
TOWARDS A FORMAL OPERATIONAL
SEMANTICS OF UML STATECHART

DIAGRAMS�

Diego Latellay

Istvan Majzikz

Mieke Massinkx

Abstract: Statechart Diagrams are a notation for describing behaviours in the frame-
work of UML, the Unified Modeling Language of object-oriented systems. UML is a
semi-formal language, with a precisely defined syntax and static semantics but with an
only informally specified dynamic semantics. UML Statechart Diagrams differ from clas-
sical statecharts, as defined by Harel, for which formalizations and results are available
in the literature. This paper sets the basis for the development of a formal semantics for
UML Statechart Diagrams based on Kripke structures. This forms the first step towards
model checking of UML Statechart Diagrams. We follow the approach proposed by Mikk
and others: we first map Statechart Diagrams to the intermediate format of extended hi-
erarchical automata and then we define an operational semantics for these automata. We
prove a number of properties of such semantics which reflect the design choices of UML
Statechart Diagrams.

�The work described in this paper has been performed in the context of the ESPRIT Project n. 27439 -
HIDE.
yC.N.R., Ist. CNUCE, Pisa, Italy, d.latella@cnuce.cnr.it
zTechnical University of Budapest, Dept. of Measurement and Information Systems, Budapest, Hungary,
majzik@mit.bme.hu. Partially supported by the CNR-NATO Guest Fellowship Programme.
xUniversity of York, Dept. of Computing, York, United Kingdom, mieke@cs.york.ac.uk. Supported by the
TACIT network under the European Union TMR Programme, Contract ERB FMRX CT97 0133.

INTRODUCTION

The Unified Modeling Language (UML) is a general-purpose, object-oriented, visual
modeling language that is designed to specify, visualize, construct and document the
artifacts of a software system [4].

Since UML is a graphical notation, a UML model (i.e. a specification of a system)
is composed of different kinds of diagrams each representing a different view (or part)
of the system. Use case diagrams show the relationships among actors, such as users
or other systems, and basic functions of the system. Class diagrams show the types and
interfaces of elements of the problem domain, while object diagrams present instances
of classes. Sequence diagrams describe the interactions among objects, collaboration
diagrams also include links to these objects. Statechart and activity diagrams capture
the behavior of objects, systems or subsystems by presenting their internal states and
reactions to (external) events. Component diagrams show the structure of the software
components (program code) and dependencies among them. Deployment diagrams
show the physical layout of components on hardware nodes.

UML is a semi-formal language, since its syntax and static semantics (the model
elements, their interconnection and well-formedness) are defined precisely [4], but its
dynamic semantics are specified neither formally nor algorithmically.

The work described in this paper has been performed in the context of the EC
founded project HIDE. The aim of HIDE is the extension of UML design environments
with transformations (and tools) from UML to dependability assessment models as well
as semantics models for formal verification. UML provides a front-end for the designer
to specify the system and its requirements. The models for dependability assessment
and formal verification will be derived automatically by means of translations from
UML models. The results will be back-annotated into the same UML model, this
way eliminating the need of both costly re-modeling of the system and expertise in
underlying formalisms.

The scope of our investigation are UML statechart diagrams. By using a statechart,
the behavior of any classifier in UML, such as use cases, classes (objects) and hardware
nodes can be specified. We focus on specifications made up of a single statechart. The
interaction of subsystems or model elements specified by separate statecharts is not
being considered here. Moreover, issues which we do not deal with in this paper
and which we leave for future research are those related to “object orientation”, like
inheritance, sub-behavior etc. Notice, however, that our current work is a mandatory
prerequisite for any formal treatment of all these advanced features. In fact, in order to
be able to perform any formal verification, the first step is obviously to map statechart
diagrams to a formal semantics model. This is the subject of the present paper. The
verification technique we aim at is model checking, thus, following the approach of [8],
we choose to use Kripke structures as semantics models. To define the mapping, we use
an intermediate model, which is a slightly modified variant ofExtended Hierarchical
Automata,proposed in [8]. We chose to follow the above mentioned approach because
it seems to be one of the simplest ones.

The next section is a short introduction to UML statecharts, restricted to those fea-
tures we will consider in this paper. Then, in the following section, the intermediate
model is introduced and an example of the translation from UML statecharts to such

a model is given. A sketch of the translation is provided in the Appendix. The sub-
sequent section introduces our formal operational semantics of Extended Hierarchical
Automata. Finally, the conclusions summarize our work and sketch our lines of future
research.

For space reasons, proofs are omitted here. The fully detailed proofs can be found
in [6].

