MATISSE
OPL Redesigned as an Object Query Language

Hassan Ait-Kaci

ILOG, S.A.
B.P. 85 -9, rue de Verdun
94253 Gentilly, France

hak@ilog.fr
February 18, 2002

Abstract

In this document, | undertake the design of the declaratire gf an QpL-like language
(here, provisionally called “MTISSE") using formal concepts from the state of the art in
object-oriented database query languages. | start withnalysis of the constructs (data
structures and operations) used byL@or defining a model, arguing that the declarative part
of OpL may be viewed essentially as a query language over compiasttactures, including
collections (such as lists, arrays, sets, and bags). I to@xplicate the precise meaning and
optimized implementation of expressions involving thesestructs (such as arbitrarily nested
aggregates, joins, and user-defined functions), | proaeegl/tew prominent proposals from
recent research in object query language design purpadi@gmbody formally and efficiently
queries over objects and collections thereof, and distwgssrherits and shortcomings for the
specific needs of a language such asTMsE. | then adapt some of these ideas to propose
a core algebra and calculus with the goal of capturing albnearative expressivity of EL
without any of its current limitations nor quirks of unifoity) trying to provide the most
general, yet efficient, language conveniences.

1 Introduction

Programs expressed in theeOlanguage [10] typically consist of two separate parts: aehddfi-
nition and an optional search specification. The model difimis purely declarative and amounts
to declaring data structures and setting up a model comgisfiset of algebraic constraints with,
possibly, an objective “function” to optimize. The seardrtgs not declarative and consists of
explicit indications on how to proceed with searching folusons of a defined model. We are
only interested here in the purely declarative part eiLe-the model definition. Upon scrutiny,
one realizes that defining a model amounts to declaring traietsres and specifying a model as a
syntactic object expression constructed out of thesetsneg using data manipulation operations.
Thus, the main idea of this work is based on the realizatiah dh Q°L model definition can in
fact all be formulated as an expression of an object queryuage [11].

The motivation for redesigning the declarative part afLGat all stems from the fact that it
suffers from several undue shortcomings [15]. While sdvafrdnese are cosmetic in nature, some

*This is an incomplete draft reporting work in progress.

are the result of not having recognized that the operatiowisdata types for the representation
and manipulation of data it needs have been well studieckiatba of object query languages. As
a result, @@L provides useful conveniences that feel very appealingaaitier but unfortunately
work only for very limited cases, falling short of suppogithese constructs in their full gener-
ality. This state of affairs ends up frustrating the user ighied to expect much more flexibility
than is actually supported, not understanding what caudszha fideexpression to be flagged
as disallowed when other similar ones are allowed. My prabissto attempt redesigning 2

to support in their full generality all the data definitiondamanipulation conveniences it offers,
taking inspiration in recent work in object query languagsign.

This document is organized as follows. Section 2 briefly vet® what one needs to know
about query languages. Section 3 examines'©constructs for defining models and argues that
it all falls within the object query language paradigm. Irctsan 4, | present recent work proposing
formal algebras and calculi for expressing the precise séosaand efficient implementations of
object query languages. In Section 5, | discuss the spelgfileratafor MATISSE in the light of
the reviewed formalisms. In Section 6, | proceed to adaseldeas to our needs to arrive at an
algebra and a calculus sufficient to express precisely €dnstructs in their full generality, to be
used as the formal basis for a kernel language into whicheésddar” a more convenient surface
syntax.

2 A Dbrief history of query languages

The relational model for databases proposed by Codd [5,@y&{l its resounding success to using
a simple, yet powerful, mathematical formalism to captheerepresentation and manipulation of
data. It made a clear distinction between the formal serspfiits constructs and operations (the
Relational Algebra and the effective computation of query expressions takiiegr meaning in
the Relational Algebra (thRelational Calculus In its essence, the only mathematical formalism
used by Relational Algebra is elementary Set Theory. Théblkel expressing simply and ele-
gantly database queries whose semantic correctnessightfivavard to establish due to the pure
declarativity of the Relational Algebra. It also enableihgsthe formal algebraic properties of
its operations (such as commutativity, associativétg,) to optimize implementation of the Rela-
tion Calculus while provably preserving a query’s formalamieg. Thus, the Relational Calculus
provides the kernel language in which to express the vaiouastructs of a practical query lan-
guage based on relations, which are ascribed a preciselfsemantics in the Relational Algebra.
Such a practical query language has been proposed, andosefitad, as a standard known as the
Structured Query Language (SQL).

