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Abstract. Description logics are a family of knowledge representaf@malisms that are de-
scended from semantic networks and frames via the systero&e. During the last decade,
it has been shown that the important reasoning problems glibbsumption and satisfiability)
in a great variety of description logics can be decided usibpau-like algorithms. This is not
very surprising since description logics have turned oligalosely related to propositional
modal logics and logics of programs (such as propositiogaachic logic), for which tableau
procedures have been quite successful.

Nevertheless, due to different underlying intuitions ampblecations, most description
logics differ significantly from run-of-the-mill modal argtogram logics. Consequently, the
research on tableau algorithms in description logics lektw techniques and results, which
are, however, also of interest for modal logicians. In thicke, we will focus on three features
that play an important rle in description logics (numbestrictions, terminological axioms,
and role constructors), and show how they can be taken imtmuat by tableau algorithms.
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1. Introduction

Description logics (DLs) are a family of knowledge reprdsdion languages
which can be used to represent the terminological knowlexfgen appli-
cation domain in a structured and formally well-understoay. The name
description logicss motivated by the fact that, on the one hand, the important
notions of the domain are described bgncept descriptionsi.e., expres-
sions that are built from atomic concepts (unary predigaad atomic roles
(binary predicates) using the concept and role constrsigtoovided by the
particular DL. On the other hand, DLs differ from their predssors, such
as semantic networks and frames (Quillian, 1967; Minskg1)9in that they
are equipped with a formalpgic-based semantics, which can, e.g., be given
by a translation into first-order predicate logic.

Knowledge representation systems based on descriptidgosI@QL sys-
tems) provide their users with various inference capabdithat deduce im-
plicit knowledge from the explicitly represented knowledd-or instance,
thesubsumptioralgorithm allows one to determine subconcept-supercancep
relationships:C' is subsumed byD iff all instances ofC' are also instances

* This is an extended version of a paper published in the pdicgs of Tableaux 2000
(Baader and Sattler, 2000).

p;<‘ © 2001Kluwer Academic Publishers. Printed in the Netherlands.

studi a--final -conplete.tex; 14/08/2001; 13:30; p.1



2 Franz Baader and Ulrike Sattler

of D, i.e., the first description is always interpreted as a dubistne second
description. In order to ensure a reasonable and predeckatiaviour of a DL
system, the subsumption problem for the DL employed by ts&esy should
at least be decidable, and preferably of low complexity. $&guently, the
expressive power of the DL in question must be restrictechim@propriate
way. If the imposed restrictions are too severe, howeven the important
notions of the application domain can no longer be expredsedstigating
this trade-off between the expressivity of DLs and the caxip} of their

inference problems has been one of the most important igsidsresearch.
Roughly, the research related to this issue can be classifiethe following

four phases.

Phase 1: First system implementatioiife original KL-ONE system (Brach-
man and Schmolze, 1985) as well as its early successor sygsroh as
BAck (Peltason, 1991), K-B~ (Mays et al., 1991), anddom (MacGregor,
1991)) employ so-called structural subsumption algorghwmhich first nor-
malise the concept descriptions, and then recursively esentfhe syntactic
structure of the normalised descriptions (see, e.g., (N&B80a) for the de-
scription of such an algorithm). These algorithms are uguadry efficient
(polynomial), but they have the disadvantage that they amegptete only for
very inexpressive DLs, i.e., for more expressive DLs theynod detect all
the existing subsumption relationships (though this faas$ wot necessarily
known to the designers of the early systems).

Phase 2: First complexity and undecidability resulBartially in parallel
with the first phase, the first formal investigations of thbsumption prob-
lem in DLs were carried out. It turned out that (under the agstion P #
NP) already quite inexpressive DLs cannot have polynomiaksuoiption
algorithms (Brachman and Levesque, 1984; Nebel, 1990k tfzat the DL
used by the K-ONE system even has an undecidable subsumption problem
(Schmidt-Schauf3, 1989). In particular, these results sdae incomplete-
ness of the (polynomial) structural subsumption algorgh@ne reaction to
these results (e.g., by the designers @fcB and Loom) was to call the
incompleteness of the subsumption algorithm a featureerattan a bug of
a DL system. The designers of the £5sic system (Patel-Schneider et al.,
1991; Brachman, 1992) followed another approach: theyaliyehose a re-
stricted DL that still allowed for an (almdgtcomplete polynomial structural
subsumption algorithm (Borgida and Patel-Schneider, 1994

Phase 3. Tableau algorithms for expressive DLs and thorocgymplexity
analysis. For expressive DLs (in particular, DLs allowing for disjdion

and/or negation), for which the structural approach dodslesd to com-
plete subsumption algorithms, tableau algorithms haveetiiout to be quite

! The incompleteness is caused by individuals introducedheyohe-of constructor;
however, the algorithm is complete w.r.t. a non-standandesgics.
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Tableau Algorithms for Description Logics 3

useful: they are complete and often of optimal (worst-caseplexity. The
first such algorithm was proposed by Schmidt-Schaul3 and K&nm(@R91)
for a DL that they calledd LC (for “attributive concept description language
with complements™¥. It quickly turned out that this approach for deciding
subsumption can be extended to various other DLs (Holluedat., 1990;
Hollunder and Baader, 1991; Baader and Hanschke, 1991;eBad891;
Hanschke, 1992) and also to other inference problems sutfeasstance
problem (Hollunder, 1990). Early on, DL researchers sthttecall the algo-
rithms obtained this way “tableau-based algorithms” sithey observed that
the original algorithm by Schmidt-Schaul? and Smolka AgC, as well as
subsequent algorithms for more expressive DLs, could be agspecialisa-
tions of the tableau calculus for first-order predicate dqgine main problem
to solve was to find a specialisation that always terminated, thus yields
a decision procedure). After Schild (1991) showed tH#lC is a syntactic
variant of multi-modak, it turned out that the algorithm by Schmidt-Schaul3
and Smolka was actually a re-invention of the known tabldgarghm for

K.

At the same time, the (worst-case) complexity of various Dhsartic-
ular also DLs that are not propositionally closed) was itigased in detail
(Donini et al., 1991a; Donini et al., 1991b; Donini et al. 92%.

The first DL systems employing tableau algorithmsr(K (Baader and
Hollunder, 1991) and RAcK (Bresciani et al., 1995)) demonstrated that (in
spite of their high worst-case complexity) these algorghead to acceptable
behaviour in practice (Baader et al., 1994). Highly optedisystems such as
FaCT (Horrocks, 1998b), DLP (Patel-Schneider, 1999), aaceRHaarslev
and Moller, 1999) have an even better behaviour, also fachmark prob-
lems in modal logics (Horrocks, 1998a; Horrocks and Patlr@ider, 1999;
Haarslev and Maoller, 2000a; Horrocks, 2000; Patel-Satere2000).

Phase 4: Algorithms and efficient systems for very expredsivs. Moti-
vated by applications (e.g., in the database area), DL mefse@ started to
investigate DLs whose expressive power goes far beyond becb ALC
(e.g., DLs that do not have the finite model property). Fiestidability and
complexity results for such DLs could be obtained from thar@xtion be-
tween propositional dynamic logic (PDL) and DLs (Schild91® The idea
of this approach, which was perfected by De Giacomo and Lremzeés to
translate the DL in question into PDL. If the translation @ymomial and
preserves satisfiability, then the known EXPTIME-algarighfor PDL can be
employed to decide subsumption in exponential time. Thahghapproach
has produced very strong complexity results (De Giacomo laattzerini,

2 Actually, at that time the authors were not aware of the clam@ection between their
rule-based algorithm working on constraint systems anteéabprocedures for modal and
first-order predicate logics.
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4 Franz Baader and Ulrike Sattler

1994; De Giacomo, 1995; De Giacomo and Lenzerini, 1996)rited out
to be less satisfactory from a practical point of view. Intfdst tests in a
database application (Horrocks et al., 1999) showed tleaPL formulae
obtained by the translation technique could not be handjeexisting effi-
cient implementations of satisfiability algorithms for PQRatel-Schneider,
1999). To overcome this problem, DL researchers have dtadedesign
“practical” tableau algorithms forery expressive DLs (Horrocks and Sattler,
1999; Horrocks et al., 1999).

