
MATISSE:
OPL Redesigned as an Object Query Language�

Hassan Aı̈t-Kaci

ILOG, S.A.
B.P. 85 - 9, rue de Verdun

94253 Gentilly, France

hak@ilog.fr

February 18, 2002

Abstract

In this document, I undertake the design of the declarative part of an OPL-like language
(here, provisionally called “MATISSE”) using formal concepts from the state of the art in
object-oriented database query languages. I start with an analysis of the constructs (data
structures and operations) used by OPL for defining a model, arguing that the declarative part
of OPL may be viewed essentially as a query language over complex data structures, including
collections (such as lists, arrays, sets, and bags). In order to explicate the precise meaning and
optimized implementation of expressions involving these constructs (such as arbitrarily nested
aggregates, joins, and user-defined functions), I proceed to review prominent proposals from
recent research in object query language design purportingto embody formally and efficiently
queries over objects and collections thereof, and discuss their merits and shortcomings for the
specific needs of a language such as MATISSE. I then adapt some of these ideas to propose
a core algebra and calculus with the goal of capturing all thedeclarative expressivity of OPL

without any of its current limitations nor quirks of uniformity, trying to provide the most
general, yet efficient, language conveniences.

1 Introduction

Programs expressed in the OPL language [10] typically consist of two separate parts: a model defi-
nition and an optional search specification. The model definition is purely declarative and amounts
to declaring data structures and setting up a model consisting of set of algebraic constraints with,
possibly, an objective “function” to optimize. The search part is not declarative and consists of
explicit indications on how to proceed with searching for solutions of a defined model. We are
only interested here in the purely declarative part of OPL—the model definition. Upon scrutiny,
one realizes that defining a model amounts to declaring data structures and specifying a model as a
syntactic object expression constructed out of these structures using data manipulation operations.
Thus, the main idea of this work is based on the realization that an OPL model definition can in
fact all be formulated as an expression of an object query language [11].

The motivation for redesigning the declarative part of OPL at all stems from the fact that it
suffers from several undue shortcomings [15]. While several of these are cosmetic in nature, some�This is an incomplete draft reporting work in progress.

1

are the result of not having recognized that the operations and data types for the representation
and manipulation of data it needs have been well studied in the area of object query languages. As
a result, OPL provides useful conveniences that feel very appealing to the user but unfortunately
work only for very limited cases, falling short of supporting these constructs in their full gener-
ality. This state of affairs ends up frustrating the user whois led to expect much more flexibility
than is actually supported, not understanding what caused abona fideexpression to be flagged
as disallowed when other similar ones are allowed. My proposal is to attempt redesigning OPL

to support in their full generality all the data definition and manipulation conveniences it offers,
taking inspiration in recent work in object query language design.

This document is organized as follows. Section 2 briefly recounts what one needs to know
about query languages. Section 3 examines OPL’s constructs for defining models and argues that
it all falls within the object query language paradigm. In Section 4, I present recent work proposing
formal algebras and calculi for expressing the precise semantics and efficient implementations of
object query languages. In Section 5, I discuss the specificdesideratafor MATISSE in the light of
the reviewed formalisms. In Section 6, I proceed to adapt these ideas to our needs to arrive at an
algebra and a calculus sufficient to express precisely OPL constructs in their full generality, to be
used as the formal basis for a kernel language into which to “desugar” a more convenient surface
syntax.

2 A brief history of query languages

The relational model for databases proposed by Codd [5, 6, 7]owed its resounding success to using
a simple, yet powerful, mathematical formalism to capture the representation and manipulation of
data. It made a clear distinction between the formal semantics of its constructs and operations (the
Relational Algebra) and the effective computation of query expressions takingtheir meaning in
the Relational Algebra (theRelational Calculus). In its essence, the only mathematical formalism
used by Relational Algebra is elementary Set Theory. This enabled expressing simply and ele-
gantly database queries whose semantic correctness is straightforward to establish due to the pure
declarativity of the Relational Algebra. It also enabled using the formal algebraic properties of
its operations (such as commutativity, associativity,etc.) to optimize implementation of the Rela-
tion Calculus while provably preserving a query’s formal meaning. Thus, the Relational Calculus
provides the kernel language in which to express the variousconstructs of a practical query lan-
guage based on relations, which are ascribed a precise formal semantics in the Relational Algebra.
Such a practical query language has been proposed, and well accepted, as a standard known as the
Structured Query Language (SQL).1

Object-oriented databases have evolved out of the relational model by allowing more flexibil-
ity in the form taken by the data and incorporating the object-oriented notions of type encapsu-
lation and inheritance. The added flexibility consists essentially in allowing arbitrary nesting of
record object structures (i.e., tuples) and collections (i.e., sets, bags, lists,etc.). In other words,
whereas the relational model deals exclusively with relations over tuples of primitive types (i.e.,
sets of flat tuples—so-called “relational normal forms”), the object model imposes no such re-
striction. The other added conveniences—(polymorphic) typing, inheritance, and class/method
encapsulation—have been introduced for the same obvious reasons as for general-purpose pro-
gramming languages (i.e., data abstraction, reusability, modularity,etc.). As it turns out, the mere
task of dealing with non-normal form objects alone in the same simple formal fashion as was done
in the relational model (i.e., providing an algebra and a calculus that can be optimized thanks to
the algebra’s equational theory) has been a hard task to tackle. Only recently have some elegant,

1See,e.g., [12] for an excellent, easily accessible tutorial.