A SUBSET OF UML STATECHART DIAGRAMS

UML statecharts is an (object-oriented) variant of classical Harel statecharts [1, 2].
The statecharts formalism itself is an extension of traditional state transition diagrams.
In this section we will briefly describe those features of UML statecharts diagrams
which are of interest for this paper. We will describe them by means of the example
of Fig. 1. In order to keep the description simple, we will keep it at a very superficial
level. The detailed description of UML statecharts diagrams can be found in [5] and
[4].

f1

e2

f2

r2

e1

r1

a1

e1

a2

s0 s1

s2

s3

s4

s5

s6 s7

s8 s9

Figure 1 Example of an UML statechart

One of the main notions of statecharts is the notion of state refinement. In Fig. 1
states0 is refined into an automaton consisting of three states,s1, s2, ands3. States1
is further refined into two states, namelys4 ands5, each of them refined in turn into a
distinct automaton. States likes0, s1, s4 ands5 are calledcompositeand in particular
s1 is a said to beconcurrent.

A transition connects asourceto atargetstate. The transition is labeled by a trigger
event, a boolean guard and a sequence of actions. In our example, only trigger events
are used.

"System states" are modeled byconfigurations, which are sets of states. For
instance, our system can be in any of the following configurations:fs1; s6; s8g;
fs1; s6; s9g; fs1; s7; s8g; fs1; s7; s9g; fs2g; fs3g.

A transition is enabled and can fire if and only if its source state is in the current
configuration, its trigger is offered by the external environment and the guard is
satisfied. In this case the source state is left, the actions are executed, and the target
state is entered.

In our example, if eventa1 is given and the current configuration isfs2g, states2
is left and states1 is entered. In particular, beings1 composite, we also have to say
which are the particularsub-stateswhich are reached. In the case at hand they are the
default ones, i.e. theinitial states ofs4 ands5, namelys6 ands8.

In the general case, some target substates can be explicitly specified. In our example,
when the current configuration isfs3g and eventa2 is offered, the configuration
resulting from firing the transition labeled bya2 will be fs1; s6; s9g, wheres9 is
explicitly pointed to by the transition. A transition like the above mentioned one is
called aninterleveltransition and such transitions can in general have more than one
target in order to explicitly point to all relevant states (fork transitions).

Symmetrically, also the transition froms6 to s2 and the one froms8 to s3 are
interlevel. Firing, say, the first one requires the system to be in a configuration
containings6, regardless of the state in whichs5 resides, and brings it to states2.
Interlevel transitions can also have more than one source state, the meaning being that
all such states must be in the current configuration for the transition to be enabled (join
transitions).Compoundtransitions can be either join or fork transitions.

In general, more than one event can be available in the environment. The UML
semantics assumes then adispatcherwhich selects an event at a time from the environ-
ment, modeled as a queue, and offers it to the state machine. In general, more than one
transition can be enabled at this point. Some of them can be in conflict: this happens
when the intersection of the sets of states left by the transitions is not empty. Some
conflicts can be resolved using priorities. Roughly speaking a transition has higher
priority than another transition if its source state is a substate of the source of the other
one. For instance, if the statechart of Fig. 1 is in a configuration containing boths1 and
s6, and the event selected by the dispatcher ise1 then the transition froms6 to s7 will
be fired since it has higher priority than the one tos2. If the conflict cannot be resolved
using priorities, then any of the conflicting enabled transitions may be fired. Due to
concurrent states, it is possible that more than a single transition is fired as a reaction
to a given event. In particular the set of transitions that will fire is a maximal set of
enabled, non-conflicting transitions, such that no enabled transition outside the set has
higher priority than a transition in the set. When the effects of all such transitions and
related actions are complete a new event is selected by the dispatcher and a new cycle
is started.

In this paper, we will refer to a quite restricted subset of UML statechart dia-
grams which, nevertheless, includes all the interesting conceptual issues related to
concurrency in the dynamic behaviour, like sequentialization, non-determinism and
parallelism.

More specifically, we do not consider history, action and activity states; we restrict
events to signal and call ones, without parameters; time and change events, object
creation and destruction events and deferred events are not considered as well as
branch transitions; variables and data are not allowed so that actions are required to be
just (a sequence of) events. We also abstract from entry and exit actions of states.

The above simplifications are made essentially for keeping the level of readability
of the paper acceptable since, in our opinion, most of them do not have any strong
impact on the semantics at a conceptual level.

Other limitations, like the fact that we do not deal with the object-oriented features
of UML statechart diagrams, e.g. sub-behaviours, etc, are more serious and we leave
them for further study, together with extensions like deterministic/stochastic time ones.

EXTENDED HIERARCHICAL AUTOMATA

In this section we recall the notion of Extended Hierarchical Automata defined in [8],
although our notation is slightly different from that used therein, and we informally
show how Extended Hierarchical Automata can faithfully represent statecharts. We
start by the notion of (sequential) automaton1.

Def. 1 (Sequential Automata)A sequential automatonA is a 4-tuple(�A; s0A; �A; �A)
where�A is a finite set ofstateswith s0A 2 �A the initial state, �A is a finite set of
transition labelsand�A � �A � �A � �A is thetransition relation.

