AN ABSTRACT AND REUSABLE

PROGRAMMING LANGUAGE ARCHITECTURE

HASSAN AIT-KACI
hak@1 og. fr

ILOG
Research and Development
Optimization Group
http://ww.ilog.fr

9, rue de Verdun - B.P. 85
94253 Gentilly Cedex, France

June 3, 2002

(INCOMPLETE DRAFT)

Copyright© ILOG, S.A. and Hassan ix-KAcCI

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

This document describes the design of an abstract reuseteapming language archit
and its implementation in Java. It represents the basiseoféldesign of loG's New Ge

tion OpL (hereafter referred to asdb), and constitutes the second facet of a larger s

proposed LoG R&D-wide project whose purpose would be to enable the quitdgration of
useful programming abstractions into software at largesofar as these abstract and reus

structs, and any well-typed compositions thereof, may bitiated in various modular lal

configurationg.

llLog’s, for one,intra-and/orextra-company. . .

2The first facet was the elaboration ®fcc, an advanced system for syntax-directed compiler generfgi.
third facet will be the integration of logic-relational ¢fin Logic Programming) and objet-relational (from
Programming). A later facet may be to complete the desigméble botH.1 FE-technology [2] andcSHLP tecl
ogy to cohabit.

AiT-KACI PAGE 10

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

PAGE 2 OF 55

HASSAN

Contents

1 Introduction

2 Overview
2.1 Abstract programming language design
2.1.1 Surfacelanguage
2.1.2 Kernellanguage
2.1.3 Typelanguage
2.1.4 Intermediatelanguage
2.15 Executionbackend o o
2.1.6 Pragmatics e

3 The kernel language

3.1
3.2

3.3

Kernelexpression e e
Processing a kernelexpression oo ...
3.2.1 Sanitizer
3.2.2 Typechecker
3.23 Compiler e
Description of kernel expressions
3.3.1 Constant
3.3.2 Abstraction
3.3.3 Application
334 Local
335 Global.

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

3.3.6 IfThenElse 19
3.3.7 AndOr ... 20
3.3.8 Sequence 21
339 Let ... 21
3.3.10 LOOp 21
3.3.11 ExitWithValue 22
3.3.12 Definition 42
3.3.13 Parameter 4 2
3.3.14 Assignment 4 2
3.3.15 NewObject o 24
3.3.16 FieldUpdate 24
3.3.17 NeWArray e 24
3.3.18 ArraySIot 42
3.3.19 ArraySlotUpdate 24
3.3.20 Tuple 24
3.3.21 NamedTuple 24
3.3.22 TupleProjection. 24
3.3.23 TupleUpdate 4 2
3.3.24 DUMMY 24
3.3.25 ArrayExtension 24
3.3.26 Arraylnitializer 24
3.3.27 Homomorphism 24
3.3.28 Comprehension 27
3.3.29 CompiledExpression 0. 28
4 The Type System 29
A1 OVEIVIEW . . o e e e e e e e e e e 92
4.1.1 Polymorphism 29
4.1.2 Multiple TypeOverloading i . 30
4.1.3 CUumying v v 30
4.1.4 Standardizing 30
PAGE 4 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

415 COPYING . - v v oo e e e e e e e
416 Equality
4.1.7 Unifying
4.1.8 Boxing/UnboXing
The Type System
Type Definitions
43.1 Typealiasing
432 Typehiding
Statictypes
4.4.1 Primitivetypes
442 TypeconstruCtors i e
4.4.3 Polymorphictypes
444 Typealiasing
445 Typehiding
Dynamictypes
451 Conditionaltypes

4.5.2 The notion of dynamically constrained type{ +,f | oat +,...)
453 Extensionaltypes

The instruction base

The backend system
6.1 Theruntimesystem e
6.2 Theruntimeobjects e
6.3 The display manager
6.4 The error manager

A full example—HAK_L L
Conclusion

A word on traceability
A.1 Relating concrete and abstractsyntax.,

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

ALl SYNtax errors e e e e 914
A.1.2 StaticSemanticserrors oo 49
A.1.3 Dynamic SemantiCS €rrors v v v v v v i 49
A.2 Displayingandreading e 49
A2.1 Displaying 50
A22 Reading e 50
A.2.3 Concretizing abstract syntaxdown 50
A.2.4 Abstracting concrete syntaxawayo e e e e e ienenn . 50
B A four-panelled architecture 51
B.1 TheCompleteKernel 51
B.1.1 Sanitizing 15
B.1.2 Typecheckings.inference 51
B.1.3 Compiling 51
B.2 The Complete Type System 52
B.2.1 Thetypeprover. e 35
B.3 Structure of th@ypeChecker L. 53
B.3.1 Thetypeconstructs 54
B.3.2 Definingnewtypes 45
B.4 TheBasicInstructionSet e 54
B.5 TheCompleteBackend 54
B.5.1 TheRuntimeclass 54
B.5.2 TheRuntimeObjectclass 54
B.5.3 TheDi splayManagerclass. 54
B.54 TheErrorManagerclass 54

PAGE 6 OF 55 HASSAN

Chapter 1

Introduction

This document’s purpose is to describe, explain, and jusi# design of thél og. | angua

. desi gn package. Its main goal is to serve as a specification as walldagumentation
details of various of its intricacies. As such, it servesmhgaits author helping him to keep
of subtleties he alone may know of but may not remember—at leat in full detail—an
course, it is meant for the sake of the few, the proud;wiointeer” pre«w-testers of the vial
of the whole design—especially thed® design team, and any others having been expo
or nilly, to some of, or the whole package!

1Thank you Patrick Viry, Frédéric Paulin, Chritiane Brag@nd Chrisptophe Gefflot!.;.-)

7

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

PAGE 8 OF 55

HASSAN

Chapter 2

Overview

2.1 Abstract programming language design

2.1.1 Surface language
2.1.2 Kernel language

2.1.3 Type language

2.1.4 Intermediate language

2.1.5 Execution backend
Semantic language: Runtime objects
Type-directed Display manager
Type-directed Data Reader

2.1.6 Pragmatics

Concrete vs. abstract error handling

Concrete vs. abstract Vocabulary

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

Chapter 3

The kernel language

3.1 Kernel expression

3.2 Processing a kernel expression

Typically, upon being read, dxpr essi on will be:

1. “name-sanitized™—in the context of &ani ti zer to discriminate between local
and global names, and establish pointers from the locahbrioccurrences to the al
tion that introduces them, and from global names to entri¢glse global symbol table;

2. type-checkegd-in the context of a'ypeChecker to discover whether it has a type
or several possible ones (only expressions that have aenigambiguous type are
processed);

3. “sort-sanitized™—in the context of &ani t i zer to discriminate between those loc
ables that are of primitive Java typésit ordoubl e) or of Obj ect type (thisis nece
because the set-up means to use unboxed values of prinyities for efficiency rea
this second “sanitization” phase is also used to computetsffor local namesd.¢€.,
calledde Bruijn indice$ for each type sort;

4. compiled—in the context of &Conpi | er to generate the sequence of instruction
execution in an appropriate runtime environment will ea#duthe expression;

5. executed-in the context of &Runt i e to execute its sequence of instructions.

PAGE 10 0F 55 HASSAN 11

ABSTRACT AND REUSABLE

Incomplete Draft of June 3, 2002

3.2.1 Sanitizer

A sanitizeris an object that “cleans up”—so to speak—an expressios oéihaining ambiguities
as itis being processed. There are two kinds of ambiguttigsrhust be “sanitized:”

e after parsing, it must be determined which identifiers aeerthmes ofocal variablesvs.
those ofglobal variables;

e after type-checking, it must be determined the runtime sbevery abstraction parameter
and use this to compute the local variable environment tffisieeach local variable.