2

yet powerful, formalisms emerged that begin to meet the challenge [1, 16, 17]. In other words,
these formalisms are good candidates to stand with respect to OQL, the ODMG Object Query
Language standard [2], as the relational algebra and calculus stand with respect to SQL.

While the work done in the past twenty or so years in programming language design the-
ory has made object-orientation and typing an orthogonal issue to the underlying computational
model, one does need an underlying calculus to start with (e.g., in order to have C++, one needs
to have C first). In other words, given a calculus, be it functional, logical, or imperative, it is not
a major task to recast it as an object-oriented calculus by adapting its syntax and typing rules to
deal with encapsulation and inheritance, while keeping itsunderlying computational model. My
intention, thus, is to start with a “flat” typed object algebra and calculus rich enough to express and
optimize the construction of a constraint model from a high-level definition of the kind supported
by OPL, and delay incorporating true object-orientation until such a basic formalism is at hand.
Indeed, providing full object-orientation for MATISSE is only a second phase which should unfold
relatively straightforwardly once its basic formalism hasbeen designed.

3 OPL as an object query language

Let us consider an OPL program defining a transportation model. A certain set ofproductsare
manufactured and consumed in a set ofcities. Data describing thesupplyis given specifying how
much of each product is manufactured at each city, how much ofeach product is consumed at
each city, and how much it costs per unit of product to be shipped from each city to each city. We
want to establish how much of each good to transport between cities in such a way as to meet the
demand within the supply and minimize the total cost.

The complete listing of an OPL program defining a model for a transportation problem is given
in Appendix Section B. I will refer to the line numbers of thatlisting in the following discussion.

4 A review of object query language formalisms

In this section, I review prominent formalisms, focusing mainly on two recent proposals using
the notion of comprehension syntax due to Peter Bunemanet al. [1] with extensions to support
arrays—a data structure of prime importance for an languagewith mathematical programming
capabilities such as OPL. The first is due to Leonidas Fegaras and David Maier [9] and uses
the notion ofMonoid Comprehensions; the second is due to Leonid Libkin, Rona Machlin, and
Limsoon Wong [14] and proposes a functional calculus of array objects. These two formalisms
are very similar, differing mostly in their treatment of arrays (as collections in [9], and as functions
in [14]). My intention is to try and merge ideas from both for our purpose.

4.1 Monoid homomorphisms and comprehensions

The formalism presented here is based on [9] and assumes familiarity with the notions and nota-
tions summarized in Appendix Section A.2. I will use the programming view of monoids exposed
there using the specific notation of monoid attributes, in particular for sets, bags, and lists. I will
also assume basic familiarity with naive�-calculus and associated typing as presented in Appendix
Section A.3.

4.1.1 Monoid homomorphisms

Because many operations and data structures are monoids, itis interesting to use the associated
concepts as the computational building block of an essential calculus. In particular, iteration over

3

collection types can be elegantly formulated as computing amonoid homomorphism. This no-
tion coincides with the usual mathematical notion of homomorphism, albeit given here from an
operational standpoint and biased toward collection monoids. Basically, a monoid homomor-
phismhom�� maps a functionf from a collection monoid� to any monoid� by collecting all
the f -images of elements of a�-collection using the� operation. For example, the expressionhom[++[�x:x + 1℄ applied to the list[1; 2; 1; 3; 2℄ returns the setf2; 3; 4g. In other words, the
monoid homomorphismhom[++ of a functionf applied to a listL corresponds to the following
loop computation:result fg;foreah x in L do result result [f(x);return result;

This is formulated formally as follows:

DEFINITION 4.1 (MONOID HOMOMORPHISM) AMonoid Homomorphismhom�� defines a map-
ping from acollectionhomomorphism� to anymonoid such that�� � �� by:hom��[f ℄(z�) def= z�hom��[f ℄(u�(x)) def= f(x)hom��[f ℄(x� y) def= hom��[f ℄(x)� hom��[f ℄(y)
for any functionf : �! T�, x : �, andy : �, whereT� = C�(�).

Again, computationally, this amounts to executing the following iteration:result z�;foreah xi in u�(x1)� � � � � u�(xn) do result result� f(xi);return result; (1)

The reader may be puzzled by the condition�� � �� in Definition 4.1. It means that a
monoid homomorphisms may only be defined from a collection monoid to a monoid that has at
least the same equational theory. In other words, one can only go from an empty theory monoid, to
either afCg-monoid or anfIg-monoid, or yet to afC; Ig-monoid. This requirement is due to an
algebraic technicality, and relaxing it would enable a monoid homomorphism to be ill-defined. To
see this, consider going from, say, a commutative-idempotent monoid to one that is commutative
but not idempotent. Let us take, for example,hom+[. Then, this entails:1 = hom+[[�x:1℄(fag)= hom+[[�x:1℄(fag [fag)= hom+[[�x:1℄(fag) + hom+[[�x:1℄(fag)= 1 + 1= 2:

The reader may have noticed that this restriction has the unfortunate consequence of disallow-
ing potentially useful computations, notable examples being computing the cardinality of a set,
or converting a set into a list. However, this drawback can beeasily overcome with a suitable
modification of the third clause in Definition 4.1, and other expressions based on it, ensuring that
anomalous cases such as the above are dealt with by appropriate tests.

