
AN ABSTRACT AND REUSABLE

PROGRAMMING LANGUAGE ARCHITECTURE

HASSAN A ÏT-KACI
hak@ilog.fr

ILOG

Research and Development
Optimization Group

http://www.ilog.fr

9, rue de Verdun - B.P. 85
94253 Gentilly Cedex, France

June 3, 2002

(INCOMPLETE DRAFT)

Copyright c ILOG, S.A. and Hassan ÄIT-KACI

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

This document describes the design of an abstract reusable programming language architecture
and its implementation in Java. It represents the basis of the redesign of ILOG’s New Genera-
tion OPL (hereafter referred to as NGO), and constitutes the second facet of a larger soon-to-be
proposed ILOG R&D-wide project whose purpose would be to enable the quick integration of ne
useful programming abstractions into software at large,1 insofar as these abstract and reusable con-
structs, and any well-typed compositions thereof, may be instantiated in various modular language
configurations.2

1ILOG’s, for one,intra-and/orextra-company. . .
2The first facet was the elaboration ofJa, an advanced system for syntax-directed compiler generation [3]. The

third facet will be the integration of logic-relational (from Logic Programming) and objet-relational (from Database
Programming). A later facet may be to complete the design to enable bothLIFE-technology [2] andCSP/LP technol-
ogy to cohabit.

A ÏT-KACI PAGE 1 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

PAGE 2 OF 55 HASSAN

Contents

1 Introduction

2 Overview

2.1 Abstract programming language design

2.1.1 Surface language .

2.1.2 Kernel language .

2.1.3 Type language .

2.1.4 Intermediate language .. .

2.1.5 Execution backend .

2.1.6 Pragmatics .

3 The kernel language

3.1 Kernel expression

3.2 Processing a kernel expression

3.2.1 Sanitizer .

3.2.2 Typechecker .

3.2.3 Compiler .

3.3 Description of kernel expressions

3.3.1 Constant .

3.3.2 Abstraction .

3.3.3 Application .

3.3.4 Local .

3.3.5 Global .

3

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

3.3.6 IfThenElse . 19

3.3.7 AndOr . 20

3.3.8 Sequence . 21

3.3.9 Let . 21

3.3.10 Loop . 21

3.3.11 ExitWithValue .22

3.3.12 Definition . 24

3.3.13 Parameter . 24

3.3.14 Assignment . 24

3.3.15 NewObject . 24

3.3.16 FieldUpdate .24

3.3.17 NewArray . 24

3.3.18 ArraySlot . 24

3.3.19 ArraySlotUpdate .. 24

3.3.20 Tuple . 24

3.3.21 NamedTuple . 24

3.3.22 TupleProjection .. . 24

3.3.23 TupleUpdate . 24

3.3.24 Dummy . 24

3.3.25 ArrayExtension .. 24

3.3.26 ArrayInitializer 24

3.3.27 Homomorphism . 24

3.3.28 Comprehension .27

3.3.29 CompiledExpression .. . 28

4 The Type System 29

4.1 Overview . 29

4.1.1 Polymorphism . 29

4.1.2 Multiple Type Overloading 30

4.1.3 Currying . 30

4.1.4 Standardizing .30

PAGE 4 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

4.1.5 Copying .

4.1.6 Equality .

4.1.7 Unifying .

4.1.8 Boxing/Unboxing .

4.2 The Type System .

4.3 Type Definitions .. .

4.3.1 Type aliasing .

4.3.2 Type hiding .

4.4 Static types ..

4.4.1 Primitive types .

4.4.2 Type constructors ..

4.4.3 Polymorphic types .

4.4.4 Type aliasing .

4.4.5 Type hiding .

4.5 Dynamic types .

4.5.1 Conditional types ..

4.5.2 The notion of dynamically constrained type (int+, float+,...)

4.5.3 Extensional types ..

5 The instruction base

6 The backend system

6.1 The runtime system .. .

6.2 The runtime objects

6.3 The display manager .. .

6.4 The error manager .. .

7 A full example—HAK LL

8 Conclusion

A A word on traceability

A.1 Relating concrete and abstract syntax

A ÏT-KACI PAGE 5 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

A.1.1 Syntax errors . 49

A.1.2 Static Semantics errors 49

A.1.3 Dynamic Semantics errors .. . 49

A.2 Displaying and reading 49

A.2.1 Displaying . 50

A.2.2 Reading . 50

A.2.3 Concretizing abstract syntax down 50

A.2.4 Abstracting concrete syntax away 50

B A four-panelled architecture 51

B.1 The Complete Kernel .. . 51

B.1.1 Sanitizing . 51

B.1.2 Type checkingvs. inference . 51

B.1.3 Compiling . 51

B.2 The Complete Type System 52

B.2.1 The type prover . 53

B.3 Structure of theTypeChecker . 53

B.3.1 The type constructs .. 54

B.3.2 Defining new types . 54

B.4 The Basic Instruction Set 54

B.5 The Complete Backend .. . 54

B.5.1 TheRuntime class . 54

B.5.2 TheRuntimeObject class . 54

B.5.3 TheDisplayManager class . 54

B.5.4 TheErrorManager class . 54

PAGE 6 OF 55 HASSAN

Chapter 1

Introduction

This document’s purpose is to describe, explain, and justify the design of theilog.language-
.design package. Its main goal is to serve as a specification as well asa documentation of the
details of various of its intricacies. As such, it serves mainly its author helping him to keep track
of subtleties he alone may know of but may not remember—at least not in full detail—and,
course, it is meant for the sake of the few, the proud, the“volunteer” pre-�-testers of the viability
of the whole design—especially the NGO design team, and any others having been exposed, willy
or nilly, to some of, or the whole package!1

1Thank you Patrick Viry, Frédéric Paulin, Chritiane Bracchi, and Chrisptophe Gefflot!...;-)

7

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

PAGE 8 OF 55 HASSAN

Chapter 2

Overview

2.1 Abstract programming language design

2.1.1 Surface language

2.1.2 Kernel language

2.1.3 Type language

2.1.4 Intermediate language

2.1.5 Execution backend

Semantic language: Runtime objects

Type-directed Display manager

Type-directed Data Reader

2.1.6 Pragmatics

Concretevs.abstract error handling

Concretevs.abstract Vocabulary

9

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

PAGE 10 OF 55 HASSAN

Chapter 3

The kernel language

3.1 Kernel expression

3.2 Processing a kernel expression

Typically, upon being read, anExpression will be:

1. “name-sanitized”—in the context of aSanitizer to discriminate between local names
and global names, and establish pointers from the local variable occurrences to the abstrac-
tion that introduces them, and from global names to entries in the global symbol table;

2. type-checked—in the context of aTypeChecker to discover whether it has a type at all,
or several possible ones (only expressions that have a unique unambiguous type are further
processed);

3. “sort-sanitized”—in the context of aSanitizer to discriminate between those local vari-
ables that are of primitive Java types (int ordouble) or ofObject type (this is necessary
because the set-up means to use unboxed values of primitive types for efficiency reasons);
this second “sanitization” phase is also used to compute offsets for local names (i.e., so-
calledde Bruijn indices) for each type sort;

4. compiled—in the context of aCompiler to generate the sequence of instructions whose
execution in an appropriate runtime environment will evaluate the expression;

5. executed—in the context of aRuntime to execute its sequence of instructions.