Object-oriented databases have evolved out of the retdtiandel by allowing more flexibil-
ity in the form taken by the data and incorporating the obfgnted notions of type encapsu-
lation and inheritance. The added flexibility consists esaly in allowing arbitrary nesting of
record object structures.€., tuples) and collectiond.€., sets, bags, list®tc). In other words,
whereas the relational model deals exclusively with refetiover tuples of primitive types.€.,
sets of flat tuples—so-called “relational normal formshe tobject model imposes no such re-
striction. The other added conveniences—(polymorphipjnty, inheritance, and class/method
encapsulation—have been introduced for the same obvi@soms as for general-purpose pro-
gramming languages.€., data abstraction, reusability, modulariggc). As it turns out, the mere
task of dealing with non-normal form objects alone in the sample formal fashion as was done
in the relational modelife., providing an algebra and a calculus that can be optimizadkihto
the algebra’s equational theory) has been a hard task teta®kly recently have some elegant,

!seee.g, [12] for an excellent, easily accessible tutorial.

yet powerful, formalisms emerged that begin to meet thelehgé [1, 16, 17]. In other words,
these formalisms are good candidates to stand with respe@QiL, the ODMG Object Query
Language standard [2], as the relational algebra and calathnd with respect to SQL.

While the work done in the past twenty or so years in programym@nguage design the-
ory has made object-orientation and typing an orthogorsaieigo the underlying computational
model, one does need an underlying calculus to start with, {n order to have C++, one needs
to have C first). In other words, given a calculus, be it fumwdi, logical, or imperative, it is not
a major task to recast it as an object-oriented calculus bptad) its syntax and typing rules to
deal with encapsulation and inheritance, while keepingriderlying computational model. My
intention, thus, is to start with a “flat” typed object algaland calculus rich enough to express and
optimize the construction of a constraint model from a Higlel definition of the kind supported
by OpL, and delay incorporating true object-orientation untittsia basic formalism is at hand.
Indeed, providing full object-orientation for MissEeis only a second phase which should unfold
relatively straightforwardly once its basic formalism teen designed.

3 OpL asan object query language

Let us consider an OPL program defining a transportation imodleertain set ofproductsare
manufactured and consumed in a setities Data describing theupplyis given specifying how
much of each product is manufactured at each city, how mudwaoh product is consumed at
each city, and how much it costs per unit of product to be skddpom each city to each city. We
want to establish how much of each good to transport betwities i such a way as to meet the
demand within the supply and minimize the total cost.

The complete listing of an OPL program defining a model foaagportation problem is given
in Appendix Section B. | will refer to the line numbers of thiating in the following discussion.

4 A review of object query language formalisms

In this section, | review prominent formalisms, focusingimiaon two recent proposals using
the notion of comprehension syntax due to Peter Buneshah. [1] with extensions to support
arrays—a data structure of prime importance for an langweéige mathematical programming
capabilities such as €. The first is due to Leonidas Fegaras and David Maier [9] are$ us
the notion ofMonoid Comprehensionshe second is due to Leonid Libkin, Rona Machlin, and
Limsoon Wong [14] and proposes a functional calculus ofyaatgjects. These two formalisms
are very similar, differing mostly in their treatment ofays (as collections in [9], and as functions
in [14]). My intention is to try and merge ideas from both far@urpose.

4.1 Monoid homomorphisms and comprehensions

The formalism presented here is based on [9] and assumeigafamiwith the notions and nota-
tions summarized in Appendix Section A.2. | will use the peogming view of monoids exposed
there using the specific notation of monoid attributes, itipalar for sets, bags, and lists. | will
also assume basic familiarity with naixecalculus and associated typing as presented in Appendix
Section A.3.

4.1.1 Monoid homomorphisms

Because many operations and data structures are monoisi$ntiéresting to use the associated
concepts as the computational building block of an esdes#tlaulus. In particular, iteration over

3

collection types can be elegantly formulated as computimgoaoid homomorphismThis no-
tion coincides with the usual mathematical notion of homgshsm, albeit given here from an
operational standpoint and biased toward collection nmamoiBasically, a monoid homomor-
phismhomg maps a functionf from a collection monoidp to any monoid ® by collecting all
the f-images of elements of @-collection using the> operation. For example, the expression
hom{, [Az.z + 1] applied to the lisf1,2,1,3,2] returns the sef2,3,4}. In other words, the
monoid homomorphisnfyom{, of a function f applied to a listZ corresponds to the following
loop computation:

result « {};
foreach z in L do result <« resultU f(z);
return result;

This is formulated formally as follows:

DEFINITION 4.1 (MONOID HOMOMORPHISM) A Monoid Homomorphisnfyomg defines amap-
ping from acollectionhomomorphisn@® to anymonoid such tha®4 C O, by:

bom3[f1(3s) = 30
hom3[fl(us(z)) = f(z)
hom3[fl(z ®y) = homP[f](z) ® hom$[f](y)

for any functionf : « — T, z : a, andy : «, whereTg = &4 (a).
Again, computationally, this amounts to executing thedi@ihg iteration:

result < 30;
foreach z; in ug(z1) ® - ®ug(z,) do result «+ result® f(z;); 1)
return result;

The reader may be puzzled by the conditién C O in Definition 4.1. It means that a
monoid homomorphisms may only be defined from a collectiomaibto a monoid that has at
least the same equational theory. In other words, one cgrgorfrom an empty theory monoid, to
either a{C'}-monoid or an{7}-monoid, or yet to §C, I'}-monoid. This requirement is due to an
algebraic technicality, and relaxing it would enable a middtmmmomorphism to be ill-defined. To
see this, consider going from, say, a commutative-idenmpatenoid to one that is commutative
but not idempotent. Let us take, for exampjemj. Then, this entails:

1 = hom} [Az.1]({a})
= hom{;[Az.1]({a} U {a})
= hom{[\z.1]({a}) + hom{[Az.1]({a})
=141
=2.