4

Also of importance for the consistency of Definition 4.1 is the fact that a non-idempotent
monoid must be anti-idempotent, and a non-commutative monoid must be anti-commutative. In-
deed, if� is non-idempotent as well as non-anti-idempotent (say,x0 � x0 = x0 for somex0),
then this entails:hom��[f ℄(x0) = hom��[f ℄(x0 � x0)= hom��[f ℄(x0) � hom��[f ℄(x0)
which is not necessarily true for non-idempotent�. A similar argument may be given for commu-
tativity. This consistency condition is in fact not restrictive operationally as it is always verified
(e.g., a list will not allow partial commutation of any of its element).

Here are a few familar functions expressed with well-definedmonoid homomorphisms:length(l) = hom+++[�x:1℄(l)e 2 s = hom_[[�x:x = e℄(s)s� t = hom[[[�x:hom[[[�y:fhx; yig℄(t)℄(s)map(f; s) = hom[[[�x:ff(x)g℄(s)filter(p; s) = hom[[[�x:if p(x) then fxg else fg℄(s):
4.1.2 Monoid comprehensions

The concept of monoid homomorphism is useful for expressinga formal semantics of iteration
over collections. However, it is not very convenient as a programming construct. A natural no-
tation for such a construct that is both conspicuous and can be expressed in terms of monoid
homomorphisms is amonoid comprehension. This notion generalizes the familiar notation used
for writing a set in comprehension (as opposed to writing it in extension) using a pattern and a
formula describing its elements (as oppposed to listing allits elements). For example, the set com-
prehensionfhx; x2i j x 2 N;9n:x = 2ng describes the set of pairshx; x2i (thepattern), verifying
the formulax 2 N; 9n:x = 2n (thequalifier).

This notation can be extended to any (primitive or collection) monoid�. The syntax of a
monoid comprehension is an expression of the form�fe [℄ Qg wheree is an expression called
theheadof the comprehension, andQ is called its qualifier and is a sequenceq1; : : : ; qn, n � 0,
where eachqi is either� ageneratorof the formx e, wherex is a variable ande is an expression; or,� afilter � which is a boolean condition.

In a monoid comprehension expression�fe [℄ Qg, the monoid operation� is called theaccumu-
lator.

As for semantics, the meaning of a monoid comprehension is defined in terms of monoid
homomorphisms.

5

DEFINITION 4.2 (MONOID COMPREHENSION) The meaning of a monoid comprehension over a
monoid� is defined inductively as follows:�fe [℄ g def= 8<: u�(e) if � is a collection monoide if � is a primitive monoid�fe [℄ x e0; Qg def= hom��[�x:� fe [℄ Qg℄(e0)�fe [℄ ;Qg def= if then � fe [℄ Qg else z�
such thate : T�, e0 : T�, and� is a collection monoid.

Note that although the input monoid� is explicit, each generatorx e0 in the qualifier has an
implicit collection monoid� whose characteristics can be inferred with polymorphic typing rules.

Although Definition 4.2 can be effectively computed using nested loops (i.e., using the it-
eration semantics (1)), such would be in general rather inefficient. Rather, an optimized imple-
mentation can be achieved by various syntactic transformation expressed as rewrite rules. Thus,
the principal benefit of using monoid comprehensions is to formulate efficient optimizations on a
simple and uniform general syntax of expressions irrespective of specific monoids.

Note that relationaljoinsare immediately expressible as monoid comprehensions. Indeed, the
join of two setsS andT using a functionf and a predicatep is simply:S BCfp T def= [ff(x; y) [℄ x S; y T; p(x; y)g: (2)

Typically, a relational join will takef to be a record constructor. For example, if we write a record
whose fieldsli have valuesei for i = 1; : : : ; n, ashl1 = e1; ; : : : ; ln = eni, then a standard
relational join is obtained with, say,f(x; y) = hname = y:name; age = 2 � x:agei, andp(x; y)
may be any condition such asx:name = y:name; x:age � 18.

Clearly, monoid comprehensions can immediately express queries using all usual relational
operators (and, indeed, object queries as well) and most usual functions. For example,9x 2 s:e def= _fe [℄ x sg8x 2 s:e def= ^fe [℄ x sgx 2 s def= _fx = y [℄ y sgs \ t def= [fx [℄ x s; x 2 tgount(a; s) def= +f1 [℄ x s; x = ag

length(s) def= +f1 [℄ x sgsum(s) def= +fx [℄ x sgmax(s) def= maxfx [℄ x sgfilter(p; s) def= [fx [℄ x s; p(x)gflatten(s) def= [fx [℄ t s; x tg
Note that some of these functions will work only on appropriate types of their arguments. For
example, the type of the argument ofsum must be a non-idempotent monoid, and so must the type
of the second argument ofount. Thus,sum will add up the elements of a bag or a list, andount
will tally the number of occurrences of an element in a bag or alist. Applying eithersum or ount
to a set will be caught as a type error.