Thus a sanitizer is a discriminator of names and sorts.

3.2.2 Typechecker

The type checker is in fact a type inference machine thathggites missing type information
by type unification. It may be (and often is) used as a typeking automaton when types are
(partially) present.

Each expression must specify its owgpeCheck(TypeChecker) method that encodes its
formal typing rule.

3.2.3 Compiler

This is the class defining a compiler object. Such an objeseseas the common compilation
context shared by aBxpr essi on and the subexpressions comprising it. Each type of expres-
sion representing a syntactic construct of the kernel laggudefines aonpi | e(Conpi | er)
method that specifies the way the construct is to be compileéde context of a given compiler.
Such a compiler object consists of attributes and methadgenerating straightline code which
consists of the sequence of instructions correspondinddp-&vel expression and its subexpres-
sions.

Upon completion of the compilation of a top-level expreasia resulting code array is extracted
from the sequence of instructions, which may then be exdciaté¢he context of &Runt i me
object, or, in the case of Befi ni ti on, be saved in the code array in tbefi niti on’s
codeEnt ry() field—aDef i nedEnt ry object, which encapsulates its code entry point, which
in turn may then be used to access the defined symbol’s codedoution).

1These offsets are the so-callée Bruijnindices ofA-calculus [4]. Or rather, their sorted version.

2lt has occurred to this author that his choice of the word itsan” is perhaps a tad of a misnomer—
“discriminator” may be a better choice. This also goes ferithog. | anguage. desi gn. kernel . Sani ti zer
class’ method namesgé., di scri m nat eNames anddi scri m nat eSort s rather tharsani t i zeNanes and
sanitizeSorts).

PAGE 12 0F 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

Each expression construct of the kernel must thereforeifgpgacompiling rule. Such
expresses how the abstract syntax construct maps intoighglirze code sequence.

3.3 Description of kernel expressions

The classExpr essi on is the mother of all expressions in the kernel language. dtisie
prototypes of the methods that must be implemented by atlessjpon subclasses. The su
of Expr essi on are:

Const ant : constant (void, boolean, integer, real number, object);
Abst ract i on: functional abstractiord(la A-calculus)?*

Appl i cat i on: functional application;

Local : local name;

d obal : global name;

| f ThenEl se: conditional;

AndOr : non-strict boolean conjunction and disjunction;

Sequence: sequence of expressions (presumably with side-effects);
Let : lexical scoping construct;

Loop: conditional iteration construct;

Exi t Wt hVal ue: non-local function exit;

Def i ni ti on: definition of a global name with an expression defining it gi@bal st

Par anet er : a function’s formal parameter (really a pseudo-express® it is not
processed as a real expression and is used as a shared typeaiin repository f
occurrences in a function’s body of the variable it stand fo

Assi gnnent : construct to set the value ol acal oragl obal variable;
New(hj ect : construct to create a new object;

Fi el dUpdat e: construct to update the value of an object’s field;
NewAr r ay: construct to create a new (multidimensional) array;
ArraySl ot : construct to access the element of an array;

ArraySl ot Updat e: construct to update the element of an array;

3Section 3.3.1.
4Section 3.3.2.

AiT-KACI PAGE 130

ABSTRACT AND REUSABLE

Incomplete Draft of June 3, 2002

e Tupl e: construct to create a new position-indexed tuple;

e NamedTupl e: construct to create a new name-indexed tuple;

e Tupl eProj ect i on: construct to access the component of a tuple;
e Tupl eUpdat e: construct to update the component of a tuple;

e Dunmmy: temporary place holder in lieu of a name prior to being disrated into a local or
global one.

e ArrayExt ensi on: construct denoting a literal array;

e Arraylnitializer: construct denoting a syntactic convenience for speaifymitial-
ization of an array from an extension;

e Hononor phi sm construct denoting a monoid homomorphism;
e Conpr ehensi on: construct denoting a monoid comprehension;

In this section, we are going to give a detailed descripticgagh kernel construct. The description
of an expression will have the following items:

® ABSTRACT SYNTAX,
® OPERATIONAL SEMANTICS
® TYPING RULE,

® COMPILING RULE.

ABSTRACT SYNTAX

This describes the abstract syntax form of the kernel eses A kernel expression will be
written inblue.

OPERATIONAL SEMANTICS

This describes informally the meaning of the expressiore fittation]¢], wheree is an abstract
syntax expression, denotes the (mathematical) semaenictationof e. The notatior[7, where
T is a type, denotes the (mathematical) sematheigotationof 7—namely,[77] is the set of all
abstract denotatiorjs]'s such that kernel expressierhas typer'.

TYPING RULE

This describes formally the logical rules for typing thererexpression. A type will be written in

red.

A typing ruleis a formula of the form:
Jl;) Jn

; (3.1)

PAGE 14 0F 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

where.J and theJ;’s, i = 0,...,n, n > 0, aretyping judgmentsWhenn = 0, the rule is ¢
anaxiomand is written with an empty “numerator.”

A conditionaltyping rule is a typing rule of the form:
Jh) Jn

J
wherec is a Boolean metacondition involving the rule’s judgments.

A typing judgments a formula of the fornT" F e : T, and is read as:uhdertyping conte
expressionr: has typel’.”
A typing rule, or its (un/conditional) typing axiom form, lieest read backwards (or upward

from the rule’sconclusion(the bottom part, or “denominator”) to the rulgggemisegthe top
or “numerator”). Namely, the rule of the form:

C(le"'v‘]ll) (

Fli—(’,lZTh...,F”}—(’,nZ]‘” (
I'ke: T
is read thus:
“The expression: has typel” under typing context | f the expression; has typer’;
under typing context, ..., the expression, has typel;,, under typing context

r,”

In its simplest form, dyping context’ is a function mapping the kernelsabstractions’ pa
ters to their types. In the formal presentation of an expoe&styping rule, the context kee
type binding under which the typing derivation has progedssp to applying the rule in w
occurs.

The notatiorT'[+ : T'| denotes the context defined frdiras follows:

o det T if y=u;
Ple:Tlly) = { I'(z) otherwise (
A conditionaltyping rule is a typing rule of the form:
FlFCLZTl....,FnFﬁnijﬂn
: (LT, Py esens o6, 15T, T,
TEe: T c(l, T,y €, €1 [1) (
wherec(I', 'y, ..., Iy, e,e1,. .60, 17,11, ..., T,) is a Boolean meta-condition involving th

texts, expressions, and types. Such a rule is read thus:

the meta-condition holds, the expression has typel’ under typing context
i f the expressiom; has typ€el’, under typing context, ..., the expression
e, has typel,, under typing context,,”

AiT-KACI PAGE 150

ABSTRACT AND REUSABLE

Incomplete Draft of June 3, 2002

An (unconditional) typing axiom

Ae— (3.6)
is read thus:
“The expression: has typel” under typing context.”
The(conditional) typing axionfiorm:
(T, e,T) (3.7)

F'Fe: T

wherec(T', e, T') is a boolean meta-condition on typing contExexpressior, and typel’, is read
thus:

“1'f the meta-conditior(T", ¢, T') holds the expression has typ€el” under typ-
ing context’™”

For example,

L'k c: PBoolean, ' ey : T, T F ey : T
I' F ifcthene elseey : 1

(3.8)

is read thus:

“The expressionf ¢ then e; else e, has typel” under typing context | f the expres-
sionc has typeBoolean under typing context if both expressions, ande; have
the same typ&' under the same typing context

COMPILING RULE

This describes the way the expression’s components areeddpto a straightline sequence of
instructions. An instruction (or generally any instructisequence) will be written iRAGENTA.
Any meta-information annotation used in code instructiomisstruction sequences will be written
in

The compiling rule for expressianis given as a functiormmpile]_] of the form:

compile[e] = I NSTRUCTI ON
: (3.9
I NSTRUCTI ON

PAGE 16 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

3.3.1 Constant

ABSTRACT SYNTAX

A Constantexpression is an atomic literal. Objects of cl@sst ant denote literal cons
the integers é.g, —1, 0, 1, etc), the real numberse(g, —1.23, ..., 0.0, ..., 1.23, etc),
charactersd.g, 'a’,'t/,'@', '#', etc), and the constantsid, true, andfalse. The constanboi
of typeWoid, such that:

[Void] % {[ooid]}

and the constantsue andfalse of type Boolean, such that:

[Boolean] £ {[false], [teue]}.