The reader may have noticed that this restriction has thertumfate consequence of disallow-
ing potentially useful computations, notable examplesidpe&iomputing the cardinality of a set,
or converting a set into a list. However, this drawback caredsgly overcome with a suitable
modification of the third clause in Definition 4.1, and othgpressions based on it, ensuring that
anomalous cases such as the above are dealt with by appedpsts.

4

Also of importance for the consistency of Definition 4.1 i tfact that a non-idempotent
monoid must be anti-idempotent, and a non-commutative idanast be anti-commutative. In-
deed, if® is non-idempotent as well as non-anti-idempotent (8ayp z9 = xzo for somezy),
then this entails:

bom [f1(x0) = bom3[f](zo & o)
= homZ[f](z0) © homZ[f](xo)

which is not necessarily true for non-idempotentA similar argument may be given for commu-
tativity. This consistency condition is in fact not restitie operationally as it is always verified
(e.g, alist will not allow partial commutation of any of its elemt®.

Here are a few familar functions expressed with well-defimeohoid homomorphisms:

length(l) = hom} [Az.1](l)
e€s = hom)j[Az.z = €](s)
sxt = bomiPabomIDy.{ (x5}](1)](s)

map(f,s) = bhomy[Az.{f(2)}](s)
filter(p,s) = homj[\z.if p(z) then {x} else {}](s).

4.1.2 Monoid comprehensions

The concept of monoid homomorphism is useful for expresaifigrmal semantics of iteration
over collections. However, it is not very convenient as agpmming construct. A natural no-
tation for such a construct that is both conspicuous and eaaxpressed in terms of monoid
homomorphisms is enonoid comprehensiorThis notion generalizes the familiar notation used
for writing a set in comprehension (as opposed to writingn iextension) using a pattern and a
formula describing its elements (as oppposed to listingsadilements). For example, the set com-
prehensior{(z,z?) | = € N, 3In.z = 2n} describes the set of paifs, z2) (thepatterr), verifying
the formulaz € N, In.z = 2n (the qualifier).

This notation can be extended to any (primitive or collattimonoid®. The syntax of a
monoid comprehension is an expression of the fasfe | Q} wheree is an expression called
the headof the comprehension, ar@ is called its qualifier and is a sequenge. .., q,, n > 0,
where eacly; is either

e ageneratorof the formz <« e, wherez is a variable and is an expression; or,
¢ afilter ¢ which is a boolean condition.

In a monoid comprehension expressiofe | @}, the monoid operatios is called theaccumu-
lator.

As for semantics, the meaning of a monoid comprehensionfigadkin terms of monoid
homomorphisms.

DEFINITION 4.2 (MoNOID COMPREHENSION The meaning of a monoid comprehension over a
monoid® is defined inductively as follows:

ug(e) if @ is a collection monoid

ofel} =

e if @ is a primitive monoid
ofe]z « ¢,Q} = pomEDz. @ {e] Q}(¢)
®{e]c,Q} E i c then @ {e]| Q} else 30

such thate : T4, €’ : €, and® is a collection monoid.

Note that although the input monoi# is explicit, each generatar < ¢’ in the qualifier has an
implicit collection monoid® whose characteristics can be inferred with polymorphiiniypules.

Although Definition 4.2 can be effectively computed usingted loops i(e., using the it-
eration semantics (1)), such would be in general rathefidiefit. Rather, an optimized imple-
mentation can be achieved by various syntactic transfooma&ixpressed as rewrite rules. Thus,
the principal benefit of using monoid comprehensions is tmidate efficient optimizations on a
simple and uniform general syntax of expressions irregpeof specific monoids.

Note that relationajoins are immediately expressible as monoid comprehensionsethdhe
join of two setsS andT using a functionf and a predicatp is simply:

Sl T £ U{f(z,y) |z « S,y « T,p(z,y)} (2

Typically, a relational join will takef to be a record constructor. For example, if we write a record
whose fieldsl; have values; fori = 1,...,n, as(1l; = ey,,...,1, = e,), then a standard
relational join is obtained with, say,(z,y) = (name = y.name,age = 2 * z.age), andp(zx,y)
may be any condition such asname = y.name, z.age > 18.