4.1.3 The monoid comprehension calculus

We are now in a position to propose a programming calculus using monoid comprehensions. Fig-
ure 1 defines an abstract grammar for an expressione of theMonoid Comprehension Calculusand
amounts to adding comprehensions to an extended Typed Polymorphic�-Calculus. Figure 2 gives
the typing rules for this calculus.

6

e ::= ? null valuej constantj x symbolj �x:e abstractionj e1 e2 applicationj hl1 = e1; � � � ; ln = eni recordj e:l projectionj if e1 then e2 else e3 conditionalj z� monoid identityj u�(e) monoid unit injectionj e1 � e2 monoid operationj �fe [℄ Qg monoid comprehension

Figure 1: The monoid comprehension calculus

4.2 Multidimensional arrays as functions

5 Discussion

5.1 What types for MATISSE?

Before we delve into redesigning a new OPL, we need to ponder its type particularities—indeed,
peculiarities. The current OPL departs from conventional programming langauges when it comes
to types in several respects. Figure 3 shows the types supported by OPL.

5.1.1 Primitive types

5.1.2 Object types

5.1.3 Collections types

5.2 Array types

5.2.1 First-class indexing

HAK NOTE: Discuss the ZPL-region approach [3] for use inMATISSE, and their sparse ver-
sion [4].

7

� ` ? : � for any�� ` : � for any�, if type(a) = �� ` x : � if �(x) = ��[x : �1℄ ` e : �2� ` �x:e : �1 ! �2� ` e1 : �1 ! �2; � ` e2 : �1� ` e1 e2 : �2� ` e1 : �1; � � � ; � ` ek : �k� ` hl1 = e1; � � � ; lk = eki : hl1 : �1; � � � ; lk : �ki� ` e : hl1 : �1; � � � ; lk : �ki� ` e:l : � if l 2 fl1; : : : ; lkg� ` e1 : bool; � ` e2 : �; � ` e3 : �� ` if e1 then e2 else e3 : �� ` z� : T� for any�� ` e : �� ` u�(e) : C�(�) if � is a collection monoid� ` e1 : T�; � ` e2 : T�� ` e1 � e2 : T� if � is a primitive monoid� ` e1 : C�(�); � ` e2 : C�(�)� ` e1 � e2 : C�(�) if � is a collection monoid� ` e : T�� ` �fe [℄ g : T� if � is a primitive monoid� ` e : �� ` �fe [℄ g : C�(�) if � is a collection monoid� ` e2 : C�(�2); �[x : �2℄ ` �fe1 [℄ Qg : �1� ` �fe1 [℄ x e2; Qg : �1 if �� � ��� ` e2 : bool; � ` �fe1 [℄ Qg : �� ` �fe1 [℄ e2; Qg : �
Figure 2: Typing rules for the Monoid Comprehension Calculus

8

type

basic structure range enum setof(type) array[type]

Figure 3: OPL types

5.2.2 Indexing types

5.3 Functional abstraction

6 Designing MATISSE

6.1 Algebra

6.2 Semantics

6.3 Implementation

Appendix

In this part of the document, I summarize well-known notionsthat may be needed by some readers
lacking the appropriate background. This is in order to spare those who already know this material
and unclutter the main body of the text. The latter reason is also why Section B contains the
complete listing of the transportation model used in the discussion of Section 3.

A Technical Background

A.1 The Relational Model

A.2 Monoids

In this section, all notions and notations relating to monoids as they are used in this paper are
recalled and justified.

Mathematically, a monoid is a non-empty set equipped with anassociative internal binary
operation and an identity element for this operation. Formally, let S be a set,? a function fromS � S to S, and� 2 S; then,hS; ?; �i is a monoid iff, for anyx; y; z in S:x ? (y ? z) = (x ? y) ? z (3)

and x ? � = � ? x = �: (4)

Most familiar mathematical binary operations define monoids. For example, taking the set of
natural numbersN, and the set of boolean valuesB = ftrue; falseg, the following are monoids:� hN;+; 0i,

9

� hN; �; 1i,� hN;max; 0i,� hB ;_; falsei,� hB ;^; truei.
The operations of these monoids are so familiar that they need not be explicated. For us, they have
a “built -in” semantics that allows us to compute with them since primary school. Indeed, we shall
refer to such readily interpreted monoids asprimitive monoids.2

Note that the definition of a monoid does not preclude additional algebraic structure. Such
structure may be specified by other equations augmenting thebasic monoid equational theory
given by the conjunction of equations (3) and (4). For example, all five monoids listed above are
commutative; namely, they also obey equation (5):x ? y = y ? x (5)

for anyx; y. In addition, the three last ones (i.e.,max, _, and^) are alsoidempotent; namely, they
also obey equation (6):x ? x = x (6)

for anyx.
Not all monoids are primitive monoids. That is, one may definea monoid purely syntactically

whose operation only builds a syntactic structure rather than being interpreted using some semantic
computation. For example, linear lists have such a structure: the operation is list concatenation and
builds a list out of two lists; its identity element is the empty list. A syntactic monoid may also have
additional algebraic structure. For example, the monoid ofbags is also defined as a commutative
syntactic monoid with the disjunct union operation and the empty bag as identity. Or, the monoid
of sets is a commutative and idempotent syntactic monoid with the union operation and the empty
set as identity.

