph on which the expression is evaluated, i.e. where the answers to
the query must be searched for. It is taken into account by the rule base match
(in rules 3 and 4) that selects the graph for searching for matchings. This node
may be a constant (a URI) or a variable for which the rule base match thus
determines the bindings.

ENV,G′ ` EXP → LENV

ENV,G ` graph(G′, EXP ) → LENV
(17)

The introduction of the expression graph in the language requires, like in rule
17, to add a node argument designating a graph to all the rules of the language
(we deliberately do not mention this argument in our present presentation of the
rules for the sake of simplicity).

The following five rules define the way to evaluate a path expression. The
first rule specifies the evaluation of a path expression whose parameter is the
elementary relation path pattern. The second rule specifies the evaluation of an
expression path(EXP1/EXP2, N1, N2). The third rule specifies the evaluation
of an expression path(EXP1|EXP2, N1, N2). The forth and fifth rules specify
the evaluation of an expression path(EXP ∗, N1, N2).

ENV `edge(P,N1,N2)→LENV
ENV `path(P,N1,N2)→LENV (18)

ENV `path(EXP1,N1,Ni)→LENV ∧LENV `path(EXP2,Ni,N2)→LENV ′

ENV `path(EXP1 / EXP2, N1, N2)→LENV ′
(19)
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ENV `path(EXP1,N1,N2)→LENV ∧ENV `path(EXP2,N1,N2)→LENV ′

ENV `path(EXP1 | EXP2,N1,N2)→LENV.LENV ′
(20)

ENV `path(EXP,N1,Ni)→LENV ∧LENV `path(EXP∗,Ni,N2)→LENV ′

ENV `path(EXP∗,N1,N2)→LENV ′
(21)

ENV `N1→LENV ∧bind(LENV `N2,N1→LENV ′)
ENV `path(EXP∗,N1,N2)→LENV ′

(22)

KGRAM’s Evaluation Function. The core of KGRAM is its evaluation
function which interprets KGRAM’s abstract query language. Its algorithm im-
plements the rules of Natural Semantics specifying the semantics of the query
language and in particular those associated to the expressions node and edge.
The operationalisation of these rules corresponds to the search of homomor-
phisms on labelled graphs: the environments produced by these rules represent
the (partial) homomorphisms found between the expression of the query lan-
guage and the data graph. The operationalization of the rules associated to ex-
pression filter corresponds to the search of homomorphisms with constraints.

KGRAM’s algorithm is given on the next page. The queryStack argument of
the eval function represents the stack of expressions participating to the query
that is evaluated. Its argument i represents the current position in this stack.
The function is initially called with the whole query in the stack and a value of
zero for i. An instance of KGRAM is created with (1) a producer responsible for
the production of candidate nodes and edges of the data graph matching those of
the query graph, (2) a matcher responsible for the matching of query and target
nodes or edges, (3) an evaluator responsible for the evaluation of constraints
(filters), (4) an environment manager env responsible for the storage in a stack
structure of the current environment, i.e. a partial homomorphism described
as node bindings and (5) a list of complete homomorphisms (representing the
results of the evaluated query expression). We will see in section 4 that the
producer, the matcher and the evaluator called in this algorithm implement
KGRAM’s API. This ensures the independance of the interpreter of the query
language from the data models and therefore the interoperability of KGRAM.

In the switch control instruction, the blocks labelled by node and edge
implement the rules associated to the expressions node and edge of the query
language and hence complete the current environment with node and edge bind-
ings between the query and target graphs. The getEdges function of the graph
manager producer is called; it takes as argument a node or edge expression
from the stack queryStack and the current environment env. It uses the en-
vironment to retrieve, if any, the nodes in the exp expression that are already
bound. Therefore it returns the only edges compatible with the bindings in the
current environment. These candidate edges are then matched again with the
query edge by the matcher. This enables to tune the semantics of the matching
at KGRAM’s level and therefore to handle possibly primitive producers which
would exhibit inconvenient candidate edges or nodes. In the case where the
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matching succeeds, the queried edges are added alternately in the current envi-
ronment as new bindings. The search of a homomorphism eventually succeeds
and the partial homomorphism is completed when the summit of the stack is
reached: env is then added into the result list by calling the function store().

