Chapter 1

THE DRESDEN OCL TOOLKIT AND ITS ROLE IN
INFORMATION SYSTEMS DEVELOPMENT

Birgit Demuth

Dresden University of Technology, Department of Computer Science,
D-01062 Dresden, Germany

Birgit. Demuth@inf.tu-dresden.de

Abstract The Object Constraint Language (OCL) is a part of the Unified Modeling Lan-
guage (UML), the OMG standard in modeling of object-oriented applications. It
is a formal language for defining constraints on UML models, especially in class
and statechart diagrams. OCL does not require a mathematical background and
can be understood by most software developers. The language is very powerful
because it can be used together with class and other UML diagrams at different
model layers. By the specification of OCL constraints at the metamodel layer, itis
for example possible to ensure the consistency of conceptual modeling artifacts.
In the practice of database and software engineering, however, OCL is not yet
known because most UML tools do not support OCL. Therefore, at the Dresden
University of Technology, we developed a toolkit handling OCL constraints. We
also gained with our toolkit initial experience in using OCL in real projects. In
this paper we outline the structure of the Dresden OCL Toolkit and how to apply
it in information systems development.

Keywords:  OCL, UML, database engineering, software engineering, business rules, model-
ing guidelines, information systems

1. Introduction

The Object Constraint Language (OCL) is a part of the Unified Modeling
Language (UML), the OMG standard in modeling of object-oriented applica-
tions 18, 2. It is a formal language for defining constraints in different UML
models of any domains. The language is very powerful because it can be used at
different modeling layers. For example, at the model layer a business modeler
can use OCL to specify business constraints, and at the metamodeling OCL



2

has shown its helpfulness to define the UML semantics much clearer and un-
ambiguous than only by definition with graphical annotations of UML. Over
the last years, the “graphical core” of UML has been accepted by the bigger
part of software developers as a visualization and documentation tool in anal-
ysis and design. An evidence for it is the availibility of a good deal more of
hundred UML tools (see UML tools pages such as 21, 22). However, the for-
mal language OCL has predominantly remained an academic subject 14. We
think that one reason for this situation is the absence of adequate tools. As
opposed to UML tools we know only one dozen of academic and commer-
cial UML/OCL tools. Furthermore, the formal language OCL incites fear in
the users to learn and apply such a language. However, we are sure that even
for those with no experience in formal methods OCL is learnable and adds
precision and detail to software models. For a better understanding a simple
example should be given. Suppose there is a (sub)model of a hotel reservation
system with the class@:stination, Region andHotel (see fig. 1.1). A
business rule specified in OCL is that the region in which a destination X is
located fegionOfDestination) must be the same like the region of all hotels
(myRegion) that are located in destination X. The respective OCL expression
is given below:

context Destination inv iRegion:
hotelsInDestination—->
forAll (myRegion = self.regionOfDestination)

The most comprehensive source for learning OCL and and its powerful features
for UML-based modeling in practice are the books from Jos Warmer and Anneke
Kleppe 12, 13.

In Section 2 we outline the modular structure and openness of the Dres-
den OCL Toolkit including its possibilities for the integration into other tools.
Related tools are listed in section 3 together with a short comparison to the
Dresden OCL Toolkit. Finally, we give an overview for OCL use cases in the
information system (IS) development and show by a few examples how the
Dresden OCL Toolkit can be applied for different purposes.

2. The open source project Dresden OCL Toolkit
2.1 Objectives

In this section we will briefly introduce a software platform for OCL tool
support which is designed for openness and modularity, and which is provided
as open source 24. The goal of this platformis, for one thing, to enable practical
experiments with various variants of OCL tool support, and then, to provide an



3

OCL library (under the LGPL license 23) for UML tool builders which want to
support UML by the specification and evaluation of OCL constraints.

The development of the Dresden OCL Toolkit has been driven by the fol-
lowing objectives 8:

= The architecture shall enable interworking with various UML tools and
repositories, regarding the access to model information for typechecking.
Asimple andflexible interface is required which supports the construction
of stand-alone experimental tools (working e.g. on a XKk repre-
sentation of the model) as well as a tight integration into UML tools, for
more user-friendly versions of tools.

= Syntax analysis and type checking of OCL constraints is the functional-
ity which is common to all tool variants. So a simple interface to this
functionality is needed in order to enable integration into various OCL
tools.

= The tool platform has to provide a simple and easily reusable interface
for accessing the actual constraint information (the abstract syntax of the
constraints) from different kinds of tools.

m Different tools need different levels of abstraction in accessing the rep-
resentation of OCL constraints. For example, a tool generating pro-
gramming language code may need to expand automatically bdlct
operations into the generigerate mechanism. In contrast, a tool gen-
erating SQL integrity conditions may need to keepdbkect operations
since they can be mapped easily and directly to SQL 4.