We shall use a particular structure for the labels in�A which will be described
later. For sequential automatonA let functionsSRC; TGT : �A �! �A be defined
asSRC(s; l; s0) = s andTGT (s; l; s0) = s0. Extended Hierarchical Automata [8] are
defined as follows:

Def. 2 (Extended Hierarchical Automata) An extended hierarchical automatonH
is a 3-tuple(F;E; �), whereF is a finite set of sequential automata with mutually
disjoint sets of states, i.e.8A1; A2 2 F: �A1 \ �A2 = ; andE is a finite set ofevents;
the refinement function� :

S
A2F �A �! 2F imposes a tree structure toF , i.e. (i)

there exists a unique root automatonAroot 2 F such thatAroot 62
S
rng �, (ii) every

non-root automaton has exactly one ancestor state:
S
rng � = F n fArootg and

8A 2 F n fArootg: 91s 2
S
A02FnfAg �A0 : A 2 (� s) and (iii) there are no cycles:

8S �
S
A2F �A: 9s 2 S: S \

S
A2�s �A = ;.

We say that a states for which � s = ; holds is abasicstate. An example of an
extended hierarchical automaton is presented in Figure 2. HereF = fA0; A1; A2g,
and states1 of the rootA0 is refined byA1 andA2: � s1 = fA1; A2g. All states
excepts1 are basic. Initial states are indicated by double boxes.

In the sequel we will implicitly make reference to a generic extended hierarchical
automatonH = (F;E; �).

Every sequential automatonA 2 F characterizes an extended hierarchical automa-
ton in its turn: intuitively, such an extended hierarchical automaton is composed by all
those sequential automata which lay belowA, includingA itself, and has a refinement
function�A which is a proper restriction of�.

Def. 3 ForA 2 F theautomata, states, andtransitions underA are defined respectively
asA A = fAg[(

S
A02�A�A

(A A0)),S A =
S
A02A A �A0 , andT A =

S
A02A A �A0

1In the following we will freely use a functional-like notation in our definitions where: (i) currying will
be used in function application, i.e.f a1 a2 : : : an will be used instead off(a1; a2; : : : ; an) and
function application will be considered left-associative; (ii) for functionf : X �! Y andZ � X,
f Z = fy 2 Y j 9x 2 Z: y = fxg, rng f denotes therangeof f andfjZ is the restriction off toZ.

A0

t3

t1

t4

t5

t2s1 s2

s3

A1
t6

t7

A2
t8

t9s6 s7 s8 s9

Figure 2 Example of an Extended Hierarchical Automaton

The definition of sub- extended hierarchical automaton follows:

Def. 4 For A 2 F , (FA; E; �A), whereFA = (A A) and�A = �j(S A), is the sub-
extended hierarchical automaton characterized byA.

In the sequel forA 2 F we shall refer toA both as a sequential automaton and as the
sub-extended hierarchical automaton ofH it characterizes, the role being clear from
the context.H will be identified withAroot. Sequential Automata will be considered
a degenerate case of Extended Hierarchical Automata. In Figure 2, automatonA0
refers to both the sequential automatonA0 = (fs1; s2; s3g; s1; �A; ft1; t2; t3; t4; t5g)
and the extended hierarchical automatonH = (fA0; A1; A2g; E; �) where� s1 =
fA1; A2g.

Def. 5 (State Precedence)For s; s0 2 S H , s � s0 iff s0 2 S (� s). Let� denote the
reflexiveclosure of�.

Proposition 1 Relation� is a partial order.

Def. 6 (Orthogonal States)Two statess; s0 2 S H are orthogonal, written s jj s0,
iff 9s00 2 (S H); A;A0 2 (� s00): A 6= A0 ^ s 2 S A ^ s0 2 S A0

Obviouslys jj s0 implies s 6= s0. For instance, with reference to our example,
s6 ands8 are orthogonal, sinces6 2 S A1, s8 2 S A2 and there iss1 for which
A1; A2 2 � s1.
It is easy to see that orthogonal states satisfy the following property:

Lemma 1 For all s; s0 2 S H the following holds:s jj s0) s 6� s0

We say thatS � S H is a set of pairwise orthogonal statesiff 8s; s0 2 S: (s 6=
s0) s jj s0). An obvious consequence of the above lemma is that forS � S H a

t t1 t2 t3 t4 t5 t6 t7 t8 t9

EV t r1 a1 e1 r2 a2 e1 f1 e2 f2
SR t fs6g ; ; fs8g ; ; ; ; ;
TD t ; fs6; s8g ; ; fs6; s9g ; ; ; ;

set of pairwise orthogonal states, the following holds:s; s0 2 S ands � s0 implies
s = s0. Now we lift� to sets ofstates:

Def. 7 For all S; S0 � S H , S �s S0 iff 8s 2 S: 9s0 2 S0: s � s0

Notice that�s is only a preorder. Take for instanceS = fs; s0g andS0 = fs0g with
s � s0. NowS �s S0 andS0 �s S, butS 6= S0. The following proposition holds:

Lemma 2 For S; S0 � S H sets ofpairwise orthogonal statesS �s S0 ^ S0 �s S

impliesS = S0.