11

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

3.2.1 Sanitizer

A sanitizeris an object that “cleans up”—so to speak—an expression of its remaining ambiguities
as it is being processed. There are two kinds of ambiguities that must be “sanitized:”� after parsing, it must be determined which identifiers are the names oflocal variablesvs.

those ofglobalvariables;� after type-checking, it must be determined the runtime sortof every abstraction parameter
and use this to compute the local variable environment offsets of each local variable.1

Thus a sanitizer is a discriminator of names and sorts.2

3.2.2 Typechecker

The type checker is in fact a type inference machine that synthesizes missing type information
by type unification. It may be (and often is) used as a type-checking automaton when types are
(partially) present.

Each expression must specify its owntypeCheck(TypeChecker) method that encodes its
formal typing rule.

3.2.3 Compiler

This is the class defining a compiler object. Such an object serves as the common compilation
context shared by anExpression and the subexpressions comprising it. Each type of expres-
sion representing a syntactic construct of the kernel language defines acompile(Compiler)
method that specifies the way the construct is to be compiled in the context of a given compiler.
Such a compiler object consists of attributes and methods for generating straightline code which
consists of the sequence of instructions corresponding to atop-level expression and its subexpres-
sions.

Upon completion of the compilation of a top-level expression, a resulting code array is extracted
from the sequence of instructions, which may then be executed in the context of aRuntime
object, or, in the case of aDefinition, be saved in the code array in theDefinition’s
codeEntry() field—aDefinedEntry object, which encapsulates its code entry point, which
in turn may then be used to access the defined symbol’s code forexecution).

1These offsets are the so-calledde Bruijn indices of�-calculus [4]. Or rather, their sorted version.
2It has occurred to this author that his choice of the word “sanitizer” is perhaps a tad of a misnomer—

“discriminator” may be a better choice. This also goes for theilog.language.design.kernel.Sanitizer
class’ method names (i.e.,discriminateNames anddiscriminateSorts rather thansanitizeNames and
sanitizeSorts).

PAGE 12 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

Each expression construct of the kernel must therefore specify a compiling rule. Such a rule
expresses how the abstract syntax construct maps into a straightline code sequence.

3.3 Description of kernel expressions

The classExpression is the mother of all expressions in the kernel language. It specifies the
prototypes of the methods that must be implemented by all expression subclasses. The subclasses
of Expression are:� Constant: constant (void, boolean, integer, real number, object);3� Abstraction: functional abstraction (à la �-calculus);4� Application: functional application;� Local: local name;� Global: global name;� IfThenElse: conditional;� AndOr: non-strict boolean conjunction and disjunction;� Sequence: sequence of expressions (presumably with side-effects);� Let: lexical scoping construct;� Loop: conditional iteration construct;� ExitWithValue: non-local function exit;� Definition: definition of a global name with an expression defining it in aglobal store;� Parameter: a function’s formal parameter (really a pseudo-expression as it is not fully

processed as a real expression and is used as a shared type information repository for
occurrences in a function’s body of the variable it stands for);� Assignment: construct to set the value of alocal or aglobal variable;� NewObject: construct to create a new object;� FieldUpdate: construct to update the value of an object’s field;� NewArray: construct to create a new (multidimensional) array;� ArraySlot: construct to access the element of an array;� ArraySlotUpdate: construct to update the element of an array;

3Section 3.3.1.
4Section 3.3.2.

A ÏT-KACI PAGE 13 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE� Tuple: construct to create a new position-indexed tuple;� NamedTuple: construct to create a new name-indexed tuple;� TupleProjection: construct to access the component of a tuple;� TupleUpdate: construct to update the component of a tuple;� Dummy: temporary place holder in lieu of a name prior to being discriminated into a local or
global one.� ArrayExtension: construct denoting a literal array;� ArrayInitializer: construct denoting a syntactic convenience for specifying initial-
ization of an array from an extension;� Homomorphism: construct denoting a monoid homomorphism;� Comprehension: construct denoting a monoid comprehension;

In this section, we are going to give a detailed description of each kernel construct. The description
of an expression will have the following items:� ABSTRACT SYNTAX,� OPERATIONAL SEMANTICS,� TYPING RULE,� COMPILING RULE.

ABSTRACT SYNTAX

This describes the abstract syntax form of the kernel expression. A kernel expression will be
written in blue.
OPERATIONAL SEMANTICS

This describes informally the meaning of the expression. The notation[[e℄℄, wheree is an abstract
syntax expression, denotes the (mathematical) semanticdenotationof e. The notation[[T ℄℄, whereT is a type, denotes the (mathematical) semanticdenotationof T—namely,[[T ℄℄ is the set of all
abstract denotations[[e℄℄’s such that kernel expressione has typeT .

TYPING RULE

This describes formally the logical rules for typing the kernel expression. A type will be written inred.

A typing ruleis a formula of the form:J1; : : : ; JnJ (3.1)

PAGE 14 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

whereJ and theJi’s, i = 0; : : : ; n; n � 0, aretyping judgments. Whenn = 0, the rule is called
anaxiomand is written with an empty “numerator.”

A conditionaltyping rule is a typing rule of the form:J1; : : : ; JnJ if (J1; : : : ; Jn) (3.2)

where is a Boolean metacondition involving the rule’s judgments.

A typing judgmentis a formula of the form� ` e : T , and is read as: “undertyping context�

expressione has typeT .”

A typing rule, or its (un/conditional) typing axiom form, isbest read backwards (or upwards)—i.e.
from the rule’sconclusion(the bottom part, or “denominator”) to the rule’spremises(the top part,
or “numerator”). Namely, the rule of the form:�1 ` e1 : T1; : : : ; �n ` en : Tn� ` e : T (3.3)

is read thus:

“The expressione has typeT under typing context� if the expressione1 has typeT1

under typing context�1, and . . . , the expressionen has typeTn under typing context�n.”

In its simplest form, atyping context� is a function mapping the kernel’s�-abstractions’ parame-
ters to their types. In the formal presentation of an expression’s typing rule, the context keeps the
type binding under which the typing derivation has progressed up to applying the rule in which
occurs.

The notation�[x : T ℄ denotes the context defined from� as follows:�[x : T ℄(y) def= � T if y = x;�(x) otherwise: (3.4)

A conditionaltyping rule is a typing rule of the form:�1 ` e1 : T1; : : : ; �n ` en : Tn� ` e : T if (�;�1; : : : ;�n; e; e1; : : : ; en; T ; T1; : : : ; Tn) (3.5)

where(�;�1; : : : ;�n; e; e1; : : : ; en; T ; T1; : : : ; Tn) is a Boolean meta-condition involving the con-
texts, expressions, and types. Such a rule is read thus:

“ If the meta-condition holds,then the expressione has typeT under typing context� if the expressione1 has typeT1 under typing context�1, and . . . , the expressionen has typeTn under typing context�n.”

A ÏT-KACI PAGE 15 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

An (unconditional) typing axiom:� ` e : T (3.6)

is read thus:

“The expressione has typeT under typing context�.”

The(conditional) typing axiomform:� ` e : T if (�; e; T) (3.7)

where(�; e; T) is a boolean meta-condition on typing context�, expressione, and typeT , is read
thus:

“ If the meta-condition(�; e; T) holdsthen the expressione has typeT under typ-
ing context�.”

For example,� ` : Boolean; � ` e1 : T; � ` e2 : T� ` if then e1 else e2 : T (3.8)

is read thus:

“The expressionif then e1 else e2 has typeT under typing context� if the expres-
sion has typeBoolean under typing context� and if both expressionse1 ande2 have
the same typeT under the same typing context�.”

COMPILING RULE

This describes the way the expression’s components are mapped into a straightline sequence of
instructions. An instruction (or generally any instruction sequence) will be written inMAGENTA.
Any meta-information annotation used in code instructionsor instruction sequences will be written
in green.