The Dresden OCL Toolkit is developed in Java because of the high popu-
larity of Java as an implementation language in the Open Source Community
and therewith the availability of useful tools like parser generators and the pos-
sibility to integrate the OCL toolkit with free UML tools such as ArgoUML.

Its compliance to the above listed requirements has been proven by its multiple
reuse both in academic projects (see e.g. the open source tool ArgoUML 26
and the KeY project 28) and commercial tools (e.g. Poseidon 27).

2.2 Structure

The Dresden OCL Toolkit provides by a modular architecture the following
tools:

OCLCore: The base tool of the OCL toolkit consists of different modules:

s The OCLParser transforms the input OCL expression into an ab-
stract syntax tree 8. The abstract syntax tree classes can be seen as
a representation of a static UML metamodel.



m The OCLEditor is a comfortable editor which includes besides
editing of constraints features like a toolbar and adequate error mes-
sages. The according user interface is designed to integrate the OCL
editor not into a specific UML tool, but into various environments.
The screenshot in fig. 1.1 gives an impression of the OCL editor
integrated into Together.

= The OCLTypeChecker checks the semantic correctness with ref-
erence to the OCL type system and offers type information about
the associated UML model towards other modules. The model in-
formation has to be extracted from the toolkit's environment. For
this purpose a small external interface (calltielFacade) is
provided 8.

s The OCLNormaliser transforms the abstract syntax tree into a
normal formof OCL terms, such that all terms can be mapped into
a simpler subset of the OCL language. That way it can be avoided
that every tool using OCLCore has to implement the execution of
any OCL expression completely.

OCL2Java: This tool transforms the normalised syntax tree into Java Code.
It uses a class library which offers Java representations for the predefined
OCL types.

OClLlInjector4Java: In order to make the generated Java code useful, a sepa-
rate tool (OCLInjector4Java) is required which takes this code and inserts
it into the application program. This code instrumentation is done by the
generation of wrapper methods for all methods that have to be checked in
compliance with specified OCL constraints during execution. The used
technique including code cleaning is described in 25. The OCLInjec-
tor4Java has been integrated for example into ArgoUML.

OCL2SQL: The SQL code generator 5 generates a SQL check constraint,
assertion or trigger for an OCL invariant based (like in the case of Java
code generation) on the parsed, typechecked and normalised OCL ex-
pression. OCL2SQL can be used and adapted for different relational
database systems and different object-to-table mappings. To make this
generator work, we need some additional information about the under-
lying object-to-table mapping. Since there is a great number of different
object-to-table mappings 1, an interface is provided for the integration of
various strategies.

OClLlInterpreter:  Afirsttool developed outside of the Dresden University of
Technology is an OCL interpreter that allows the stand-alone checking



Figure 1.1. OCLCore integrated into Together

of OCL constraints against objects. The OCLInterpreter is also designed
based on the normalised abstract syntax tree.

OCL20: Currently we reengineer the Dresden OCL Toolkit according to the
new requirements of the revised and approved specification of OCL
("OCL 2.0" 17). The OCL20 module is a prototype of a metamodel-
based OCL compiler consisting of a MOF 16 repository implementation
and a code generator 9. The OCL 2.0 parser is still under development.
The research issue is to which extent a parser can be automatically gen-
erated from the provided specification.

2.3 Integration of OCL into a UML tool

An important requirement of tools supporting OCL is their cooperation with
UML tools. The specification of OCL constraints without any model makes no
sense. In our approach tNedelFacade has been implemented in different
ways. An OCL tool can béightly integrated into a UML tool as an add-in.
Then the model interface must be implemented by an integration component
accessing the UML tool’s repository. Examples for this technique is the inte-
gration of our toolkit into Together (see fig. 1.1) Together 36, ArgoUML 26,
Poseidon 27, and Rational Rose 37. A kindamseintegration is the use of



6

XMl files 20 for static UML model information. The Dresden OCL toolkit
already provides the necessary component to use this technology.

3. Related work

As already noted above, OCL is still an academic subject. There is little
knowledge about using OCL in real projects. However with the matter of fact
that OCL has become a solid and standardized part of UML 18, 19 more UML
tools support the specification and evaluation of constraints with OCL. Most of
existing OCL tools implement one of the 1.x versions and dialects, respectively.
First tools that promise full support of OCL 2.0 are OCLE 29 and Octopus 30.