The purpose of this article is to give an impression of thelwor tableau
algorithms done in the DL community, with an emphasis onuiest that,
though they may also occur in modal logics, are of speciat@st to descrip-
tion logics. After introducing some basic notions of destioin logics in Sec-
tion 2, we will describe a tableau algorithm fdriCC in Section 3. Although,
from the modal logic point of view, this is just the well-knovalgorithm for
multi-modalK, this section will introduce the notations and techniqussadu
in description logics, and thus set the stage for extensmnsore interesting
DLs. In the subsequent three sections we will show how the ladgorithm
can be extended to one that treats number restrictionsirtelogical axioms,
and role constructors of different expressiveness, resec

An overview of reasoning techniques in description logichwnore em-
phasis on complexity results and on results for less expee$dls can be
found in (Donini et al., 1996). Reasoning in very expres§e with an em-
phasis on results obtained via the translation approachkasad in (Calvanese
etal., 2001).

2. Description logics: basic definitions

The main expressive means of description logics are sedabncept de-
scriptions, which describe sets of individuals or obje€srmally, concept
descriptionsare inductively defined with the help of a setooincept construc-
tors, starting with a seivV~ of concept nameand a sefVy of role namesThe
available constructors determine the expressive powdreobi in question.
In the next two sections, we consider concept descriptiani fiom the
constructors shown in Table |, whe€¢& D stand for concept descriptions,
for a role name, and for a nonnegative integer. In the description logi€C,
concept descriptions are formed using the constructoratizeg conjunction,
disjunction, value restriction, and existential restant The description logic
ALCQ additionally provides us with (qualified) at-least and aisthumber
restrictions

3 In contrast to PDL, these DLs allow for transitive roles, bat for the transitive closure
operator.
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Tableau Algorithms for Description Logics 5

Table I. Syntax and semantics of concept descriptions.

| Constructor| Syntax | Semantics |
negation -C AT\ C7
conjunction| C 11 D TN DZ
disjunction | C U D CTUD”
existential 7 _ - .
restriction | ¢ {fre A" [3y:(z,y) ert AyeCT}
value . Z -

icti : A : (z,
restriction vr¢ {z e |Vy:(z,y)ers —yeC}
at-least 7 . . -

- >nr. A A >
restriction | Zr-O){z € AT [#{y € A% [ (z,y) €17 Ay € C7} > n}
at-most 7 . " .
restriction | (SP-O)|{z € A% | #H{y € A" | (z,y) € 1" Ay € C7} <nj

The semantics of concept descriptions is defined in terms aftarpre-
tationZ = (AZ,.7). The domainA” of 7 is a non-empty set of individuals
and the interpretation functiof maps each concept nanfec N¢ to a set
PT C AT and each role name € Ny to a binary relation”” C A x AT,
The extension of” to arbitrary concept descriptions is inductively defined,
as shown in the third column of Table I.

From the modal logic point of view, roles are simply names doces-
sibility relations, and existential (value) restrictioosrrespond to diamonds
(boxes) indexed by the respective accessibility relafidius, anyALC de-
scription can be translated into a multi-modélformula and vice versa.
For example, the descriptio® M 34r.P M VYr.—P corresponds to the for-
mulap A (r)p A [r]—p, wherep is an atomic proposition corresponding to
the concept name. As pointed out by Schild (1991), there is an obvious
correspondence between the semanticd 6€ and the Kripke semantics for
multi-modal K, which satisfiesi € C7 iff the world d satisfies the formula
¢¢ corresponding ta@ in the Kripke structure corresponding To Number
restrictions also have a corresponding construct in maaigics, so-called
graded modalities (Van der Hoek and De Rijke, 1995), whi&) however,
not as well-investigated as the modal lo#ic

One of the most important inference services of DL systerasnisputing
the subsumption hierarchy of a given finite set of conceptmgsons.

DEFINITION 1. The concept descriptio subsumeshe concept descrip-
tion C (written C' C D) iff C* C D? for all interpretationsZ; C is satisfiable
iff there exists an interpretatio such thatC? # (; and C and D are
equivalentff C C D andD C C.
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6 Franz Baader and Ulrike Sattler

In the presence of negation, subsumption can obviously thecesl to
satisfiability: C T D iff C 1 —D is unsatisfiablé. Vice versa, satisfiability
can be reduced to subsumptiafi:is satisfiable iff not” C P 1 —P, where
P is an arbitrary concept name.

Given concept descriptions that define the important netiminran appli-
cation domain, one can then describe a concrete situatitrtie help of the
assertional formalism of description logics.

DEFINITION 2. Let Ny be a set ofindividual namesAnABox is a finite set
of assertions of the for®(a) (concept assertigror r(a, b) (role assertio)
where C' is a concept description; a role name, andz, b are individual
names.

An interpretationZ, which additionally assigns elemeni$ € A7 to
individual namesz, is amodelof an ABoxA iff aZ € C% ((af,b%) € rf)
holds for all assertiong’(a) (r(a, b)) in A.

The AboxA is consistentff it has a model. The individual is aninstance
of the descriptiorC w.r.t. A iff a* € C* holds for all model< of A.

Satisfiability (and thus also subsumption) of concept desans as well as
the instance problem can be reduced to the consistencygondiolr ABoxes:
(i) C is satisfiable iff the ABoX C(a)} for somea € Nj is consistent; and
(i) ais aninstance of’ w.r.t. Aiff AU {-C(a)} is inconsistent.

Usually, one imposes thenique name assumptioom ABoxes, i.e., re-
quires the mapping from individual names to elementdbéfto be injective.
Here, we dispense with this requirement since it has no teftec ALC,
and for DLs with number restrictions we will explicitly idduce inequality
assertions, which can be used to express the unique nanmEssU

3. Atableau algorithm for ALC

Given anALC-concept descriptiody, the tableau algorithm for satisfiabil-
ity tries to construct a finite interpretatidn that satisfie<, i.e., contains
an elementzy such thatry € CZ. Before we can describe the algorithm
more formally, we need to introduce an appropriate datecstra in which
to represent (partial descriptions of) finite interpredati. The original pa-
per by Schmidt-Schauf3 and Smolka (1991), and also many pé#pars on
tableau algorithms for DLs, introduce the new notion of astrint system
for this purpose. However, if we look at the information tmatist be ex-
pressed (namely, the elements of the interpretation, theeq descriptions

4 This was the reason why Schmidt-SchauR and Smolka (199bdinted a DL with
negation in the first place.
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Tableau Algorithms for Description Logics 7

they belong to, and their role relationships), we see thabXABssertions are
sufficient for this purpose.

It will be convenient to assume that all concept descrifgtiare innegation
normal form(NNF), i.e., that negation occurs only directly in front @ircept
names. Using de Morgan'’s rules and the usual rules for dfiestiany4LC-
concept description can be transformed (in linear time) i equivalent
description in NNF.

The —n-rule
Condition: A containg(C; M Cs)(z), but not bothC (x) andCs ().
Action: A" := AU {C(x),Ca(x)}.

The —-rule
Condition: A containgC; U Cy)(x), but neithetC; (z) nor Cs ().
Action: A" := AU {C,(z)}, A" := AU {C:(x)}.

The —3-rule

Condition: A contains(3r.C)(z), but there is no individual namesuch that
C(z) andr(z, z) are in A.

Action: A" := AU{C(y),r(z,y)} wherey is an individual name not occurring
in A.

The —y-rule
Condition: A containgVr.C)(z) andr(z,y), but it does not contait'(y).
Action: A" := AU {C(y)}.

Figure 1. Transformation rules of the satisfiability algorithm tdi”C.

Let Cy be anALC-concept in NNF. In order to test satisfiability 6, the
algorithm starts with4, := {Cy(x¢)}, and applies consistency preserving
transformation rules (see Fig. 1) to this ABox. The transfation rule that
handles disjunction imondeterministicin the sense that a given ABOX is
transformed into two new ABoxes such that the original ABexdnsistent
iff one ofthe new ABoxes is so. For this reason we will consider finite e&
ABoxesS = {A, ..., A} instead of single ABoxes. Such a set@sistent
iff there is some, 1 < i < k, such that4; is consistent. A rule of Fig. 1 is
applied to a given finite set of ABox&sas follows: it takes an element of
S, and replaces it by one ABaA’ or by two ABoxesA’ and.A”.

DEFINITION 3. An ABoxA is called completeiff none of the transforma-
tion rules of Fig. 1 applies to it. The ABaxA contains aclashiff {P(x),
-P(z)} C A for some individual name and some concept nanfe. An
ABox is calledclosedif it contains a clash, an@penotherwise.
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8 Franz Baader and Ulrike Sattler

The satisfiability algorithm forALC works as follows. It starts with the
singleton set of ABoxe${Cy(z¢)}}, and applies the rules of Fig. 1 (in arbi-
trary order) until no more rules apply. It answers “satistilif the setS of
ABoxes obtained this way contains an open ABox, and “urfsaiie” other-
wise. Correctness of this algorithm is an easy consequeiite dollowing
lemma.