Other built-in types are:

o]z = {.. [-1],[00. 0.}
[PReal] R = {...,[-1.23],....[0.0],...,[1.23],.. }

[¢har] = setof all Unicode characters

def

[Gtring] = set of all finite strings of Unicode characters.

Thus, theConst ant expression class is further subclassed iftot , Real , Char, Ne
j ect,andBui | ti nCbj ect Const ant , whose instances denote, respectively: integer
point numbers, characters, new objects, and built-in ¢loj@estantsé€.g, strings).

TYPING RULE

AiT-KACI PAGE 170

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

The typing rules for each kind of constant are:

vordl F o - o0
[true] I' F teue © Boolean
[false] I' F jalse : Boolean
[int] E——— n is an integer (3.10)
[real] TFE 7 eal n is a floating-point number
[char] m cis a character
[string] T s : Gteing s is a string

We postpone for now the typing of object constants until weenstand object types.

3.3.2 Abstraction

ABSTRACT SYNTAX

function zy,...,x, - e

TYPING RULE

Pl :)T Fe: T
I' F functionzy,...,2z, - e : 11, ..., T, — T

(3.11)

PAGE 18 0F 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

3.3.3 Application

ABSTRACT SYNTAX

fler, ... en)

TYPING RULE

e :Ty,---,Tke :T,, T'F f T ..., T, =T @
L'tE fler,...,en) + T
3.3.4 Local
3.3.5 CGlobal
3.3.6 IfThenElse
ABSTRACT SYNTAX
if c then e else ey
OPERATIONAL SEMANTICS
TYPING RULE
' c: DBoolean, T F ey : T, T F e : T @
I'F ifctheneyelseey : T
COMPILING RULE
compile[if ¢ then e else e5] = compile]c]
JUMP_ON_FALSE
compilt[[eﬂ] (3

Jump
rompllt[[egﬂ

AiT-KACI PAGE 190

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

3.3.7 AndOr

ABSTRACT SYNTAX

€ and/ot ey

TYPING RULE

I' F e : Boolean, ' F ey : Boolean
' e; and/orey : Boolean

And

COMPILING RULE

compile[[el ano (’,2]] = rmupilt[[el]]
JumP_ON_FALSE | of
rumpilc[[(’g]]
JumMP_ON_TRUE j Ot
j of : PUsH.FALSE

JumP | NP
j ot : PUSH.TRUE
jnp:
Or
COMPILING RULE
compile[e ot €3] = compile[eq |

JUMP_ON_TRUE] Ot
mmpilc[[(’g]]
JumMP_ON_FALSE | of
j ot : PUSH.TRUE
JumpP | NP
j of : PUsH.FALSE
jmp:

PAGE 200F 55

(3.15)

(3.16)

(3.17)

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

3.3.8 Sequence

ABSTRACT SYNTAX

{61; -~~;en}
TYPING RULE
F''ke Ty, ..., T ke, : T,
TE{es e} T,
COMPILING RULE
compile[{ e1; ...;en }] = compile[eq]

3.39 Let

3.3.10 Loop

ABSTRACT SYNTAX

while cdoe

Pop_sort(e;)

compile[e,]

OPERATIONAL SEMANTICS

TYPING RULE

- c: Boolean, I' - e : T

I' = whilecooe : Yoid

COMPILING RULE

AiT-KACI

3

3

3

PAGE 210

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

compile[tohile ¢ Do e = : compile]c]
JUMP_ON_FALSE
compile[e] (3.22)
Jump
PUsH_VoI D

3.3.11 ExitWithValue

ABSTRACT SYNTAX

erit with v

OPERATIONAL SEMANTICS

Normally, exiting from an abstraction is done simply by liiad) off” (one of) the tip(s) of the
expression tree of the abstraction’s body. This operasocaptured by the simple operational
semantics of each of the threeT urn instructions. Namely, when executin@ar urn instruction,
the runtime performs the following three-step procedure; i

1. pops the result from its result statk;
2. restores the (previously saved) runtime state;
3. pushes the result popped in Step 1 onto the restoredsstata’result stack.

However, it is also often desirable, under certain circamesgs, that computation mawt be let

to proceed further at its current level of nesting of exikadbstractions. Then, computation may
be allowed to return right away from this current nesting.(as if having fallen off this level of
exitable abstraction) when the conditions for this to hapae met. Exiting an abstraction thus
must also return a specific value that may be a function ofdinéext. This is what therit with v
kernel constructionmrit with v expresses. This kernel construction is provided in ordepezify
that the current local computation should terminate wittfatther ado, and exit with the value
denoted by the specified expression.

TYPING RULE

Now, there are several notions in the above paragraphs ¢leatsome clarification. For example,
what art‘exitable” abstraction is, and why worry about a dedicated construbeikernel language
for such a notion if it does nothing more than what is done By aurn instruction.

SWherestackhere means “stack @fppropriateruntime sort;” approppriate, that is, as per the instrutsisort—
viz., | NT, REAL, or runtimeOBJ ECT.

PAGE 22 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

First of all, from its very namerit with v assumes that computation regeredhat from whi
mustexit. This is anexitableabstraction; that is, the latestabstraction having the property
ing exitable Not all abstractions are exitable. For example, any attstrathat is generated
of the target of some other kernel expression’s syntactiggse.g, let x, = e1;...; T, = én;
or (@, Ig){e |z « e,...,z, < e,}, and more generally any construct that hide im
stractions within), willnotbe deemed exitable.

Secondly, exiting with a value means that the typ€ of v must be congruent with what the
type of the abstraction being exited is. In other words:

PR T"—>T, THo T
I' F eritwitho : T

whereXr denotes the latesixitableabstraction in the conteXt
The above scheme indicates the following necessities:

1. The typing rules for an abstraction deemed exitable negsird in its typing context
value ofXy, the type inl" of the latest exitable abstraction, if any such exists; ¢ii@ d
a static semantics error is triggered to indicate that itipadssible to exit from an
before first entering somewhere).

2. Congruently, theeusH_CL osuRE instruction must take care of chaining the state i
in the saved state stack of the runtime system each time arelagesming from an ex
abstraction is entered; (dually, this exitable state staakt also be popped upon *
off"—i.e., normally exiting—an exitable closure).

3. NewNL_ReTUuRrN instructions (for each runtime sort) must be defined liké tterrespon
RETURN instructions except that the runtime state to restore isotie popped out
exitable state stack.