For the purpose of representing statechart diagrams using Extended Hierarchical
Automata we shall require transition labels of transitionst of sequential automataA 2
F be 5-tuples(sr; ev; g; ac; td) where (i) thesource restrictionsr � S (�(SRC t))
is a set of pairwise orthogonal states; (ii)ev 2 E [f�g is the event whichtriggersthe
transition, with� representing that no event is required for triggering the transition;
(iii) g is theguard, i.e. a boolean expression on states (which we shall not further
specify in this paper); (iv)ac 2 E� is the sequence of events to be generated when
the transition is fired, i.e. thesequence of actionsto be executed; and thetarget
determinatortd � S (�(TGT t)) is amaximal(under set inclusion) set of pairwise
orthogonalbasicstates. The target determinator and source restriction play a major
role in the representation of compound/interlevel transitions, as we shall explain in a
moment.

It should be already clear that the extended hierarchical automaton of Fig. 2 could be
taken as an alternative representation for the statechart of Fig. 1. In fact there is a clear
correspondence between the states of the two structures. Also the refinement of a state
into one or more substates in the statechart is properly represented by the refinement
function�. Non-interlevel transitions are represented in the obvious way. Consider
now the interlevel transition froms6 to s2 in Fig. 1. Such a transition is represented
in the extended hierarchical automaton by the transition froms1 (the highest ancestor
of s6 "crossed" by the transition in the statechart) tos2, labeled byt1. The source
restriction of such a transition will bes6. In general, for join transitions the source
restriction will be a set of pairwise orthogonal states. The target determinator explicitly
listsall the basic states which must be reached when a transition is fired. For example,
the transition froms3 to s9 in Fig. 1 is represented in Fig. 2 by the transition labeled
t5, the target determinator of which isfs6; s9g. Notice that actuallys6 could be left
out of the above set since it is an initial (i.e. "default") state. Here, for uniformity
reasons, we prefer to list all the states, at the cost of a little redundancy. The table
above completes the translation for our current example (omitting guards and actions).

In the sequel we shall use the following functionsSR;EV;G;AC; TD defined in
the obvious way; for transitiont = (s; (sr; ev; g; ac; td); s0), SR t = sr; EV t =

ev;G t = g;AC t = ac; TD t = td. Finally, for transitiont 2 �A for A 2 F let
ORIG t be defined as follows:

ORIG t = fs j s 2 (SRC t) ^ (SR t) = ;g [(SR t)

The following definition establishes when two transitions areconflicting:

Def. 8 For t; t0 2 (T H), t is conflicting witht0, written t#t0, iff
t 6= t0 and(SRC t � SRC t0) _ (SRC t0 � SRC t)

The following lemma relates orthogonality and conflict:

Lemma 3 For t; t0 2 (T H) the following holds:
(SRC t) jj (SRC t0) implies:(t#t0).

The following definition characterizes those structures which can be used for imposing
priorities on transitions.

Def. 9 (Priority Schema) APriority Schemais a triple(�;v; �)with (�;v) apartial
orderand� : (T H) ! � such that:8t; t0 2 (T H): (� t v � t0) ^ t 6= t0) t#t0

We say thatt has lower priority than (equal priority as)t0 iff � t v � t0.

The following lemma relates orthogonality and priority:

Lemma 4 For t; t0 2 (T H) the following holds:
(SRC t) jj (SRC t0) implies� t 6v � t0.

The priority system we use in this paper is based on the origin of transitions. Let
PWO = fX � (S H) j X pairwise orthogonalg and functionf defined as
f t = ORIG t.

Proposition 2 (PWO;�s; f) is a priority schema.

FORMAL OPERATIONAL SEMANTICS

In this section we develop a formal semantics for Extended Hierarchical Automata
which is different from that proposed in [8] in that it has to deal with the peculiarities
of UML statechart diagrams. The main difference is the need to deal explicitly with
priorities since UML priority rules do not directly match the hierarchical structure of
Extended Hierarchical Automata, as it is the case with classical statecharts. Moreover,
the environment is treated differently.

Operational Semantics Rules

We first defineconfigurations. A configuration denotes a global state of an extended
hierarchical automaton, composed of local states of component sequential automata.