Because they are not interpreted, syntactic monoids pose a problem as far as representation of
its elements is concerned. To illustrate this, let us consider an empty-theory algebraic structure;
that is, one without any equations—not even associativity nor identity. Let us take such a structure
with one binary operation? on, say, the natural numbersN. Saying that? is a “syntactic” operation
means that it constructs a syntactic term (i.e., an expression tree) by composing two other syntactic
terms. We thus can define the setT? of ?-terms on some base set, say the natural numbers,
inductively as the limit[n�0Tn where,Tn def= 8<: N if n = 0ft1 ? t2 j ti 2 Tn�1; i = 1; 2g if n > 0 (7)

Clearly, the setT? is well defined and so is the? operation over it. Indeed,? is abona fidefunction
from T? � T? to T? mapping two termst1 andt2 in T? into a unique term inT?—namely,t1 ? t2.
This is whyT? is called thesyntacticalgebra.3

2We call these monoids “primitive” following the presentation of Fegaras and Maier [9] as it adheres to a more
operational (as opposed to mathematical) approach more suitable to computer-scientists. Mathematically, however,
these should be called “semantic” monoids since they are interpreted by the computation semantics of their operations.

3For a fixed set of base elements and operations (which constitute what is formally called asignature), the syntactic
algebra is unique (up to isomorphism). This algebra is also called thefree, or theinitial , algebra for its signature.

10

Let us now assume that the? operation is associative—i.e., that?-terms verify Equation (3).
Note that this equation defines a (syntactic)congruenceonT? which identifies terms such as, say,1 ? (2 ? 3) and (1 ? 2) ? 3. In fact, for such an associative? operation, the setT? defined in
Equation (7) is not the appropriate domain. Rather, the right domain is the quotient set whose
elements are (syntactic) congruence classes modulo associativity of ?. Therefore, this creates an
ambiguity of representation of the syntactic structures.4

Similarly, more algebraic structure defined by larger equational theories induces coarser quo-
tients of the empty-theory algebra by putting together in common congruence classes all the syn-
tactic expressions that can be identified modulo the theory’s equations. The more equations, the
more ambiguous the syntactic structures of expressions. Mathematically, this poses no problem as
one can always abstract away from individuals to congruenceclasses. However, operationally one
must resort to some concrete artifact to obtain a unique representation for all members of the same
congruence class. One way is to devise acanonical representation into which to transform all
terms. For example, an associative operation could systematically “move” nested subtrees from
its left argument to its right argument—in effect using Equation (3) as a one-way rewrite rule.
However, while this is possible for some equational theories, it is not so in general—e.g., take
commutativity.5

From a programming standpoint (which is ours), we can abstract away from the ambiguity
of canonical representations of syntactic monoid terms using a flat notation. For example, in
LISP and Prolog, a list is seen as the (flat) sequence of its constituents. Typically, a programmer
writes [1; 2; 1℄ to represent the list whose elements are1, 2 and1 in this order, and does not care
(nor need s/he be aware) of its concrete representation. A set—i.e., a commutative idempotent
syntactic monoid—is usually denoted by the usual mathematical notationf1; 2g, implicitly relying
on disallowing duplicate elements, not minding the order inwhich the elements appear. A bag,
or multiset—i.e., a commutative but non-idempotent syntactic monoid—uses asimilar notation,
allowing duplicate elements but paying no heed to the order in wich they appear;i.e., ff1; 2; 1gg is
the bag containing1 twice, and2 once.

Syntactic monoids are quite useful for programming as they provide adquate data structures
to represent collections of objects of a given type. Thus, werefer to them ascollection monoids.
Now, a definition such as Equation (7) for a syntactic monoid,although sound mathematically,
is not quite adequate for programming purposes. This is because it defines the? operations on
two distincttypesof elements; namely, the base elements (here natural numbers) and constructed
elements. In programming, it is desirable that operations be given a crisp type. A way to achieve
this is by systematically “wrapping” each base elementx into a term such asx?�. This “wrapping”
is achieve by associating to the monoid a functionu? from the base set into the monoid domain
called itsunit injection. For example, if++ is the list monoid operation for concatenating two lists,u++(x) = [x℄ and one may view the list[a; b; ℄ as[a℄++[b℄++[℄. Similarly, the setfa; b; g is
viewed asfag [fbg [fg, and the bagffa; b; gg asffagg ℄ ffbgg ℄ ffgg. Clearly, this bases the
constructions on an isomorphic view of the base set rather than the base set itself, while using a
uniform type for the monoid operator. Also, because the typeof the base elements is irrelevant for
the construction other than imposing the constraint that all such elements be of the same type, we
present a collection monoid as apolymorphicdata type. This justifies the formal view of monoids
we give next using the programming notion of type.