COMPILING RULE

compile[erit oith v] = compile[v] 3
NL_RETURN_ v

AiT-KACI PAGE 230

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

3.3.12 Definition
3.3.13 Parameter
3.3.14 Assignment
3.3.15 NewObject
3.3.16 FieldUpdate
3.3.17 NewArray
3.3.18 ArraySlot
3.3.19 ArraySlotUpdate
3.3.20 Tuple

3.3.21 NamedTuple
3.3.22 TupleProjection
3.3.23 TupleUpdate
3.3.24 Dummy

3.3.25 ArrayExtension
3.3.26 Arraylnitializer

3.3.27 Homomorphism

This is the class of objects denoting (monoid) homomorphisi@uch an expression means to
iterate through a collection, applying a function to eadmetnt, accumulating the results along
the way with an operation, and returning the end result. Nboeeisely, it is the built-in version of
the general computation scheme whose instance is the falidWwom” functional, which may be
formulated recursively, for the case of a list collectiost, a

PAGE 24 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

hom" ()] =1e

3
homi® (f)[H|T] = f(H) @ homz? (f)T
Clearly, this scheme extends a functfoilo a homomorphism of monoids, from the monoid
to the monoid defined by®, 1).

Thus, an object of this class denotes the result of applyiretp & homomorphic extensi

function) to an element of collection monoidld.,, a data structure such as a set, a |
bag), the image monoid being implicitly defined by the binaperation ¢)—also calle
accumulatioroperation. It is made to work iteratively.

For technical reasons, we need to treat specially so-catiectionhomomorphismsi.e, t

whose accumulation operation constructs a collectionh ssca set. Although a collecti
momorphism can conceptualy be expressed with the gendrairsg the function applied
element of the collection will return a collectiong, a free monoid) element, and the re
the homomorphism is then the result of tallying the part@lertions coming from applyi

function to each element into a final “concatenation.”

Other (non-collection) homomorphisms are calpehitive homomorphisms. For those, th
tion applied to all elements of the collection will returc@mputecelement that may be di
composed with the other results. Thus, the difference batwbe two kinds of (collecti
primitive) homomorphisms will appear in the typing and tloele generated (collection ho
phism requiring an extra loop for tallying partial resuttgd the final collection). It is easy to
the distinction between the two kinds of homomorphismslkhkdn the type of the accum
operation (see below).

Therefore, ecollection homomorphisrexpression constructing a collection of typ€l(7)
sists of:

e the collection iterated over—of typell'(T");
e the iterated function applied to each element—of type— coll(T'); and,

o the operation “adding” an element to a collection—of ty¥peoll(T) — coll(T).
T’ primitive homomorphisrnomputing a value of typ&' consists of:

o the collection iterated over—of typell'(T");
e the iterated function applied to each element—of type— T’ and,

o the monoid operation—of typg. 7" — 7.

AiT-KACI PAGE 250

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

Even though the scheme of computation for homomorphisnithes above is correct, it is not
often used, especially when the function already encafesutae accumulation operation, as is
always the case when the homomorphism comes from the désygdra comprehension-see
below). Then, such a homomorphism will directly side-effia@ collection structure specified as
the identity element with a function of the foffnction z - = & 14 (i.e, adding element to the
collection) and dispense altogether with the need to actatmintermediate results. We shall call
those homomorphisnis-placehomomorphisms. To distinguish them and enable the suporess
of intermediate computations, a flag indicating that the dimarphism is to be computed in-place
is provided. Both primitive and collection homomorphisnas de specified to be in-place. If
nothing regarding in-place computation is specified for embmorphism, the default behavior
will depend on whether the homomorphism is collection (dkfia in-place), or primitive (default
is notin-place). Methods to override the defaults are provided.

For an in-place homomorphism, the iterated function endapes the operation, which affects the
identity element, which thus accumulates intermediataltgsnd no further composition using
the operation is needed. This is especially handy for ctities that are often represented, for
(space and time) efficiency reasons, by iteratable bulkstres constructed by allocating an empty
structure that is filled in-place with elements using a bniltadd” method guaranteeing that the
resulting data structure is canonicale; that it abides by the algebraic properties of its type of
collection g.g, adding an element to a set will not create dupliceeés).

Although monoid homomorphisms are defined as expressiaheikernel, they are not meant to
be represented directly in a surface syntax (although thaldcbut would lead to rather cumber-
some and not very legible expressions). Rather, they aratni@de used for expressing higher-
level expressions known asonoid comprehensionghich offer the advantage of the familar (set)
comprehension notation used in mathematics, and can tsdatad into monoid homomorphisms
to be type-checked and evaluated.

A monoid comprehension is an expression of the form:

(@, Le){e | ai, o an} (3.26)

where(®, 1) define a monoid; is an expression, and thei’s arequalifiers A qualifier is either
abooleanexpression or a pair < ¢, wherex is a variable and is an expression. The sequence
of qualifiers may also be empty. Such a monoid comprehensiusi syntactic sugar that can be
expressed in terms of homomorphisms as follows:

def

(@ 1g){e |} = edlg
(@, 1) {e|z « ¢,Q & homi’“[)ur.(@,ll(:)){e | Q})(e") (3.27)
(@, 1z){e | ¢, Q} = if e then (@, Ig){e | Q) else 1y

PAGE 26 OF 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

This is explained more formally in Section 3.3.28.

Comprehensions are also interesting as they may be subjéetnisformations leading to
efficient evaluation than their simple “nested loops” ofieral semantics (by using “unn
techniques and using relational operations as implenmentaistructions). At any rate, hom
phisms are here treated “naively” and compiled as simplpdoo

3.3.28 Comprehension

The concept of monoid homomorphism is useful for expresailmgmal semantics of iteratio
collections. However, it is not very convenient as a prograng construct. A natural notati
such a construct that is both conspicuous and can be exgrasserms of monoid hom

phisms is anonoid comprehensiofThis notion generalizes the familiar notation used fo

a set in comprehension (as opposed to writing it in extensisimg a pattern and a form

scribing its elements (as oppposed to listing all its eles)error example, the set compre

{{z,z?) | = € N, 3In.z = 2n} describes the set of paifs, z*) (thepatterr), verifying the for

z € N, 3In.z = 2n (thequalifier).

This notation can be extended to any (primitive or collattimonoid®. The syntax of a m

comprehension is an expression of the fapfx | @} wheree is an expression called thea
the comprehension, arg s called its qualifier and is a sequenge. . ., ¢,, n > 0, where ea
is either

e ageneratorof the formz < e, wherez is a variable and is an expression; or,

o afilter ¢ which is a boolean condition.
In a monoid comprehension expressidfe | Q}, the monoid operatios is called theaccu
lator.
As for semantics, the meaning of a monoid comprehensionfisedkin terms of monoid h
morphisms.

DerINITION 3.3.1 (MONOID COMPREHENSION The meaning of a monoid comprehensi
a monoid® is defined inductively as follows:

ug(e) if @ is a collection monoid

ofel} = o _
e if @ is a primitive monoid

®fe]r « ¢,Q} = pomZ[hz. @ {e [Q}(¢)

®{e], Q) £ ijcthen @ {e] Q) else 3

suchthat : T, ¢ : T, and® is a collection monoid.

AiT-KACI PAGE 270

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

Note that although the input monoiglis explicit, each generatar < ¢’ in the qualifier has an
implicit collection monoid® whose characteristics can be inferred with polymorphiaypules.