LEMMA 1. LetC\, be anALC-concept in negation normal form.
1. There cannot be an infinite sequence of rule applications

{Co(z0)}} = 81 — So — -+ .

2. Assume thaf$’ is obtained from the finite set of ABox@dy application
of a transformation rule. The§ is consistent iffS’ is consistent.

3. Any closed ABOA is inconsistent.

4. Any complete and open ABgdiis consistent.

The first part of this lemma (termination) is an easy consege®f the facts
that (i) all concept assertions occurring in an ABox in ong¢haf setsS; are
of the form C'(x) were C' is a sub-description of’y; and (ii) if an ABox
in S; contains the role assertiot{x, y), then the maximal role depth (i.e.,
nesting of value and existential restrictions) of conceggatliptions occurring
in concept assertions faris strictly smaller than the maximal role depth of
concept descriptions occurring in concept assertiong: féx detailed proof
of termination (using an explicit mapping into a well-fowtordering) for
a set of rules extending the one of Fig. 1 can, e.g., be fourfBaader and
Hanschke, 1991).

The second and third part of the lemma are quite obvious, laadourth
part can be proved by defining tisanonical interpretatior? 4 of A:

1. The domaimZ4 of Z 4 consists of the individual names occurring.n
2. For all concept nameR we defineP?4 := {z | P(z) € A}.

3. For all role names we definer’4 := {(z,vy) | r(z,y) € A}.

By definition, Z 4 satisfies all the role assertions s By induction on the
structure of concept descriptions, it is easy to show thetisfies the concept
assertions as well, provided thdtis complete and open.

It is also easy to show that the canonical interpretationthasshape of
a finite tree whose depth is linearly bounded by the siz€'pfand whose
branching factor is bounded by the number of different exisal restric-
tions in Cy. ConsequentlyALC has thefinite tree model propertyi.e., any
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Tableau Algorithms for Description Logics 9

satisfiable concepf is satisfiable in a finite interpretatiah that has the
shape of a tree whose root belong<in

To sum up, we have seen that the transformation rules of Figddce
satisfiability of anALC-conceptC) (in NNF) to consistency of a finite sét
of complete ABoxes. In addition, consistencys€an be decided by looking
for obvious contradictions (clashes).

THEOREM 1. Itis decidable whether or not ad LC-concept is satisfiable.

3.1. COMPLEXITY ISSUES

The satisfiability algorithm fotd £LC presented above may need exponential
time and space. In fact, the size of the complete and open A8 thus

of the canonical interpretation) built by the algorithm nizgyexponential in
the size of the concept description. For example, consleedéscriptiong’,,

(n > 1) that are inductively defined as follows:

Cy = I ANIr.B,
Cpy1 = Ir ANIr.BNOVr.C,.

Obviously, the size of’,, grows linearly inn. However, given the input de-
scriptionC,, the satisfiability algorithm generates a complete and éyi&ox
whose canonical interpretation is a binary tree of deptlnd thus consists
of 2"+ — 1 individuals.

Nevertheless, the algorithm can be modified such that itsieaty poly-
nomial space. The main reason is that different branchesediée model to
be generated by the algorithm can be investigated separatel thus the tree
can be built and searched in a depth-first manner. Since thelegity class
NPSPACE coincides with PSPACE (Savitch, 1970), it is su#fitto describe
a nondeterministic algorithm using only polynomial space, for the non-
deterministic—-rule, we may simply assume that the algorithm chooses the
correct alternative. In principle, the modified algorithnonks as follows: it
starts with{C(z0) } and

1. applies the»n- and— | -rules as long as possible and checks for clashes;

2. generates all the necessary direct successarg uging the—s-rule and
exhaustively applies thery-rule to the corresponding role assertions;

3. successively handles the successors in the same way.
Since the successors of a given individual can be treatetatety, the algo-
rithm needs to store only one path of the tree model to be gedtrtogether

with the direct successors of the individuals on this path and the infomati
which of these successors must be investigated next. Siedength of the
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10 Franz Baader and Ulrike Sattler

path is linear in the size of the input descriptiéh, and the number of suc-
cessors is bounded by the number of different existentstiotions inCy,
the necessary information can obviously be stored withigmmomial space.

This shows that the satisfiability problem tdrCC-concept descriptions is
in PSPACE. PSPACE-hardness can be shown by a reduction fbdity of
Quantified Boolean Formulae (Schmidt-Schauf3 and Smoll&i,; 19alpern
and Moses, 1992).

THEOREM 2. Satisfiability ofALC-concept descriptions is PSPACE-comp-
lete.

3.2. THE CONSISTENCY PROBLEM FORALC-ABOXES

The satisfiability algorithm described above can also bel aselecide con-
sistency ofALC-ABoxes. Let A, be anALC-ABox such that (w.l.0.g.) all
concept descriptions i, are in NNF. To tesi4,, for consistency, we simply
apply the rules of Fig. 1 to the singleton setly}. It is easy to show that
Lemma 1 still holds. Indeed, the only point that needs aoiu#i considera-
tion is the first one (termination). Thus, the rules of Fig.iélg a decision
procedure for consistency of LC-ABoxes.

Since now the canonical interpretation obtained from a deteand open
ABox need no longer be of tree shape, the argument used totslabthe sat-
isfiability problem is in PSPACE cannot directly be appliedhe consistency
problem. In order to show that the consistency problem isSIPACE, one
can, however, proceed as follows: Irpee-completionstep, one applies the
transformation rules only told individuals (i.e., individuals present in the
original ABox A;). Subsequently, one can forget about the role assertions,
i.e., for each individual name in the pre-completed ABog, satisfiability al-
gorithm is applied to the conjunction of its concept aseeri(see (Hollunder,
1996) for details).

THEOREM 3. Consistency o LC-ABoxes is PSPACE-complete.
Since ALC is closed under negation, this also implies that the ingtanc
problem is PSPACE-complete iALC. The consistency and the instance

problem for DLs not allowing for negation has been inveggdan (Schaerf,
1993; Donini et al., 1994).

4. Number restrictions

Before treating the qualified number restrictions intraetliin Section 2, we
consider a restricted form of number restrictions, whiclthis form present
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Tableau Algorithms for Description Logics 11

in most DL systems. lmnqualifiednumber restrictions, the qualifying con-
cept is the top concept, whereT is an abbreviation foi® LI —P, i.e., a
concept that is always interpreted by the whole interpi@tatdomain. In-
stead of(>nr.T) and (<nr.T), we write unqualified number restrictions
simply as(>nr) and(<nr). The DL that extends1£C by unqualified num-
ber restrictions is denoted b LCN (Hollunder et al., 1990; Donini et al.,
1991a).

Obviously, ALCN - and ALC Q-concept descriptions can also be trans-
formed into NNF in linear time.

4.1. ATABLEAU ALGORITHM FOR ALCN

The main idea underlying the extension of the tableau alyorifor ALC
to ALCN is quite simple. At-least restrictions are treated by getieg the
required role successors as new individuals. At-mostiotistins that are cur-
rently violated are treated by (nondeterministically)ritfying some of the
role successors. To avoid running into a generate-identi€je, we introduce
explicit inequality assertions that prohibit the identtion of individuals that
were introduced to satisfy an at-least restriction.

Inequality assertionare of the formz # y for individual names:, y, with
the obvious semantics that an interpretatibsatisfiese # y iff 27 # y~.
These assertions are assumed to be symmetric, i.e., sagng+£ y belongs
to an ABoxA is the same as saying that* = belongs taA.

Thesatisfiability algorithmfor ALCNA is obtained from the one fod £LC
by adding the rules in Fig. 2, and by considering a second aypashes

— {(gnr)(@)} Udr(z,y) [1 <i<n+1jU{y #y; [ 1 <0<
j<n+1} C Aforz,yi,...,ynt1 € N7, r € Ng, and a nonnegative
integern.

The nondeterministic- <-rule replaces the ABox by finitely many new
ABoxesA; j. Lemma 1 still holds for the extended algorithm (see e.ga(®a
and Sattler, 1999), where this is proved for a more expred3l). This shows
that satisfiability (and thus also subsumption)4fCN -concept descriptions
is decidable.

