
AN ABSTRACT AND REUSABLE

PROGRAMMING LANGUAGE ARCHITECTURE

HASSAN A ÏT-KACI
hak@ilog.fr

ILOG

Research and Development
Optimization Group

http://www.ilog.fr

9, rue de Verdun - B.P. 85
94253 Gentilly Cedex, France

December 8, 2006

(INCOMPLETE DRAFT)

Copyright c© ILOG, S.A. and Hassan ÄIT-KACI

Preamble

Purpose

The purpose of this document is to describe, explain, and justify the design of theilog.lan-
guage.design package. Its main goal is to serve as a specification as well asa documentation
of the details of various of its intricacies. As such, it serves mainly its author helping him to keep
track of subtleties he alone may know of but may not remember—at least not in full detail—and,
of course, it is also meant for those brave enough to use it, let alone those who wish to understand
it in details (gasp!) to adapt and/or extend its functionalities.

Acknowledgement

Many thanks are due to the few, the proud, the“volunteer” pre-α-testers of the viability of the
whole design—especially the NGO design team,1 and any others having been exposed, willy or
nilly, to some of, or the whole package as its design was unfolding!. . .

Many thanks also to ILOG for their open mind, as well as their keen acumen making the savvy
intellectual investment of trusting their R&D to make no compromise in the best quality of their
software. I have enjoyed the challenge of meeting their customers demands with the best possible
scientific environment.2

1Thank you Chritiane Bracchi, Chrisptophe Gefflot, Frédéric Paulin, and Patrick Viry!. . .;-)
2Thanks, in particular, to Jean-Fran⌋ois Puget, ILOG’s VP of Optimization, and Jean-Fran⌋ois Abramatic, ILOG’s

CTO, for their support, and of course Pierre Haren, ILOG’s CEO for his tireless contagious enthusiasm.

Contents

1 Programming language design 1

2 Overview 3

2.1 Abstract programming language design 3

2.1.1 Surface language .3

2.1.2 Kernel language . 3

2.1.3 Type language . 3

2.1.4 Intermediate language .. . 3

2.1.5 Execution backend .3

2.1.6 Pragmatics . 3

3 The kernel language 5

3.1 Kernel expression 5

3.2 Processing a kernel expression 5

3.2.1 Sanitizer . 6

3.2.2 Typechecker . 6

3.2.3 Compiler . 6

3.3 Description of kernel expressions 7

3.3.1 Constant . 11

3.3.2 Abstraction . 12

3.3.3 Application . 13

3.3.4 Local . 14

3.3.5 Parameter . 14

i

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.3.6 Global . 14

3.3.7 Dummy . 14

3.3.8 Definition . 14

3.3.9 IfThenElse . 14

3.3.10 AndOr . 14

3.3.11 Sequence . 16

3.3.12 Let . 16

3.3.13 Loop . 16

3.3.14 ExitWithValue .17

3.3.15 Assignment . 19

3.3.16 NewArray . 19

3.3.17 ArraySlot . 19

3.3.18 ArraySlotUpdate .. 19

3.3.19 ArrayExtension .. 19

3.3.20 ArrayInitializer 19

3.3.21 Tuple . 19

3.3.22 NamedTuple . 19

3.3.23 TupleProjection .. . 19

3.3.24 TupleUpdate . 19

3.3.25 NewObject . 19

3.3.26 DottedNotation .. 19

3.3.27 FieldUpdate .21

3.3.28 Homomorphism . 21

3.3.29 Comprehension .24

4 The type language 49

4.1 Overview . 49

4.1.1 Polymorphism . 49

4.1.2 Multiple Type Overloading 50

4.1.3 Currying . 50

4.1.4 Standardizing .50

ii HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

4.1.5 Copying . 51

4.1.6 Equality . 51

4.1.7 Unifying . 51

4.1.8 Boxing/Unboxing .51

4.2 The type system .. 52

4.3 Static types .. 53

4.3.1 Primitive types .53

4.3.2 Type constructors .. 53

4.3.3 Polymorphic types .56

4.4 Type definitions .. . 56

4.4.1 Type aliasing . 57

4.4.2 Type hiding . 57

4.5 Dynamic types .57

4.5.1 Extensional types .. 58

4.5.2 Intensional types .. 58

5 The intermediate language 59

5.1 Do-nothing instruction 59

5.2 Push instructions 59

5.3 Subroutine instructions 60

5.4 Pop instructions 61

5.5 Relocatable instructions 61

5.6 Conversion instructions 61

5.7 Assignment instructions 62

5.8 Tuple component instructions 62

5.9 Array/Map allocation instructions 62

5.10 Array/Map slot instructions 63

5.11 Field instructions 64

5.12 Built-in operations 64

5.12.1 Arithmetic operations 64

5.12.2 Arithmetic relations 65

A ÏT-KACI iii

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

5.12.3 Boolean operations .. . 66

5.12.4 Map and Size operations .. . 66

5.12.5 Container operations 66

5.12.6 Set operations .. 67

5.12.7 Set relations .. 67

5.12.8 Set element operations 67

5.12.9 Range operations .. 68

5.12.10 String operations 68

5.12.11 I/O operations .. . 68

5.13 Dummy instructions 69

6 The backend system 71

6.1 The runtime system .. . 71

6.2 The runtime objects 72

6.3 The display manager .. . 72

6.4 The error manager .. . 72

7 A full example—HAK LL 73

8 Conclusion 75

A A word on traceability 77

A.1 Relating concrete and abstract syntax 77

A.1.1 Syntax errors . 77

A.1.2 Static Semantics errors 77

A.1.3 Dynamic Semantics errors .. . 77

A.2 Displaying and reading 77

A.2.1 Displaying . 78

A.2.2 Reading . 78

A.2.3 Concretizing abstract syntax down 78

A.2.4 Abstracting concrete syntax away 78

B A four-panelled architecture 79

iv HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

B.1 The Complete Kernel .. . 79

B.1.1 Sanitizing . 79

B.1.2 Type checkingvs.inference . 79

B.1.3 Compiling . 79

B.2 The Complete Type System 80

B.2.1 The type prover . 81

B.3 Structure of theTypeChecker . 81

B.3.1 The type constructs .. 82

B.3.2 Defining new types . 82

B.4 The Basic Instruction Set 82

B.5 The Complete Backend .. . 82

B.5.1 TheRuntime class . 82

B.5.2 TheRuntimeObject class . 82

B.5.3 TheDisplayManager class . 82

B.5.4 TheErrorManager class . 82

A ÏT-KACI v

Chapter 1

Programming language design

Languageis a means of communication. By this definition, a particularlanguage serves as a
conduit for information exchange between communicating entities. Such entities may be of various
kinds (be it sentient—e.g., humans, animals—or pragmatic tools—e.g., elevators, cars, computers,
etc.). A programming languageis a language for human-to-computer or computer-to-computer
communication.