Clearly, monoid comprehensions can immediately expressi@giusing all usual relational
operators (and, indeed, object queries as well) and moat fiswctions. For example,

Jdz € s.e £ V{e]z « s} length(s) = +{1]z « s}

Vo € s.e E Me]z « s} sum(s) L 1 {z]z « s}

T ES L V{z=y|y « s} max(s) € max{z |z « s}
sNt L Uz]z « s,xet) filter(p,s) = U{z]z « s,p(z)}
comnt(a,s) £ +{l]z « s,z =a} flatten(s) = U{z |t « s,z « t}

Note that some of these functions will work only on apprdgrigypes of their arguments. For
example, the type of the argumentsaim must be a non-idempotent monoid, and so must the type
of the second argument ebunt. Thus,sum will add up the elements of a bag or a list, atwint

will tally the number of occurrences of an element in a bagl@taApplying eithersum or count

to a set will be caught as a type error.

4.1.3 Themonoid comprehension calculus

We are now in a position to propose a programming calculugyusionoid comprehensions. Fig-
ure 1 defines an abstract grammar for an expressaithe Monoid Comprehension Calculasd
amounts to adding comprehensions to an extended Typed Bigfain A-Calculus. Figure 2 gives
the typing rules for this calculus.

e u= 1 null value
| ¢ constant
| =z symbol
| Az.e abstraction
| e1 e application
| (11 =e1,---,1, =¢,) record
| el projection
| if e then eg else e3 conditional
| 3o monoid identity
| ug(e) monoid unit injection
| e1®er monoid operation
| &{e] Q} monoid comprehensior

Figure 1: The monoid comprehension calculus

4.2 Multidimensional arrays asfunctions
5 Discussion

5.1 What typesfor MATISSE?

Before we delve into redesigning a new Q) we need to ponder its type particularities—indeed,
peculiarities. The current € departs from conventional programming langauges whemieso
to types in several respects. Figure 3 shows the types seppoy CPL.

5.1.1 Primitivetypes
5.1.2 Object types
5.1.3 Collectionstypes
5.2 Array types

5.2.1 First-classindexing

HAK NOTE: Discuss the ZPL-region approach [3] for use MATISSE, and their sparse ver-
sion [4].

' 1:«
''kte:r

't a:71

Clx:m] Fe:m
' dre:m = m

F'Fer:mm—m, ' Fe:n
' ejre:m

ke :m, -+, 'k ep:mg
F |_ (11=61,--- ,lk=€k>:<11:7'1,--- ,lkZTk>
'Fe:Qyim, -, 1k 7g)

'+ el:r

't e :bool, ' Feg:m, ' Feg:T
I' - ife thenegelsees: 7

r I_a@I{I@

'kte:r

T F ougle): Cqy(7)

' + 61:‘:@,F F 62:‘3:@

' e ®ey: Ty

F'F e :€(7), T' F eg:&q(7)

I + 61@62:(’:@(7)

Ik e:%q

' @{e] }: %

''kte:7

F'F afe] }:eCq(7)

I'Foe:€o(m), Mr:n] - &fe |Q}:m

L' dfer |z + e,Q}:my

' F ex:bool, I' - &fe1 | Q}: 7

I'F @©fer]e,Q):7

foranyl’
for anyT, if type(a) =7

if D(z) =71

if1e{1,...,1;}

foranyl’

if @ is a collection monoid

if & is a primitive monoid

if @ is a collection monoid

if & is a primitive monoid

if @ is a collection monoid

if 0, C O

Figure 2: Typing rules for the Monoid Comprehension Calsulu

basic structure range enum setof(type) array[type]

Figure 3: QpL types

5.2.2 Indexingtypes

5.3 Functional abstraction
6 Designing MATISSE

6.1 Algebra
6.2 Semantics

6.3 Implementation
Appendix

In this part of the document, | summarize well-known notitret may be needed by some readers
lacking the appropriate background. This is in order tosplaose who already know this material
and unclutter the main body of the text. The latter reasorisis why Section B contains the
complete listing of the transportation model used in thewdision of Section 3.

A Technical Background

A.1 TheReational Modd
A.2 Monoids

In this section, all notions and notations relating to mdsaas they are used in this paper are
recalled and justified.

Mathematically, a monoid is a non-empty set equipped wittassociative internal binary
operation and an identity element for this operation. Fdgmizt S be a setx a function from
S x Sto S, ande € S;then,(S, %, ¢) is a monoid iff, for anyz, y, z in S:

zx(yxz)=(zxy)*z (3)
and
TXE=€XxT =E€. 4)

Most familiar mathematical binary operations define mosoikgor example, taking the set of
natural number®, and the set of boolean valuBs= {true, false}, the following are monoids:

e (N, +,0),

N, *,1),

N, max, 0),

B, V, false),

(
(
(
(B, A, true).

The operations of these monoids are so familiar that thegt neebe explicated. For us, they have
a “built -in” semantics that allows us to compute with themcei primary school. Indeed, we shall
refer to such readily interpreted monoidspasnitive monoids’

Note that the definition of a monoid does not preclude aduiti@lgebraic structure. Such
structure may be specified by other equations augmentindpabie monoid equational theory
given by the conjunction of equations (3) and (4). For examnall five monoids listed above are
commutativenamely, they also obey equation (5):

THRY=Y*xT (5)

for anyz, y. In addition, the three last onasg(, max, V, andA) are alsadempotentnamely, they
also obey equation (6):

TxT =1 (6)

for anyz.