4.1.1. Complexity issues

The ideas that lead to a PSPACE algorithm #£C can be applied to the
extended algorithm as well. The only difference is thatpbethandling the
successors of an individual (introduced by at-least andtexiial restric-
tions), one must check for clashes of the second type andaertbe neces-
sary identifications. However, this simple extension oelyds to a PSPACE
algorithm if we assume the numbers in at-least restrictionise written in
basel representation (called unary notation in the followinggrél the size
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12 Franz Baader and Ulrike Sattler

The —>-rule

Condition: A containg>nr)(x), and there are no individual names. . ., z,
suchthat(z,z;) (1 <i<n)andz # z; (1 <i<j<n)areinA.

Action: A" := AU{r(z,y;) |1 <i<n}U{y; #y;|1<i<j<n}, where
y1,---,Yn are distinct individual names not occurring.ih

The —<-rule

Condition: A contains distinct individual nameg,...,y,+1 such that
(<nr)(z) andr(z,y1),...,7(z, yns1) are in A, andy; # y; is not in
Aforsomei,j,1<i<j<n+1.

Action: For each paiw;,y; such thatl < i < j < n + 1andy; # y; is not
in A, the ABoxA; ; := [y:/y;]A is obtained fromA by replacing each
occurrence ofy; by y;.

Figure 2. The transformation rules handling unqualified number retsbns.

of the representation coincides with the number repredeirar bases larger
than1 (e.g., numbers in decimal notation), the number repredemigy be
exponential in the size of the representation. Thus, weagntroduce all the
successors required by at-least restrictions while orilyguspace polynomial
in the size of the concept description if the numbers in thescdiption are not
written in unary notation.

It is not hard to see, however, that most of the successorsreegby
the at-least restrictions need not be introduced at allnlingividual = ob-
tains at least one-successor due to the application of thes-rule, then
the —>-rule need not be applied to for the roler. Otherwise, we simply
introduceoner-successor as representative. In order to detect incensiss
due to conflicting number restrictions, we need to addther type of clashes:
{(<nr)(x), (=mr)(z)} C Afor nonnegative integers < m. The canonical
interpretation obtained by this modified algorithm needsaisfy the at-least
restrictions inCy. However, it can easily be modified to an interpretation that
does, by duplicating-successors (more precisely, the whole subtrees starting
at these successors).

THEOREM 4. Satisfiability ofALCN -concept descriptions is PSPACE-com-
plete, even if numbers are not represented in unary notation

4.1.2. The consistency problem fotLCN -ABoxes

Just as withALC, the extended rule set fQdLCAN can also be applied

to arbitrary ABoxes. Unfortunately, the algorithm obtainthis way need

not terminate unless one imposes a specific strategy on the order of rule
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Tableau Algorithms for Description Logics 13
applications. For example, consider the ABox
Ay :={r(a,a), (Ir.P)(a), (<1r)(a), (Vr.3r.P)(a)}.
By applying the—3-rule toa, we can introduce a newsuccessos of a:
Ay = Ay U {r(a,z), P(z)}.

The —y-rule adds the assertiariir. P)(x), which triggers an application of
the —3-rule toz. Thus, we obtain the new ABox

-/42 = -/41 u {(HTP)(T)a T‘(.’Iﬁ,y), P(U)}

Sincea has twor-successors ind,, the —<-rule is applicable toa. By
replacing every occurrence ofby a, we obtain the ABox

Az == AgU{P(a), r(a,y), P(y)}.

Except for the individual names (and the assertitfa), which is, however,
irrelevant), As is identical toA4,. For this reason, we can continue as above
to obtain an infinite chain of rule applications.

We can easily regain termination by requiring tigagnerating ruleqi.e.,
the rules—3 and —>) may only be applied if none of the other rules is
applicable. In the above example, this strategy would prietree application
of the—3-rule toz in the ABox.A; U {(3r.P)(x)} since the—<-rule is also
applicable. After applying the: <-rule (which replaces by a), the—5-rule
is no longer applicable singealready has an-successor that belongs fa

In order to obtain a PSPACE algorithm for consistencydfC \/-ABoxes,
the pre-completion technique sketched above4dIC can also be applied to
ALCN (Hollunder, 1996).

THEOREM 5. Consistency afALCN -ABoxes is PSPACE-complete, even if
numbers are not represented in unary notation.

4.2. ATABLEAU ALGORITHM FOR ALCQO

An obvious idea when attempting to extend the satisfiabdityorithm for
ALCN to one that can handld £C Q is the following (see (Van der Hoek
and De Rijke, 1995)):

— Instead of simply generating newr-successorgs, ... ,y, in the —-
rule, one also asserts that these individuals must belotigetqualifying
conceptC of (>nr.C) by adding the assertions(y;) to A’.

— The—<-rule only applies tq>nr.C) if A also contains the assertions
Clyi) 1 <i<n+1).
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14 Franz Baader and Ulrike Sattler

The ﬁchoosérule
Condition: A containg <nr.C)(x) andr(z,y), but neitherlC(y) nor-C(y).
Action: A" := AU {C(y)}, A" := AU{-C(y)}.

Figure 3. The —¢chgoserule for qualified number restrictions.

Unfortunately, this does not yield a correct algorithm fatisfiability in
ALCQ. In fact, this simple algorithm would not detect that the apt de-
scription(>3r) N (<1r.P) N (<1r.—P) is unsatisfiable. The (obvious) prob-
lem is that, for some individual and concept descriptiofi, the ABox may
neither contairC'(a) nor —-C'(a), whereas in the canonical interpretation con-
structed from the ABox, one of the two must hold. In order ter@ome this
problem, the nondeterministie>chooserule of Fig. 3 must be added (Hollun-
der and Baader, 1991). Together with thenooserule, the simple modifica-
tion of the— - and— <-rule described above yields a correct algorithm for
satisfiability in.ALC @ (Hollunder and Baader, 1991).

4.2.1. Complexity issues

The approach that leads to a PSPACE-algorithmAdiC can be applied to
the algorithm forALCQ as well. However, as withALCN, this yields a
PSPACE-algorithm only if the numbers in number restricti@re assumed
to be written in unary notation. FO4LC Q, the idea that leads to a PSPACE-
algorithm for ALCN with non-unary notation does no longer work: it is not
sufficient to introduce just one successor as represeatfithe role succes-
sors required by at-least restrictions. Nevertheless ossible to design a
PSPACE-algorithm fosd £C Q also w.r.t. non-unary notation of numbers (To-
bies, 1999). Like the PSPACE-algorithm f@/LC, this algorithm treats the
successors separately. It uses appropriate counters (eavd tgpe of clashes)
to check whether qualified number restrictions are satistBgdcombining
the pre-completion approach of (Hollunder, 1996) with thigorithm, we
also obtain a PSPACE-result for consistency4#iC Q-ABoxes.

THEOREM 6. Satisfiability of ALC Q-concept descriptions as well as con-

sistency ofALC Q-ABoxes are PSPACE-complete problems, even if numbers
are not represented in unary notation.

5. Terminological axioms

DL systems usually provide their users also with a termigial formal-
ism. In its simplest form, this formalism can be used to idtroe names for
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Tableau Algorithms for Description Logics 15

complex concept descriptions. More general terminolddimanalisms can
be used to state connections between complex concept ptesTsi

DEFINITION 4. A TBox s a finite set of terminological axioms of the form
C = D, whereC, D are concept descriptions. The terminological axiom
C = D is calledconcept definitionff C' is a concept name.

An interpretationZ is a modelof the TBoxT iff CZ = D holds for all
terminological axiom&' = D in T.

The concept descriptio subsumeshe concept descriptioty’ w.r.t. the
TBox 7 (writen C T+ D) iff C* C D? for all modelsZ of T; C is
satisfiable w.r.t.7 iff there exists a model of 7 such thatCZ # . The
Abox A is consistent w.r.t7 iff it has a model that is also a model %1 The
individual @ is aninstance ofC w.r.t. A and 7 iff a* € CZ holds for each
modelZ of A andT.

In the following, we restrict our attention to terminologlaeasoning (i.e.,
the satisfiability and subsumption problem) w.r.t. TBoXesyever, the meth-
ods and results also apply to assertional reasoning fieinstance and the
consistency problem for ABoxes) (see, e.g., (Buchheit.ei8b3)).

5.1. ACYCLIC TERMINOLOGIES

The early DL systems provided TBoxes only for introducingnes as abbre-
viations for complex descriptions. This is possible witle tmelp of acyclic
terminologies.