Def. 10 (Configurations) A configurationof H is a setC � (S H) such that (i)
91s 2 �Aroot

: s 2 C and (ii) 8s; A: s 2 C ^ A 2 � s) 91s0 2 A: s0 2 C

For A 2 F the set of all configurations ofA is denoted byConfA. Possible con-
figurations of the extended hierarchical automaton of Fig. 2 are:fs2g, fs1; s6; s8g,
fs1; s7; s9gwhereasfs1g is not (it is not downward closed), as well asfs7g (no state
from the root) orfs1; s2g (two states belonging to the same sequential automaton).
The following result easily follows from the definitions:

Proposition 3 For A 2 F andA0 2 �A �A the following holds:
(C 2 ConfA ^ C \ �A0 6= ;)) C \ (S A0) 2 ConfA0

The operational semantics of an extended hierarchical automaton will be defined as
a Kripke structure, which is a set of states related by a (transition) relation. Usually,
the states are calledstatusesand the transition relation is called theSTEP relation.
Each status is composed by a configuration and the currentenvironmentwith which the
extended hierarchical automaton is supposed to interact. While in classical statecharts
the environment is modeled by a set, in the definition of UML statechart diagrams
the particular nature of the environment is not specified (actually it is stated to be a
queue, but the management policy of such a queue is not defined). We choosenot to
fix any semantics such as a set, or a bag or a FIFO queue etc. for the environment.
In the following definition we will then assume that for setX , �X denotes the set
of all structures of a certain kind (like FIFO queues, or bags, or sets) overX and we
shall assume to have basic operations for inserting and removing elements from such
structures. In particular(add E e) will denote the structure obtained by addinge to
environmentE . Similarly, (join E E 0) denotes the environment obtained by merging
E with E 0. Moreover, by(Sel E e E 0) we mean thatE 0 is the environment resulting
from selectinge fromE , the selection policy depending on the choice for the particular
semantics of the environment. Finally,nil is the empty structure and given sequence
r 2 X�, (new r) is the structure containing the elements ofr (again, the existence
and nature of any relation among the elements of(new r) depends on the semantics
of the particular structure).

So, for instance, if sets are chosen, then(add E e) = E [feg, (join E E 0) = E [E 0

and, fore 2 E , (Sel E e E 0) � (E 0 = E n feg). Details like what is the result of
attempting to select an event from an empty environment etc. are left unspecified here
since they are part of the semantics of the environment and will be specified when such
a semantics is fixed.

Def. 11 (Operational semantics)The operational semantics of an extended hier-

archical automatonH is a Kripke structurek = (S; s0;
STEP
�!) where (i) S =

ConfH � (� E) is the set of statuses ofk, (ii) s
0 = (C0; E0) 2 S is the initial

status, and (iii)
STEP
�! is the transition relation defined in the sequel.

A transition ofk is a maximal set of non-conflicting transitions of the sequential

automata ofH which respect priorities. As in [8], we shall define the
STEP
�! relation

by means of a deduction system, and we shall do this both for the case in which the
environmentcan be manipulated from outside the system specified byH (open systems
semantics) and for the case in which this is not allowed (closed systems semantics).
The rules follow:

Def. 12 (Closed Systems)

(Sel E e E 00) (1)

H " ; :: (C; feg)
L
�! (C0; E 0) (2)

(C; E)
STEP
�! (C0; (join E 00 E 0))

Def. 13 (Open Systems)

(Sel E e E 00) (1)

H " ; :: (C; feg)
L
�! (C0; E 0) ^ E 0 � E 000 (2)

(C; E)
STEP
�! (C0; (join E 00 E 000))

In the above rules we make use of an auxiliary relation, namelyA " P :: (C; E)
L
�!

(C0; E 0). The relation
L
�! models labeled transitions of the extended hierarchical

automatonA, andL is the set containing the transitions of the sequential automata

of A which are selected to fire. We shall call
L
�! steptransitions in order to avoid

confusion with transitions of sequential automata.P is a set of transitions. It represents
a constraint on each of the transitions fired in the step, namely that it must not be the
case that there is a transition inP with a higher priority. So, informally,A " P ::

(C; E)
L
�! (C0; E 0) should be read as "A, on status(C; E) can performL moving to

status(C0; E 0), when required to perform transitions with priorities not smaller than
any inP ". Obviously, no restriction is made on the priorities forH , but, as we shall
see later, setP will be used to record the transitions a certain automaton can do when
considering its sub-automata. More specifically, for sequential automatonA, P will
cumulate (the priority information of) all transitions which are enabled in the ancestors
of A. In the sequel we shall formalize all the above concepts by means of defining a

deduction system for relation
L
�!. We first need a few auxiliary definitions.

Def. 14 (Enabled Transitions) For A 2 F , set of statesC and environmentE ,
(i) the set of all theenabled localtransitions ofA in (C; E), LEA C E is defined as
follows2:

LEA C E = ft 2 �A j f(SRC t)g [(SR t) � C ^ (EV t) in E ^ (C; E) j= (G t)g

(ii) the set of allenabledtransitions ofA in (C; E) considered as an extended hier-
archical automaton, i.e. including those of descendents ofA, EA C E is defined as
follows:

EA C E =
[

A02(A A)

LEA0 C E

2(C; E) j= g means that guardg is true of status(C; E). Its formalization is immaterial for the purposes of
the present paper. Notice anyway that the modular structure of the operational semantics used in the present
paper forcesg to be defined only on configurations forA. For more global guards slight notational changes
are required.