4Note that this ambiguity never arises for semantic algebraswhose operations are interpreted into a unique result.
5Such are important considerations in the field ofterm rewriting[8], where the problem of finding canonical term

representations for equational theories was originally addressed by Donald Knuth and Peter Bendix in a seminal paper
proposing a general effective method—the so-called Knuth-Bendix Completion Algorithm [13]. The problem, inciden-
tally, is only semi-decidable. In other words, the Knuth-Bendix algorithm may diverge, although several interesting
variations have been proposed for a wide extent of practicaluses (see [8] for a good introduction and bibliography).

11

� T� z� ��+ int 0 fCg� int 1 fCgmax int 0 fC; Ig_ bool false fC; Ig^ bool true fC; Ig
� C� T� z� u�(x) ��[set set(�) fg fxg fC; Ig℄ bag bag(�) ffgg ffxgg fCg++ list list(�) [℄ [x℄ ;

Primitive monoids Collection monoids

Table 1: Attributes of a few common monoids

Because it is characterized by its operation�, a monoid is often simply referred to as�.
Thus, a monoid operation is used as a subscript to denote its characteristic attributes. Namely, for
a monoid�,� T� is its type (i.e.,� : T� � T� ! T�),� z� : T� is its identity element,� �� is its equational theory (i.e., a subset of the setfC; Ig, whereC stands for “commuta-

tive” andI for “idempotent”);

and, if it is a collection monoid,� C� is its type constructor (i.e., T� = C�(�)),� u� : �! C�(�) is its unit injection.

Table 1 summarizes the monoid attributes of a few usual monoids.

A.3 The Typed Polymorphic �-Calculus

We assume a setC of pregiven constants ususally denoted bya; b : : :, and a countably infinite set
of variable symbolsV usually denoted byx; y; : : :. The syntax of a termt of the�-Calculus is
given by the following grammar:t ::= a (a 2 C) constantj x (x 2 V) symbolj �x:t (x 2 V) abstractionj t t application

(8)

We shall callT the set of termst defined by this grammar. These terms are also calledraw terms.
An abstraction�x:t defines alexical scopefor its bound variablex, whose extent is itsbodyt. Thus, the notion of free occurrence of a variable in a term isdefined as usual, and so is the

operationt1[t2=x℄ of substituting a termt2 for all the free occurrences of a variablex in a termt1.
Thus, a bound variable may be renamed to a new one in its scope without changing the abstraction.

The computation rule defined on�-terms is the so-called�-reduction:(�x:t1) t2 �! t1[t2=x℄: (9)

12

We assume a setB of basic type symbols denoted byA;B; : : :, and a countably infinite set of
type variablesV denoted by�; �; : : :. The syntax of a type� of the Typed Polymorphic�-Calculus
is given by the following grammar:� ::= A (A 2 B) basic typej � (� 2 V) variable typej � ! � function type

(10)

We shall callT the set of types� defined by this grammar. Amonomorphic typeis a type that
contains no variable types. Any type containing at least onevariable type is called apolymorphic
type.

The terms of the Typed Polymorphic�-Calculus are only those raw terms inT that admit a
well-defined type inT . Each constant inC is assumed to have a unique type inT , and we writetype(a) = � to mean that constanta has type� .

One may assign types to symbols using atype context�, which is a partial function fromV toT . Given a type context�, a variablex 2 V and a type� 2 T , we define:�[x : � ℄(y) def= 8<: � if x = y;�(y) if x 6= y: (11)

In other words,�[x : � ℄ coincides with� everywhere onV except atx, where it takes the value� . Theempty contextis the function noted; defined nowhere onV.
To find out whether a termt in T is well-typed, one must exhibit a type assignment that

constitutes a suitable typing context for the variable symbols occurring int, and from which one
may ascribe a (unique) type for the whole term. Given a type context�, a termt, and a type� ,
a type judgementis an expression of the form� ` t : � , which stands to mean thatt has been
deemed to have type� when the symbols occurring in it have the types assigned to them by the
context�. Without a type context�, the expressiont : � is used to mean that� ` t : � for some�.

Deriving types for terms is done usingtyping rulesof the form:�1 ` t1 : �n; � � � �n ` tn : �n� ` t : �
which is read as follows: “t has type� under� if t1 has type�1 under�1, . . . , andtn has type�n
under�n.” Note that it is possible thatn = 0, in which case the rule is written:� ` t : �
and it is called anaxiom.

The typing rules for the Typed Polymorphic�-Calculus are given in Figure 4. These rules can
be readily translated into a Logic Programming language based on Horn-clauses such as Prolog,
and used as an effective means to infer the types of expressions based on the Typed Polymorphic�-Calculus.