In the following we give a short overview about the most common tools that
do not reuse the Dresden OCL Toolkit:

OCLE 29: The OCL Environment (OCLE) is a stand-alone tool that can load,
edit and save UML models as XMl files. It was developed at the BABES-
BOLYAI University (Romania) and can be downloaded for free.

Octopus 30: The Octopus tool from Klasse Objecten exclusively runs as an
Eclipse plugin 38 and is distributed under a public license. It is able
to check the syntax and semantic correctness of OCL expressions. The
current problem using Octopus is the missing model export/import by
XMI. Octopus provides proprietary solutions for using it together with
Rational Rose and Poseidon.

Bold for Delphi 34: Bold for Delphiis a commercial product for model based
development including a runtime OCL interpreter. It uses OCL for dif-
ferent purposes, e.g. to perform queries in the object layer and to define
derived attributes.

MagicDraw UML 33: MagicDraw UML is a commercial UML tool that
suppports OCL. OCL can be used in an orthogonal way for the specifi-
cation of invariants, guards, pre and post conditions and as a navigation
language. However, the user can only specify and parse constraints. The
semantic (type) correctness is not checked.

UMLAUT 35: UMLAUT (Unified Modeling Language All pUrposes Trans-
former) is a generic model transformation tool that allows one to create
transformations for any model for which there is a metamodel. It sup-
ports the design-by-contract technique by allowing the designer to spec-
ify constraints on models with OCL. The constraints can be parsed and
transformed into Eiffel code.

USE 32: USE (UML-based Specification Environment) is a research proto-
type that supports OCL constraint specification as well as evaluation for



7

simulated objects. The tool is appropriate for checking the syntactic
and semantic correctness of specifications in the research field (e.g. of
well-formedness rules of the UML metamodel). The difficulty for the
practical use is that there is no XMI model import/export. The UML
models have to be specified in a proprietary textual format and objects
have to be manually created.

KMF 31: The Kent Modeling Framework (KMF) includes an OCL Library
that is still under development.

To sum up, we can state that most of the OCL tools are still at the prototype
stage because they either are developed for specialised research studies or they
only check the syntax and semantics (sometimes only the syntax) of constraints.
In our view the Dresden OCL Toolkit is the only OCL implementation that has
a modular architecture with cleanly defined interfaces for the integration into
Java-based tools so that OCL can be used for different purposes. And it is by
the distribution under an open source license available for multiple reuse.

4, OCL use cases in the IS development
4.1 Overview

The Object Management Group (OMG) understands information manage-
ment as the design, implementation and mangement of large bodies of more
or less structured information 16. So from a technical point of view, infor-
mation system development matters the applicaticsoéiivare anddatabase
development methods And basically, this can be done ificaaward orreverse
engineeringmanner depending on whether the information system has to be de-
veloped from scratch or an existing information system has to be reengineered.
A further dimension is the choice of the model layer in terms of the MOF Four
Layer Metadata Architecture 16. In our discussionrietamodel(M2), the
model (M1) andinformation (MO) layer should be considered. Inside this
frame many OCL use cases are imaginable.

The intention of the first OMG version of OCL 18, 12 was to define a lan-
guage for a clear and unambiguous specification of things that often cannot
be expressed in a diagram (see our OCL example above). In the context of
information systems such things particularly Atssiness ruleshat represent
business knowledge and govern how the business processes should be executed
6. Their practical importance is consideredin 7. In 1994 when OCL had not yet
been published, the authors point out that a specification language is needed as
a supplement to graphical representation because diagrams for business rules
for IS of realistic size become too complex and cumbersome. Now we see into
OCL as an OMG standard that it fills up this gap. Table 1.1 summarizes what
role OCL can play for the treatment of business rules in the MOF layer archi-



Table 1.1. Using OCL in the IS development.

MOF layer OCL constraints in IS
M2 (metamodel) Specification of modeling guidelines
M1 (model) Specification of business rules

Evaluation of modeling guidelines on business models
Checking consistency of business models

MO (information) Evaluation of business rules on business objects

tecture. In the context of a specific IS domain it is often requested to establish
domain, project or company specific modeling guidelines that can be specified
with OCL at the metamodel layer and enforced at the model layer by evaluation
of the specified OCL constraints 11. In 3, it is shown by two practical sample
business models that it is even (still) necessary to check their UML model con-
sistency by an OCL todl Given a (with modeling rules) enriched metamodel

or taking the “pure” UML meta model, business rules can be specified by OCL
invariants or pre and post conditions at the model layer. Then the business rules
have to be evaluated at the information layer represented by the real business
objects.