Moreover,A " P :: (C; E)
L
�!will stand for: there existsC0 andE 0 such thatA " P ::

(C; E)
L
�! (C0; E 0). Finally, for states and setS � S (� s), such thats � s00 for all

s00 2 S, theclosureof S, (c s S), is defined as the setfs0 j 9s00 2 S: s � s0 � s00g.

Def. 15 (Progress rule)If there is a transition ofA enabled and the priority of such
a transition is "high enough" then the transition fires and a new status is reached
accordingly:

t 2 LEA C E (1)
6 9t0 2 P [EA C E : � t < � t0 (2)

A " P :: (C; E)
ftg
�! (c (TGT t) (TD t); new(AC t))

The rule essentially says that a (local) transitiont of sequential automatonA can fire
if it is enabled in the current configuration (1) and there is no higher priority transition
in P (so t is "high enough" forP , or "respects"P), or in the set of all the currently
enabled transitions ofA or of any descendent ofA.

Once transitiont is taken, a new configuration is entered and proper actions are
performed. For instance, in our example, whenfs3g is the current configuration and
a2 is offered by the environment, the above rule can be used for firing transitiont5,
which will result in entering configurationfs1; s6; s9g

Def. 16 (Composition Rule)This rule establishes how automatonA delegates the
execution of transitions to its sub-automata and these transitions are propagated
upwards.

fsg = C \ �A (1)
�A s = fA1; : : : ; Ang 6= ; (2)Vn
j=1 Aj " P [LEA C E :: (C \ (S Aj); E)

Lj
�! (Cj ; Ej) (3)�Sn

j=1 Lj = ;
�
) (8t 2 LEA C E : 9t0 2 P: � t < � t0) (4)

A " P :: (C; E)

S
n

j=1
Lj

�! (fsg [
Sn
j=1 Cj ; join

n
j=1Ej)

First of all notice that the sub-automata are required to perform their step-transitions
under the new setP [LEA C E which includes all the enabled local transitions of
A (3) so that, in order to be selected, the transitions of such sub-automata must have
a priority which is not lower than any of those of the enabled local transitions of
A (andA’s ancestors, recursively upwards). Notice also that if no transition of the
sub-automata can be fired then the rule is appliedonly if also no local transition of
A can fire (4), thus propagating the empty set of transitions upwards (see "stuttering"
below). The new configuration will still include the current state ofA but the possible
new states of the sub-automata and related actions are recorded in the new status.

Def. 17 (Stuttering Rule) If there is no transition ofA enabled and with priority "high
enough" and moreover no sub-automata exist to which the execution of transitions can

be delegated, thenA has to "stutter":

fsg = C \ �A (1)
�A s = ; (2)
8t 2 LEA C E : 9t0 2 P: � t < � t0 (3)

A " P :: (C; E)
;
�! (fsg; nil)

In our example, from status (fs1; s6; s8g; new e1) automatonA2 can only stutter.
Moreover, in the above status, automatonA1 can fire transitiont6 and, via the progress

rule it can generate a
ft6g
�! step-transition. Notice also that although transitiont3 of A0

is enabled the progress rule cannot be applied just because of the above step-transition
of A1 (� t3 < � t6). On the other hand, the composition rule can be applied toA0
which will propagate the step ofA1 and the stuttering ofA2 to the level of a step
transition ofA0.

Notice that in general the progress rule and the composition rule have not mutually
exclusive conditions, so that when both rules are applicable non-determinism arises
and results in separate step-transitions from the same status. Another source of non-
determinism is of course the presence of different enabled local transitions in the same
sequential automaton which are selected by different applications of the progress rule.
Finally notice that condition (4) of the composition rule prevents the propagation of
stuttering aboveA when there are transitions ofA which can fire.

Properties of the Operational Semantics

In the sequel we present a few results which show that the operational semantics we
propose meet the informal requirements stated in the definition of UML [4]. We let
A 2 F; C 2 ConfA; E 2 (�E); P 2 2(T H) be respectively a generic automaton, a
configuration, an environment and a set of transitions.

The proofs are carried out by induction either on the length of the derivation for

provingA " P :: (C; E)
L
�! (C0; E 0) [9] or on the structure of the subset ofF affected

by C, fA 2 F j C \ �A 6= ;g, [7].
The following proposition guarantees that after firing a transition again a status is

reached.

Proposition 4 For all L 2 2(T H); C0; E 0 the following holds:

A " P :: (C; E)
L
�! (C0; E 0)) ((C0 2 ConfA) ^ (E 0 2 (�E))).

The next lemma expresses a safety property w.r.t.P ; it essentially states that only
transitions with a "high enough" priority are fired.