The compiling rule for expressione is given as a functionompile[[℄℄ of the form:ompile[[e℄℄ = INSTRUCTION 1

...
INSTRUCTIONn (3.9)

PAGE 16 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

3.3.1 Constant

ABSTRACT SYNTAX

A Constantexpression is an atomic literal. Objects of classConstant denote literal constants:
the integers (e.g., �1, 0, 1, etc.), the real numbers (e.g., �1:23, . . . , 0:0, . . . , 1:23, etc.), the
characters (e.g., 0a0, 0b0, 0�0, 0#0, etc.), and the constantsvoid, true, andfalse. The constantvoid

of typeVoid, such that:[[Void℄℄ def= f[[void℄℄g
and the constantstrue andfalse of typeBoolean, such that:[[Boolean℄℄ def= f[[false℄℄; [[true℄℄g:

Other built-in types are:[[Int℄℄ def= Z = f: : : ; [[�1℄℄; [[0℄℄; [[1℄℄; : : :g[[Real℄℄ def= R = f: : : ; [[�1:23℄℄; : : : ; [[0:0℄℄; : : : ; [[1:23℄℄; : : :g[[Char℄℄ def= set of all Unicode characters[[String℄℄ def= set of all finite strings of Unicode characters.

Thus, theConstant expression class is further subclassed into:Int, Real, Char, NewOb-
ject, andBuiltinObjectConstant, whose instances denote, respectively: integers, floating-
point numbers, characters, new objects, and built-in object constants (e.g., strings).

TYPING RULE

A ÏT-KACI PAGE 17 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

The typing rules for each kind of constant are:

[void] � ` void : Void

[true] � ` true : Boolean

[false] � ` false : Boolean

[int] � ` n : Int if n is an integer

[real] � ` n : Real if n is a floating-point number

[char] � ` : Char if is a character

[string] � ` s : String if s is a string

(3.10)

We postpone for now the typing of object constants until we understand object types.

3.3.2 Abstraction

ABSTRACT SYNTAXfuntion x1; : : : ; xn � e

TYPING RULE �[x1 : T1℄ � � � [xn : Tn℄ ` e : T� ` funtion x1; : : : ; xn � e : T1; : : : ; Tn ! T (3.11)

PAGE 18 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

3.3.3 Application

ABSTRACT SYNTAXf(e1; : : : ; en)
TYPING RULE� ` e1 : T1; � � � ; � ` en : Tn; � ` f : T1; : : : ; Tn ! T� ` f(e1; : : : ; en) : T (3.12)

3.3.4 Local

3.3.5 Global

3.3.6 IfThenElse

ABSTRACT SYNTAXif then e1 else e2
OPERATIONAL SEMANTICS

TYPING RULE� ` : Boolean; � ` e1 : T; � ` e2 : T� ` if then e1 else e2 : T (3.13)

COMPILING RULEompile[[if then e1 else e2℄℄ = ompile[[℄℄

JUMP ON FALSE jofompile[[e1℄℄

JUMP jmp
jof : ompile[[e2℄℄

jmp : : : : (3.14)

A ÏT-KACI PAGE 19 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

3.3.7 AndOr

ABSTRACT SYNTAXe1 and=or e2

TYPING RULE� ` e1 : Boolean; � ` e2 : Boolean� ` e1 and=or e2 : Boolean (3.15)

And

COMPILING RULEompile[[e1 and e2℄℄ = ompile[[e1℄℄

JUMP ON FALSE jofompile[[e2℄℄

JUMP ON TRUE jot
jof : PUSH FALSE

JUMP jmp
jot : PUSH TRUE

jmp : : : : (3.16)

Or

COMPILING RULEompile[[e1 or e2℄℄ = ompile[[e1℄℄

JUMP ON TRUE jotompile[[e2℄℄

JUMP ON FALSE jof
jot : PUSH TRUE

JUMP jmp
jof : PUSH FALSE

jmp : : : : (3.17)

PAGE 20 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

3.3.8 Sequence

ABSTRACT SYNTAXf e1; : : : ; en g
TYPING RULE� ` e1 : T1; : : : ; � ` en : Tn� ` f e1; : : : ; en g : Tn (3.18)

COMPILING RULEompile[[f e1; : : : ; en g℄℄ = ompile[[e1℄℄
POP sort(e1)

...ompile[[en℄℄ (3.19)

3.3.9 Let

3.3.10 Loop

ABSTRACT SYNTAXwhile do e (3.20)

OPERATIONAL SEMANTICS

TYPING RULE� ` : Boolean; � ` e : T� ` while do e : Void (3.21)

COMPILING RULE

A ÏT-KACI PAGE 21 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

ompile[[while do e℄℄ = loop : ompile[[℄℄

JUMP ON FALSE jofompile[[e℄℄

JUMP loop
jof : PUSH VOID

(3.22)

3.3.11 ExitWithValue

ABSTRACT SYNTAXexit with v

OPERATIONAL SEMANTICS

Normally, exiting from an abstraction is done simply by “falling off” (one of) the tip(s) of the
expression tree of the abstraction’s body. This operation is captured by the simple operational
semantics of each of the threeRETURN instructions. Namely, when executing aRETURN instruction,
the runtime performs the following three-step procedure; it

1. pops the result from its result stack;5

2. restores the (previously saved) runtime state;

3. pushes the result popped in Step 1 onto the restored state’s own result stack.

However, it is also often desirable, under certain circumstances, that computation maynot be let
to proceed further at its current level of nesting of exitable abstractions. Then, computation may
be allowed to return right away from this current nesting (i.e., as if having fallen off this level of
exitable abstraction) when the conditions for this to happen are met. Exiting an abstraction thus
must also return a specific value that may be a function of the context. This is what theexit with v
kernel constructionexit with v expresses. This kernel construction is provided in order tospecify
that the current local computation should terminate without further ado, and exit with the value
denoted by the specified expression.

TYPING RULE

Now, there are several notions in the above paragraphs that need some clarification. For example,
what an“exitable” abstraction is, and why worry about a dedicated construct inthe kernel language
for such a notion if it does nothing more than what is done by aRETURN instruction.

5Wherestackhere means “stack ofappropriateruntime sort;” approppriate, that is, as per the instruction’s sort—
viz., INT, REAL, or runtimeOBJECT.

PAGE 22 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

First of all, from its very nameexit with v assumes that computation hasenteredthat from which
mustexit. This is anexitableabstraction; that is, the latest�-abstraction having the property of be-
ing exitable. Not all abstractions are exitable. For example, any abstraction that is generated as part
of the target of some other kernel expression’s syntacting sugar (e.g., let x1 = e1; : : : ; xn = en; in e

or h�; 11�ife j x1 e1; : : : ; xn eng, and more generally any construct that hide implicit ab-
stractions within), willnot be deemed exitable.

Secondly, exiting with a valuev means that the typeT of v must be congruent with what the return
type of the abstraction being exited is. In other words:� ` �� : T 0 ! T ; � ` v : T� ` exit with v : T (3.23)

where�� denotes the latestexitableabstraction in the context�.

The above scheme indicates the following necessities:

1. The typing rules for an abstraction deemed exitable must record in its typing context� the
value of��, the type in� of the latest exitable abstraction, if any such exists; (if none does,
a static semantics error is triggered to indicate that it is impossible to exit from anywhere
before first entering somewhere).

2. Congruently, thePUSH CLOSURE instruction must take care of chaining the state it pushes
in the saved state stack of the runtime system each time a closure coming from an exitable
abstraction is entered; (dually, this exitable state stackmust also be popped upon “falling
off”— i.e., normally exiting—an exitable closure).