DEFINITION 5. A TBox is anacyclic terminologyiff it is a set of concept
definitions that neither contains multiple definitions ngclec definitions.
Multiple definitionsare of the formA = C,A = D for distinct concept
descriptionsC, D, andcyclic definitionsare of the form4d, = Cy,..., A, =
Cr, WhereA; occurs inC;_; (1 < ¢ < n)andA; occurs inC,,. If the acyclic
terminology7 contains a concept definitioA = C, thenA is calleddefined
nameand C its defining concept

Reasoning w.r.tacyclic terminologiesan be reduced to reasoning with-
out TBoxes byunfolding the definitions: this is achieved by repeatedly re-
placing defined names by their defining concepts until no rdefimed names
occur. Unfortunately, unfolding may lead to an exponentialw-up, as the
following acyclic terminology (due to Nebel (1990b)) derstmates:

{AU =Vr. A1 NMVs.Aq, ..., A1 =Vr. A, N V@An}

This terminology is of size linear in, but unfolding applied t4, results in
a concept description containing the narg 2" times. Nebel (1990b) also
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16 Franz Baader and Ulrike Sattler

shows that this complexity can, in general, not be avoidedtHe DL F Ly,
which allows for conjunction and value restriction onlybsumption between
concept descriptions can be tested in polynomial time, edsesubsumption
w.r.t. acyclic terminologies is coNP-complete.

For more expressive languages, the presence of acyclic @Bmay or
may not increase the complexity of the subsumption problEar. exam-
ple, subsumption of concept descriptions in the langudg€ is PSPACE-
complete, and so is subsumption w.r.t. acyclic termin@egiLutz, 1999).
Of course, in order to obtain a PSPACE-algorithm for subgionpn ALC
w.r.t. acyclic terminologies, one cannot first apply unfolgito the concept
descriptions to be tested for subsumption since this may e&ponential
space. The main idea is to use a tableau algorithm like thedeseribed in
Section 3, with the difference that it receives concept dgsons containing
defined names as inputlnfolding is then doneon demandif the tableau
algorithm encounters an assertion of the foAfz), where A is a defined
name and”' its defining concept, then it adds the assertitfr:). However,
it does not further unfold” at this stage. It can be shown that this really
yields a PSPACE-algorithm for satisfiability (and thus dimosubsumption)
of concepts w.r.t. acyclic terminologies #LC (Lutz, 1999).

THEOREM 7. Satisfiability w.r.t. acyclic terminologies is PSPACE-qbete
in ALC.

Although this technique also works for many extensions!dC (such as
ALCN andALC Q), there are extensions for which it fails. One such example
is the languaged LCF, which extends4 £C with functional roles as well as
agreements and disagreements on chains of functional roles

More precisely, iINALCF, asetNr C Np of feature namess fixed, and a
feature chainu = f; - - - f,, is defined to be a non-empty sequence of feature
namesf; € Nr. An interpretationZ maps eactf € Ny to a functional role
fr, ie., (z,y),(z,2) € fF impliesy = z. The interpretation of a feature
name can thus also be viewed as a partial funcfién: AZ — AZ. For
this reason, we will usually writ¢Z(z) = y instead of(z,y) € f*. The
feature chainu = f --- f, is interpreted as the composition of its features,
e ul(z) = fE(- fE(z) ).

The DL ALCF is obtained fromALC by allowing for feature names in
value and existential restrictions, and for additional capt descriptions of
the formu | v (agreement) and 1 v (disagreement), whene v are feature
chains. These new descriptions are interpreted as follows:

(ulv)t = {z € AT |thereis ay € AT with u? (z) =y = v ()}

(utv)t = {z € AT | there argy;,yo € AT with y; # yo,
u (x) = y; andv? (z) = 5}

studi a--final -conplete.tex; 14/08/2001; 13:30; p.16



Tableau Algorithms for Description Logics 17

The tableau-based satisfiability algorithm {di”C can easily be extended
to ALCF (Hollunder and Nutt, 1990). Both agreements and disagratame
are handled by rules that generate the feature successpsegt by the
semantics. To ensure that features are interpreted asdoattoles in the
canonical interpretation, one uses an identification raimi(ar to the— -
rule): if f(z,y), f(x,z) occurs in the ABox, then the rule replaces every
occurrence ofy by z, unless the ABox also contains an inequality assertion
y # z. This second case leads to a new type of clashes. Inequsdigrteons
are introduced by the rule that handles disagreements: riagifidividuals
reached by the feature chains are explicitly asserted todbact.

It can easily be seen that this algorithm can again be reklisgin poly-
nomial space. There is, however, a significant differen¢eden the PSPACE-
algorithm for ALC and the one fotALCF. Due to identifications caused
by agreements, the canonical interpretation built by tlger@hm need no
longer have tree shape. For example, an application of treeagent rule to
(f1f2 1 9192) () leads to assertions (=, y1), 92(y1, 2), f1(2, y2), fa(y2, 2).

In particular, this means that the successgrandy; of 2 cannot be handled
independently since they lead to a common successor. Hoytleigeproblem
is restricted to individuals connected by feature chaihss kasy to show
that each suckeature-connected componeastpolynomial in the size of the
concept description to be tested for satisfiability (if idécation of feature
successors is done eagerly). Thus, it is unproblematic nergée the whole
feature-connected component issuing from a given indajdidu

In the presence of acyclic terminologies, this is no longee.tin fact, by
using a sequence of terminological axioms of the farip.; = 3f.C, N
dg.C,,, one can enforce feature-connected components of sizeerpal in
the size of the given terminology and concept description(Lutz, 1999),
this fact is used to show that satisfiability gf£CF-concept descriptions
w.r.t. acyclic terminologies is NEXPTIME-complete.

THEOREM 8. Satisfiability ofALC F-concept descriptions is PSPACE-com-
plete, but satisfiability w.r.t. acyclic terminologies iEXPTIME-complete in
ALCF.

5.2. GENERAL TBOXES

For general terminological axioms of the foréh = D, whereC may also
be a complex description, unfolding is obviously no longessible. Instead
of considering finitely many such axions, = Ds,...,C, = Dy, itis
sufficient to consider the single axioth= T, where

C = (=Cy UDy) M (Cy U=Dy) M-+ 1 (=Cy U D,) M(Cy U =Dy,)

andT is an abbreviation foP LI —P.
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18 Franz Baader and Ulrike Sattler

_The axiomC = T just says that any individual must belong to the concept
C'. The tableau algorithm foALC introduced in Section 3 can easily be
modified such that it takes this axiom into account: all ifdials are simply
asserted to belong t6'. However, this modification may obviously lead to
nontermination of the algorithm.

For example, consider what happens if this algorithm is iefgplo test
consistency of the ABoX := {(3r.P)(z)} w.r.t. the axiondr.P = T: the
algorithm generates an infinite sequence of ABadesAs, . . . and individu-
alszi, za,...suchthatd; = A;U{r(zi, ziy1), P(ziz1), (Ir.P)(xiy1)}.
Since all individualse; (z > 1) receive the same concept assertionsasve
may say that the algorithm has run into a cycle.

Termination can be regained by using a mechanism that detgctic
computations, and then blocking the application of genegaules: the ap-
plication of the rule—5 to an individualz is blockedby an individualy in an
ABox A iff {D | D(z) € A} C {D'| D'(y) € A}. The main idea underly-
ing blocking is that the blocked individual can use the role successorsyof
instead of generating new ones. For example, instead ofgiamg a newr-
successor fog, in the above example, one can simply userttseiccessor of
z1. This yields an interpretatiofi with AT := {x¢, z1, 22}, PT := {x1, 15},
andr? := {(zo,z1), (z1,22), (x2, 72)}. Obviously,Z is a model of both4,
and the axiondr.P = T. Since the set of concepts asserted for the blocked
individual is a subset of the set of those asserted for thekbig individual,
we call this blocking conditiorsubset blocking

To avoid cyclic blocking (ofr by y and vice versa), we consider an enu-
meration of all individual names, and define that an indigidt may only
be blocked by individualg that occur before: in this enumeration. This,
together with some other technical assumptions, makestkatea tableau
algorithm using this notion of blocking is sound and complas well as
terminating both forA£C and ALCN (see (Buchheit et al., 1993; Baader
et al., 1996) for details).