Lemma 5 For all L 2 2(T H); t 2 L the following holds:

A " P :: (C; E)
L
�!)6 9t0 2 P: � t < � t0

The main result showing that our operational semantics satisfies the requirements
informally defined in [4] follows:

Theorem 1 For all L � (T A), A " P :: (C; E)
L
�! if and only ifL is a maximal set,

under set inclusion, which satisfies all the following properties: (i)L is conflict-free,
i.e. 8t; t0 2 L: :t#t0); (ii) all transitions in L are enabled in the current status, i.e.
L � EA C E ; (iii) there is no transition outsideLwhich is enabled in the current status
and which has higher priority than a transition inL, i.e. 8t 2 L: 6 9t0 2 EA C E : � t <

� t0; and (iv) all transitions inL respectP , i.e. 8t 2 L: 6 9t0 2 P: � t < � t0

CONCLUSIONS

In this paper we defined a formal operational semantics for a subset of UML Statechart
Diagrams. Diagrams of this kind are used to specify behavioural aspects of systems in
UML.

We focussed on specifications made up of a single statechart representing them
formally by a variant of Extended Hierarchical Automata. We defined a formal
semantics for these automata as Kripke structures. The semantics given in this paper
differs from that in [8] because of the different priority rules of UML Statechart
Diagrams which do not match the hierarchical structure of the automata.

The resulting formal semantics has only three rules; the progress rule, the composi-
tion rule and the stuttering rule. Having a small number of rules facilitates the formal
proof of properties that show the correctness of the formal semantics with respect to
the requirements formulated in the definition of UML [4]. A number of such properties
have been formally stated and proven.

Moreover the formal semantics is parametric in aspects which are not (yet) com-
pletely defined for UML, like the management of the event queue and the priorities. In
particular, parametricity of our semantics definition w.r.t. priorities makes it suitable
for describing the behaviour of systems under different priority schemas. For instance,
by using(PWO;�s; f) instead of(PWO;�s; f) we conjecture that the semantics of
classical Statecharts are obtained. All the results on the semantics are preserved since
they do not depend on the particular priority schema, provided the notion of conflict
and orthogonality satisfy the general constraint here proved as Lemma 3, as it is the
case with classical Statecharts.

The subset of UML we considered is rather small. Many features which we did not
consider are not of conceptual importance from the semantics definition point of view.
Others, like the more "object oriented" ones (e.g. object management, inheritance) are
not to be considered as slight extensions of the ideas presented in this paper: they need
further research. On the other hand, we consider the semantics presented here as an
essential first step towards a more complete model for statecharts.

We also would like to mention the usefulness of our work with respect to finding
mistakes and/or incompleteness and/or ambiguities in the informal description of UML
statechart diegrams. Examples are the definition of priorities and the definition of the
environment/dispatcher.

The definition of a formal semantics of UML Statecharts Diagrams is a necessary
first step also towards the use of automatic tools for formal verification and analysis
of statechart specifications yielding finite Kripke structures. One of our following
steps will be the translation of statecharts into a language that is amenable to formal

verification by means of model checking. In particular the model checking tool
SPIN [3] will be considered since it is one of the most efficient tools available. Its
specification language, PROMELA, allows the specification of both state variables
and communication actions. This feature turns out to be quite convenient when
representing statecharts. We are currently experimenting with some examples of
PROMELA models for extended hierarchical automata and we are considering the
possibility of extending UML OCL (Object Constraint Language) to a simple Linear
Time Temporal Logics in the style of that processed by SPIN. Finally, we think that
we can use the work presented in this paper as a starting point for the definition of
enriched semantics like deterministic-timed, stochastic-timed and probabilistic ones
for UML Statecharts Diagrams.

Acknowledgments

We would like to thank E. Mikk from the University of Kiel for the fruitful email exchanges we
had with him on the approach to STATEMATE semantics he is developing with his colleagues,
which inspired our work on UML Statecharts.

Appendix: Translation of UML statecharts to extended hierarchical au-
tomata

The translation maps a UML statechart to an extended hierarchical automatonH = (F; E; �)
by defining the set of sequential automataF , the composition function� and the set of eventsE.
For the sake of simplicity and readability, here we give just an informal sketch of the translation.

Set of sequential automata. Each automatonA 2 F;A = (�A; s
0

A; �A; �A) is defined as
follows.

States. States of the statechart are uniquely mapped to states of sequential automata.

– Root automatonH. If the (composite) top states0 of the statechart is concurrent
then it is mapped to the single (initial) state of a degenerate root automatonH.
Otherwise the direct substates of the top state are mapped to states�H of the root
automatonH.

– Sub-automata inA H. Each non-concurrent composite substates of the statechart
defines the states of a unique sequential automatonAs, as direct substates ofs
are mapped to states of�As . Note that regions (direct substates of a concurrent
composite state) are not mapped to any state in the extended hierarchical automaton.

Initial state. The initial states0A of an automatonA is the state that corresponds to the
state of the statechart marked by an initial pseudostate.