3. NewNL RETURN instructions (for each runtime sort) must be defined like their corresponding
RETURN instructions except that the runtime state to restore is theone popped out of the
exitable state stack.

COMPILING RULEompile[[exit with v℄℄ = ompile[[v℄℄

NL RETURN sort(v) (3.24)

A ÏT-KACI PAGE 23 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

3.3.12 Definition

3.3.13 Parameter

3.3.14 Assignment

3.3.15 NewObject

3.3.16 FieldUpdate

3.3.17 NewArray

3.3.18 ArraySlot

3.3.19 ArraySlotUpdate

3.3.20 Tuple

3.3.21 NamedTuple

3.3.22 TupleProjection

3.3.23 TupleUpdate

3.3.24 Dummy

3.3.25 ArrayExtension

3.3.26 ArrayInitializer

3.3.27 Homomorphism

This is the class of objects denoting (monoid) homomorphisms. Such an expression means to
iterate through a collection, applying a function to each element, accumulating the results along
the way with an operation, and returning the end result. Moreprecisely, it is the built-in version of
the general computation scheme whose instance is the following “hom” functional, which may be
formulated recursively, for the case of a list collection, as:

PAGE 24 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

hom11�� (f)[℄ = 11�
hom11�� (f)[HjT ℄ = f(H)� hom11�� (f)T (3.25)

Clearly, this scheme extends a functionf to a homomorphism of monoids, from the monoid of lists
to the monoid defined byh�; 11�i.
Thus, an object of this class denotes the result of applying such a homomorphic extension of
function (f) to an element of collection monoid (i.e., a data structure such as a set, a list, or
bag), the image monoid being implicitly defined by the binaryoperation (�)—also called the
accumulationoperation. It is made to work iteratively.

For technical reasons, we need to treat specially so-calledcollectionhomomorphisms;i.e., those
whose accumulation operation constructs a collection, such as a set. Although a collection ho-
momorphism can conceptualy be expressed with the general scheme, the function applied to
element of the collection will return a collection (i.e., a free monoid) element, and the result
the homomorphism is then the result of tallying the partial collections coming from applying the
function to each element into a final “concatenation.”

Other (non-collection) homomorphisms are calledprimitivehomomorphisms. For those, the func-
tion applied to all elements of the collection will return acomputedelement that may be directly
composed with the other results. Thus, the difference between the two kinds of (collection
primitive) homomorphisms will appear in the typing and the code generated (collection homomor
phism requiring an extra loop for tallying partial results into the final collection). It is easy to mak
the distinction between the two kinds of homomorphisms thanks to the type of the accumulation
operation (see below).

Therefore, acollection homomorphismexpression constructing a collection of typeoll(T) con-
sists of:� the collection iterated over—of typeoll0(T 0);� the iterated function applied to each element—of typeT 0 ! oll(T); and,� the operation “adding” an element to a collection—of typeT; oll(T) ! oll(T).
T’ primitive homomorphismcomputing a value of typeT consists of:� the collection iterated over—of typeoll0(T 0);� the iterated function applied to each element—of typeT 0 ! T ; and,� the monoid operation—of typeT; T ! T .

A ÏT-KACI PAGE 25 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

Even though the scheme of computation for homomorphisms described above is correct, it is not
often used, especially when the function already encapsulates the accumulation operation, as is
always the case when the homomorphism comes from the desugaring of a comprehension—see
below). Then, such a homomorphism will directly side-effect the collection structure specified as
the identity element with a function of the formfuntion x � x� 11� (i.e., adding elementx to the
collection) and dispense altogether with the need to accumulate intermediate results. We shall call
those homomorphismsin-placehomomorphisms. To distinguish them and enable the suprression
of intermediate computations, a flag indicating that the homomorphism is to be computed in-place
is provided. Both primitive and collection homomorphisms can be specified to be in-place. If
nothing regarding in-place computation is specified for a homomorphism, the default behavior
will depend on whether the homomorphism is collection (default is in-place), or primitive (default
is not in-place). Methods to override the defaults are provided.

For an in-place homomorphism, the iterated function encapsulates the operation, which affects the
identity element, which thus accumulates intermediate results and no further composition using
the operation is needed. This is especially handy for collections that are often represented, for
(space and time) efficiency reasons, by iteratable bulk structures constructed by allocating an empty
structure that is filled in-place with elements using a built-in “add” method guaranteeing that the
resulting data structure is canonical—i.e., that it abides by the algebraic properties of its type of
collection (e.g., adding an element to a set will not create duplicates,etc.).

Although monoid homomorphisms are defined as expressions inthe kernel, they are not meant to
be represented directly in a surface syntax (although they could, but would lead to rather cumber-
some and not very legible expressions). Rather, they are meant to be used for expressing higher-
level expressions known asmonoid comprehensions, which offer the advantage of the familar (set)
comprehension notation used in mathematics, and can be translated into monoid homomorphisms
to be type-checked and evaluated.

A monoid comprehension is an expression of the form:h�; 11�ife j q1; :::; qng (3.26)

whereh�; 11�i define a monoid,e is an expression, and theq i’s arequalifiers. A qualifier is either
abooleanexpression or a pairx e, wherex is a variable ande is an expression. The sequence
of qualifiers may also be empty. Such a monoid comprehension is just syntactic sugar that can be
expressed in terms of homomorphisms as follows:h�; 11�ife j g def= e� 11�h�; 11�ife j x e0; Qg def= hom11�� [�x:h�; 11�ife j Qg℄(e0)h�; 11�ife j ; Qg def= if then h�; 11�ife j Qg else 11� (3.27)

PAGE 26 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

This is explained more formally in Section 3.3.28.

Comprehensions are also interesting as they may be subject to transformations leading to more
efficient evaluation than their simple “nested loops” operational semantics (by using “unnesting”
techniques and using relational operations as implementation instructions). At any rate, homomor
phisms are here treated “naively” and compiled as simple loops.

3.3.28 Comprehension

The concept of monoid homomorphism is useful for expressinga formal semantics of iteration ov
collections. However, it is not very convenient as a programming construct. A natural notation for
such a construct that is both conspicuous and can be expressed in terms of monoid homomor
phisms is amonoid comprehension. This notion generalizes the familiar notation used for writing
a set in comprehension (as opposed to writing it in extension) using a pattern and a formula de-
scribing its elements (as oppposed to listing all its elements). For example, the set comprehensionfhx; x2i j x 2 N; 9n:x = 2ng describes the set of pairshx; x2i (thepattern), verifying the formulax 2 N ; 9n:x = 2n (thequalifier).

This notation can be extended to any (primitive or collection) monoid�. The syntax of a monoid
comprehension is an expression of the form�fe [℄ Qg wheree is an expression called thehead
the comprehension, andQ is called its qualifier and is a sequenceq1; : : : ; qn, n � 0, where eachqi

is either� ageneratorof the formx e, wherex is a variable ande is an expression; or,� afilter � which is a boolean condition.

In a monoid comprehension expression�fe [℄ Qg, the monoid operation� is called theaccumu-
lator.

As for semantics, the meaning of a monoid comprehension is defined in terms of monoid homo-
morphisms.

DEFINITION 3.3.1 (MONOID COMPREHENSION) The meaning of a monoid comprehension over
a monoid� is defined inductively as follows:�fe [℄ g def= 8<: u�(e) if � is a collection monoide if � is a primitive monoid�fe [℄ x e0; Qg def= hom��[�x: � fe [℄ Qg℄(e0)�fe [℄ ; Qg def= if then � fe [℄ Qg else z�

such thate : T�, e0 : T�, and� is a collection monoid.