The basic syntax of the Typed Polymorphic�-Calculus may be extended with other opera-
tors and convenient data structures as long as typing rules for the new constructs are provided.
Typically, one provides at least the setN of integer constants andB = ftrue; falseg of boolean
constants, along with basic arithmetic and boolean operators, pairing (or tupling), a conditional
operator, and a fix-point operator. The usual arithmetic andboolean operators are denoted by
constant symbols (e.g., +; �;�; =;_;^; etc.). LetO be this set.

13

� ` a : � for any�, if type(a) = �� ` x : � if �(x) = ��[x : �1℄ ` t : �2� ` �x:t : �1 ! �2� ` t1 : �1 ! �2; � ` t2 : �1� ` t1 t2 : �2
Figure 4: Typing rules for the Typed Polymorphic�-Calculus

The computation rules for these operators are based on theirusual semantics as one might
expect, modulo transforming the usual binary infix notationto a “curryed” application. For exam-
ple, t1 + t2 is implicitly taken to be theapplication(+ t1) t2. Note that this means that all such
operators are implicitly “curryed.”6

For example, we may augment the grammar for the terms given in(8) as follows:t ::= a (a 2 C = N [B [O) constantj x (x 2 V) symbolj �x:t (x 2 V) abstractionj t t applicationj ht; � � � ; ti tuplingj t:n (n 2 N) projectionj if t then t else t conditionalj fix t recursion

(12)

The computation rules for the other new constructs are:ht1; � � � ; tki:i �! 8<: ti if 1 � i � k
undefined otherwiseif then t1 else t2 �! 8>>>><>>>>: t1 if = truet2 if = false
undefined otherwisefix t �! t (fix t)

(13)

To account for the new constructs, the syntax of types is extended accordingly to:� ::= int j bool basic typej � (� 2 V) variable typej h�; � � � ; �i tuple typej � ! � function type

(14)

6Recall that a curryed form of ann-ary functionf is obtained whenf is applied to less arguments than it ex-
pects; i.e., f(t1; : : : ; tk), for 1 � k < n. In the �-calculus, this form is simply interpreted as theabstraction�x1: : : : �xn�k:f(t1; : : : ; tk; x1; : : : ; xn�k). In their fully curried form, alln-ary functions can be seen as unary
functions; indeed, with this interpretation of curried forms, it is clear thatf(t1; : : : ; tn) = (: : : (f t1) : : : tn�1) tn.

14

� ` a : � for any�, if type(a) = �� ` x : � if �(x) = ��[x : �1℄ ` t : �2� ` �x:t : �1 ! �2� ` t1 : �1 ! �2; � ` t2 : �1� ` t1 t2 : �2� ` t1 : �1; � � � ; � ` tk : �k� ` ht1; � � � ; tki : h�1; � � � ; �ki� ` t : h�1; � � � ; �ki� ` t:n : � if 1 � n � k� ` t1 : bool; � ` t2 : �; � ` t3 : �� ` if t1 then t2 else t3 : �� ` t : � ! �� ` fix t : �
Figure 5: Typing rules for an Extended Typed Polymorphic�-Calculus

We are given thattype(n) = int for all n 2 N and thattype(true) = bool andtype(false) =bool. The (fully curried) types of the built-in operators are given similarly; i.e., type(+) =int ! (int ! int), type(_) = bool ! (bool ! bool), etc., . . . The typing rules for this
extended calculus are given in Figure 5.

B A Transportation Model in OPL

[01] enum City ...;
[02] enum Product ...;
[03] float+ limit = ...;
[04]
[05] struct TableRoutesType
[06] { Product p;
[07] City o;
[08] City d;
[09] float+ cost;
[10] };
[11]
[12] {TableRoutesType} TableRoutes = ...;
[13]
[14] struct Connection
[15] { City o;
[16] City d;
[17] };
[18]
[19] struct Route

15

[20] { Product p;
[21] Connection e;
[22] };
[23]
[24] {Route} Routes = { < p,<o,d> > | <p,o,d,c> in TableRoutes };
[25]
[26] {Connection} Connections = { c | <p,c> in Routes };
[27]
[28] struct Supply
[29] { Product p;
[30] City o;
[31] };
[32]
[33] {Supply} Supplies = { <p,c.o> | <p,c> in Routes };
[34]
[35] float+ supply[Supplies] = ...;
[36]
[37] struct Customer
[38] { Product p;
[39] City d;
[40] };
[41]
[42] {Customer} Customers = { <p,c.d> | <p,c> in Routes };
[43]
[44] float+ demand[Customers] = ...;
[45]
[46] float+ cost[Routes];
[47]
[48] initialize
[49] { forall(<p,o,d,c> in TableRoutes)
[50] cost[< p,<o,d> >] = c;
[51] };
[52]
[53] {City} orig[p in Product] = { c.o | <p,c> in Routes };
[54] {City} dest[p in Product] = { c.d | <p,c> in Routes };
[55]
[56] {Connection} CP[p in Product] = { c | <p,c> in Routes };
[57]
[58] assert
[59] forall(p in Product)
[60] sum(o in orig[p]) supply[<p,o>] = sum(d in dest[p]) dem and[<p,d>];
[61]
[62] var float+ trans[Routes];
[63]
[64] minimize
[65] sum(l in Routes) cost[l] * trans[l]
[66] subject to
[67] {
[68] forall(p in Product, o in orig[p])
[69] sum(<o,d> in CP[p]) trans[< p,<o,d> >] <= supply[<p,o>];
[70]
[71] forall(p in Product, d in dest[p])
[72] sum(<o,d> in CP[p]) trans[< p,<o,d> >] >= demand[<p,d>];
[73]
[74] forall(c in Connections)