A natural language, such as the one you are reading and I am using right now, is a language
for human-to-human communication. Such languages are (generally) not designed—theyevolve.1

Programming languages are designed.They are designed today more formally thanks to linguistic
research that led to syntactic science (leading to parser technology) and research in the formal
denotational semantics of programming constructs. As in the case of a natural language, a grammar
will regulate the formation of sentences (programs) that will be understood (interpreted/executed)
according to the language’s natural (denotational/operational) semantics.

Designing a programming language is difficult because it requires being aware of all the (over-
whelmingly numerous) consequences of the slightest designdecision that may occur anytime dur-
ing the lexical or syntactical analyses, and the static or dynamic semantics phases. Because of
the potentially high design costs (in time and effort, but also in terms of the quality of the end
product—viz., performance and reliability of the language being designed)2 investing in defining
and implementing a new language is prohibitive.

Fortunately, there have been design tools to help in the process. So-called meta-compilers have
been used to great benefit and higher quality of language implementations. The “meta” part is

1In fact, natural languages haveco-evolved under one another’s historical and geographical influence and often
mutate through exchange of syntax and/or semantics—we do not include hereartificial human languages likeEs-
peranto, etc.., . . . The “damage” incurred by a language adopting a new often mutated concept from another being
this co-evolution. There also are some rare natural languages that evolved away from others due to mere geographical
reasons.

2Not to mention how to justify, let alone guarantee, the correctness of the design’s implementation.

1

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

actually mostly true for the lexical and syntactic phases ofthe language design. Even then, the
metasyntactic tools are often restricted to specific classes of grammars and/or parsing algorithms.
Still fewer propose tools forabstract syntax. Most that do confine the abstract syntax language to
some form of idiosyncratic representation of a tree language with somead hocinterpretation. Even
rarer are language design systems that propose abstract andreusable components in the form of
expressions of a formal typed kernel calculus. This is what this work proposes, and this document
explains such a design.

This work is therefore a metadesign: it is the design of a design tool. The emphasis—the novelty
of what is proposed here—is not so much on the lexical/syntactical phases, but mostly on the
semantic phases.3

This document describes the design of an abstract reusable programming language architecture
and its implementation in Java. It represents the basis insofar as these abstract and reusable con-
structs, and any well-typed compositions thereof, may be instantiated in various modular language
configurations.4

3The lexical/syntactic phases also deserve attention, and Ihave implemented a set of extensions to the conventional
lex/yacc (alternatively,flex/bison) meta[lex/syntact]ical tools [3]. More has to be done on that side—e.g.,
documentation!—and much of it is operational and can be usedas ade facto[lex/syntact]ical front end to the semantic
architecture proposed here.

4The first facet was the elaboration ofJacc, an advanced system for syntax-directed compiler generation [3]. The
third facet will be the integration of logic-relational (from Logic Programming) and objet-relational (from Database
Programming). A later facet may be to complete the design to enable bothLIFE-technology [2] andCSP/LP technol-
ogy to cohabit.

PAGE 2 OF 83 HASSAN

Chapter 2

Overview

2.1 Abstract programming language design

2.1.1 Surface language

2.1.2 Kernel language

2.1.3 Type language

2.1.4 Intermediate language

2.1.5 Execution backend

Semantic language: Runtime objects

Type-directed Display manager

Type-directed Data Reader

2.1.6 Pragmatics

Concretevs. abstract error handling

Concretevs. abstract Vocabulary

3

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 4 OF 83 HASSAN

Chapter 3

The kernel language

3.1 Kernel expression

3.2 Processing a kernel expression

Typically, upon being read, anExpression will be:

1. “name-sanitized”—in the context of aSanitizer to discriminate between local names
and global names, and establish pointers from the local variable occurrences to the abstrac-
tion that introduces them, and from global names to entries in the global symbol table;

2. type-checked—in the context of aTypeChecker to discover whether it has a type at all,
or several possible ones (only expressions that have a unique unambiguous type are further
processed);

3. “sort-sanitized”—in the context of aSanitizer to discriminate between those local vari-
ables that are of primitive Java types (int ordouble) or ofObject type (this is necessary
because the set-up means to use unboxed values of primitive types for efficiency reasons);
this second “sanitization” phase is also used to compute offsets for local names (i.e., so-
calledde Bruijn indices) for each type sort;

4. compiled—in the context of aCompiler to generate the sequence of instructions whose
execution in an appropriate runtime environment will evaluate the expression;

5. executed—in the context of aRuntime to execute its sequence of instructions.

5

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.2.1 Sanitizer

A sanitizeris an object that “cleans up”—so to speak—an expression of its remaining ambiguities
as it is being processed. There are two kinds of ambiguities that must be “sanitized:”

• after parsing, it must be determined which identifiers are the names oflocal variablesvs.
those ofglobalvariables;

• after type-checking, it must be determined the runtime sortof every abstraction parameter
and use this to compute the local variable environment offsets of each local variable.1

Thus a sanitizer is a discriminator of names and sorts.2

3.2.2 Typechecker

The type checker is in fact a type inference machine that synthesizes missing type information
by type unification. It may be (and often is) used as a type-checking automaton when types are
(partially) present.

Each expression must specify its owntypeCheck(TypeChecker) method that encodes its
formal typing rule.

3.2.3 Compiler

This is the class defining a compiler object. Such an object serves as the common compilation
context shared by anExpression and the subexpressions comprising it. Each type of expres-
sion representing a syntactic construct of the kernel language defines acompile(Compiler)
method that specifies the way the construct is to be compiled in the context of a given compiler.
Such a compiler object consists of attributes and methods for generating straightline code which
consists of the sequence of instructions corresponding to atop-level expression and its subexpres-
sions.

Upon completion of the compilation of a top-level expression, a resulting code array is extracted
from the sequence of instructions, which may then be executed in the context of aRuntime
object, or, in the case of aDefinition, be saved in the code array in theDefinition’s
codeEntry() field—aDefinedEntry object, which encapsulates its code entry point, which
in turn may then be used to access the defined symbol’s code forexecution).

1These offsets are the so-calledde Bruijn indices ofλ-calculus [4]. Or rather, their sorted version.
2It has occurred to this author that his choice of the word “sanitizer” is perhaps a tad of a misnomer—

“discriminator” may be a better choice. This also goes for theilog.language.design.kernel.Sanitizer
class’ method names (i.e., discriminateNames anddiscriminateSorts rather thansanitizeNames and
sanitizeSorts).

PAGE 6 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

Each expression construct of the kernel must therefore specify a compiling rule. Such a rule
expresses how the abstract syntax construct maps into a straightline code sequence.

3.3 Description of kernel expressions

The classExpression is the mother of all expressions in the kernel language. It specifies the
prototypes of the methods that must be implemented by all expression subclasses. The subclasses
of Expression are:

• Constant: constant (void, boolean, integer, real number, object);3

• Abstraction: functional abstraction (à la λ-calculus);4

• Application: functional application;

• Local: local name;

• Parameter: a function’s formal parameter (really a pseudo-expression as it is not fully
processed as a real expression and is used as a shared type information repository for all
occurrences in a function’s body of the variable it stands for);

• Global: global name;

• Dummy: temporary place holder in lieu of a name prior to being discriminated into a local or
global one.