A ÏT-KACI PAGE 27 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

Note that although the input monoid� is explicit, each generatorx e0 in the qualifier has an
implicit collection monoid� whose characteristics can be inferred with polymorphic typing rules.

Although Definition 3.3.1 can be effectively computed usingnested loops (i.e., using the iteration
semantics (3.25)), such would be in general rather inefficient. Rather, an optimized implementation
can be achieved by various syntactic transformation expressed as rewrite rules. Thus, the principal
benefit of using monoid comprehensions is to formulate efficient optimizations on a simple and
uniform general syntax of expressions irrespective of specific monoids.

Thus, monoid comprehensions allow the formulation of “declarative iteration.” Note the fact men-
tioned earlier that a homomorphism coming from the translation of a comprehension encapsulates
the operation in its function. Thus, this is generally takento advantage with operations that cause
a side-effect on their second argument to enable an in-placehomomorphism to dispense with un-
needed intermediate computation.

3.3.29 CompiledExpression

PAGE 28 OF 55 HASSAN

Chapter 4

The Type System

4.1 Overview

We first define some basic terminology regarding the type system and operations on types.

4.1.1 Polymorphism

Here, by “polymorphism,” we mean ML-polymorphism (i.e., 2nd-order universal)—with a fe
differences that will be explained along the way—in other words, types presented with a grammar
such as:[1℄ Type ::= SimpleTypej Polytype[2℄ SimpleType ::= BasicTypej FunctionTypej TypeParameter[3℄ BasicType ::= Int j Real jBoolean j . . .[4℄ FunctionType ::= SimpleType! SimpleType[5℄ TypeParameter::= � j �0 j . . .j � j � 0 j . . .[6℄ PolyType ::= 8 TypeParameter: Type

that ensures that universal type quantifiers occur only at the outset of a polymorphic type.1

1Or more precisely that8 never occurs nested inside a function type arrow!. This apparently innocuous detail
ensures decidability of type inference. BTW, the2nd order comes from the fact that the quantifier applies totype
parameters (as opposed to1st order, if it had applied tovalueparameters). Theuniversalcomes from8, of course.

29

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

4.1.2 Multiple Type Overloading

This is also often calledad hocpolymorphism. When enabled (the default), this allows a same
identifier to have several unrelated types. Generally, it isrestricted to names with functional types.
However, since functions are first-class citizens, this restriction makes no sense, and therefore the
default is to enable multiple type overloading for all types.

Note that there is no established technology that prevails for supportingbothML-polymorphic type
inference and multiple type overloading. Here (and in several other parts of this overall design) I
have had to innovate and put to use techniques from (Constraint) Logic Programming to be able to
prove the combination of types supportable by this architecture.

4.1.3 Currying

Currying is an operation that exploits the following mathematical isomorphism of types:2t; t0 ! t00 ' t! (t0 ! t00) (4.1)

which can be generalized to its multiple form:t1; : : : ; tn ! t ' t1; : : : ; tk ! (tk+1; : : : ; tn ! t) k = 1; : : : ; n� 1 (4.2)

When function currying is enabled, this means that type-checking/inference must build this equa-
tional theory into the type unification rules in order to consider types equal modulo this isomor-
phism.

4.1.4 Standardizing

As a result of,e.g., currying, the shape of a function type may change in the course of a type-
checking/inference process. Type comparison may thus be tested on various structurally different,
although syntactically congruent, forms of a same type. A type must therefore assume a canonical
form in order to be compared. This is whatstandardizinga type does.

Standardizing is a two-phase operation that firstflattensthe domains of function types, thenre-
namesthe type parameters. The flattening phase simply amounts to applying Equation (4.1) as
a rewrite rule, althoughbackwards(i.e., from right to left) and as much as possible. The second
(renaming) phase consists in making a consistent copy of alltypes reachable from a type’s root.

2For the reader who might wonder what all this has to do with Indian cooking: it does not. It comes from
Prof. Haskell B. Curry’s last name. Curry was one of the two mathematicians/logicians (along with ?. Feys) who con-
ceivedCombinator LogicandCombinator Calculus, and made extensive use of the isomorphism of Equation (4.1)—
hence the folklore’s coining of the verbto curry—(currying, curryed),—in French:curryfier—(curryfication, curryfíe).
The homonymy is often amusingly mistaken for an exotic way of[un]spicing functions.

PAGE 30 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

4.1.5 Copying

Copying a type is simply taking a duplicate twin of the graph reachable from the type’s root.
Sharing of pointers coming from the fact that type parameters co-occur are recorded in a parameter
substitution table (in our implementation, simply ajava.util.HashMap) along the way, and
thus consistent pointer sharing can be easily made effective.

4.1.6 Equality

Testing for equality must be done modulo a parameter substitution table (in our implementation,
simply ajava.util.HashMap) that records pointer equalities along the way, and thus equality
up to parameter renaming can be easily made effective.

A tableless version of equality also exists for which each type parameter is considered equal only
to itself.

4.1.7 Unifying

Unifying two types is the operation of filling in missing information (i.e., type parameters) in each
with existing information from the other by side-effecting(i.e., binding) the missing information
(i.e., the type parameters) to point to the part of the existing information from the other type the
should be equal to (i.e., their values). Note that, like logical variables in Logic Programming, type
parameters can be bound to one another and thus must be dereferenced to their values.

4.1.8 Boxing/Unboxing

The kernel language is polymorphically typed. Therefore, afunction expression that has a poly-
morphic type must work for all instantiations of this type’stype parameters into either primiti
unboxed types (e.g., Int, Real, etc.) or boxed types. The problem this poses is: how can we
compile a polymorphic function into code that would correctly know what the actual runtime sorts
of the function’s runtime arguments and returned value are,before the function type is actually
instantiated into a (possibly monomorphic) type?3 The problem was addressed by Xavier Lero
10 years ago [5] and he proposed a solution.4 Leroy’s method is based on the use of type anno-

3Besides compiling distinct copies for all possible runtimesort instantiations (like,e.g., C++ template functions),
nor recompiling each time a specific instantiation is needed. The former is not acceptable because its tends to inflate
the code space explosively. The latter can neither be envisaged because it goes against a few (rightfully) sacrosanct
principles like separate compilation and abstract libraryinterfacing—imaging having to recompile code from a library
everytime you want to use it!

4This solution is the one implemented in the CAML compiler [6].

A ÏT-KACI PAGE 31 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

tation that enables a source-to-source transformation. This source transformation is the automatic
generation ofwrappersandunwrappersfor boxing and unboxing expressions whenever necessary.
After that, compiling the transformed source as usual will be garanteed to be correct on all types.

I adapted and improved the main idea from Leroy’s solution sothat:� the type annotation and rules are greatly simplified;� no source-to-source transformation is needed;� un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

4.2 The Type System

The type system consists of two complementary parts: astaticand adynamicpart.5 The former
takes care of verifying all type constraints that are statically decidable (i.e., before actually running
the program). The latter pertains to type constraints that must wait until execution time to decide
whether those (involving runtime values) may be decided. This is called dynamic type-checking
and is best seen (and conceived) as anincrementalextension of the static part.

A type is either a static type, or a dynamic type. A static typeis a type that is checked before
runtime by the type-checker. A dynamic type is a wrapper around a type that may need additional
runtime information in order to be fully verified. Its staticpart must be (and is!) checked statically
by the static type checker, but the compiler may complete this by issuing runtime tests at adequate
places in the code it generates; namely, when:� binding abstraction parameters of this type in an application, or� assigning to local and global variable of this type, or� updating an array slot, a tuple component, or an object’s field, of this type.