The understanding of OCL 2.0 is that far more additional information should
be included in a model than constraints alone 13. In UML2 (whose part OCL
2.0is) the user can write any expressions on the elements in the diagram. Every
OCL expression represents a value or object. Therefore, the use cases of OCL
have grown considerably as opposed to the first versions of the language 13:

» definition of derived attributes and associations

» specification of an initial value of an attribute or association role
= specification of query operations

m definition of derived classes

= specification of dynamic and optional multiplicity

That means, OCL is &onstraint and query language at the same time.
Database people could argue that this approach is very similar to SQL 10.
However OCL is designed for object-oriented modeling, and UML/OCL can
be orthogonally and in a standardized way used for all software models, all
the same if there are parts that are implemented by a relational data base.
At this point, it should be emphasized that the question, how to implement a
UML/OCL business model, is an implementation issue. Therefore we need



Table 1.2. Case studies with the Dresden OCL Toolkit.

Java applications Relational Databases
Forward nxCom till now only
Engineering (JEFF) academic studies 5
Reverse experiments with source/byte code Entre2Mers
Engineering and runtime analysis 25

code generators for different languages, basically both for programming and
database languages.

4.2 Examples

The case studies using the Dresden OCL Toolkit that are listed below show
how the Dresden OCL Toolkit helps to provide the required flexibility. Accord-
ing the above outlined frame of OCL use cases, the examples can be classified
how it is presented in table 1.2.

nxCom is a commercial product providing a business directory service. Dur-
ing the development of the nxCom business logic module the OCL2Java
and the OCLInjector4Java tool were tested 25. The nxCom module
was instrumented with Java code that checks invariants (mainly business
rules) against test data. So many constraint violations could be detected.

Entre2Mers was a project of the Electricite de France (EDF). In a EDF data
warehouse, many historical databases should be reconstituted. This is-
sue raises database quality problems of different categories like different
name and addresses of the same person in different databases. In order to
gain more confidence in information contained in relational databases, a
database quality analysis tool was developed. After experiments with an
own language, OCL was used to express the constraints. In order to im-
plement it, the OCL2SQL module was integrated into the EDF database
quality tool.

JEFF is a framework for building business applications developed by sd&m.
In 15 OCL was used to specify constraints (both invariants and pre and
post conditions) on JEFF classes and components. Although the com-
plexity of such specifications can grow very rapidly, it is possible that a
(right) use of OCL can increase the quality of code and the performance
of the software development process. Note that the JEFF specification is
based on OCL 2.0 and thus could still not be checked with Dresden OCL
Toolkit modules.



10

5. Conclusions and Future work

We presented a modular architecture for the integration of various OCL tools
into different UML environments. In the light of the open source distribution
of the Dresden OCL Toolkit, this flexibility can be increased by its adapta-
tion and advancement for special purposes. The Dresden OCL Toolkit has
already demonstrated its usefulness in 46 (known) projects. Furthermore, we
could report about first own experiments with our OCL tools. We found use
cases in software and database development as well as in forward and reverse
engineering scenarios at different model layers.

Our plans for future work include the further development of the Dresden
OCL Toolkit, and then, the practical use of our toolkit in case studies to gain
further experience with UML/OCL-based modeling. In particular, the next step
is the complete implementation of a metamodel-based compiler with full com-
pliance to OCL 2.0. Such a tool support will allow us to experiment with OCL
in the Model Driven Architecture (MDA) framework 13. This particularly in-
cludes model transformations and code generation techniques. In the context of
information systems, we see a high potential of OCL in data integration scenar-
ios. On the one hand, integrity constraints can be used to extract information of
incomplete sources, and on the other hand, constraints can detect inconsisten-
cies of the whole system (see the Entr2Mers project). Such a scenario is also
driven by the need to integrate data sources on the web. So OCL could provide
potential for the development of the semantic web.

Acknowledgments

| would like to thank all people who have contributed over several years
to the Dresden OCL Toolkit project. Heinrich Hussmann initiated the project
in 1999. His idea was to bridge the gap between formal methods in software
engineering and the practice of software development. In the following years
many students accounted both with research ideas and implementations to the
Dresden OCL Toolkit and made their modules available to the open source
community. Particularly, Frank Finger, Ralf Wiebicke, Steffen Zschaler, Sten
Loecher, Stefan Ocke and Christian Nill substantially contributed to the OCL
tools existing today.



REFERENCES 11

Notes

1. The XML Metadata Interchange Format (XMI) is an OMG standard for a Stream-based Model
Interchange format. The main purpose of XMl is to enable easy interchange of data and metadata between
UML modeling tools and between tools and metadata repositories in distributed heterogeneous environments.