In the algorithm we have just described, we do not impose adgraor
strategy on the application of the transformation ruless Téads to what is
called dynamic blockingHorrocks and Sattler, 1999), where blocks can be
established and then broken. For example, suppose anduodlvi is blocked
by an individualy. Then, the application of thesy-rule to x’s predecessor
may addC'(z) to A. If C(y) is not present in4, thenz is no longer blocked
by y. However, using a strategy that (basically) applies gemgraules only
if N0 non-generating ones can be applied, blocks that aablkstied once will
never be broken again. Thus, when employing this strategygam bloclstat-
ically. Note that implementations of tableau-based algorithrallysemploy
this strategy anyway.

It should be noted that the algorithm we have described aisowe longer
in PSPACE since it may generate role paths of exponentigttebefore
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Table Il. Syntax and semantics of role constructors andictisins.

| Constructor/Restrictio) Syntax | Semantics |
intersection rfs (rns)f =rfns?
union rfs (rus)t =rfus?
complement - (=r) = AT\ +Z
composition ros (ros)t ={(z,2) | thereis ay such that

(z,y) € rT and(y, z) € s}

transitive closure R (RT)T = (RT)*
inverse R~ (R ={(y,2) | (z,y) € R}
transitive roles R € Ny, R” is transitive
role hierarchy rCs L C s7

blocking occurs. In fact, even for the languad€C, satisfiability w.r.t. gen-
eral terminological axioms is known to be EXPTIME-complEehild, 1994).
The tableau-based algorithm sketched above is a NEXPTIgi&igthm. How-
ever, using the translation technique mentioned in th@dhiction, it can be
shown (De Giacomo and Lenzerini, 1994) tba£CN -ABoxes and TBoxes
can be translated into PDL.

THEOREM 9. Consistency ofALCN -ABoxes w.r.t. TBoxes is EXPTIME-
complete.

Blocking does not work for all extensions gf£LC that have a tableau-based
satisfiability algorithm. An example is again the DALCF, for which sat-
isfiability is decidable, but satisfiability w.r.t. generé@Boxes undecidable
(Nebel, 1991; Baader et al., 1993).

6. Expressive roles

The DLs considered so far allowed for atomic roles only. Erare two ways
of extending the expressivity of DLs w.r.t. roles: addinderaonstructors
and constraining the interpretation of roles. An overvieihe syntax and
semantics of both are given in Table I, where the first pafiérseto role
constructors and the second to role constralRtde constructorgan be used
to build complex roles from atomic ones. In the following, wél mostly
restrict our attention to the inverse constructor, whichkesait possible to
“use a role in both directions”. For example, using inverskes, we can
describe both parents of nice childrenWyas_child.Nice as well as children
of nice parents byhas_child™.Nice. The other role constructors have also
been considered in the literature (e.g., Boolean operato(Pe Giacomo,
1995; Lutz and Sattler, 2000), and composition, union, saadkitive closure
in (Baader, 1991; Schild, 1991)).
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20 Franz Baader and Ulrike Sattler

Constraining the interpretation of rolds very similar to imposing frame
conditions in modal logics. One possible such constraist ddeeady been
mentioned in the previous section: KILCF the interpretation of roleg €
Ny C N isrequired to be functional. Here, we will consider tramsitoles
and role hierarchies. In a DL witnansitive rolesa subsefV;; of the set of all
role namesNy, is fixed (Sattler, 1996). Elements 6f; must be interpreted
by transitive binary relations. (This corresponds to thenfe condition for
the modal logid4.) A role hierarchyis given by a finite set of role inclusion
axioms of the form- C s for rolesr, s. An interpretationZ satisfies the role
hierarchy iff »* C s” holds for each C s € . For example, we can use
the role inclusion axionhas_son C has_child to express that every son of a
person is also her child.

6.1. EXPRESSIVE ROLES IN NUMBER RESTRICTIONS

In DLs with expressive roles and number restrictions, tHesr¢hat are al-
lowed to occur in the number restrictions are usually of drieed form
(see, e.g., (De Giacomo and Lenzerini, 1994; De Giacomo amtérini,
1996; Horrocks et al., 1999; Haarslev and Moller, 20000)hereas tableau-
based algorithms that respectively handle number resinon conjunctions
of roles (Donini et al., 1991a), on compositions of rolesd&ar and Sattler,
1999), on inverse roles (see Section 6.2.3), and on rolagieg in a role hi-
erarchy (Horrocks and Sattler, 1999; Haarslev and M&#860b) are known
from the literature, other role constructors and reswitsi appear to be more
problematic when used within number restrictions.

Let us illustrate this with two examples. First, transitslesure of roles,
transitive roles, or roles having a transitive sub-roletfwespect to a role hi-
erarchy) are usually not allowed inside number restricidn fact, a tableau-
based algorithm for a DL containing such number restriciamould need to
differ significantly from the algorithms we have describedtilunow. Intu-
itively, this is due to the fact that transitivity (in one dfe forms mentioned
above) can yield situations where, for a transitive rgla longr-path starting
at an individualx would need to be collapsed into a singlsuccessor of,
due to the presence of an assertigh1r)(z). This destroys the tree shape of
the canonical interpretation to be generated, which (fangpie) means that
the usual arguments for showing termination can no longeagmied. At
least in the case where roles having transitive sub-rolesbowed to occur
in number restrictions, these problems cannot be overcdheeextension
of ALCN that allows roles having transitive sub-roles to occur imber
restrictions has an undecidable subsumption problem @dksret al., 1999).

Second, the combination of role composition with Booleda omnstruc-
tors and inverse roles in number restrictions usually causelecidability. In
(Baader and Sattler, 1999), the tableau-based algoritmrdf&C A\ is first
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extended to composition of roles in number restrictions] #ren to union
and intersection of role compositions of th&me lengthlt is also shown that
most of the other combinations lead to an undecidable DL.

6.2. ROLE HIERARCHIES INVERSE ROLES AND TRANSITIVE ROLES

Before considering different extensions 4fC and ALCN by these role
constructors, a general remark is in order. For most of the Bansidered
in this subsection, satisfiability and subsumption of cghackscriptions are
EXPTIME-complete problems. The reason for these DLs to b@BKIE-
hard is that they can simulate general TBoxes within condegtriptions
(see below). The fact that they are in EXPTIME follows fronsuks for
PDL and converse-PDL (Pratt, 1979; Harel, 1984). The tablesed algo-
rithms that will be sketched below are NEXPTIME-algorithriide point in
designing these algorithms was not to prove worst-case Exityp results,
but rather to obtain “practical” algorithms, i.e., algbnts that are easy to
implement and optimise, and which behave well on realistmMedge bases.
Nevertheless, the fact that “natural” tableau algorithimssuich EXPTIME-
complete logics are usually NEXPTIME-algorithms is an @agslant phe-
nomenon. In contrast, automata-based algorithms (VadliVdolper, 1986)
often yield optimal worst-case complexity results, but di behave well
in practice (since they are also best-case exponentialgpnitts to design
EXPTIME-tableaux for such logics (De Giacomo et al., 199&; Giacomo
and Massacci, 1996; Donini and Massacci, 1999) usuallytieaather com-
plicated (and thus not easy to implement) algorithms, wifiolthe best of
our knowledge) have not been implemented yet.

6.2.1. DLs with transitive roles and role hierarchies

Inthe DLS™H, i.e., the extension Qfl LC with transitive roles and role hierar-
chies, reasoning w.r.t. (general) TBoxes can be reduceeasoning without
TBoxes using a standard technique from modal logics, whéctailedin-
ternalisationin the DL literature (Schild, 1991; Baader et al., 1993). As
mentioned in Section 5.2, we may assume that TBoxes corfsstsmgle
axiom of the formC' = T. Internalisation of this axiom introduces a new
transitiverole u, and asserts in the role hierarchy thas a super-role of all
roles occurring inC' and the concept descriptiarh, to be tested for satisfia-
bility. Then, Cj is satisfiable w.rt{C = T} iff Co 1 C M Vu.C is satisfiable
with respect to the role hierarchy.

With respect to expressive power, this is a nice propertys&f. How-
ever, it also shows that satisfiability and subsumption ofcept descrip-
tions in SH is EXPTIME-hard® The tableau algorithm foS7 presented
in (Horrocks, 1998b) handles role hierarchies by an apjmigpdefinition of

® More precisely, reasoning ifi#{ is EXPTIME-complete (Horrocks et al., 2000a).
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r-successors: an individuglis called anr-successoof an individualz in
an ABox A iff s(z,y) € A for some sub-roles of r. Then, the condition
r(z,y) € Ainthe—3- and the—y-rule is replaced by the condition “if is
anr-successor of in A”. Transitive roles are taken care of by a new rule,
the —f-rule, which, basically, addgvr.C)(y) to A iff y is anr-successor
of = such that(Vs.C)(z) € A andr is a transitive sub-role of. (Note that
this corresponds to the treatmentof-modalities in tableau algorithms from
modal logics (Halpern and Moses, 1992).) Obviously, thifiely of value re-
strictions along transitive roles makes for a non-terniigaglgorithm, unless
one employs an appropriate blocking technique. The blgckimategy used
in (Horrocks, 1998b) coincides with the one we have preskintSection 5.2,
i.e., subset-blocking.