There are two kinds of dynamic types:� Extensional types—defined with explicit extensions (either statically provided or dynami-
cally computed runtime values):

– Set extension type;

– Int range extension type (close interval of ints);

5See Appendix Section B.2 on Page 52 for the complete class hierarchy of types in the package
ilog.language.design.types.

PAGE 32 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

– Real range extension type (close interval of reals).

A special kind of set of int type is used to define enumeration types (from actual symbol
sets) through opaque type definitions.� Intensional types—defined using any runtime boolean condition to be checked at runtime,
calls to which are tests generated statically;e.g.non-negative numbers (i.e.,int+,float+

4.3 Type Definitions

Type definitions are provided both for convenience of makingprograms more legible by giving
“logical” names (or terms) to otherwise verbose types, and that of hiding information details
a type making it act as a new type altogether. The former facility is that of providingaliases
types (exactly like a preprocessor’s macros get expanded right away into their textual equivalents),
while the latter offers the convenience of definingnewtypes in terms of existing ones, but hiding
this information. It follows from this distinction that a type alias isalwaysstructurally equivalent
to its value (in fact an alias disappears as soon as it is read in, being parsed away into the structure
defining it). By contrast, a defined type isneverstructurally equivalent to its value nor any other
type—it is only equivalent to itself. To enable meaningful computation with a defined type, tw
meta-(de/con)structors are thus provided: one for explicitly castinga defined type into the type
that defines it, and one explicitly seeing a type as a specifieddefined type (if such a defined type
does exist and with this type as definition).

The classilog.language.design.types.Tables contains the symbol tables for global
names and types. The name spaces of the identifiers denoting type and non-type (global or local)
names (which are kept in the global symbol table) are disjoint—so there are no name conflicts
between types and non-type identifiers.

ThetypeTable variable contains the naming table for types and thesymbolTable variable
contains the naming table for other (non-type) global names.

This section will unfold all the type-related data-structures starting from the class that manages
symbols:ilog.language.design.types.Tables. The names can be those of types and
values. They areglobalnames.6 The type namespace is independent of the value namespace—i.e.
the same name can denote a value and a type.

6At the moment, there is no name qualification or namespace management. When this service is provided, it will
also be through theilog.language.design.types.Tables class.

A ÏT-KACI PAGE 33 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

4.3.1 Type aliasing

4.3.2 Type hiding

4.4 Static types

The static type system...

4.4.1 Primitive types

Boxable types� Void� Int� Real� Char� Boolean

Boxed types

Built-in type constants (e.g., String).

4.4.2 Type constructors

Function types

Tuple types

Position tuple types

Named tuple types

Array types0-based int-indexed arrays

Int range-indexed arrays

Set-indexed arrays

PAGE 34 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

Multidimensional arrays

Set types

Class types

4.4.3 Polymorphic types

4.4.4 Type aliasing

4.4.5 Type hiding

4.5 Dynamic types

Dynamic types are to be checked, if possible statically (at least their static part is), at least in tw
particular places of an expression. Namely,� at assignment/update time; and,� at (function) parameter-binding time.

This will ensure that the actual value places in the slot expecting a certain type does respects addi-
tionnal constraints that may only be verified with some runtime values. Generally, dynamic types
are so-calleddependenttypes (such as,e.g., array of size(n), a “safe” array type depending
on the array size that may be only computed at runtime—i.e., à la Java arrays.).

From this, we require that a class implementing theDynamicType interface provides a method
public boolean verifyCondition() that is invoked systematically by code generated
for dynamically typed function parameters and for locations that are the target of updates (i.e
array slot update, object field update, tuple field update) atcompilation of abstractions and various
assignment constructs. Of this class, three subclasses derive their properties:� extensional types;� Boolean-assertion types;� non-negative number types.

We shall consider here a few such dynamic types (motivated esssentially by the need expressed for
OPL, and hence NGO, types). Namely,� extensional types;

A ÏT-KACI PAGE 35 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE� non-negative numbers—or more generally, Boolean-assertion types (of which non-negative
number types are instances).

An extensionaltype is a type whose elements are determined to be members of apredetermined
and fixed extension (i.e., any runtime value that denotes a collection - such as a set, an int range,
a float range, or an enumeration). Such types pose the additional problem of being usable at
compile-time to restrict the domains of other variables. However, some of those variables’ values
may only fully be determined at runtime. These particular dynamic types have therefore a simple
verifyCondition() method that is automatically run as soon as the extension is known. It
just verifies that the element is abona fidemember of the extension), otherwise it relies on a
more complicated scheme based on the notion ofcontract. Basically, a contract-based type is
an extensional type that does not have an extension (as yet) but already carries the obligation
that some particular individual constants be part of their extensions. Those elements consitute
“contracts” that must be honored as soon as the type’s extension becomes known (either positively
- eliminating the contract, or negatively - causing a type error).

The notion of extensional type

Set types

Int range types

Float range types

Enum types

4.5.1 Conditional types

Non-negative numbers

4.5.2 The notion of dynamically constrained type (int+, float+,...)

The notion of boolean-assserted type

4.5.3 Extensional types

PAGE 36 OF 55 HASSAN

Chapter 5

The instruction base

The complete list of instructions that are cur-
rently defined is:

1. Do-nothing instruction:

(a) NO OP

2. Push instructions:

(a) PUSH I

(b) PUSH O

(c) PUSH R

(d) PUSH OFFSET I

(e) PUSH OFFSET O

(f) PUSH OFFSET R

(g) PUSH TUPLE

(h) PUSH SET I

(i) PUSH SET R

(j) PUSH SET O

(k) PUSH INT RNG

(l) PUSH REAL RNG

(m) PUSH CLOSURE

(n) PUSH NEW OBJECT

3. Subroutine instructions:

(a) APPLY

(b) APPLY HOM I

(c) APPLY HOM R

(d) APPLY HOM O

(e) APPLY IP HOM I

(f) APPLY IP HOM R

(g) APPLY IP HOM O

(h) APPLY COLL I

(i) APPLY COLL R

(j) APPLY COLL O

(k) APPLY COLL HOM I

(l) APPLY COLL HOM R

(m) APPLY COLL HOM O

(n) APPLY IP COLL HOM I

(o) APPLY IP COLL HOM R

(p) APPLY IP COLL HOM O

(q) CALL

(r) END

(s) RETURN I

(t) RETURN R

(u) RETURN O

(v) NL RETURN I

(w) NL RETURN R

(x) NL RETURN O

4. Pop instructions:

(a) POP I

37

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

(b) POP O

(c) POP R

5. Relocatable instructions:

(a) JUMP

(b) JUMP ON FALSE

(c) JUMP ON TRUE

6. Conversion instructions:

(a) I TO O

(b) I TO R

(c) O TO I

(d) O TO R

(e) R TO I

(f) R TO O

(g) ARRAY TO MAP I

(h) ARRAY TO MAP R

(i) ARRAY TO MAP O

(j) MAP TO ARRAY O

(k) CHECK ARRAY SIZE

(l) RECONCILE INDEXABLES

(m) ARRAY INITIALIZE

(n) SHUFFLE MAP I

(o) SHUFFLE MAP R

(p) SHUFFLE MAP O

7. Assignment instructions:

(a) SET GLOBAL

(b) SET OFFSET I

(c) SET OFFSET O

(d) SET OFFSET R

8. Tuple component instructions:

(a) GET TUPLE I

(b) GET TUPLE R

(c) GET TUPLE O

(d) SET TUPLE I

(e) SET TUPLE R

(f) SET TUPLE O

9. Array/Map allocation instructions:

(a) PUSH ARRAY I

(b) PUSH ARRAY R

(c) PUSH ARRAY O

(d) PUSH MAP I

(e) PUSH MAP R

(f) PUSH MAP O

(g) MAKE ARRAY I

(h) MAKE ARRAY R

(i) MAKE ARRAY O

(j) MAKE MAP I

(k) MAKE MAP R

(l) MAKE MAP O

(m) FILL ARRAY IA

(n) FILL ARRAY IM

(o) FILL ARRAY OA

(p) FILL ARRAY OM

(q) FILL ARRAY RA

(r) FILL ARRAY RM

(s) FILL MAP IA

(t) FILL MAP IM

(u) FILL MAP OA

(v) FILL MAP OM

(w) FILL MAP RA

(x) FILL MAP RM

10. Array/Map slot instructions:

(a) GET ARRAY I

(b) GET INT INDEXED MAP I

(c) GET INT INDEXED MAP O

PAGE 38 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

(d) GET INT INDEXED MAP R

(e) GET MAP I

(f) GET ARRAY O

(g) GET MAP O

(h) GET ARRAY R

(i) GET MAP R

(j) SET ARRAY I

(k) SET INT INDEXED MAP I

(l) SET INT INDEXED MAP O

(m) SET INT INDEXED MAP R

(n) SET MAP I

(o) SET ARRAY O

(p) SET MAP O

(q) SET ARRAY R

(r) SET MAP R

11. Field instructions:

(a) GET FIELD I

(b) GET FIELD O

(c) GET FIELD R

(d) SET FIELD I

(e) SET FIELD O

(f) SET FIELD R

12. Built-in operations:

(a) Arithmetic operations:

i. ADD II

ii. ADD IR

iii. ADD RI

iv. ADD RR

v. SUB II

vi. SUB IR

vii. SUB RI

viii. SUB RR

ix. MINUS I

x. MINUS R

xi. MUL II

xii. MUL IR

xiii. MUL RI

xiv. MUL RR

xv. DIV II

xvi. DIV IR

xvii. DIV RI

xviii. DIV RR

xix. MODULUS

xx. MIN II

xxi. MIN IR

xxii. MIN RI

xxiii. MIN RR

xxiv. MAX II

xxv. MAX IR

xxvi. MAX RI

xxvii. MAX RR

xxviii. ABS I RI

xxix. ABS R

xxx. SQRT
xxxi. POWER

(b) Arithmetic relations:

i. EQU II

ii. EQU OO

iii. EQU RR

iv. NEQ II

v. NEQ OO

vi. NEQ RR

vii. GTE II

viii. GTE IR

ix. GTE RI

x. GTE RR

xi. GRT II

xii. GRT IR

xiii. GRT RI

xiv. GRT RR

xv. LTE II

xvi. LTE IR

xvii. LTE RI

A ÏT-KACI PAGE 39 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

xviii. LTE RR

xix. LST II

xx. LST IR

xxi. LST RI

xxii. LST RR

(c) Boolean operations:

i. NOT

(d) Map and Size operations:

i. MAP SIZE

ii. ARRAY SIZE

iii. INDEXABLE SIZE

iv. GET INDEXABLE

(e) Container operations:

i. BELONGS I

ii. BELONGS O

iii. BELONGS R

(f) Set operations:

i. SET COPY

ii. MAKE SET I

iii. MAKE SET O

iv. MAKE SET R

v. SET DIFF

vi. SET SYM DIFF

vii. INTER

viii. UNION

ix. D SET DIFF

x. D SET SYM DIFF

xi. D INTER

xii. D UNION

(g) Set relations:

i. SUBSET

(h) Set element operations:

i. SET ADD I

ii. SET ADD R

iii. SET ADD O

iv. SET RMV I

v. SET RMV R

vi. SET RMV O

vii. FIRST I

viii. FIRST O

ix. FIRST R

x. LAST I

xi. LAST O

xii. LAST R

xiii. NEXT I

xiv. NEXT C I

xv. NEXT O

xvi. NEXT C O

xvii. NEXT R

xviii. NEXT C R

xix. ORD I

xx. ORD O

xxi. ORD R

xxii. PREV I

xxiii. PREV C I

xxiv. PREV O

xxv. PREV C O

xxvi. PREV R

xxvii. PREV C R

(i) Range operations:

i. INT RNG UB

ii. INT RNG LB

iii. REAL RNG UB

iv. REAL RNG LB

(j) String operations:

i. STRCON

(k) I/O operations:

i. WRITE I

ii. WRITE O

iii. WRITE R

13. Dummy instructions:

(a) DUMMY EQU

PAGE 40 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

(b) DUMMY NEQ

(c) DUMMY AND

(d) DUMMY OR

(e) DUMMY STRCON

(f) DUMMY WRITE

(g) DUMMY SIZE

(h) DUMMY SET ADD

(i) DUMMY SET RMV

(j) DUMMY BELONGS

(k) DUMMY ORD

(l) DUMMY FIRST

(m) DUMMY LAST

(n) DUMMY NEXT

(o) DUMMY NEXT C

(p) DUMMY PREV

(q) DUMMY PREV C

A ÏT-KACI PAGE 41 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

PAGE 42 OF 55 HASSAN

Chapter 6

The backend system

6.1 The runtime system

This is the class defining a runtime object. Such an object serves as the common execution environ-
ment context shared byInstructions being executed. It encapsulates a state of comptutation
that is effected by each instruction as it is executed in its context.

A Runtime object consists of attributes and structures that togetherdefine a state of computation,
and methods that are used by instructions to effect this state as they are executed. Thus, each
instruction class defines anexecute(Runtime)method that specifies its operational semantics
as a state transformation of its given runtime context.

Initiating execution of aRuntime object consists of setting its code array to a given instruction
sequence, setting its instruction pointerip to its code’s first instruction and repeatedly calling
execute(this) on whatever instruction is currently at addressip in the current code array
The final state is reached when a flag indicating that it is so isset totrue. Each instruction
responsible for appropriately setting the next state according to its semantics, including saving and
restoring states, and (re)setting the code array and the various runtime registers pointing into the
state’s structures.

Runtime states encapsulated by objects in this class are essentially those of a stack automaton,
specifically conceived to support the computations of a higher-order functional language with le
cal closures -i.e., a�-calculus machine - extended to support additional features -e.g., assignment
side-effects, objects, automatic currying... As such it may viewed as an optimized variant of Peter
Landin’s SECD machine [4]—in the same spirit as Luca Cardelli’s Functional Abstract Machine
(FAM) [1], although our design is quite different from Cardelli’s in its structure and operations.

Because this is a Java implementation, in order to avoid the space and performance overhead
being confined to boxed values for primitive type computations, three concurrent sets of structures

43

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

are maintained: in addition to those needed for boxed (Java object) values, two extra ones are
used to support unboxed integer and floating-point values, respectively. The runtime operations
performed by instructions on aRuntime object are guaranteed to be type-safe in that each state is
always such as it must be expected for the correct accessing and setting of values. Such a guarantee
must be (and is!) provided by theTypeChecker and theSanitizer, which ascertain all the
conditions that must be met prior to having aCompiler proceed to generating instructions which
will safely act on the appropriate stacks and environments of the correct sort (integer, floating-
point, or object).