Not all monoids are primitive monoids. That is, one may defimeonoid purely syntactically
whose operation only builds a syntactic structure rathaam theing interpreted using some semantic
computation. For example, linear lists have such a stracthe operation is list concatenation and
builds a list out of two lists; its identity element is the emlist. A syntactic monoid may also have
additional algebraic structure. For example, the monoildagfs is also defined as a commutative
syntactic monoid with the disjunct union operation and tmpty bag as identity. Or, the monoid
of sets is a commutative and idempotent syntactic monoil thié union operation and the empty
set as identity.

Because they are not interpreted, syntactic monoids possbéem as far as representation of
its elements is concerned. To illustrate this, let us carsith empty-theory algebraic structure;
that is, one without any equations—not even associatiatyidentity. Let us take such a structure
with one binary operation on, say, the natural numbeXs Saying thak is a “syntactic” operation
means that it constructs a syntactic teira.(an expression tree) by composing two other syntactic
terms. We thus can define the Bt of x-terms on some base set, say the natural numbers,
inductively as the limitJ,,>,T;, where,

N ifn=0
T,)
{tl*t2|ti€Tn_1,i=1,2} if n>0

Clearly, the sef is well defined and so is theoperation over it. Indeed is abona fidefunction
from T, x T, to T, mapping two termg; andi, in T, into a unique term i ,—namely,t; x ts.
This is whyT, is called thesyntacticalgebra®

2\We call these monoids “primitive” following the presentatiof Fegaras and Maier [9] as it adheres to a more
operational (as opposed to mathematical) approach motabiiito computer-scientists. Mathematically, however,
these should be called “semantic” monoids since they aeegreted by the computation semantics of their operations.

3For a fixed set of base elements and operations (which catestihat is formally called aignature, the syntactic
algebra is unique (up to isomorphism). This algebra is addled thefree or theinitial, algebra for its signature.

10

Let us now assume that theoperation is associativeie., thatx-terms verify Equation (3).
Note that this equation defines a (syntactichgruenceon T, which identifies terms such as, say,
1% (2%3)and(1*2)x3. In fact, for such an associativeoperation, the sef’, defined in
Equation (7) is not the appropriate domain. Rather, thet iigimain is the quotient set whose
elements are (syntactic) congruence classes modulo assibgiof x. Therefore, this creates an
ambiguity of representation of the syntactic structdres.

Similarly, more algebraic structure defined by larger eignal theories induces coarser quo-
tients of the empty-theory algebra by putting together imawmn congruence classes all the syn-
tactic expressions that can be identified modulo the the@guations. The more equations, the
more ambiguous the syntactic structures of expressionthevtatically, this poses no problem as
one can always abstract away from individuals to congruelasses. However, operationally one
must resort to some concrete artifact to obtain a uniquesemtation for all members of the same
congruence class. One way is to deviseaaonicalrepresentation into which to transform all
terms. For example, an associative operation could sysiatia “move” nested subtrees from
its left argument to its right argument—in effect using Eiipra (3) as a one-way rewrite rule.
However, while this is possible for some equational theprieis not so in generale-g, take
commutativity?

From a programming standpoint (which is ours), we can atisaa&ay from the ambiguity
of canonical representations of syntactic monoid termagusi flat notation. For example, in
LISP and Prolog, a list is seen as the (flat) sequence of itstiteants. Typically, a programmer
writes[1, 2, 1] to represent the list whose elements Bré and1 in this order, and does not care
(nor need s/he be aware) of its concrete representation.t-Aige a commutative idempotent
syntactic monoid—is usually denoted by the usual mathealaibtation{ 1, 2}, implicitly relying
on disallowing duplicate elements, not minding the ordewhich the elements appear. A bag,
or multiset—.e., a commutative but non-idempotent syntactic monoid—ussimdar notation,
allowing duplicate elements but paying no heed to the ord@rich they appeai;e., {1,2,1} is
the bag containing twice, and2 once.

Syntactic monoids are quite useful for programming as threyige adquate data structures
to represent collections of objects of a given type. Thusrefer to them agollection monoids
Now, a definition such as Equation (7) for a syntactic monalthough sound mathematically,
is not quite adequate for programming purposes. This isusecd defines the operations on
two distincttypesof elements; namely, the base elements (here natural nejrdoet constructed
elements. In programming, it is desirable that operatiangiten a crisp type. A way to achieve
this is by systematically “wrapping” each base elemeimto a term such asxe. This “wrapping”
is achieve by associating to the monoid a functigrfrom the base set into the monoid domain
called itsunit injection For example, #+ is the list monoid operation for concatenating two lists,
uy- () = [z] and one may view the ligt, b, ¢|] as[a]++[b] ++[c]. Similarly, the sefa, b, c} is
viewed as{a} U {b} U {c}, and the bad{a,b,c} as{a} W {b} w {c}. Clearly, this bases the
constructions on an isomorphic view of the base set rattzar the base set itself, while using a
uniform type for the monoid operator. Also, because the tffiee base elements is irrelevant for
the construction other than imposing the constraint tHatLeh elements be of the same type, we
present a collection monoid agpalymorphicdata type. This justifies the formal view of monoids
we give next using the programming notion of type.