Although Definition 3.3.1 can be effectively computed usimgted loopsife., using the iteration
semantics (3.25)), such would be in general rather inefficiRather, an optimized implementation
can be achieved by various syntactic transformation esprkas rewrite rules. Thus, the principal
benefit of using monoid comprehensions is to formulate efficoptimizations on a simple and
uniform general syntax of expressions irrespective of ifpenonoids.

Thus, monoid comprehensions allow the formulation of “deatiive iteration.” Note the fact men-
tioned earlier that a homomorphism coming from the trarmstadf a comprehension encapsulates
the operation in its function. Thus, this is generally tak@advantage with operations that cause
a side-effect on their second argument to enable an in-plac®wmorphism to dispense with un-
needed intermediate computation.

3.3.29 CompiledExpression

PAGE 280F 55 HASSAN

Chapter 4

The Type System

4.1 Overview

We first define some basic terminology regarding the typeesysind operations on types.

4.1.1 Polymorphism

Here, by ‘polymorphisni we mean ML-polymorphismife., 2nd-order universal)—with
differences that will be explained along the way—in otheraep types presented with a gr
such as:

[1] Type ::= SimpleTypé Polytype

(2] SimpleType := BasicTypg FunctionType TypeParameter
[3] BasicType z= Jnt | Real | Boolean | ...

[4] FunctionType := SimpleType — SimpleType

[5] TypeParameter:= « |/ |...|5 |5]...

[6] PolyType =V TypeParameter Type

that ensures that universal type quantifiers occur onlyeabtitset of a polymorphic type.

1or more precisely that never occurs nested inside a function type arrew This apparently innocuou
ensures decidability of type inference. BTW, tired order comes from the fact that the quantifier applie
parameters (as opposediist order, if it had applied tealueparameters). Theniversalcomes fron¥, of cours

29

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

4.1.2 Multiple Type Overloading

This is also often callead hocpolymorphism. When enabled (the default), this allows aesam
identifier to have several unrelated types. Generally,reéséricted to names with functional types.
However, since functions are first-class citizens, thigriet®n makes no sense, and therefore the
default is to enable multiple type overloading for all types

Note that there is no established technology that prewailsifpportindoothML-polymorphic type
inference and multiple type overloading. Here (and in ssvather parts of this overall design) |
have had to innovate and put to use techniques from (Congttaigic Programming to be able to
prove the combination of types supportable by this architec

4.1.3 Currying

Currying is an operation that exploits the following matlzgizal isomorphism of types:
tth =t~ t— (¢ —t") (4.1)
which can be generalized to its multiple form:

Bty =t byt = (begts ety — 1) k=1,...,n—1 (4.2)

When function currying is enabled, this means that typeskimg/inference must build this equa-
tional theory into the type unification rules in order to coes types equal modulo this isomor-
phism.

4.1.4 Standardizing

As a result of,e.g, currying, the shape of a function type may change in thesmof a type-
checking/inference process. Type comparison may thusstedten various structurally different,
although syntactically congruent, forms of a same type.petnust therefore assume a canonical
form in order to be compared. This is wregndardizinga type does.

Standardizing is a two-phase operation that fiatensthe domains of function types, thee-
namesthe type parameters. The flattening phase simply amountgplying Equation (4.1) as

a rewrite rule, althougbackwards(i.e., from right to left) and as much as possible. The second
(renaming) phase consists in making a consistent copy tff@k reachable from a type’s root.

2For the reader who might wonder what all this has to do withidnccooking: it does not. It comes from
Prof. Haskell B. Curry’s last name. Curry was one of the twahamaticians/logicians (along with ?. Feys) who con-
ceivedCombinator LogiandCombinator Calculusand made extensive use of the isomorphism of Equation-4.1)
hence the folklore’s coining of the vet curry—(currying, curryed),—n French:curryfier—(curryfication, curry@).
The homonymy is often amusingly mistaken for an exotic wajua}spicing functions.

PAGE 30 0F 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

4.1.5 Copying

Copying a type is simply taking a duplicate twin of the graphahable from the type’
Sharing of pointers coming from the fact that type paransateroccur are recorded in a pal
substitution table (in our implementation, simply ava. uti | . HashMap) along the way,
thus consistent pointer sharing can be easily made eféectiv

4.1.6 Equality

Testing for equality must be done modulo a parameter sulistittable (in our implement
simply aj ava. uti | . HashMap) that records pointer equalities along the way, and thu
up to parameter renaming can be easily made effective.

A tableless version of equality also exists for which eagletparameter is considered eq
to itself.

4.1.7 Unifying

Unifying two types is the operation of filling in missing infoation (.e., type parameters) i
with existing information from the other by side-effectifige., binding) the missing infor
(i.e, the type parameters) to point to the part of the existingrimition from the other typ
should be equal ta.g., their values). Note that, like logical variables in Logim§ramming,
parameters can be bound to one another and thus must berdecef@ to their values.

4.1.8 Boxing/Unboxing

The kernel language is polymorphically typed. Thereforgyrection expression that has

morphic type must work for all instantiations of this typ&pe parameters into either pri
unboxed typesd.g, Jnt, Real, etc) or boxed types. The problem this poses is: how
compile a polymorphic function into code that would corhg&nhow what the actual runtim
of the function’s runtime arguments and returned value laeéore the function type is a
instantiated into a (possibly monomorphic) tgperhe problem was addressed by Xavie
10 years ago [5] and he proposed a solufidreroy’s method is based on the use of typ

SBesides compiling distinct copies for all possible runtisoet instantiations (likeg.g, C++ template func
nor recompiling each time a specific instantiation is needéx former is not acceptable because its tends
the code space explosively. The latter can neither be egeisbecause it goes against a few (rightfully) s
principles like separate compilation and abstract libmamgrfacing—imaging having to recompile code from
everytime you want to use it!

4This solution is the one implemented in the CAML compiler. [6]

AiT-KACI PAGE 310

ABSTRACT AND REUSABLE

Incomplete Draft of June 3, 2002

tation that enables a source-to-source transformatiois. Stiurce transformation is the automatic
generation ofvrappersandunwrappergor boxing and unboxing expressions whenever necessary.
After that, compiling the transformed source as usual vélblaranteed to be correct on all types.

| adapted and improved the main idea from Leroy’s solutiothst:

o the type annotation and rules are greatly simplified;
e Nno source-to-source transformation is needed,
e un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

4.2 The Type System

The type system consists of two complementary partstaticand adynamicpart® The former
takes care of verifying all type constraints that are saflicdecidableite., before actually running
the program). The latter pertains to type constraints thagtiwait until execution time to decide
whether those (involving runtime values) may be decideds &hcalled dynamic type-checking
and is best seen (and conceived) agn@rementalextension of the static part.

A type is either a static type, or a dynamic type. A static tiga type that is checked before
runtime by the type-checker. A dynamic type is a wrapper radautype that may need additional
runtime information in order to be fully verified. Its stapart must be (and is!) checked statically
by the static type checker, but the compiler may completelthiissuing runtime tests at adequate
places in the code it generates; namely, when:

e binding abstraction parameters of this type in an appbcar
e assigning to local and global variable of this type, or
e updating an array slot, a tuple component, or an objectd,falthis type.

There are two kinds of dynamic types:

e Extensional types—defined with explicit extensions (gitstatically provided or dynami-
cally computed runtime values):

— Set extension type;
— Int range extension type (close interval of ints);

5See Appendix Section B.2 on Page 52 for the complete classarbigy of types in the package
il og. | anguage. desi gn. t ypes.

PAGE 32 0F 55 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

— Real range extension type (close interval of reals).

A special kind of set of int type is used to define enumeratigres$ (from actual s
sets) through opaque type definitions.