6.2 The runtime objects

6.3 The display manager

6.4 The error manager

PAGE 44 OF 55 HASSAN

Chapter 7

A full example—HAK LL

This chapter details the design of a concrete language from scratch. We call this languageHAK L

presumably to mean, somewhat presumptuously: Hassan Aı̈t-Kaci’s Little Language.1

HAK LL is a fully-working prototype language whose essential goalis to illustrate and demonstrate
our architecture: the expressive power of the kernel language and the workings of its type-check
compiler, and runtime systems. It is an imperative functional language with objects, where func-
tions are first-class citizens.HAK LL has a surface syntax for an interactive language that can
define top-level constructs and evaluate expressions. It supports 2nd-order (ML-like) type poly-
morphism, automatic currying, multiple type overloading,dynamic operator overloading, as well
as flat classes and objects (i.e., no subtyping nor inheritance—yet).

1... and pronounced “hackle”—not to be confused with an otherwise known programming language of greater
notoriety and whose name is the first name of Prof. Haskell B. Curry.

45

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

PAGE 46 OF 55 HASSAN

Chapter 8

Conclusion

47

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

PAGE 48 OF 55 HASSAN

Appendix A

A word on traceability

A.1 Relating concrete and abstract syntax

Error traceability...

A.1.1 Syntax errors

A.1.2 Static Semantics errors

Typing errors

Other Static Semantics errors

A.1.3 Dynamic Semantics errors

Runtime errors

Java errors

A.2 Displaying and reading

... in concrete/abstract syntax.

49

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

A.2.1 Displaying

A.2.2 Reading

A.2.3 Concretizing abstract syntax down

... with writing tables.

A.2.4 Abstracting concrete syntax away

... with reading tables.

PAGE 50 OF 55 HASSAN

Appendix B

A four-panelled architecture

B.1 The Complete Kernel

B.1.1 Sanitizing

B.1.2 Type checkingvs. inference

B.1.3 Compiling

51

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

B.2 The Complete Type System

Class hierarchy of types in the package
ilog.language.design.types

Ty
pe

S
ta

tic
Ty

pe
D

yn
am

ic
Ty

pe

N
am

ed
Ty

pe
Ty

pe
P

ar
am

et
er

C
on

st
ru

ct
ed

Ty
pe

E
xt

en
si

on
al

Ty
pe

In
te

ns
io

na
lT

yp
e

B
ox

ab
le

Ty
pe

C
on

st
an

t
F

un
ct

io
nT

yp
e

Tu
pl

eT
yp

e
A

rr
ay

Ty
pe

C
ol

le
ct

io
nT

yp
e

Ty
pe

C
on

st
an

t
Ty

pe
Te

rm
N

am
ed

Tu
pl

eT
yp

e
S

et
Ty

pe
B

ag
Ty

pe
Li

st
Ty

pe

C
ol

le
ct

io
nT

yp
eC

on
st

an
t

C
la

ss
Ty

pe
D

efi
ne

dT
yp

e

PAGE 52 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3, 2002

B.2.1 The type prover

B.3 Structure of theTypeChecker

An object of the classilog.language.design.types.TypeChecker is a backtracking
prover that establishes various kinds ofgoals. The most common goal kind established by a type
checker is atyping goal—but there are others.1 A TypingGoal object is a pair consisting of
expression and a type. Proving a typing goal amounts to unifying its expression component’s type
with its type component. Such goals are spawned by the type checking method of expressions
per their type checking rules. Some globally defined symbolshaving multiple types, it is necessary
to keep choices of these and backtrack to alternative types upon failure. Thus, aTypeChecker
object maintains all the necessary structures for undoing the effects that happened since the last
choice point. These effects are:

1. type variable binding,

2. function type currying,

3. application expression currying.

In addition, it is also necessary to remember allGoal objects that were proven since the last choice
point in order to prove them anew upon backtracking to an alternative choice. This is necessary
because the goals are spawned by calls to thetypeCheck method of expressions that may
exited long before a failure occurs. Then, all the original typing goals that were spawned in the
mean time since the current choice point’s goal must be reestablished. In order for this to work,
any choice points that were associated to these original goals must also be recovered. To enable
this, when a choice point is created for aGlobal symbol, choices are linked in the reverse order
(i.e., ending in the original goal) to enable reinstating all choices that were tried for this goal.

In order to coordinate type proving, a typechecker object ispassed to all type checking and unifi-
cation methods as an argument in order to record any effect inthe appropriate trail.

To recapitulate, the structures of aTypeChecker object are:� agoal stackcontaininggoalobjects (e.g., TypingGoal) that are yet to be proven;

1At the moment, the handled goals are:� typing goal:e : T ;� type unification goal:T = T 0 ;� base type unification goal:T = base(T 0) ;

Others are expected (and will!) be introduced,e.g., when we support subtyping constraints:e <: T , T � T 0, etc..,

A ÏT-KACI PAGE 53 OF

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE� abinding trail stackcontaining type variables and boxing masks to reset to ”unbound” upon
backtracking;� a function type currying trailcontaining 4-tuples of the form (function type, previous do-
mains, previous range, previous boxing mask) for resettingthe function type to the recorded
domains, range, and mask upon backtracking;� anapplication currying trailcontaining triples of the form (application type, previousfunc-
tion, previous arguments) for resetting the application tothe recorded function and arguments
upon backtracking;� a goal trail containingTypingGoal objects that have been proven since the last choice
point, and must be reproven upon backtracking;� achoice-point stackwhose entries consists of:

– a queue ofTypingGoalEntry objects wherefrom to constructs newTypingGoal
objects to try upon failure;

– pointers to all trails up to which to undo effects.

B.3.1 The type constructs

B.3.2 Defining new types

B.4 The Basic Instruction Set

B.5 The Complete Backend

B.5.1 TheRuntime class

B.5.2 TheRuntimeObject class

B.5.3 TheDisplayManager class

B.5.4 TheErrorManager class

PAGE 54 OF 55 HASSAN

Bibliography

[1] Luca Cardelli. The functional abstract machine.Polymorphism, the ML/LCF/Hope Newsletter
I(1), 1983. (Also Technical Report TR-107, AT&T Bell Laboratories, April 1983.).

[2] Hassan Aı̈t-Kaci. An introduction to LIFE—Programmingwith logic, inheritance, functions,
and equations. In Dale Miller, editor,Proceedings of the Symposium on Logic Programming
The MIT Press, 1993.

[3] Hassan Aı̈t-Kaci. Ja—Just another compiler compiler.2 Optimization Group Technical
Reportforthcoming, ILOG, Gentilly, France, forthcoming 2002.

[4] Peter Landin. The mechanical evaluation of expressions. Communications of the ACM, 1964.

[5] Xavier Leroy. Boxing and unboxing in polymorphically typed languages. InProceedings
the ACM Conference on Principles of Programming Languages (POPL’92), 1992.

[6] Pierre Weiss and Xavier Leroy. The CAML compiler. Research report, INRIA, Rocquencourt,
France, 1994.

2Ja is a java-based software that generates aLALR(1) parsing automaton from a familiaryacc-like action-
annotated context-free grammar. it provides several useful extensions toyacc’s parsing capabilities (e.g., dynamic
operator definitions̀a la PROLOG, non-terminal subclassing,etc.., . . .).Ja is the property of ILOG but is not part
the software products sold and/or maintained by ILOG—it is not this author’s interest to commercializeJa (at least
not in the immediate future and in its current state), but upon specific request, and on a per-case basis, compiled ja
classes (not sources) forJa may be made available on an“as is” basis if it is worth ILOG’s and this author’s time
do so.

55