• Definition: definition of a global name with an expression defining it in aglobal store;

• IfThenElse: conditional;

• AndOr: non-strict boolean conjunction and disjunction;

• Sequence: sequence of expressions (presumably with side-effects);

• Let: lexical scoping construct;

• Loop: conditional iteration construct;

• ExitWithValue: non-local function exit;

• Assignment: construct to set the value of alocal or aglobal variable;

• NewArray: construct to create a new (multidimensional) array;

• ArraySlot: construct to access the element of an array;

• ArraySlotUpdate: construct to update the element of an array;

3Section 3.3.1.
4Section 3.3.2.

A ÏT-KACI PAGE 7 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

• Tuple: construct to create a new position-indexed tuple;

• NamedTuple: construct to create a new name-indexed tuple;

• TupleProjection: construct to access the component of a tuple;

• TupleUpdate: construct to update the component of a tuple;

• NewObject: construct to create a new object;

• DottedNotation: construct to emulate the traditional object-oriented “dot” dereference
notation;

• FieldUpdate: construct to update the value of an object’s field;

• ArrayExtension: construct denoting a literal array;

• ArrayInitializer: construct denoting a syntactic convenience for specifying initial-
ization of an array from an extension;

• Homomorphism: construct denoting a monoid homomorphism;

• Comprehension: construct denoting a monoid comprehension;

In this section, we are going to give a detailed description of each kernel construct. The description
of an expression will have the following items:

• ABSTRACT SYNTAX

• OPERATIONAL SEMANTICS

• TYPING RULE

• COMPILING RULE

ABSTRACT SYNTAX

This describes the abstract syntax form of the kernel expression. A kernel expression will be
written in blue.

OPERATIONAL SEMANTICS

This describes informally the meaning of the expression. The notation[[e]], wheree is an abstract
syntax expression, denotes the (mathematical) semanticdenotationof e. The notation[[T]], where
T is a type, denotes the (mathematical) semanticdenotationof T—namely,[[T]] is the set of all
abstract denotations[[e]]’s such that kernel expressione has typeT .

TYPING RULE

PAGE 8 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

This describes formally the logical rules for typing the kernel expression. A type will be written in
red.

A typing judgmentis a formula of the formΓ ⊢ e : T , and is read as: “under typing contextΓ,
expressione has typeT .”

In its simplest form, atyping contextΓ is a function mapping the parameters ofλ-abstractions to
their types. In the formal presentation of an expression’s typing rule, the context keeps the type
binding under which the typing derivation has progressed upto applying the rule in which it occurs.

The notationΓ[x : T] denotes the context defined fromΓ as follows:

Γ[x : T](y)
def
=

{

T if y = x;
Γ(x) otherwise.

(3.1)

A typing ruleis a formula of the form:

J1, . . . , Jn

J
(3.2)

whereJ and theJi’s, i = 0, . . . , n, n ≥ 0, are typing judgments. This “fraction” notation ex-
presses essentially an implication: when all the formulae of the rule’spremises(the Ji’s in the
fraction’s “numerator”) hold, then the formula in the rule’s conclusion(the fraction’s “denomina-
tor”) holds too. Whenn = 0, the rule has no premise—i.e., the premise is tautologicallytrue (e.g.,
0 = 0)—the rule is called anaxiomand is written with an empty “numerator.”

A conditionaltyping rule is a typing rule of the form:

J1, . . . , Jn

J
if c(J1, . . . , Jn) (3.3)

wherec is a boolean metacondition involving the rule’s judgments.

A typing rule (or axiom), whether or not in conditional form,is usually read backwards (i.e.,
upwards) from the rule’sconclusion(the bottom part, or “denominator”) to the rule’spremises(the
top part, or “numerator”). Namely, the rule of the form:

Γ1 ⊢ e1 : T1, . . . , Γn ⊢ en : Tn

Γ ⊢ e : T
(3.4)

is read thus:

“The expressione has typeT under typing contextΓ if the expressione1 has typeT1

under typing contextΓ1, and . . . , the expressionen has typeTn under typing context
Γn.”

A ÏT-KACI PAGE 9 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

For example,

Γ ⊢ c : Boolean, Γ ⊢ e1 : T , Γ ⊢ e2 : T

Γ ⊢ if c then e1 else e2 : T

is read thus:

“The expressionif c then e1 else e2 has typeT under typing contextΓ if the expres-
sionc has typeBoolean under typing contextΓ and if both expressionse1 ande2 have
the same typeT under the same typing contextΓ.”

With judgments spelled-out, a conditional typing rule (3.3) looks like:

Γ1 ⊢ e1 : T1, . . . , Γn ⊢ en : Tn

Γ ⊢ e : T
if c(Γ, Γ1, . . . , Γn, e, e1, . . . , en, T , T1, . . . , Tn) (3.5)

wherec(Γ, Γ1, . . . , Γn, e, e1, . . . , en, T , T1, . . . , Tn) is a boolean meta-condition involving the con-
texts, expressions, and types. Such a rule is read thus:

“ if the meta-condition holds,then the expressione has typeT under typing context
Γ if the expressione1 has typeT1 under typing contextΓ1, and . . . , the expression
en has typeTn under typing contextΓn.”

An example of a conditional rule is that of abstractions thatmust take into account whether or not
the abstraction isexitable—i.e., it may be exited non-locally:5

Γ[x1 : T1] · · · [xn : Tn] ⊢ e : T

Γ ⊢ function x1, . . . , xn · e : T1, . . . , Tn → T
if function x1, . . . , xn · e is not exitable.

Similarlly, a typing axiom:

Γ ⊢ e : T
(3.6)

is read as,“The expressione has typeT under typing contextΓ.” and aconditional typing axiom
is a typing axiom of the form:

Γ ⊢ e : T
if c(Γ, e, T) (3.7)

wherec(Γ, e, T) is a boolean meta-condition on typing contextΓ, expressione, and typeT and is
read as,“ if the meta-conditionc(Γ, e, T) holdsthen the expressione has typeT under typing
contextΓ.” We shall see examples of typing axioms in Sections 3.3.1 and 3.3.5.

5See Sections 3.3.2 and 3.3.14.

PAGE 10 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

COMPILING RULE

This describes the way the expression’s components are mapped into a straightline sequence of
instructions. An instruction (or generally any instruction sequence) will be written inMAGENTA.
Any meta-information annotation used in code instructionsor instruction sequences will be written
in green.

The compiling rule for expressione is given as a functioncompile[[]] of the form:

compile[[e]] = INSTRUCTION 1

...
INSTRUCTIONn

(3.8)

3.3.1 Constant

Constants represents the built-in primitive (unconstructed) data elements of the kernel language.