¢ Intensional types—defined using any runtime boolean cimdib be checked at ru
calls to which are tests generated staticalgnon-negative numbergé€., i nt +,f | oat

4.3 Type Definitions

Type definitions are provided both for convenience of malpnograms more legible by
“logical” names (or terms) to otherwise verbose types, drad of hiding information det
a type making it act as a new type altogether. The formerifiadd that of providingalias
types (exactly like a preprocessor’s macros get expandatiaivay into their textual equiva
while the latter offers the convenience of definimgwtypes in terms of existing ones, but
this information. It follows from this distinction that age alias isalwaysstructurally equiv
to its value (in fact an alias disappears as soon as it is redming parsed away into the st
defining it). By contrast, a defined typensverstructurally equivalent to its value nor an
type—it is only equivalent to itself. To enable meaningfahgutation with a defined typ
meta-(de/con)structors are thus provided: one for explicastinga defined type into th
that defines it, and one explicitly seeing a type as a spedfifided type (if such a define
does exist and with this type as definition).

The class | og. | anguage. desi gn. t ypes. Tabl es contains the symbol tables for
names and types. The name spaces of the identifiers dengpi@gnd non-type (global or
names (which are kept in the global symbol table) are disjeso there are no name c
between types and non-type identifiers.

Thet ypeTabl e variable contains the naming table for types andgiiebol Tabl e vari
contains the naming table for other (non-type) global names

This section will unfold all the type-related data-struesistarting from the class that m
symbols:i | og. | anguage. desi gn. t ypes. Tabl es. The names can be those of ty
values. They arglobalnames. The type namespace is independent of the value names
the same name can denote a value and a type.

At the moment, there is no name qualification or namespaceagement. When this service is provide
also be through thiel og. | anguage. desi gn. t ypes. Tabl es class.

AiT-KACI PAGE 330

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

4.3.1 Type aliasing
4.3.2 Type hiding

4.4 Static types

The static type system...

4.4.1 Primitive types
Boxable types

e Loid
e Jnt
o NReal

Char

Boolean

Boxed types

Built-in type constantsd.g, Gtring).

4.4.2 Type constructors

Function types
Tuple types
Position tuple types
Named tuple types
Array types

0-based int-indexed arrays
Int range-indexed arrays
Set-indexed arrays

PAGE 340F 55

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of June 3

Multidimensional arrays

Set types

Class types

4.4.3 Polymorphic types
4.4.4 Type aliasing
4.4.5 Type hiding

4.5 Dynamic types

Dynamic types are to be checked, if possible staticallygast their static part is), at least
particular places of an expression. Namely,

e at assignment/update time; and,
e at (function) parameter-binding time.

This will ensure that the actual value places in the slot etipg a certain type does respec
tionnal constraints that may only be verified with some muetivalues. Generally, dynami

are so-calledlependentypes (such a%.g, ar r ay of _si ze(n), a “safe” array type depe
on the array size that may be only computed at runtimesa la Java arrays.).

From this, we require that a class implementingByaan cType interface provides a m
public bool ean verifyCondition() thatis invoked systematically by code ge
for dynamically typed function parameters and for locagidhat are the target of updat
array slot update, object field update, tuple field updatepatpilation of abstractions and
assignment constructs. Of this class, three subclassies tlegir properties:

e extensional types;
e Boolean-assertion types;
e non-negative number types.

We shall consider here a few such dynamic types (motivateskesially by the need expres
OpL, and hence Mo, types). Namely,

e extensional types;

AiT-KACI PAGE 350

ABSTRACT AND REUSABLE

Incomplete Draft of June 3, 2002

e non-negative numbers—or more generally, Boolean-assettpes (of which non-negative
number types are instances).

An extensionatype is a type whose elements are determined to be membergretlatermined
and fixed extension.g., any runtime value that denotes a collection - such as asétt aange,

a float range, or an enumeration). Such types pose the awgifwoblem of being usable at
compile-time to restrict the domains of other variableswideer, some of those variables’ values
may only fully be determined at runtime. These particularaipic types have therefore a simple
veri fyCondi ti on() method that is automatically run as soon as the extensionae. It
just verifies that the element istena fidemember of the extension), otherwise it relies on a
more complicated scheme based on the notionasfiract Basically, a contract-based type is
an extensional type that does not have an extension (as yeglieady carries the obligation
that some particular individual constants be part of thetemsions. Those elements consitute
“contracts” that must be honored as soon as the type’s égtehecomes known (either positively
- eliminating the contract, or negatively - causing a typem®r

The notion of extensional type

Set types

Int range types
Float range types
Enum types

4.5.1 Conditional types

Non-negative numbers

4.5.2 The notion of dynamically constrained typei(nt +, f | oat +,...)

The notion of boolean-assserted type

4.5.3 Extensional types

PAGE 36 OF 55 HASSAN

Chapter 5

The instruction base

The complete list of instructions that are cur-

rently defined is:

1. Do-nothing instruction:
(a) No_Op
2. Push instructions:

(a) PusH.I

(b) PusH.O

(c) PusH.R

(d) PusH.OFFsET.I
(e) PusH.OFFSET.O
(f) PUSH.OFFSET-R
(9) PusH_TuPLE
(h) PusH.SET.I

(i) PusH.SET-R

(j) PusH.SET_O
(K) PusH.I NT_RNG
(I) PusH.REAL_RNG
(m) PusH_CLOSURE
(n) PUusH.NEwW.OBJECT

3. Subroutine instructions:

(@) AppPLY
(b) APPLY_Hom I

37

(c) ApPLY_HOMR

(d) AppPLY_HOM.O

(e) AppLY_I P_-HOMI

(f) AppLY_l P.HOMR

(g) ApPLY_I P.HOM.O

(h) AppLY CoLL |

(i) ApPLY_COLL-R

() APPLY_CoLL_O

(k) AppPLY_CoLL_HomI

() AppPLY_COLL_HOMR
(m) AppLY_CoLL_HoM O
(n) ApPLY_I P_CoLL_Hom.I
(o) AppLY_I P_CoLL_HOMR
(p) ApPLY_I P_CoLL_HOMO
(g) CaLL

(r) EnD

(s) RETURN_I

(t) RETURN.R

(u) RETURN_O

(V) NL_RETURN_I

(W) NL_RETURN_R

(X) NL_LRETURN_O

4. Pop instructions:

(a) Por._I

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

(b) Por.O
(c) PorPR

5. Relocatable instructions:

(@) Juwp
(b) JumP_ON_FALSE
(c) JumP_ON_TRUE

6. Conversion instructions:

(@1 ToO

(b) I ToR

(c) O.Toll

(d) O.ToR

(e) RTo.l

(f) RToO

(9) ARRAY_TO.MAP_I

(h) ARRAY_TO.MAP_R

(i) ARRAY_TO_.MAP_O
(i) MAP_TO_ARRAY_O
(k) CHECK_ARRAY_SI ZE
() RECONCI LE_| NDEXABLES
(M) ARRAY_I NI TI ALI ZE
(n) SHUFFLE_MAPI