eval(queryStack, i){

if (queryStack.size() = i) {store(env); return;}

exp = queryStack(i);

switch(exp){

case EDGE:

for (Edge r : producer.getEdges(exp, env)){

if (matcher.match(exp, r)){

env.push(exp, r));

eval(queryStack, i+1);

env.pop(exp, r);}}

break;

case NODE:

for (Node n : producer.getEdges(exp, env)){

if (matcher.match(exp, n)){

env.push(exp, n))

eval(queryStack, i+1);

env.pop(exp, n);}

break;

case FILTER:

if (evaluator.test(exp, env)) eval(queryStack, i+1);

... }}

The double recursion suggested by the rules of natural semantics associated
to the expressions node and edge — on the expression to evaluate and the
environments to build — translates to the recursivity of the eval function and
the iterative recording in a list of the complete homomorphisms built in env.

The filter block in the switch control instruction implements the rules 5
and 6 specifying the expression filter. KGRAM delegates the evaluation of fil-
ters (constraints) to an abstract filter evaluator evaluator. The test function of
the latter takes as argument a filter to be evaluated and the current environment
which acts as a variable binding environment. If the filter evaluates to true, the
search for an homomorphism continues with the same environment. Otherwise
the partial homomorphism represented by the current environment cannot be
completed and a backtrack in the eval function enables to go back to a previous
level in the stack of expressions queryStack, to enumerate new candidates and
then evaluate the filter in other environments where it may succeed.

All the other rules of natural semantics specified for KGRAM’s language
have been implemented in the interpreter by specific blocks integrated to the
backbone of the algorithm shown above: each expression has its own block. We
do not detail them in this paper. Note that these are just some of the blocks of
instructions that modify the stack of expressions queryStack to be evaluated.

When the partial homomorphism represented by the current environment
cannot be completed, a recursive call of the eval function enables to backtrack
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in the call stack and therefore to restore previous states of the stack queryStack

and of the corresponding environment stack. The enumeration of candidate nodes
or edges then continues in order to find new bindings in this state. In order to
optimize the algorithm, we have refined backtrack (i.e. return to level n-1) with
a mechanism that enables to backtrack directly at a lower level (e.g. n-2) in case
of a local failure. This mechanism, called backjump, enables to return directly to
an expression whose evaluation furnishes a new binding for at least one query
node from the last expression that just failed. For this purpose, the push function
of the env environment records, for each node binding, the position of the first
expression in the expression stack that produces its first binding. The backjump

fonction of the env environment is then able to compute the position in the
expression stack where to backtrack when an expression fails: backjump occurs
at the greatest bind index (highest in the stack) that may modify the binding of
one of the nodes of current expression.

KGRAM’s evaluation function is also optimized by using its ability to build
homomorphisms alternatively by node search and edge search. This enables to
optimize the evaluation of a query in the cases where some query nodes are
known statically or some query edges have very few target candidates.

4 Querying and Mashup of Linked Data with KGRAM

The KGRAM interpreter comes with the application programming interface
(API) it uses — and default implementations of it. In this section we describe the
overall architecture of KGRAM API. Then we show how to build KGRAM-based
applications to query and mashup linked data. A number of the applications we
mention in this section have been captured in demos available on our site3.

4.1 KGRAM Application Programming Interface

KGRAM interprets the expressions of its query language by using only abstract
interfaces and hence remains independant of any graph implementation and any
data structure.

Abstract Data Structures. The KGRAM interpreter accesses the queried
data bases through an abstract API that hides the graph’s structure and im-
plementation. In other words, it operates on a graph abstraction by means of
abstract structures and functions and it ignores the internal structure of the
nodes and edges it manipulates to evaluate a query expression over a target
graph. More precisely, the target graph is accessed by node and edge iterators
that implement the Node and Edge interfaces of KGRAM. These are the very
same interfaces that operationalize the node and edge expressions of KGRAM’s
query language. As a result, KGRAM can process any kind of knowledge graph.