ABSTRACT SYNTAX

A Constantexpression is an atomic literal. Objects of classConstant denote literal constants:
the integers (e.g., −1, 0, 1, etc.), the real numbers (e.g., −1.23, . . . , 0.0, . . . , 1.23, etc.), the
characters (e.g., ′a′, ′b′, ′@′, ′#′, etc.), and the constantsvoid, true, andfalse. The constantvoid is
of typeVoid, such that:

[[Void]]
def
= {[[void]]}

and the constantstrue andfalse of typeBoolean, such that:

[[Boolean]]
def
= {[[false]], [[true]]}.

Other built-in types are:

[[Int]]
def
= Z = {. . . , [[−1]], [[0]], [[1]], . . .}

[[Real]]
def
= R = {. . . , [[−1.23]], . . . , [[0.0]], . . . , [[1.23]], . . .}

[[Char]]
def
= set of all Unicode characters

[[String]]
def
= set of all finite strings of Unicode characters.

Thus, theConstant expression class is further subclassed into:Int,Real,Char,NewObject,
andBuiltinObjectConstant, whose instances denote, respectively: integers, floating-point
numbers, characters, new objects, and built-in object constants (e.g., strings).

A ÏT-KACI PAGE 11 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

TYPING RULE

The typing rules for each kind of constant are:

[void]
Γ ⊢ void : Void

[true]
Γ ⊢ true : Boolean

[false]
Γ ⊢ false : Boolean

[int]
Γ ⊢ n : Int

if n is an integer

[real]
Γ ⊢ n : Real

if n is a floating-point number

[char]
Γ ⊢ c : Char

if c is a character

[string]
Γ ⊢ s : String

if s is a string

(3.9)

We postpone for now the typing of object constants until we understand object types.

3.3.2 Abstraction

ABSTRACT SYNTAX

This is the standardλ-calculus functional abstraction, possibly with multipleparameters. Rather
than using the conventionalλ notation, we write an abstraction as:

function x1, . . . , xn · e (3.10)

where thexi’s areabstraction parameters—identifiers denoting variables local to the expression
e, the abstraction’sbody.

PAGE 12 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

TYPING RULE

There are two cases to consider depending on whether the abstraction is or notexitable. An exitable
abstraction is one that corresponds to a real source language’s function from which a user may exit
non-locally.6 Other (non-exitable) abstractions are those that are implicitly generated by syntactic
desugaring of surface syntax—e.g., see Sections 3.3.12 and 3.3.29. It is the responsibility ofthe
parser to identify the two kinds of abstractions and mark as exitable all and only those abstractions
that should be.

Γ[x1 : T1] · · · [xn : Tn] ⊢ e : T

Γ ⊢ function x1, . . . , xn · e : T1, . . . , Tn → T
if function x1, . . . , xn · e is not exitable

(3.11)

If the abstraction is exitable however, we must record it in the typing context. Namely,leta =
function x1, . . . , xn · e; then,

Γℵ←a[x1 : T1] · · · [xn : Tn] ⊢ e : T

Γ ⊢ a : T1, . . . , Tn → T
if a is exitable (3.12)

whereΓℵ←a is the same context asΓ except thatℵΓℵ←a

def
= a.

3.3.3 Application

ABSTRACT SYNTAX

f(e1, . . . , en) (3.13)

TYPING RULE

Γ ⊢ e1 : T1, · · · , Γ ⊢ en : Tn, Γ ⊢ f : T1, . . . , Tn → T

Γ ⊢ f(e1, . . . , en) : T
(3.14)

6Seeexit with v in Section 3.3.14, on Page 17.

A ÏT-KACI PAGE 13 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.3.4 Local

3.3.5 Parameter

3.3.6 Global

3.3.7 Dummy

3.3.8 Definition

3.3.9 IfThenElse

ABSTRACT SYNTAX

if c then e1 else e2

OPERATIONAL SEMANTICS

TYPING RULE

Γ ⊢ c : Boolean, Γ ⊢ e1 : T , Γ ⊢ e2 : T

Γ ⊢ if c then e1 else e2 : T
(3.15)

COMPILING RULE

compile[[if c then e1 else e2]] = compile[[c]]
JUMP ON FALSE jof
compile[[e1]]
JUMP jmp

jof : compile[[e2]]
jmp : . . .

(3.16)

3.3.10 AndOr

ABSTRACT SYNTAX

PAGE 14 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

e1 and/or e2

TYPING RULE

Γ ⊢ e1 : Boolean, Γ ⊢ e2 : Boolean

Γ ⊢ e1 and/or e2 : Boolean
(3.17)

And

COMPILING RULE

compile[[e1 and e2]] = compile[[e1]]
JUMP ON FALSE jof
compile[[e2]]
JUMP ON TRUE jot

jof : PUSH FALSE

JUMP jmp
jot : PUSH TRUE

jmp : . . .

(3.18)

Or

COMPILING RULE

compile[[e1 or e2]] = compile[[e1]]
JUMP ON TRUE jot
compile[[e2]]
JUMP ON FALSE jof

jot : PUSH TRUE

JUMP jmp
jof : PUSH FALSE

jmp : . . .

(3.19)

A ÏT-KACI PAGE 15 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.3.11 Sequence

ABSTRACT SYNTAX

{ e1; . . . ; en }

TYPING RULE

Γ ⊢ e1 : T1, . . . , Γ ⊢ en : Tn

Γ ⊢ { e1; . . . ; en } : Tn

(3.20)

COMPILING RULE

compile[[{ e1; . . . ; en }]] = compile[[e1]]
POP sort(e1)
...
compile[[en]]

(3.21)

3.3.12 Let

3.3.13 Loop

ABSTRACT SYNTAX

while c do e (3.22)

wherec ande are expressions.

OPERATIONAL SEMANTICS

TYPING RULE

Γ ⊢ c : Boolean, Γ ⊢ e : T

Γ ⊢ while c do e : Void
(3.23)

PAGE 16 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

COMPILING RULE

compile[[while c do e]] = loop : compile[[c]]
JUMP ON FALSE jof
compile[[e]]
JUMP loop

jof : PUSH VOID

(3.24)

3.3.14 ExitWithValue

ABSTRACT SYNTAX

exit with v (3.25)

wherev is an expression.

OPERATIONAL SEMANTICS

Normally, exiting from an abstraction is done simply by “falling off” (one of) the tip(s) of the
expression tree of the abstraction’s body. This operation is captured by the simple operational
semantics of each of the threeRETURN instructions. Namely, when executing aRETURN instruction,
the runtime performs the following three-step procedure:

1. it pops the result from its result stack;7

2. it restores the latest saved runtime state (popped off thesaved-state stack);

3. it pushes the result popped in Step 1 onto the restored state’s own result stack.