2. For the future we hope that UML tools do it in a comprehensive manner by themselves.

References

[1] Blaha, M., Premerlani, W.: Object-Oriented Modeling and Design for
Database Applications. Prentice Hall, 1998

[2] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language
User Guide. Addison-Wesley, 1999

[3] Chiorean, D. et al: Ensuring UML models consistency using the OCL En-
vironment. in; [14]

[4] Demuth, B., Hussmann, H.: Using OCL Constraints for Relational Database
Design. in: UML'99 The Unified Modeling Language, Second Int. Confer-
ence Fort Collins, CO, USA, October 1999, Springer, 1999

[5] Demuth, B., Hussmann, H., Loecher, St.: OCL as a Specification Language
for Business Rules in Database Applications. in: Fourth International Con-
ference on the Unified Modeling Language (UML 2001), Toronto, Canada,
October 1-5, 2001

[6] Eriksson, H.-E., Penker, M. Business Modeling with UML. Business Pat-
terns at Work, John Wiley & Sons, Inc., New York, 2000

[7] Herbst, H. et al, The specification of business rules: a comparison of se-
lected methodologies. in: Methods and Associated Tools for the Information
System Life Cycle. Elsevier, Amsterdam, 1994

[8] Hussmann, H., Demuth, B., Finger, F.: Modular Architecture for a Toolset
Supporting OCL. in: UML'2000 - The Unified Modeling Language. Ad-
vancing the Standard, Third Int. Conference York, UK, October 2000,
Springer, 2000

[9] Loecher, St., Ocke, St.: A Metamodel-Based OCL-Compiler for UML and
MOF. in: [14]

[10] Melton, J., Simon, A.: Understanding the New SQL: A Complete Guide.
Morgan Kaufmann, 1993

[11] Ritter, N., Steiert, H.-P.: Enforcing Modeling Guidelines in an ORDBMS-
based UML-Repository. in: Challenges of Information Technology Man-
agement in the 21st Century. Proc. International Resource Management
Association Conference IRMA2000, Anchorage, Alaska, Mai 2000

[12] Warmer, J., Kleppe, A.: The Object Constraint Language. Precise Model-
ing with UML. Addison-Wesley, 1999



12

[13] Warmer, J., Kleppe, A.: The Object Constraint Language Second Edition.
Getting Your Models Ready For MDA. Addison-Wesley, 2003

[14] Workshop OCL 2.0 - Industry standard or scientific playground?, Sixth
International Conference on the Unified Modelling Language - the Lan-
guage and its applications (UML 2003), October 21, 2003, San Francisco,
i11www.ilkd.uni-karlsruhe.de/ baar/oclworkshopUmIQ3/

[15] Zschaler, St.: Evaluation der Praxistauglichkeit von OCL-Spezifikationen.
master thesis, Dresden University of Technology, 2002

[16] OMG MOF specification,
www.omg.org/technology/documents/formal/mof.htm

[17] OCL 2.0 Submission, www.klasse.nl/ocl/ocl-subm.html

[18] OMG UML v. 1.5 specification,
www.omg.org/technology/documents/formal/uml.htm

[19] OMG UML2 Working Documents,
www.omg.org/technology/documents/modelisigeccatalog.htm

[20] OMG, XML Metadata Interchange (XMI). www.omg.org
[21] Mario Jeckle - UML Tools, www.jeckle.de/umltools.htm

[22] Obijects by Design list of UML tools,
www.objectsbydesign.com/tools/umltodigCompany.html

[23] GNU Library General Public License, www.gnu.org/copyleft/lgpl.html
[24] Dresden OCL Toolkit, dresden-ocl.sourceforge.net/

[25] Wiebicke, R., Utility Support for Checking OCL Business Rules in Java
Programs. master thesis, Dresden University of Technology, 2000,
dresden-ocl.sourceforge.net/

[26] ArgoUML tool, argouml.tigris.org/

[27] Poseidon tool, www.gentleware.com/

[28] The KeY Project, www.key-project.org/

[29] OCLE tool, Ici.cs.ubbcluj.ro/ocle/

[30] Octopus tool, www.klasse.nl/ocl/octopus-intro.html

[31] Object Constraint Language Library, www.cs.kent.ac.uk/projects/ocl/
[32] USE tool, dustbin.informatik.uni-bremen.de/projects/USE/

[33] Magic Draw UML tool, www.magicdraw.com

[34] Bold for Delphi, info.borland.com/techpubs/delphi/boldfordelphi/
[35] UMLAUT tool, www.irisa.fr/[pampa/UMLAUT/

[36] Together tool, www.borland.com/together/

[37] Rational software, www-306.ibm.com/software/rational/

[38] Eclipse platform, www.eclipse.org