6.2.2. DLs with transitive and inverse roles, and role hierarchies

The extension oS with inverse roles is calledHZ. In this DL, TBoxes
can be internalised in a way similar to the one we have destribr SH.
The only difference is that now is not only specified as a (transitive) super-
role of all roles occurring in the input concept and the TBlaxt also of the
inverses of these roles (Horrocks and Sattler, 1999).

In (Horrocks and Sattler, 1999), a tableau algorithm86¢{Z is obtained
from the one foiS?H sketched above by extending the notiorrefuccessors
to r-neighbours, and modifying the transformation rules adicmly. Mod-
ulo some technical details, an individuglis called anr-neighbour of an
individual z in A iff s(z,y) € Aors (y,z) € A for some sub-roles
of . Obviously, using--neighbours instead of-successors in the news-
rule implies that the rule can now be applied in both directieor example,
if 7~ (z,y),(¥r.C)(y) € A, then the rule add€’(z). The main technical
problem is to find an appropriate blocking condition, i.ecpadition that still
ensures termination, but does not compromise correctrietse @lgorithm.
The blocking strategy introduced in (Horrocks and Satt®99) differs in
two points from blocking folS#H.

First, one can no longer use subset blocking as describeddtio8 5.2.
Consider the example shown in Fig. 4 (where, for the sakegibility, not all
concepts necessary for generating this situation are@tplgiven). If subset
blocking is used, thep is blocked byz. However, when building the canon-
ical interpretationZ, the r-successor:; of z is used to satisfy{3r.A)(y),
i.e.,(y,z) € rI. This violates the value restriction far, which shows that
the interpretation obtained this way is not a model of the glete and open
ABox. This problem can be overcome by usiaguality blocking, i.e., an
individual y is blocked by an individuak iff {D | D(z) € A} = {D' |
D'(y) € A}.

Second, blocking is now dynamic, even if rules are appliezbeting to
the strategy that applies non-generating rules with higiverity. This is
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(Vs™.A)(z), (Fr.A)(x),...

A(xy), (Vr- Vs A)(z1),...

Figure 4. A situation where subset blocking fails f6fHZ.

due to the fact that thesy-rule can be applied back and forth on a chain
of individuals.

Alternatively to the approach described until now, whickegdack and
forth in the interpretation to be generated, one could hdsen to guess
(nondeterministically) all those assertionz) that could be propagated
“back” from an r-successoty of = due to value restrictiongvr—.C)(y).

In the case of a wrong guess, one has a new type of clashesanbhgic
cut rule in (De Giacomo and Massacci, 1996) does this for a wedsen,
relatively small set of sub-descriptions of the input dgxin. In this setting,
blocking would again become static. However, in an actuglémentation
it is preferable to avoid this “blind” guessing. FSHHZ (and its extensions
treated in the following subsections), avoiding this seustnondeterminism
is indeed possible. This does not appear to be the case faxthasion of
ALC with transitive closure and inverse of roles. This DL is ellysrelated
to converse-PDL, for which a tableau algorithm is preseimd®e Giacomo
and Massacci, 1996) using the analytic cut rule. (In Seddi@¥, we will
comment in more detail on tableau algorithms for DLs witlmgiéive closure
of roles.)

By dropping role hierarchies fronsHZ, we obtain the logicSZ. Ob-
viously, the internalisation of TBoxes sketched above dug$onger work
since we cannot specify super-roles of roles. It can be shiahS7 is
indeed less complex tha$tH or SHZ. Using a rather sophisticated blocking
technique, a tableau algorithm can be designed that desatesiability of
concept descriptions i8Z using space polynomial in the size of the input
description (Spaan, 1993; Horrocks et al., 1999). This iespthat satisfia-
bility of concept descriptions i$Z is PSPACE-complete, i.e., of the same
worst-case complexity ad LC.
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6.2.3. DLs with transitive and inverse roles, role hierarchiesdarumber
restrictions

Things become even more complicated for the ®BHZN, which extends

SHZ with unqualified number restrictions on simple roles. A rolis called

simpleiff r is an atomic role or its inverse such tlratoes not have a transitive

sub-role (Horrocks and Sattler, 1999).

In contrast taSHZ, the DLSHZN no longer has the finite model prop-
erty. For example, if the role hierarchy contains the axienic r for a
transitive roler € N3, then the following concept is obviously satisfiable,
but each of its models has an infinitgath:—=AN3s. ANVr.(3s. AN (<1s7)).

Thus, instead of directly trying to construct a (possiblyiriite) inter-
pretation that satisfie€, the tableau algorithm foSHZN introduced in
(Horrocks and Sattler, 1999; Horrocks et al., 1999) firsdrio construct a
so-calledpre-model i.e., a structure that can be “unravelled” to a (possibly
infinite) canonical (tree) interpretation. In principlijg algorithm is obtained
by extending the algorithm fa§HZ with the rules that handle number re-
strictions. The main technical problem to be solved is agaidesign the
appropriate blocking condition.

Unravelling is also known in modal logic (see, for examplgtirfing,
1992)), and works as follows. To construct a model from arpoelel, we
define elements of the model's domain to f&thsin the pre-model that
follow edgesr-(x, y) where, instead of going to a blocked individual, the path
goes to its blocking individual. Thus, if blocking occursewnay obtain an
infinite model (e.qg., if the blocking individual is a predsser of the blocked
individual)—even though the input concept might have adioie.

Before describing the blocking condition introduced in (iaks and
Sattler, 1999; Horrocks et al., 1999), let us point out a né@nomenon
that can occur when running the tableau algorithm&@tZA . Due to the
interaction of role hierarchies and number restrictiorige &lgorithm can
generate an ABox4 with {r(z,y), s(z,y)} C A wherer, s are not sub-
roles of each other. This situation can be caused by an msség1t)(x),
wheret is a common super-role of and s, andz already has am- and an
s-successor. These two successors are then merged intoghe siiccessor
y. Note, however, that each individual generated by the dlguorstill has a
unique predecessor, though it may be related with more tharrale to this
predecessor.

The new blocking condition foSHZN is called pair-wise blocking. It
extends the one f@##HZ as follows. In order for an individual to be blocked
by an individualz, the predecessors af and y must also have identical
assertion attached to them, andndy must be related by the same roles to
their respective predecessors. More precisely, assurhe thare individuals
in A that respectively have the predecessdrs/’ in A. Fory to be blocked
by z, the following conditions must be satisfied: (i) for eacherp) = is an
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x O Co(x), (mA)(x), (3s.D)(x), (Vr.3s.D)(x)

y @ D), Aly), (S1s7)(y), (Fs™—A)(y), (3s.D)(y), (Vr-Is.D)(y)

z O D(z), A(z), (£1s7)(z), (3s7.mA)(z), (3s.D)(z), (Vr.ds.D)(z)

Figure 5. A situation where pair-wise blocking is crucial.

r-successor of’ iff y is anr-successor of/; (i) {D | D(z) € A} =

{D" | D'(y) € A}; and (iii) {D | D(z') € A} = {D' | D'(y') € A}.

The following example should give a better intuition for wtiys complex
blocking condition is needed. In Fig. 5, we show relevantgaf an ABox
that was generated to decide the satisfiability of the can€gpwhere

Cy:=—-AMN(3s.D) N (Vr.3s.D),

s is a sub-role of the transitive robg andD := A M (<1s7) M (Js~.—A).
Using equality blockingz would be blocked by. When constructing the
canonical interpretation, we cannot re-usge s-successor as's successor:
this would makez an s-successor of itself, and thusvould have itself ang
ass~ -successors, contradicting the asserfigns ) (z). Thus, unravelling is
really necessary in this example. As explained above, efiiag the ABox
to an interpretation would generate as elements of thepretation the path
[x] (corresponding ta), the pathz, y] (corresponding tg@), the pathz, y, y]
(which is used instead of the blocked individug| the path[z, y, y, y] etc.
However, in this interpretation the eleménty, y] and its successors do not
belong to the concept descriptiala —.— A, which shows that this interpreta-
tion does not satisfy’y. With respect to pair-wise blocking,is not blocked
by y since the predecessorof y has a concept assertigrA)(x) that the
predecessaoy of z does not have. Hence the tableau algorithm generates an
successor to satisfids. D)(z) and ans~-successor to satisfids—.—A)(z).