“Note that this ambiguity never arises for semantic algebtasse operations are interpreted into a unique resuilt.
5Such are important considerations in the fieldesm rewriting[8], where the problem of finding canonical term
representations for equational theories was originaltfressed by Donald Knuth and Peter Bendix in a seminal paper
proposing a general effective method—the so-called KiBgheix Completion Algorithm [13]. The problem, inciden-
tally, is only semi-decidable. In other words, the KnuthaBix algorithm may diverge, although several interesting

variations have been proposed for a wide extent of praatiees (see [8] for a good introduction and bibliography).

11

® | To o Og ® | Cy |%To 3o | ua(z) | Og
+ | int 0 {C} U | set |set(a) | {} | {2} |{CTI}
* | int 1 {C} W | bag | bag(e) | {} | {z} {C}
max | int 0 |{C I} +H- | list | list(«@) |] [z] 0
V | bool | false | {C, I}
A | bool | true | {C, I}
Primitive monoids Collection monoids

Table 1: Attributes of a few common monoids

Because it is characterized by its operationa monoid is often simply referred to as
Thus, a monoid operation is used as a subscript to denoteataateristic attributes. Namely, for
a monoids,

o Tyisitstype (e, ®: Ty X Ty — Tg),
e 35 : Tg isits identity element,

e Og is its equational theoryi.€., a subset of the séC, I'}, whereC' stands for “commuta-
tive” and I for “idempotent”);

and, if it is a collection monoid,
e ¢ isits type constructorn.e., T¢ = Cg(a)),
e ug : a — Cq(a) isits unit injection.

Table 1 summarizes the monoid attributes of a few usual nadsnoi

A.3 TheTyped Polymorphic A\-Calculus

We assume a s€t of pregiven constants ususally denotedaby . . ., and a countably infinite set
of variable symbolsV usually denoted by, y,.... The syntax of a term of the A-Calculus is
given by the following grammar:

t == a (a € C) constant
| = (z € V) symbol
| Az.t (x €V) abstraction
| tt

application

(8)

o~

We shall callT the set of termg defined by this grammar. These terms are also cadlederms.
An abstraction\z.¢ defines dexical scopéfor its bound variablex, whose extent is itbody

t. Thus, the notion of free occurrence of a variable in a termheined as usual, and so is the

operationt, [t2 /x| of substituting a terna, for all the free occurrences of a variahién a term¢; .

Thus, a bound variable may be renamed to a new one in its sdtipmivchanging the abstraction.
The computation rule defined onterms is the so-called-reduction:

()\fl?.tl) to — tl[tQ/l']. (9)

12

We assume a sét of basic type symbols denoted By B, .. ., and a countably infinite set of
type variabled’ denoted byy, 3, The syntax of a type of the Typed Polymorphig-Calculus
is given by the following grammar:

-
(e € V) variable type (20)

A (A € B) basic type
(6%
T—=T function type

We shall callT the set of types defined by this grammar. AMonomorphic typés a type that
contains no variable types. Any type containing at leastvamiable type is called polymorphic
type

The terms of the Typed PolymorphicCalculus are only those raw termsThthat admit a
well-defined type ir7". Each constant i is assumed to have a unique type/inand we write
type(a) = 7 to mean that constanthas typer.

One may assign types to symbols using@e context’, which is a partial function fron¥” to
T. Given a type context, a variabler € V and a typer € 7, we define:

T if 2=y
Tz :7](y) = (12)
I(y) ifz#y.

In other wordsI'[z : 7] coincides withl" everywhere oV except atz, where it takes the value
7. Theempty contexis the function noted defined nowhere oW

To find out whether a termi in T is well-typed, one must exhibit a type assignment that
constitutes a suitable typing context for the variable sgislbccurring int, and from which one
may ascribe a (unique) type for the whole term. Given a typgecdI", a term¢, and a typer,
atype judgemenis an expression of the forin + ¢ : 7, which stands to mean thahas been
deemed to have type when the symbols occurring in it have the types assignedeim thy the
contextl". Without a type context, the expression : 7 is used to mean thét + ¢ : 7 for some
I.

Deriving types for terms is done usitgping rulesof the form:

Fl |_ tltTn,---Fn |_ thTn
'+ t:r

which is read as follows:#*has typer underl if ¢; has typer; underI’y, ..., andt, has typer,
underT',,.” Note that it is possible that = 0, in which case the rule is written:

'k t:7r

and it is called amxiom

The typing rules for the Typed PolymorphieCalculus are given in Figure 4. These rules can
be readily translated into a Logic Programming languagedhas Horn-clauses such as Prolog,
and used as an effective means to infer the types of expnssbassed on the Typed Polymorphic
A-Calculus.