(0) SHUFFLE-MAP_R

(p) SHUFFLE_-MAP_O

7. Assignment instructions:

(a) SET_GLOBAL

(b) SET_OFFsET.I
(c) SET_OFFSET.O
(d) SET OFFSET.R

8. Tuple component instructions:

(a) GeET_TuPLE.I
(b) GET_TuPLE_R

PAGE 38 0F 55

(c) GET_TuPLE.O
(d) SET_-TuPLE.I
(e) SET_TuPLER
() SET_TuPLE-O

9. Array/Map allocation instructions:

(a) PUSH.ARRAY_I
(b) PUSH.ARRAY_R
(c) PUSH.ARRAY_O
(d) PusH-MaP_I

(e) PusH.MAP_R

() PusH.MaP_O
(9) MAKE_ARRAY_I
(h) MAKE_ARRAY_R
(i) MAKE_ARRAY_O
() MAKE_MAP_I

(k) MAKE_MAP_R

() MAKE-MAP_O
(m) FiLL_ARRAY_I A
(n) FI LL_ARRAY_I M
(0) FI LL_ARRAY_OA
(p) FI LL_LARRAY_OM
() FI LL_ARRAY_RA
(r) FI LL_LARRAY_RM
(s) FiLL_MaPI A
(t) FiLL_MaPI M
(u) FI LL_MaP_OA
(V) FILL_MAP_OM
(W) FiLL_MaP_RA
(X) FILL_MAP_RM

10. Array/Map slot instructions:

(a) GET_ARRAY_I
(b) GET_I NT_I NDEXED_MAP_I
(c) GET.I NT_I NDEXED_MAP_O

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

(d) GET_I NT_I NDEXED_MAP_R
(e) GET-MaP.I

(f) GET_ARRAY_.O

(g) GET_MaP.O

(h) GET_ARRAY_R

(i) GET_-MAPR

()) SET_ARRAY.I

(K) SET_I NT_| NDEXED_MAP_I
() SET_I NT_l NDEXED_MAP_O
(m) SET_I NT_| NDEXED_MAP_R
(n) SET_MaP_I

(0) SET_ARRAY_O

(p) SET_MaP.O

(q) SET_ARRAY_R

(r) SET_MAP R

11. Field instructions:

(@) GET_FI ELD.I
(b) GET_FI ELD.O
(c) GET_FI ELD.R
(d) SET_FI ELD.I
(e) SET_FI ELD.O
(f) SET_FIELDR

12. Built-in operations:

(a) Arithmetic operations:

I. AbDI |
ii. AbDIR
iii. AbD_RI
iv. ADD_RR
V. SuB_l |
vi. SuBIR
vii. SuB_RI
viii. SuB_RR
iX. M Nus_|
X. M NUS_R

AiT-KACI

Xi. MUL_I |
Xii. MUL_I R
Xiii. MUL_R
Xiv. MUL_RR
XV. D vl
xvi. DI VIR
xvii. DI V_RI
xviii. DI V.RR
XiX. MobuLUS
XX, M N
xXi. M NI R
xXii. M N_RI
xXiii. M N_RR
XXiv. Max_| |
XXV. Max_I R
XXVi. MAX_RI
Xxvii. MAX_RR
xxviii. ABs_| _RI
XXiX. ABS_R
XXX. SQRT
XXXi. POWER

(b) Arithmetic relations:

i. EQu.lI
ii. EQu.0O
iii. EQU_RR
iv. NEQ.l'|
V. NEQ.CO
vi. NEQ.RR
vii. Gre.l |
viii. GTELIR
iX. GTE_RI
X. GTE_LRR
Xi. GRT_I |
Xii. GRT_IR
Xiii. GRT_RI
Xiv. GRT_RR
XV. LTE_I'|
xvi. LTELIR
Xvii. LTE_RI

PAGE 390

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

Xviii.

XiX.
XX.
XXi.

XXii.

LTELRR
Lstll
LsTIR
LsTRI
LST_RR

(c) Boolean operations:

i
(d) Map and Size operations:
i

iv.

NoT

MaP_SI ZE
ARRAY_SI ZE

| NDEXABLE_SI ZE
GET_l NDEXABLE

(e) Container operations:

BELONGS_I
BELONGS_O
BELONGS_R

(f) Set operations:

iv.
V.
Vi.

vii.
viii.

iX.
X.
Xi.

Xii.

SET_COPY
MaAKE_SET_I
MAKE_SET_O
MAKE_SET_R
SET.DI FF
SET_SYM.DI FF
| NTER

UNI ON
D_SET_Di FF
D_SET_Sym.Di FF
DI NTER
D_UNI ON

(g) Set relations:

(h) Set element operations:

i
ii.
iii.
iv.

PAGE 40 0F 55

SUBSET

SET_ADD.I
SET_ADD_R
SET_ADD_O
SET_Rwmv_I

V. SET_.RmV_R
vi. SET_Rwv_O

vii. FIRsT.I
viii. FIRST_.O
iX. FIRST_R
X. LAsT.I
Xi. LAST_.O
Xii. LAST_R
Xiii. NExT_|
Xiv. NEXT_C.I
XV. NEXT_O
Xvi. NEXT_C.O
Xvii. NEXT_R
Xviii. NExXT_C.R
Xix. OrD_|
XX. OrRD_O
XXi. OrRD_R
XXii. PREV_|
xXiii. PRev_C.|
XXiv. PREV_O

XXV. PREV_C.O
XXVi. PREV_R
XXvii. PREV_C.R

(i) Range operations:

i. | NT_RNG_UB
ii. I NT_RNG.LB
iii. REAL_RNG_UB
iv. REAL_RNG_LB

() String operations:
i. STRCON
(k) I/O operations:

i. WeI TEI
ii. W&I TE_O
iii. W&I TELR

13. Dummy instructions:

(a) Dumvy_EqQu

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

(b) Dummvy _NEQ

(c) Dummy_AND

(d) Dummy_Or

(e) Dummy_STRCON
(f) Dummy WRI TE
(g) Dummy_SI zE
(h) Dummvmy_SET_ADD
(i) Dummy_SET_Rmv
(i) Dummy_BELONGS
(k) Dummy_OrD

() Dummy_FI RST
(m) Dummy_LAST
(n) Dummy_NEXT
(0) DuMmY_NEXT_C
(p) DummY_PREV
(q) Dummy_PREV_C

AiT-KACI

PAGE 410

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

PAGE 42 OF 55

HASSAN

Chapter 6

The backend system

6.1 The runtime system

This is the class defining a runtime object. Such an objegesexs the common execution e
ment context shared bynst r uct i ons being executed. It encapsulates a state of co
that is effected by each instruction as it is executed inatgext.

A Runt i e object consists of attributes and structures that togettféme a state of compu
and methods that are used by instructions to effect thig stsitthey are executed. Thu
instruction class defines a&xecut e(Runt i ne) method that specifies its operational se
as a state transformation of its given runtime context.

Initiating execution of &Runt i ne object consists of setting its code array to a given in
sequence, setting its instruction pointep to its code’s first instruction and repeatedly
execut e(t hi s) on whatever instruction is currently at addresp in the current code
The final state is reached when a flag indicating that it is s®idot r ue. Each instructi
responsible for appropriately setting the next state atingrto its semantics, including savi
restoring states, and (re)setting the code array and theugaruntime registers pointing i
state’s structures.

Runtime states encapsulated by objects in this class aeatedly those of a stack auto
specifically conceived to support the computations of adrigitder functional language wit
cal closures t.e., aA-calculus machine - extended to support additional featueeg, assign
side-effects, objects, automatic currying... As such iy miawed as an optimized variant o
Landin's SECD machine [4]—in the same spirit as Luca Carddiunctional Abstract Mal
(FAM) [1], although our design is quite different from Calidgin its structure and operati

Because this is a Java implementation, in order to avoid pheesand performance over|
being confined to boxed values for primitive type computaidhree concurrent sets of str

43

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

are maintained: in addition to those needed for boxed (Jhject) values, two extra ones are
used to support unboxed integer and floating-point valiespectively. The runtime operations
performed by instructions onRunt i e object are guaranteed to be type-safe in that each state is
always such as it must be expected for the correct accessihggdting of values. Such a guarantee
must be (and is!) provided by theypeChecker and theSani ti zer, which ascertain all the
conditions that must be met prior to havin@anpi | er proceed to generating instructions which
will safely act on the appropriate stacks and environmehtfe correct sort (integer, floating-
point, or object).