3 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Demos
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Abstract Operators. KGRAM accesses the target graph through an abtract
graph manager which implements its Producer interface. This graph manager
enumerates the graph nodes and edges (implementing the Node and Edge APIs)
that match the nodes and edges occuring in a given expression (and implement-
ing the same APIs). It uses the KGRAM APIs of a node and edge matcher
described bellow and thus ignores the way nodes or edges are matched.

A node and edge matcher implements the KGRAM Matcher interface. It
is responsible for comparing node and edge labels. It implements the match
semantic rule base occuring in the rules of natural semantics specifying the
expressions node and edge of the query language. Depending on the Matcher
implementation, the label comparison consists in testing string label equality or it
may take into account class and property subsumption, or compute approximate
matching based on semantic similarities, etc.

Constraints (or filters) are abstract entities that implement the Filter in-
terface which specify the filter expression of the query language. Filters are
evaluated by an object that implements the Evaluator interface. KGRAM ig-
nores the internal structure of filters, it calls the eval function of Evaluator on
Filter objects and passes the Environment as argument. This eval function im-
plements the eval rule base occuring in rules 5 and 6 of the operational semantics
of KGRAM interpreter.

Genericity of the KGRAM Interpreter. The design of the KGRAM inter-
preter relies on interfaces. It is both independant of the concrete query language
and data model. Access to data is mediated by an abstract producer and an
abstract matcher. Moreover the evaluation of filters is delegated to an abstract
filter evaluator. It is hence independant of the nature of the filters processed —
which depends on the filter language implemented by the filter evaluator.

We have tested KGRAM’s portability by implementing its interfaces Node,
Edge, Producer, Matcher and Evaluator with both Corese4 and Jena5 [7].

KGRAM interfaces are designed in order to minimize the glue code. As
a result, Corese’s and Jena’s portings to KGRAM have required quite a few
source lines of code. Corese’s porting was almost immediate because KGRAM
was partly designed as an abstraction of the principles of Corese. Jena’s porting
has required less than 1000 source lines of code.

For the validation of KGRAM with one implementation or the other, we
have used a RDF base comprising 25,000 triples and a base of 500 queries. In
Corese’s porting, KGRAM interprets its whole query language and queries RDF
data implemented as conceptual graphs. In Jena’s porting, KGRAM interprets
the subset of its language corresponding to SPARQL 1.0 and queries RDF data.

We have also ported KGRAM on a new graph data structure which directly
implements our ERGraph model. For the validation of this port of KGRAM, we
have successfully implemented the W3C SPARQL 1.1 Query Test cases6. We are

4 http://www-sop.inria.fr/edelweiss/software/corese/
5 http://jena.sourceforge.net/
6 http://www.w3.org/2009/sparql/docs/tests/
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currently using this implementation in an application in genomics (BioMarker :
RDF graphs in Cytoscape viewer) which manages 1.6 million triples and runs a
workflow of 10 queries in 1 second on a laptop.

4.2 Querying and Mashup of Distributed Data

KGRAM relies on its Producer interface for the enumeration of data edges and
nodes. This enables to seamlessly design a producer that enumerates edges com-
ing from several graph stores. For this purpose, we have designed a metaproducer
which implements the Producer interface and is an iterator of producers, each
of which implements Producer and can enumerate edges and nodes from one
graph store.

This metaproducer is used in the ISICIL project7 to answer a usage scenario
where RDF data is distributed over three servers for performance issues due to
the size of the knowledge bases and their heterogeneity. Each RDF server is in
charge of inferences on specific types of data: (1) social network and user profiles,
online communities, activity tracking and trust model; (2) tag model, document
metadata, terminologies, thesaurus; (3) web resource model with low level data
such as MIME type, production context, format, duration, etc.

Some of the web applications developed in the ISICIL framework require to
answer queries over data distributed on these three servers. We have configured
a metaproducer iterating over three RDF producers, one for each server. They
all are implementations of KGRAM’s Producer interface based on Corese. The
application we developped with KGRAM thus enables to mashup the data of
these three RDF stores with SPARQL queries which evaluation produces an
environment involving values from the three RDF stores.