The basic syntax of the Typed PolymorphieCalculus may be extended with other opera-
tors and convenient data structures as long as typing ratethé new constructs are provided.
Typically, one provides at least the S€tof integer constants anél = {true, false} of boolean
constants, along with basic arithmetic and boolean opes;apairing (or tupling), a conditional
operator, and a fix-point operator. The usual arithmetic laoolean operators are denoted by
constant symbols(g, +, *, —, /, V, A, etc). Let O be this set.

13

m f0r anyF, if type(a) =T

TFar TT@=T

Plz:m] F t:m
'k Azt:m — 1

'Fti:mm—=>mn, T Fi:n
I'F t1ta:m

Figure 4: Typing rules for the Typed PolymorphieCalculus

The computation rules for these operators are based onube#l semantics as one might
expect, modulo transforming the usual binary infix notatma “curryed” application. For exam-
ple, t; + to is implicitly taken to be thepplication (+ ¢1) t;. Note that this means that all such
operators are implicitly “curryed®”

For example, we may augment the grammar for the terms givés) s follows:

t = a (ae C=NUBUO) constant
| = (x € V) symbol
| Azt (z €V) abstraction
| tt application
| (ta e 7t> tupling (12)
| t.n (n €N) projection
| if t then t else ¢ conditional
| firt recursion
The computation rules for the other new constructs are:
t; ifl<i<k
(t1,o o te)d —
undefined otherwise
t1 if ¢ = true
(13)
if c then ty else to —> to if ¢ = false
undefined otherwise
fiect — t(firt)
To account for the new constructs, the syntax of types isnelet# accordingly to:
7 == int |bool basic type
| « (. € V) variable type
(14)
| (1, ,7T) tuple type
| 771 function type
5Recall that a curryed form of an-ary function f is obtained whery is applied to less arguments than it ex-
pects;i.e, f(ti,...,tx), for 1 < k < m. In the A-calculus, this form is simply interpreted as thbstraction
Azt ATp—k.f(t1, .. tk,21,. .., Zn—g). In their fully curried form, alln-ary functions can be seen as unary

functions; indeed, with this interpretation of curriedrfw, it is clear thaff (t1,...,tn) = (... (f t1) ... tn=1) tn.

14

'kta:r

' axz:7

Plz:m] F t:m

' Xet:m =7

FFti:mm—>mn, T Fit:n

I'F t1ta:m

| R AT S TR I o TR 8

rr <t17"' 7tk> : <7—17"' 7Tk>

CF b (m, 7k

'tmn:7t
' t1:bool, ' H tg:7, ' F t3:7

' + 1f tl tben t2 else t3 T

r-d¢t:7—>r71

' Ffigt:r

foranyT, if type(a) =7

if D(z) =71

if1<n<k

Figure 5: Typing rules for an Extended Typed Polymorphi€Calculus

extended calculus are given in Figure 5.

B A Transportation Model in OpL

[01]
[02]
[03]
[04]
[05]
[06]
[07]
[08]
[09]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

enum City ...;
enum Product ...;
float+ limit = ..;

struct TableRoutesType
{ Product p;
City o;
City d;
float+ cost;

h
{TableRoutesType} TableRoutes = ...;
struct Connection

{ City o;

City d;

%

struct Route

15

We are given thatype(n) = int for alln € Nand thatype(true) = bool andtype(false) =
bool. The (fully curried) types of the built-in operators are egivsimilarly; i.e., type(+)
int — (int — int), type(V) = bool — (bool — bool), etc, ... The typing rules for this

[20] { Product p;

[21] Connection e€;

[22] h

[23]

[24] {Route} Routes = { < p,<0,d> > | <p,0,d,c> in TableRoutes b
[25]

[26] {Connection} Connections = { ¢ | <p,c> in Routes };
[27]

[28] struct Supply

[29] { Product p;

[30] City o;

[31] 3

[32]

[33] {Supply} Supplies = { <p,c.0> | <p,c> in Routes };
[34]

[35] float+ supply[Supplies] =

[36]

[37] struct Customer

[38] { Product p;

[39] City d;

[40] h

[41]

[42] {Customer} Customers = { <p,c.d> | <p,c> in Routes };
[43]

[44] float+ demand[Customers] = ...;

[45]

[46] float+ cost[Routes];

[47]

[48] initialize

[49] { forall(<p,0,d,c> in TableRoutes)

[50] cost[< p,<0,d> >] = ¢;

[51] h

[52]

[53] {City} orig[p in Product] = { c.o | <p,c> in Routes };

[54] {City} dest[p in Product] = { c.d | <p,c> in Routes };

[55]

[56] {Connection} CP[p in Product] = { ¢ | <p,c> in Routes };

[57]

[58] assert

[59] forall(p in Product)

[60] sum(o in orig[p]) supply[<p,0>] = sum(d in dest[p]) dem and[<p,d>];
[61]

[62] var float+ trans[Routes];

[63]