It should be noted that the problems that lead to the needdimwise
blocking do not depend on the presence of “large” numbersumber re-
strictions. In fact, the above example used ohgctional restrictionsi.e.,
number restrictions of the forf 1 r).

The tableau-based satisfiability algorithm &#ZN described until now
can also be extended to decide the consistency of ABoxesdtker et al.,
2000b). Recall that, forALCN, the naive extension of the satisfiability al-
gorithm to a consistency algorithm ran into terminationkpeons. This prob-
lem can be overcome by applying the pre-completion teclmighich re-
duces ABox consistency to satisfiability of concept desionis (see Sec-
tion 4.1.2). Pre-completion does not work f8#+ZN due to the presence
of inverse roles. For example, the inconsistency of the ABelx:, y), A(z)
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(3s.¥s~.¥Vr—.—A)(y)} cannot be detected if, after the application of non-
generating rules onlyy andy are treated in unrelated ABoxes. However,
the termination problem pointed out fotLCA is not relevant folSHZN
since the algorithm employs blocking to ensure terminat®asically, the
only difference between the satisfiability and the consistealgorithm for
SHIN is that one must be a bit more careful when the block involvds o
individuals, i.e., individuals present in the input ABox.

6.2.4. DLs with the transitive closure of roles

Finally, let us briefly comment on the difference betweengit@ve roles and
transitive closure of roles. The transitive closure of sale more expressive,
but it appears that one has to pay dearly for this. In fact,redee there ex-
ist quite efficient implementations for very expressive DAish transitive
roles, inverse roles, and role hierarchies (see above)jctoisnplementations
are known (to us) for closely related logics with transitilesure, such as
converse-PDL (which is a notational variant of the extem&ibALC by tran-
sitive closure, union, composition, and inverse of rolesh{d, 1991)). One
reason could be that the known tableau algorithm for coevBiSL (De Gi-
acomo and Massacci, 1996) requires an analytic cut rule§segon 6.2.2),
which is massively nondeterministic, and thus very hardhiplement effi-
ciently.

Another problem with transitive closure is that a blockediwdual need
no longer indicate “success”, as is the case in DLs with tti@agoles. In the
presence of transitive closure, when blocking occurs, oastcheck whether
this block is due to a harmless, cyclic repetition of the saisgertions (as is
always the case fa8 HZN), or whether the block is caused by the repeated
unsuccessful attempt to satisfy an assertion of the fanm.C)(z), whereC
is unsatisfiable or in conflict with an assertionr™.D)(z). The former case
is called a “good” cycle and the latter a “bad” cycle in (Baad®©91). To
satisfy an assertion of the forAir*.C)(x) (often called “eventuality” in the
modal or temporal logic literature), one has two possibiit (i) satisfy it now,
i.e., generate arsuccessor that belongsdg or (ii) defer it till later on, i.e.,
generate am-successor that belongs #".C. However, one must ensure
that the(3r™.C)(z) is satisfied eventually, i.e., one does not always choose
the second alternative. To ensure termination, the algarin (Baader, 1991)
basically uses equality blocking, together with a rathdctsstrategy on the
application of rules. A block (called cycle in (Baader, 1§3dan now indicate
two things: either it is good, which corresponds to the $itumencountered
in logics like SHZN, or it is bad, which corresponds to infinitely deferring
to satisfy an eventuality. Since good cycles can be distiga from bad
cycles, the algorithm can stop with success in the first casd, it must
backtrack in the second. Note that the algorithm in (Baati@9l) is very
similar to the satisfiability algorithm for DPDL sketched $ection 5.3 of
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(Ben-Ari et al., 1982). The main difference is that Ben-Araé (1982) first
treat all cycles as good, but then detect bad cycles by chgakhether the
generated interpretation really satisfies the input foemul

Automata-based methods (Vardi and Wolper, 1986) elegaret the
problems caused by eventualities by employing appropdateptance con-
ditions (e.g., Biichi acceptance). However, as mentiotede a direct im-
plementation of these methods is also best-case expondrtithe best of
our knowledge, there is no efficient implementation of thessthods, and
we conjecture that an attempt to optimise them would leachtalgorithm
that is very similar to a tableau algorithm.

7. Conclusion

Though many of the tableau-based algorithms sketched snpéper are of
optimal worst-case complexity, and thus provide compjesesults for sub-
sumption and satisfiability in DLs, theoretical complexigsults never were
the main focus of this line of DL research. The design of tredgerithms was
strongly motivated by the goal to obtain practical algorit) i.e., algorithms
that are easy to implement and optimise, and which behaveowekalistic
knowledge bases. In particular, for the logics treated ictiSe 6.2, the ex-
act worst-case complexity (EXPTIME) was known before the X®TIME)
tableau algorithms sketched above were designed. The thaihthese al-
gorithms really are “practical” must still be supported bynma empirical
evaluations, but the first results are rather encouragieg lglow).

The notion of what is thought to be a practical subsumptigordhm
in description logics has gone through a remarkable ewmiut the last 15
years. Throughout the eighties and up to the early ninetiegthing non-
polynomial was deemed to be impractical. Consequentlyywtie first com-
plexity results showed that all of the DLs used in systemsdwdmsumption
problems of a higher complexity, the proposed solution wimeeto restrict
the expressive power or to employ incomplete algorithmse fitst tableau
algorithms for more expressive DLs (with PSPACE-completlessimption
problems) were widely considered to be of (complexity) tie#io interest
only, though not by their designers. In fact, it turned owit implementations
of these algorithms were amenable to optimisation teclescand behaved
quite well in practice (Baader et al., 1994; Bresciani etE95).

Following this lead, lan Horrocks implemented the first eyst FaCT,
based on an EXPTIME-complete DL. The satisfiability aldgoritof FaCT is
a highly optimised implementation of the tableau algorittemS# sketched
above. FaCT was originally designed to represent medinaitelogy (where
the whole expressive power 6fH is needed), and it has behaved very well
on the large medical knowledge base it was designed for {idksr 1998b).
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In addition, FaCT performed equally well on randomly getestabench-
marks for formulae in (PSPACE) modal logics designed forteapscom-
parisons (Horrocks, 1998a; Patel-Schneider and Horrdt$@9; Horrocks,
2000). These formulae do not use the whole expressive poivgfH but
to the best of our knowledge there are no benchmark formwadaale
for EXPTIME-complete logics. Encouraged by these expegsnother DL
systems were designed that use (optimised) implemensadithe tableau al-
gorithms described in Section 6.2, and they also proved tade=quite well,
both in realistic applications, and on the available (PSEAGenchmarks
(Horrocks and Patel-Schneider, 1999; Haarslev and M@@00b; Horrocks
et al., 2000a). This shows that, at the beginning of the nelemmium,
even an EXPTIME-algorithm is no longer automatically cdesed to be
impractical in the DL community.

Databases have turned out to be a very interesting applicatiea for
DLs, which needs the expressive power offered by logics SIsthHZN .
Indeed, such expressive DLs can be viewed as a unifying immdor class-
based representation systems such as object-orienteahoefbased systems,
and they capture the semantics of conceptual modellingdiisms such as
Entity-Relationship diagrams (Calvanese et al., 19991) sizstems can be
used to support the design and evolution of database scaemab opti-
mise queries (Calvanese et al., 1998a; Calvanese et aBct9® support
the integration of sources in heterogeneous databasasidaehouses (Cal-
vanese et al., 1998b; Calvanese et al., 1999a); and to supparonceptual
modelling of multidimensional aggregation (Franconi armdtl®r, 1999).

A first tool that provides an interface for the above mentibatabase
applications isecom (Franconi and Ng, 2000). Its graphical user interface
supports the design of conceptual models using enhancég-Refationship
diagrams. The underlying inference engine is the new wversiothe DL
system FaCT which implemen$HZ Q, i.e., the extension a§HZN with
qualified number restrictions. Once the user has finisheddeitiog step, she
can ask the system to translate the conceptual model iStAQ knowl-
edge base. This knowledge base is then given to FaCT, whietkshor
implicit IS-A (i.e., subsumption) relationships betweentiges/relations and
tests entities/relations for inconsistencies. In casenohaonsistency or an
unexpected IS-A link, the user can then modify her concéphaalel appro-
priately.
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