However, it is also often desirable, under certain circumstances, that computationnot be let to
proceed further at its current level of nesting of exitable abstractions. Then, computation may be
allowed to return right away from this current nesting (i.e., as if having fallen off this level of
exitable abstraction) when the conditions for this to happen are met. Exiting an abstraction thus
must also return a specific value that may be a function of the context. This is what the kernel
constructionexit with v expresses. This kernel construction is provided in order tospecify that the
current local computation should terminate without further ado, and exit with the value denoted by
the specified expression.

7Wherestackhere means “stack ofappropriateruntime sort;” approppriate, that is, as per the instruction’s sort—
viz., INT, REAL, or runtimeOBJECT.

A ÏT-KACI PAGE 17 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

TYPING RULE

Now, there are several notions in the above paragraphs that need some clarification. For example,
what an“exitable” abstraction is, and why worry about a dedicated construct inthe kernel language
for such a notion if it does nothing more than what is done by aRETURN instruction.

First of all, from its very nameexit with v assumes that computation hasenteredthat from which it
mustexit. This is anexitableabstraction; that is, the latestλ-abstraction having the property of be-
ing exitable. Not all abstractions are exitable. For example, any abstraction that is generated as part
of the target of some other kernel expression’s syntacting sugar (e.g., let x1 = e1; . . . ; xn = en; in e
or 〈⊕, 11⊕〉{e | x1 ← e1, . . . , xn ← en}, and more generally any construct that hide implicit ab-
stractions within), willnot be deemed exitable.

Secondly, exiting with a valuev means that the typeT of v must be congruent with what the return
type of the abstraction being exited is. In other words:

Γ ⊢ ℵΓ : T ′ → T , Γ ⊢ v : T

Γ ⊢ exit with v : T
(3.26)

whereℵΓ denotes the latestexitableabstraction in the contextΓ.

The above scheme indicates the following necessities:

1. The typing rules for an abstraction deemed exitable must record in its typing contextΓ
the latest exitable abstraction, if any such exists; (if none does, a static semantics error is
triggered to indicate that it is impossible to exit from anywhere before first entering some-
where).8

2. Congruently, theAPPLY instruction of an exitable closure must take care of chaining this
exitable closure before it pushes a new state for it in the saved state stack of the runtime sys-
tem with the last saved exitable closure, and mark the saved state as being exitable; (dually,
this exitable state stack must also be popped upon “falling off”— i.e., normally exiting—an
exitable closure. That is, whenever an exitable state is restored).

3. NewNL RETURN instructions (for each runtime sort) must be defined like their corresponding
RETURN instructions except that the runtime state to restore is theone popped out of the
exitable state stack.

COMPILING RULE

compile[[exit with v]] = compile[[v]]
NL RETURN sort(v)

(3.27)

8See Typing Rule 3.12 on Page 13.

PAGE 18 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

3.3.15 Assignment

3.3.16 NewArray

3.3.17 ArraySlot

3.3.18 ArraySlotUpdate

3.3.19 ArrayExtension

3.3.20 ArrayInitializer

3.3.21 Tuple

3.3.22 NamedTuple

3.3.23 TupleProjection

3.3.24 TupleUpdate

3.3.25 NewObject

3.3.26 DottedNotation

This class represents a syntactic construct that is often used, albeit with different, though related,
interpretations. A dotted notation is an expression (most often an application, but it could be any
composition—ofwhat/with whatto be determined according to partial type analysis).

Thus, this class can be used to represent a particular kind offunctional applications̀a la object-
oriented programming; or (equivalently), arrow composition in Category Theory. More precisely,
it represents the application (resp., composition) of anExpression to (resp., with) another
Expression, thoseExpressions being determined according to the type of the expression
on theleft of the ”dot”.

Thus, a dotted notation is interpreted as follows.

A DottedNotation object is a wrapper of an expression—most often, of an application, but
more generally, of any composition. It is a binary expression of the forme1.e2, wheree1 ande2

are expressions. This is interpreted depending on the type of e1 as follows:

A ÏT-KACI PAGE 19 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

• if e1’s type is a classC, then this is interpreted as:

mangle(e1)args(e1)

wheremangle(()o:C,e) is some ”mangling” of the name of the member of the object expres-
siono of class typeC being so-referred, andargs(e) is either the empty string or the args of
the member expressione.

For example, consider:

counter.set(1);

whencounter : Counter is an object of classCounter, with method (say)Counter set
: (Counter, int) -> int. Then, for example, a default ”mangling”mangle(C, member)
may simply concatenate the names of the class and the member separated with an underscore
character (’’), followed by ’(’, the object, and ’)’; in other words:mangle(counter : Counter, set(1))
= ”Counter set(counter)” andargs(set(1) = ”(1)”). Therefore,

counter.set(1) ====> Counter_set(counter)(1);

that is:

counter.set(1) ====> Counter_set(counter,1);

• if e1’s type is a tuple type〈T1, . . . , Tn〉 or 〈l1 : T1, . . . , ln : Tn〉, then this is interpreted as:

projecte2
(e1)

whereprojecte is a tupleprojectionof type〈T1, . . . , Tn〉 → Tk ande = k, k = 1, . . . , n, or
of type〈l1 : T1, . . . , ln : Tn〉 → Tk ande = lk, k = 1, . . . , n. This is interpreted as:

TupleProjection(e1, e2) : Tk.

For example:

〈name := ”a”, number := 1〉.name 〈name := ”a”, number := 1〉@name

In other words,

proj
n
ame : 〈name : string, number : int〉 → string(〈name := ”a”, number := 1〉〉) : string

• Otherwise, the default is simply to interpret this as the application:

member name(e2)(e1)(args(e2))

This default behavior can be overridden and customized through the methods:setNoDefault()
andsetDefault(Expression).

PAGE 20 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

3.3.27 FieldUpdate

3.3.28 Homomorphism

By homomorphismme mean specificallymonoidhomomorphism. For our purposes, a monoid is a
set of data values or structures (i.e., a data type) endowed with an associative binary operation and
an identity element. Examples are:

Type Operation Identity
Int +Int 0

Int ∗Int 1

Int maxInt −∞Int

Int minInt +∞Int

Real +Real 0.0

Real ∗Real 1.0

Real maxReal −∞Real

Real minReal +∞Real

Boolean orBoolean false

Boolean andBoolean true

setdata structures set union the empty set{}

list data structures list concatenation the empty list[]

. . .

Monoid homomorphisms are quite useful for expressing a certain kind of iteration declaratively.

ABSTRACT SYNTAX

This is the class of objects denoting (monoid) homomorphisms. Such an expression means to
iterate through a collection, applying a function to each element, accumulating the results along
the way with an operation, and returning the end result. Moreprecisely, it is the built-in version of
the general computation scheme whose instance is the following “hom” functional, which may be
formulated recursively, for the case of a list collection, as:

hom11⊕
⊕ (f)[] = 11⊕

hom11⊕
⊕ (f)[H|T] = f(H)⊕ hom11⊕

⊕ (f)T
(3.28)

A ÏT-KACI PAGE 21 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Clearly, this scheme extends a functionf to a homomorphism of monoids, from the monoid of lists
to the monoid defined by〈⊕, 11⊕〉.