[64] minimize

[65] sum(l in Routes) cost[l] * transl]

[66] subject to

[67] {

[68] forall(p in Product, o in orig[p])

[69] sum(<o,d> in CP[p]) trans[< p,<0,d> >] <= supply[<p,0> K
[70]

[71] forall(p in Product, d in dest[p])

[72] sum(<o,d> in CP[p]) trans[< p,<o0,d> >] >= demand[<p,d> I;
[73]

[74] forall(c in Connections)

16

[75]
[77]

sum(<p,c> in Routes) trans[<p,c>] <= limit;

k

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Peter Buneman, Leonid Libkin, Dan Suciu, Val Breazu+iam and Limsoon Wong. Com-
prehension syntaxACM SIGMOD Record23(1):87-96, March 1994. (Available onlif)e

Rick Cattell, Douglas Barry, Mark Berler, Jeff Eastmd@gvid Jordan, Craig Russell, Olaf
Schadow, Torsten Stanienda, and Fernando Velez, edi@bgect Data Standard—ODMG
3.0. Morgan Kaufmann, January 2000.

Bradford Chamberlain, Christopher Lewis, Calvin LimdaLawrence Snyder. Regions: An
abstraction for expressing array computationPtaceedings of the SIGAPL/SIGPLAN Inter-
national Conference on Array Programming Languagezges 41-49, August 1999. (Avail-
able onliné).

Bradford Chamberlain, Christopher Lewis, and LawreSogder. A region-based approach
for sparse parallel computing. Technical Report UW-CSEL®2®1, University of Washing-
ton at Seattle (Computer Science), November 1998. (Availabling).

Edgar F. Codd. A relational model of data for large shatath banks Communications of
the ACM 13(6):377-387, 1970.

Edgar F. Codd. Extending database relations to captune meaning. ACM Transactions
on Database Systen#(4):397-434, 1979.

Edgar F. Codd.The Relational Model for Database Managemehddison-Wesley, 1990.

Nachum Dershowitz. A taste of rewriting. In Peter E. Lausditor, Functional Program-
ming, Concurrency, Simulation and Automated Reasqmiages 199-228. Springer-Verlag,
1993. (Available onlin®).

Leonidas Fegaras and David Maier. Optimizing objectripseusing an effective calculus.
ACM Transactions on Database Syste@f(4):?7—?, December 2000. (Available onfife

Pascal van HentenryckThe OPL Optimization Programming Languag&he MIT Press,
1999.

Andreas Heuer and Marc H. Scholl. Principles of objgtented query languages. In H.-J.
Appelrath, editorProceedings of the GI Conference on Database Systems foe OFci-
entific, and Engineering Applications, Kaiserslautern,r@any, pages 178-197. Springer-
Verlag IFB 270, 1991. (Available onliné).

[12] James Hoffman. Introduction to Structured Query Laaggu (Available onlin¥), 1996—
2001.

"http://www.acm.org/sigs/sigmod/record/issues/9403/C omprehension.ps
8http://www.cs.washington.edu/homes/echris/papers/ap 199.ps
Sftp://ftp.cs.washington.edu/tr/1998/11/UW-CSE-98-11 -01.PS.Z
Phttp:/ww-sal.cs.uiuc.edu/"nachum/papers/taste-fix ed.ps.gz
http://lambda.uta.edu/tods00.ps.gz
2ftp:/fftp.informatik.uni-konstanz.de/pub/dbis/Publi cations/HS:BTW91.ps.gz

Bhttp://w3.one.net/jhoffman/sqltut.htm

17

[13] Donald E. Knuth and Peter B. Bendix. Simple word prokdeim universal algebras. In
J. Leech, editorComputational Problems in Abstract Algebreages 263—-297. Pergamon
Press, Oxford, UK, 1970. Reprinted Automatic Reasoning, Springer-Verlag, pp. 342—
276 (1983).

[14] Leonid Libkin, Rona Machlin, and Limsoon Wong. A queanbuage for multidimensional
arrays: Design, implementation, and optimization techegy InProceedings of the 1996
ACM SIGMOD International Conference on Management of Digtiantreal, Canadapages
228-239, May 1996. (Available onlitd.

[15] Frédéric Paulin. OPL language syntax critique angppsal for improvement. (Available
online®), April 2001. ILOG internal access only.

[16] Scott L. VandenbergAlgebras for Object-Oriented Query Languagé*hD thesis, Univer-
sity of Wisconsin at Madison (Computer Sciences), 1993ailable onliné®).

[17] Limsoon WongQuerying Nested Collection®hD thesis, University of Pennsylvania (Com-
puter and Information Science), 1994. (Available onife

Hhttp://www.cs.toronto.edu/ libkin/papers/sigmod96a. ps.gz
5file:/nfs/opl/matisse/deviopl syntax _critic.html
8ftp://ftp.cs.wisc.edu/pub/tech-reports/reports/1993 /tr1161.ps.Z

Yftp://ftp.cis.upenn.edu/publircs/tr/94-09.ps.Z

18