16

[75] sum(<p,c> in Routes) trans[<p,c>] <= limit;
[77] };

References

[1] Peter Buneman, Leonid Libkin, Dan Suciu, Val Breazu-Tannen, and Limsoon Wong. Com-
prehension syntax.ACM SIGMOD Record, 23(1):87–96, March 1994. (Available online7).

[2] Rick Cattell, Douglas Barry, Mark Berler, Jeff Eastman,David Jordan, Craig Russell, Olaf
Schadow, Torsten Stanienda, and Fernando Velez, editors.Object Data Standard—ODMG
3.0. Morgan Kaufmann, January 2000.

[3] Bradford Chamberlain, Christopher Lewis, Calvin Lin, and Lawrence Snyder. Regions: An
abstraction for expressing array computation. InProceedings of the SIGAPL/SIGPLAN Inter-
national Conference on Array Programming Languages, pages 41–49, August 1999. (Avail-
able online8).

[4] Bradford Chamberlain, Christopher Lewis, and LawrenceSnyder. A region-based approach
for sparse parallel computing. Technical Report UW-CSE-98-11-01, University of Washing-
ton at Seattle (Computer Science), November 1998. (Available online9).

[5] Edgar F. Codd. A relational model of data for large shareddata banks.Communications of
the ACM, 13(6):377–387, 1970.

[6] Edgar F. Codd. Extending database relations to capture more meaning.ACM Transactions
on Database Systems, 4(4):397–434, 1979.

[7] Edgar F. Codd.The Relational Model for Database Management. Addison-Wesley, 1990.

[8] Nachum Dershowitz. A taste of rewriting. In Peter E. Lauer, editor,Functional Program-
ming, Concurrency, Simulation and Automated Reasoning, pages 199–228. Springer-Verlag,
1993. (Available online10).

[9] Leonidas Fegaras and David Maier. Optimizing object queries using an effective calculus.
ACM Transactions on Database Systems, 25(4):?–?, December 2000. (Available online11).

[10] Pascal van Hentenryck.The OPL Optimization Programming Language. The MIT Press,
1999.

[11] Andreas Heuer and Marc H. Scholl. Principles of object-oriented query languages. In H.-J.
Appelrath, editor,Proceedings of the GI Conference on Database Systems for Office, Sci-
entific, and Engineering Applications, Kaiserslautern, Germany, pages 178–197. Springer-
Verlag IFB 270, 1991. (Available online12).

[12] James Hoffman. Introduction to Structured Query Language. (Available online13), 1996–
2001.

7http://www.acm.org/sigs/sigmod/record/issues/9403/C omprehension.ps
8http://www.cs.washington.edu/homes/echris/papers/ap l99.ps
9ftp://ftp.cs.washington.edu/tr/1998/11/UW-CSE-98-11 -01.PS.Z

10http://www-sal.cs.uiuc.edu/˜nachum/papers/taste-fix ed.ps.gz
11http://lambda.uta.edu/tods00.ps.gz
12ftp://ftp.informatik.uni-konstanz.de/pub/dbis/Publi cations/HS:BTW91.ps.gz
13http://w3.one.net/˜jhoffman/sqltut.htm

17

[13] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor,Computational Problems in Abstract Algebra, pages 263–297. Pergamon
Press, Oxford, UK, 1970. Reprinted inAutomatic Reasoning, 2, Springer-Verlag, pp. 342–
276 (1983).

[14] Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language for multidimensional
arrays: Design, implementation, and optimization techniques. InProceedings of the 1996
ACM SIGMOD International Conference on Management of Data,Montreal, Canada, pages
228–239, May 1996. (Available online14).

[15] Frédéric Paulin. OPL language syntax critique and proposal for improvement. (Available
online15), April 2001. ILOG internal access only.

[16] Scott L. Vandenberg.Algebras for Object-Oriented Query Languages. PhD thesis, Univer-
sity of Wisconsin at Madison (Computer Sciences), 1993. (Available online16).

[17] Limsoon Wong.Querying Nested Collections. PhD thesis, University of Pennsylvania (Com-
puter and Information Science), 1994. (Available online17).

14http://www.cs.toronto.edu/˜libkin/papers/sigmod96a. ps.gz
15file:/nfs/opl/matisse/dev/opl syntax critic.html
16ftp://ftp.cs.wisc.edu/pub/tech-reports/reports/1993 /tr1161.ps.Z
17ftp://ftp.cis.upenn.edu/pub/ircs/tr/94-09.ps.Z

18