Querying and Mashup of Heterogenous Data. The implementation of
KGRAM’s Producer interface by a metaproducer is also the key to mashup
data with heterogenous knowledge models. It suffices that an implementation
of the Producer interface is implemented for each knowledge model, with also
different implementations of the Node and Edge interface, and that a metapro-
ducer iterates over all of them. In that case, the matcher which is called by the
interpreter for each candidate node or edge returned by the metaproducer is here
to harmonize the semantics of the preliminary matchings of the producers.

By default, KGRAM is provided with an implementation of its Evaluator

interface which handles XML Schema datatypes. Depending on the data to
mashup, the evaluator must be able to compare values coming from different
implementations of a common datatype or values from different datatypes —
with a cast system.

Mashup of Knowledge Graphs with XML and Relational Data. In ad-
dition to the querying of heterogenous data distributed over several graph stores

7 http://isicil.inria.fr/
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by combining dedicated graph producers, KGRAM’s language and interpreter
also enable to mashup data coming from XML or relational database during the
evaluation of a query expression over a data graph.

It is known that RDF can embed XML Literal values by means of the
rdf:XMLLiteral datatype. Unfortunalely, SPARQL does not allow to query the
content of this structured datatype. Moreover URIs of resources can denote XML
documents the content of which may be interesting to query. For this purpose
we introduced in KGRAM’s language an extension of SPARQL to process XML
data using XPath. It consists in (1) an xpath function that enables to apply an
XPath expression to an XML Literal or to an XML document at a given URI
and (2) an unnest function that enables to enumerate a collection of results
as variable bindings in a subquery. These two functions occur in the abstract
syntax of the KGRAM’s query language as parameters of a filter expression.
More precisely, in the filter language, they are two instances of FunctionName

(see section 3.2). Let us consider the example below. The combination of func-
tions xpath and unnest enables to query for book titles in an XML document
designated by the ?doc variable and to bind the retrieved values to the ?title

variable which is used in a query expression of KGRAM’s language to retrieve
both the authors and titles of documents.

select * where {

?doc c:author ?a

{select unnest(xpath(?doc, ’/book/title/text()’)) as ?title where {}}

?doc c:title ?title}

Similarly, we also introduced in KGRAM’s language a sql function that
computes a SQL query on a relational database. Each row in the SQL query
result is translated into a variable binding.

5 Conclusion

KGRAM is an abstract machine which interprets an abstract query language to
query knowledge graph models. We presented here the formal semantics of its
abstract graph langage and query language. Its query language is an abstraction
of a generalization and extension of SPARQL which enables us to (1) handle
most features of SPARQL 1.1. recommendation, (2) query not only RDF but
also any knowledge graph model, (3) mashup XML or relational data. It comes
with an application programming interface and a default implementation to
develop semantic web applications for the querying and mashup of distributed
and heterogenous data.

The limits of KGRAM lie in its capabilities to mashup heterogenous data.
These are precisely relative to the value datatypes of the knowledge models.
In the simplest case where the different models share the same datatype (like
the XML schema datatype standard) the problem is reduced to handling the
different implementations of the adopted datatypes by different producers con-
nected to KGRAM’s metaproducer. Otherwise a cast system between different
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datatypes must be developed which can be a difficult problem. KGRAM comes
with a default evaluator implementation that manipulates values as Java Object.
This generic evaluator is provided with a proxy that is able to evaluate basic
expressions by casting Object values to target values (e.g. integers, strings, etc.).
This two-stage implementation is a first part of the solution to the problem of
heterogenous datatypes: KGRAM’s default evaluator interprets a default filter
language without freezing the choice of the implementation of the values.

We are currently integrating optimizations in the interpreter’s algorithm,
such as those described in [4], e.g. heuristically sorting query edges or retrieving
several connected edges at once instead of enumerating them each after the
other. We are also considering the problem of query distribution. We intend to
make KGRAM’s metaproducer call the producers on which it iterates in separate
threads to allow us to scale to large distributed bases on the web of linked data.
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