6.2 The runtime objects
6.3 The display manager

6.4 The error manager

PAGE 44 OF 55 HASSAN

Chapter 7

A full example—HAK_LL

This chapter details the design of a concrete language feoamch. We call this languagenk_
presumably to mean, somewhat presumptuously: Hassalagits Little Languagé-

HAK_LL is a fully-working prototype language whose essential gotal illustrate and demo
our architecture: the expressive power of the kernel laggaad the workings of its type-c
compiler, and runtime systems. It is an imperative functidanguage with objects, wher
tions are first-class citizensdAk_LL has a surface syntax for an interactive language
define top-level constructs and evaluate expressions.pfiasts 2nd-order (ML-like) type
morphism, automatic currying, multiple type overloadidgnamic operator overloading,
as flat classes and objects(no subtyping nor inheritanceyey).

1... and pronouncedracklé—not to be confused with an otherwise known programminggleage of g

notoriety and whose name is the first name of Prof. HaskellBryC

45

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

Chapter 8

Conclusion

PAGE 46 OF 55 HASSAN 47

Incomplete Draft of June 3, 2002 ABSTRACT AND REUSABLE

Appendix A

A word on traceability

A.1 Relating concrete and abstract syntax

Error traceability...

A.1.1 Syntax errors

A.1.2 Static Semantics errors
Typing errors

Other Static Semantics errors

A.1.3 Dynamic Semantics errors
Runtime errors

Java errors
A.2 Displaying and reading

... iIn concrete/abstract syntax.

PAGE 48 OF 55 HASSAN 49

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

A.2.1 Displaying
A.2.2 Reading

A.2.3 Concretizing abstract syntax down

... with writing tables.

A.2.4 Abstracting concrete syntax away

... with reading tables.

PAGE 50 0F 55

HASSAN

Appendix B

A four-panelled architecture

B.1 The Complete Kernel

B.1.1 Sanitizing
B.1.2 Type checkingvs. inference

B.1.3 Compiling

51

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

B.2 The Complete Type System

Class hierarchy of types in the package
i | 0og. 1 anguage. desi gn. types

PAGE 52 OF 55

Type

DynamicType

StaticType

IntensionalType

ExtensionalType

ConstructedType

TypeParameter

NamedType

FunctionType TupleType ArrayType CollectionType

BoxableTypeConstant

BagType ListType

SetType

NamedTupleType

TypeTerm

TypeConstant

DefinedType

ClassType

CollectionTypeConstant

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of June 3

B.2.1 The type prover

B.3 Structure of the TypeChecker

An object of the class | og. | anguage. desi gn. t ypes. TypeChecker is a backtra
prover that establishes various kindsgafals The most common goal kind established b
checker is ayping goal—but there are othefsA Typi ngGoal object is a pair consisting
expression and a type. Proving a typing goal amounts to imgifiys expression component
with its type component. Such goals are spawned by the typekaig method of expressi
per their type checking rules. Some globally defined symhbalsng multiple types, itis nec
to keep choices of these and backtrack to alternative types failure. Thus, &ypeChec

object maintains all the necessary structures for unddirgeffects that happened since

choice point. These effects are:

1. type variable binding,
2. function type currying,

3. application expression currying.

In addition, it is also necessary to remembefGalal objects that were proven since the las
point in order to prove them anew upon backtracking to anratéve choice. This is nec
because the goals are spawned by calls ta §ygeCheck method of expressions that

exited long before a failure occurs. Then, all the origiyging goals that were spawned
mean time since the current choice point’'s goal must beabkshed. In order for this to

any choice points that were associated to these originads$ goast also be recovered. To
this, when a choice point is created foGaobal symbol, choices are linked in the revers
(i.e,, ending in the original goal) to enable reinstating all ciesithat were tried for this goa

In order to coordinate type proving, a typechecker objeptissed to all type checking an
cation methods as an argument in order to record any effeleiappropriate trail.

To recapitulate, the structures ofgpeChecker object are:

¢ agoal stackcontaininggoal objects €.g, Typi ngCoal) that are yet to be proven;

1At the moment, the handled goals are:
e typing goalie : T';
e type unification goalT = T";
» base type unification godl’ = baséT”) ;

Others are expected (and will') be introducedy, when we support subtyping constraints«: 7', T < 1", etc.

AiT-KACI PAGE 530

Incomplete Draft of June 3, 2002

ABSTRACT AND REUSABLE

abinding trail stackcontaining type variables and boxing masks to reset to "unddupon
backtracking;

a function type currying trailcontaining 4-tuples of the form (function type, previous do
mains, previous range, previous boxing mask) for resettisgunction type to the recorded
domains, range, and mask upon backtracking;

anapplication currying trailcontaining triples of the form (application type, previduac-
tion, previous arguments) for resetting the applicatiathé&recorded function and arguments
upon backtracking;

a goal trail containingTypi ngGoal objects that have been proven since the last choice
point, and must be reproven upon backtracking;

achoice-point stackvhose entries consists of:
— aqueue offypi ngGoal Ent ry objects wherefrom to constructs n@ypi ngGoal

objects to try upon failure;
— pointers to all trails up to which to undo effects.

B.3.1 The type constructs

B.3.2 Defining new types

B.4

B.5

The Basic Instruction Set

The Complete Backend

B.5.1 TheRunti e class

B.5.2 TheRunti me(hj ect class

B.5.3 ThebDi spl ayManager class

B.5.4 TheErr or Manager class

PAGE 54 OF 55 HASSAN

Bibliography

[1

_—

(2]

(3]

(4]
(5]

(6]

Luca Cardelli. The functional abstract machiRelymorphism, the ML/LCF/Hope New:
I(1), 1983. (Also Technical Report TR-107, AT&T Bell Labdéoaes, April 1983.).

Hassan Ait-Kaci. An introduction to LIFE—Programmimgth logic, inheritance, func
and equations. In Dale Miller, editdProceedings of the Symposium on Logic Progr
The MIT Press, 1993.

Hassan Ait-Kaci. Jace—Just another compiler compilér.Optimization Group Tec
Reportforthcoming ILoG, Gentilly, France, forthcoming 2002.

Peter Landin. The mechanical evaluation of expressi@unmunications of the ACM.

Xavier Leroy. Boxing and unboxing in polymorphicallyggd languages. IRroceedin
the ACM Conference on Principles of Programming Languag€&RL'92), 1992.

Pierre Weiss and Xavier Leroy. The CAML compiler. Ressareport, INRIA, Rocquen
France, 1994.

2Jacc is a java-based software that generatessar(1) parsing automaton from a familigracc-like ac

annotated context-free grammar. it provides several Usefensions toyacc’s parsing capabilitiese.g, dyn
operator definitions la PROL OG, non-terminal subclassingfc., ...).Jacc is the property of LOG but is not p
the software products sold and/or maintained byd—it is not this author’s interest to commercializecc (at
not in the immediate future and in its current state), butrugecific request, and on a per-case basis, co|
classes (not sources) fpucc may be made available on &as is” basis if it is worth LoG's and this author's ti
do so.

55