Thus, an object of this class denotes the result of applying such a homomorphic extension of a
function (f) to an element of collection monoid (i.e., a data structure such as a set, a list, or a
bag), the image monoid being implicitly defined by the binaryoperation (⊕)—also called the
accumulationoperation. It is made to work iteratively.

For technical reasons, we need to treat specially so-calledcollectionhomomorphisms;i.e., those
whose accumulation operation constructs a collection, such as a set. Although a collection ho-
momorphism can conceptualy be expressed with the general scheme, the function applied to an
element of the collection will return a collection (i.e., a free monoid) element, and the result of
the homomorphism is then the result of tallying the partial collections coming from applying the
function to each element into a final “concatenation.”

Other (non-collection) homomorphisms are calledprimitivehomomorphisms. For those, the func-
tion applied to all elements of the collection will return acomputedelement that may be directly
composed with the other results. Thus, the difference between the two kinds of (collection or
primitive) homomorphisms will appear in the typing and the code generated (collection homomor-
phism requiring an extra loop for tallying partial results into the final collection). It is easy to make
the distinction between the two kinds of homomorphisms thanks to the type of the accumulation
operation (see below).

Therefore, acollection homomorphismexpression constructing a collection of typecoll(T) con-
sists of:

• the collection iterated over—of typecoll′(T ′);

• the iterated function applied to each element—of typeT ′ → coll(T); and,

• the operation “adding” an element to a collection—of typeT, coll(T) → coll(T).

T’ primitive homomorphismcomputing a value of typeT consists of:

• the collection iterated over—of typecoll′(T ′);

• the iterated function applied to each element—of typeT ′ → T ; and,

• the monoid operation—of typeT, T → T .

Even though the scheme of computation for homomorphisms described above is correct, it is not
often used, especially when the function already encapsulates the accumulation operation, as is
always the case when the homomorphism comes from the desugaring of a comprehension—see
below). Then, such a homomorphism will directly side-effect the collection structure specified as
the identity element with a function of the formfunction x · x⊕ 11⊕ (i.e., adding elementx to the
collection) and dispense altogether with the need to accumulate intermediate results. We shall call

PAGE 22 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

those homomorphismsin-placehomomorphisms. To distinguish them and enable the suprression
of intermediate computations, a flag indicating that the homomorphism is to be computed in-place
is provided. Both primitive and collection homomorphisms can be specified to be in-place. If
nothing regarding in-place computation is specified for a homomorphism, the default behavior
will depend on whether the homomorphism is collection (default is in-place), or primitive (default
is not in-place). Methods to override the defaults are provided.

For an in-place homomorphism, the iterated function encapsulates the operation, which affects the
identity element, which thus accumulates intermediate results and no further composition using
the operation is needed. This is especially handy for collections that are often represented, for
(space and time) efficiency reasons, by iteratable bulk structures constructed by allocating an empty
structure that is filled in-place with elements using a built-in “add” method guaranteeing that the
resulting data structure is canonical—i.e., that it abides by the algebraic properties of its type of
collection (e.g., adding an element to a set will not create duplicates,etc.).

Although monoid homomorphisms are defined as expressions inthe kernel, they are not meant to
be represented directly in a surface syntax (although they could, but would lead to rather cumber-
some and not very legible expressions). Rather, they are meant to be used for expressing higher-
level expressions known asmonoid comprehensions, which offer the advantage of the familar (set)
comprehension notation used in mathematics, and can be translated into monoid homomorphisms
to be type-checked and evaluated.

A monoid comprehension is an expression of the form:

〈⊕, 11⊕〉{e | q1, . . . , qn} (3.29)

where〈⊕, 11⊕〉 define a monoid,e is an expression, and theq i’s arequalifiers. A qualifier is either
an expressione or a pairx ← e, wherex is a variable ande is an expression. The sequence of
qualifiers may also be empty. Such a monoid comprehension is just syntactic sugar that can be
expressed in terms of homomorphisms as follows:

〈⊕, 11⊕〉{e | }
def
= e⊕ 11⊕

〈⊕, 11⊕〉{e | x ← e′, Q}
def
= hom

11⊕
⊕ [λx.〈⊕, 11⊕〉{e | Q}](e

′)

〈⊕, 11⊕〉{e | c, Q}
def
= if c then 〈⊕, 11⊕〉{e | Q} else 11⊕

(3.30)

This is explained more formally in Section 3.3.29.

Comprehensions are also interesting as they may be subject to transformations leading to more
efficient evaluation than their simple “nested loops” operational semantics (by using “unnesting”
techniques and using relational operations as implementation instructions).

A ÏT-KACI PAGE 23 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.3.29 Comprehension

The concept of monoid homomorphism is useful for expressinga formal semantics of iteration over
collections. However, it is not very convenient as a programming construct. A natural notation for
such a construct that is both conspicuous and can be expressed in terms of monoid homomor-
phisms is amonoid comprehension. This notion generalizes the familiar notation used for writing
a set in comprehension (as opposed to writing it in extension) using a pattern and a formula de-
scribing its elements (as oppposed to listing all its elements). For example, the set comprehension
{〈x, x2〉 | x ∈ N, ∃n.x = 2n} describes the set of pairs〈x, x2〉 (thepattern), verifying the formula
x ∈ N, ∃n.x = 2n (thequalifier).

This notation can be extended to any (primitive or collection) monoid⊕. The syntax of a monoid
comprehension is an expression of the form⊕{e [] Q} wheree is an expression called theheadof
the comprehension, andQ is called its qualifier and is a sequenceq1, . . . , qn, n ≥ 0, where eachqi

is either

• ageneratorof the formx ← e, wherex is a variable ande is an expression; or,

• afilter φ which is a boolean condition.

In a monoid comprehension expression⊕{e [] Q}, the monoid operation⊕ is called theaccumu-
lator.

As for semantics, the meaning of a monoid comprehension is defined in terms of monoid homo-
morphisms.

DEFINITION 3.3.1 (MONOID COMPREHENSION) The meaning of a monoid comprehension over
a monoid⊕ is defined inductively as follows:

⊕{e [] }
def
=

u⊕(e) if ⊕ is a collection monoid

e if ⊕ is a primitive monoid

⊕{e [] x ← e′, Q}
def
= hom⊕⊙[λx. ⊕ {e [] Q}](e′)

⊕{e [] c, Q}
def
= if c then ⊕ {e [] Q} else z⊕

such thate : T⊕, e′ : T⊙, and⊙ is a collection monoid.

Note that although the input monoid⊕ is explicit, each generatorx ← e′ in the qualifier has an
implicit collection monoid⊙ whose characteristics can be inferred with polymorphic typing rules.