Transitions. In order to define the mapping of the transitions, we need the following
definitions. A transition of the statechart is characterized by its least common ancestor
(LCA) state, which is the lowest levelnon-concurrentstate that contains all the source
states and target states (here the definition of [4] is slightly modified). Themain source
(main target) of a transition is the direct substate of its LCA that contains the sources
(targets). According to the above rules, main sources and main targets are always
transformed to states of the same automaton.

Each transition� in the statechart is mapped to a unique transitiont of the extended
hierarchical automaton as follows. The sourceSRC t (targetTGT t) of t is the state
that corresponds to the main source (main target) of� . This means that a compound or
interlevel transition of the statechart is mapped to a transition of the automaton containing
the states corresponding to its main source and main target (this automaton is a sub-
automaton of the state representing the LCA). The original source and target states will
be included in the label of the transition in the form of source restriction and target
determinator, as described below.

Transition labels. The label of a transitiont is of the form(SR t;EV t;G t; AC t; TD t).
SR t andTD t are generated using the source(s) and target(s) of� , while theEV t,G t

andAC t of t are inherited from� :

– Source restriction. If the set of states that corresponds to the source(s) of� is the
same asSRC t, thenSR t must be empty, otherwise it is such a set of source(s).

– Target determinator.TD t is the normalized set of states that corresponds to the
target(s) of� . Normalizing means computing the maximal set of orthogonal basic
states that are substates of the states entered by� explicitly or by default. In this
way, TD t explicitly contains all the states which have to be entered when the
transition is fired, while some of these states are not explicitly pointed to by� . The

following is a sketch of a normalization algorithm which visits the states reached
by (segments of)� , starting from its main target:

� If a basic state is reached then it is added toTD t and recursion stops.

� If a composite state is reached at its boundary then the algorithm is applied
recursively to its initial substate, or to the initial substate of each of its regions.

� If a non-concurrent composite state is reached and its boundary is crossed then
the algorithm is applied recursively to its direct substate where the transition
continues (note that branch segments are not considered in this paper).

� If a concurrent composite state is reached and its boundary is crossed then the
algorithm is applied recursively to (i) the direct substate(s) of those regions
where the transition continues and (ii) the initial substates of the other regions.

– Trigger events. In UML statecharts, each transition (including compound transi-
tions) can have at most one trigger event, since join, fork and branch segments can
not have a trigger. Accordingly,EV t is exactly the trigger event of� .

– Guards. Since fork and joint segments have no guards, each transition may have a
single guard (note that branch segments are not considered in this paper). Accord-
ingly, G t is exactly the guard of� .

– Actions.AC t is exactly the sequence of actions of� .

Composition function. � is determined by the substate relationships of composite states. If a
composite states is non-concurrent and it is not a region then its direct substates form the states
of As, a sub-automaton ofs, wherefAsg = (� s). If a composite states is concurrent then
every one of its regions forms a sub-automaton ofs, in such a way that this automaton contains
the direct substates of the region.

Set of events.E is defined as the union of two (not necessarily distinct) sets: the set of events
used in the statechart as triggers of the transitions and the set of events generated by actions. In
open systems, the set of events generated by the environment is also included.

References

[1] D. Harel. Statecharts: A visual formalism for complex systems.Science of
Computer Programming. Elsevier, 8(3):231–274, 1987.

[2] D. Harel. The STATEMATE semantics of statecharts.ACM Transactions on
Software Engineering and Methodology, 5(4):293–333.

[3] G. Holzmann. The model checker SPIN.IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

[4] Rational Software * Microsoft * Hewlett-Packard * Oracle * Sterling Software *
MCI Systemhouse * Unisys * ICON Computing * IntelliCorp * i Logix * IBM
* ObjecTime * Platinum Technology * Ptech * Taskon * Reich Technologies
* Softeam.UML Semantics, version 1.1, 1997.

[5] Rational Software * Microsoft * Hewlett-Packard * Oracle * Sterling Software *
MCI Systemhouse * Unisys * ICON Computing * IntelliCorp * i Logix * IBM
* ObjecTime * Platinum Technology * Ptech * Taskon * Reich Technologies
* Softeam.UML Notation Guide, version 1.1, 1997.

[6] D. Latella, M. Massink, and I. Majzik. A Simplified Formal Semantics for a
Subset of UML Statechart Diagrams. Technical Report HIDE/T1.2/PDCC/5/v1,
ESPRIT Project n. 27439 - High-Level Integrated Design Environemnt for De-
pendability HIDE, 1998. Available in the HIDE Project Public Repository
(https://asterix.mit.bme.hu:998/).

[7] Z. Manna, S. Ness, and J. Vuillemin. Inductive methods for proving properties of
programs.Communications of the ACM, 16(8), 1973.

[8] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for state-
charts. In R. Shyamasundar and K. Euda, editors,Third Asian Computing Science
Conference. Advances in Computing Sience - ASIAN’97, volume 1345 ofLecture
Notes in Computer Science, pages 181–196. Springer-Verlag, 1997.

[9] R. Milner. Communication and Concurrency.Series in Computer Science. Prentice
Hall, 1989.