Although Definition 3.3.1 can be effectively computed usingnested loops (i.e., using the iteration
semantics (3.28)), such would be in general rather inefficient. Rather, an optimized implementation
can be achieved by various syntactic transformation expressed as rewrite rules. Thus, the principal

PAGE 24 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

benefit of using monoid comprehensions is to formulate efficient optimizations on a simple and
uniform general syntax of expressions irrespective of specific monoids.

Thus, monoid comprehensions allow the formulation of “declarative iteration.” Note the fact men-
tioned earlier that a homomorphism coming from the translation of a comprehension encapsulates
the operation in its function. Thus, this is generally takento advantage with operations that cause
a side-effect on their second argument to enable an in-placehomomorphism to dispense with un-
needed intermediate computation.

Section 3.3.29 gives a detailed explanation of the syntactic desugaring of a pattern-directed high-
level syntax of comprehensions into more basic kernel expressions.

Comprehension

This class represents a monoid comprehension whose actual form is interpreted as a construct
involving the parts of the syntactic form of the comprehension. The syntax of a monoid compre-
hension is given by an expression of the form:

[op,id] { e | q1, ..., qn }

where[op,id] define a monoid,e is an expression, and theqis arequalifiers. A qualifier is
either abooleanexpression or a pairp <- e, wherep is a pattern (any expression) ande is
an expression. The sequence of qualifiers may also be empty. Such a monoid comprehension
is syntactic sugar that is in fact translated into a combination of homomorphisms and/or filtering
tests, possibly wrapped inside a let factoring out some computation.

package ilog.langiage.design.kernel.Comprehension;

public class Comprehension extends ProtoExpression
{

public static boolean OPAQUE_PARAMETERS = true;

private Tables _tables;
private RawInfo _raw;
private Expression _construct;
private Expression _operation;
private Expression _identity;

private Expression _enclosingScope;

Constructs an already translated comprehension as aLet construct. This is provided as a public
constructor but should be used with care as it trusts that thespecified arguments are correctly set
up.

A ÏT-KACI PAGE 25 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

public Comprehension (AbstractList parameters, AbstractList values, Expression body)
{

_construct = new Let(parameters,values,body);
}

Constructs araw comprehension with the specifed arguments and assuming thedefault in-place
mode for performing the monoid operation.

public Comprehension (Tables tables, Expression operation, Expression identity,
Expression expression, AbstractList patterns, AbstractList expressions)

{
this(tables,operation,identity,expression,patterns,expressions,Homomorphism.DEFAULT_IN_P

}

Constructs araw comprehension with the specifed arguments. A comprehension is raw as long as
it has not been translated into a meaningful expression. Translation will happen automatically as
soon as the meaning expresssion is needed.

public Comprehension (Tables tables, Expression operation, Expression identity,
Expression expression, AbstractList patterns, AbstractList expressions,
byte inPlace)

{
_tables = tables;

_operation = operation;
_identity = identity;

if (patterns == null)
patterns = expressions = new ArrayList(0);

_raw = new RawInfo(new Dummy("OP").addTypes(operation).setExtent(operation),
new Dummy("ID").addTypes(identity).setExtent(identity),
expression,patterns,expressions,inPlace);

}

Constructs a fully translated comprehension using the specified expression as its meaning expres-
sion.

private Comprehension (Expression construct)
{

_construct = construct;
}

PAGE 26 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

public boolean _doLetWrapping = true;

public final Comprehension setNoLetWrapping ()
{

_doLetWrapping = false;
_raw.operation = _operation;
_raw.identity = _identity;
return this;

}

public final Tables tables ()
{

return _tables;
}

public final Expression operation ()
{

return _operation;
}

public final Expression identity ()
{

return _identity;
}

public final Expression copy ()
{

if (_raw == null)
return new Comprehension(_construct.copy());

ArrayList patterns = new ArrayList(_raw.patterns.size());
for (int i=0; i<_raw.patterns.size(); i++)

{
Expression pattern = (Expression)_raw.patterns.get(i);
if (pattern != null) patterns.add(pattern.copy());

}

ArrayList expressions = new ArrayList(_raw.expressions.size());
for (int i=0; i<_raw.expressions.size(); i++)

expressions.add(((Expression)_raw.expressions.get(i)).copy());

return new Comprehension(_tables,_operation.copy(),_identity.copy(),
_raw.expression.copy(),patterns,expressions,
_raw.inPlace);

}

public final Expression typedCopy ()
{

A ÏT-KACI PAGE 27 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

if (_raw == null)
return new Comprehension(_construct.typedCopy());

ArrayList patterns = new ArrayList(_raw.patterns.size());
for (int i=0; i<_raw.patterns.size(); i++)

{
Expression pattern = (Expression)_raw.patterns.get(i);
if (pattern != null) patterns.add(pattern.typedCopy());

}

ArrayList expressions = new ArrayList(_raw.expressions.size());
for (int i=0; i<_raw.expressions.size(); i++)

expressions.add(((Expression)_raw.expressions.get(i)).typedCopy());

return new Comprehension(_tables,_operation.typedCopy(),_identity.typedCopy(),
_raw.expression.typedCopy(),patterns,expressions,
_raw.inPlace).addTypes(this);

}

public final int numberOfSubexpressions ()
{

if (_raw != null) _construct();
return _construct.numberOfSubexpressions();

}

public final Expression subexpression (int n) throws NoSuchSubexpressionException
{

if (_raw != null) _construct();
return _construct.subexpression(n);

}

public final Expression setSubexpression (int n, Expression expression) throws NoSuchSubexpressionException
{

if (_raw != null) _construct();
return _construct.setSubexpression(n,expression);

}

public final Expression sanitizeNames (ParameterStack parameters, ClassTypeHandle handle)
{

if (_raw != null) _construct();
_construct = _construct.sanitizeNames(parameters,handle);
return this;

}

public final void sanitizeSorts (Enclosure enclosure)
{

_construct.sanitizeSorts(enclosure);
}

PAGE 28 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

Constructs this monoid comprehension by first desugaring its patterns into simple parameters, then
normalizing its qualifiers by unnestings filters as far to theleft as possible, and finally translating
the transformed raw comprehension into its meaning expression.

private final void _construct () throws UndefinedEqualityException
{

desugarPatterns();
unnestInnerFilters();

}

Returns the comprehension obtained after applying the specified substitution to the subexpressions
of this. If this comprehension is already translated, this simply amounts to setting the construct to
the substituted construct. If this is a raw comprehension, care must be taken to proceed from left
to right over the qualifiers and preventing generator variables to be substituted in expressions lying
to their right (including the main expression of the comprehension).

public final Expression substitute (HashMap substitution)
{

if (_raw == null)
{
_construct = _construct.substitute(substitution);
return this;

}

if (!substitution.isEmpty())
{
_operation = _operation.substitute(substitution);
_identity = _identity.substitute(substitution);

_substituteQualifiers(0,substitution);
}

return this;
}

Proceeds through the raw qualifiers substituting expressions making sure that generator parameters
are removed from the substitution before applying it to whatlies to the right of the specified index
(including the main expression of the comprehension).

private final void _substituteQualifiers (int index, HashMap substitution)
{

if (index == _raw.patterns.size())

A ÏT-KACI PAGE 29 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

_raw.expression = _raw.expression.substitute(substitution);
else

{
Expression pattern = (Expression)_raw.patterns.get(index);
Expression expression = (Expression)_raw.expressions.get(index);

// in all cases, apply the substitution to the qualifying expression
_raw.expressions.set(index,expression.substitute(substitution));

if (pattern == null)
// this is a filter - simply proceed
_substituteQualifiers(index+1,substitution);

else
// this is a generator - must check whether pattern is opaque parameter
if (pattern instanceof Parameter || (pattern instanceof Dummy && OPAQUE_PARAMETERS))
{

// this is an opaque parameter - it is removed from the substitution
// before proceeding further to the right, and reinstated afterwards
String name = pattern instanceof Dummy ? ((Dummy)pattern).name()

: ((Parameter)pattern).name();
Object value = substitution.remove(name);
_substituteQualifiers(index+1,substitution);
if (value != null) substitution.put(name,value);

}
else
{ // this is not a parameter - apply the substitution to the pattern and proceed

_raw.patterns.set(index,pattern.substitute(substitution));
_substituteQualifiers(index+1,substitution);

}
}

}

Sets the link to the enclosing scope of this comprehension tothe specified expression, then visits all
the qualifier expressions to link up their scope trees of nested comprehensions to this, and returns
the number of such nested comprehensions.

final int linkScopeTree (Expression ancestor)
{

if (_scopeTreeIsLinked)
return _nestedComprehensionCount;

_enclosingScope = ancestor;
_nestedComprehensionCount = _raw.expression.linkScopeTree(this);

for (int i=_raw.expressions.size(); i-->0;)
_nestedComprehensionCount += ((Expression)_raw.expressions.get(i)).linkScopeTree(this)

PAGE 30 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

_scopeTreeIsLinked = true;

return 1 + _nestedComprehensionCount;
}

Desugars the patterns of this comprehension into simple parameters, substituting expression in
terms of these parameters inside the comprehension where appropriate. Then, this proceeds desug-
aring the patterns of nested comprehensions if any. It is important for this method to proceed top
down so that the patterns of potential inner comprehensionsmay be affected by the desugaring of
outer ones.

final void desugarPatterns () throws UndefinedEqualityException
{

if (_raw == null || _raw.isDesugared)
return;

_desugarPatterns();

if (_nestedComprehensionCount > 0)
{
for (int i=0; i<_raw.patterns.size(); i++)

{
Expression pattern = (Expression)_raw.patterns.get(i);
if (pattern != null) pattern.desugarPatterns();
((Expression)_raw.expressions.get(i)).desugarPatterns();

}

_raw.expression.desugarPatterns();
}

}

Converts the patterns into simple parameters and substitutes free occurrences of the formal names
from the patterns by what is appropriate in terms of the new parameters inside the raw expression
(and any other pertinent expression in raw expressions—i.e., those to the right of a pattern gener-
ator). While desugaring, new filters may be generated along the way upon repeated occurrences
of formal names or the presence of interpretable expressions in the patterns. These are simply
appended to the raw list of expressions. Because of this, we need to append as manynulls to the
list of patterns in order to maintain the two lists at equal lengths.

private final void _desugarPatterns () throws UndefinedEqualityException
{

HashMap substitution = _initialSubstitution();

int size = _raw.patterns.size();

A ÏT-KACI PAGE 31 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

for (int i=0; i<size; i++)
_raw.patterns.set(i,_desugarPattern(i,(Expression)_raw.patterns.get(i),substitution));

for (int i=_raw.expressions.size()-size; i-->0;) _raw.patterns.add(null);

_substituteDesugaring(substitution);

_raw.isDesugared = true;
}

Returns a substitution initialized with the local parameters of the enclosing scopes of this compre-
hension if any.

private final HashMap _initialSubstitution ()
{

HashMap substitution = new HashMap();

for (Expression e = _enclosingScope; e != null; e = e.enclosingScope())
if (e instanceof Scope)
{

Scope s = (Scope)e;
for (int i = s.arity(); i-->0;)
{

String name = s.parameter(i).name();
if (substitution.get(name) == null)

substitution.put(name,
new IndexedExpression(new Dummy(s.parameter(i))));

}
}

return substitution;
}

Transforms the specified pattern into a parameter and records in the specified substitution any
appropriate expression in terms of this parameter for corresponding occurrences of the pattern
components in the qualifying expressions at index higher than the specified index.

In OPAQUE PARAMETERS mode (the default), an outer pattern consisting of just an identifier
is always considered new and creates an opaque scope for its free occurrences in the qualifier
expressions lying on its right as well as for the main expression of the comprehension. If on
the other handOPAQUE PARAMETERS is false, such an identifier is deemed sensitive to its
namesakes in the substitution and global scalar (i.e., non-functional) definitions. Then, it will
be considered a repeated or interpreted occurrence, whichever the case may be. It returns the
parameter desugaring the specified pattern.

PAGE 32 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

private final Parameter _desugarPattern (int index, Expression pattern, HashMap substitution)
throws UndefinedEqualityException
{

if (pattern == null || pattern instanceof Parameter)
return (Parameter)pattern;

Parameter parameter = null;
Dummy variable = null;

if (pattern instanceof Dummy)
{ // the pattern is an identifier
variable = (Dummy)pattern;
parameter = new Parameter(variable);

if (!OPAQUE_PARAMETERS)
{
IndexedExpression value = (IndexedExpression)substitution.get(variable.name());

if (value == null)
{ // this is the first occurrence - record only if not a global scalar

if (!_tables.isDefinedScalar(variable.name()))
substitution.put(variable.name(),new IndexedExpression(index,variable));

}
else

{ // this is a repeated occurrence - generate an equality filter
variable = new Dummy(parameter = new Parameter(value.expression.typeRef()));
_raw.expressions.add(new Application(_tables.equality(),

variable,
value.expression.typedCopy()));

}
}

return parameter;
}

parameter = new Parameter(pattern.typeRef());
variable = new Dummy(parameter.name());

if (pattern instanceof Tuple)
// the pattern is a tuple - proceed with desugaring it
_desugarTuplePattern(index,(Tuple)pattern,variable,substitution);

else
// the pattern is an interpreted expression - generate an equality filter
_raw.expressions.add(new Application(_tables.equality(),variable,pattern));

return parameter;
}

A ÏT-KACI PAGE 33 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Desugars the specifiedtuple pattern given that the expression in which it is immediatelynested
is the expression specified asfather.

private final void _desugarTuplePattern (int index, Tuple tuple, Expression father,
HashMap substitution)

throws UndefinedEqualityException
{

if (tuple instanceof NamedTuple)
{ // treat named tuples specially
_desugarNamedTuplePattern(index,(NamedTuple)tuple,father,substitution);
return;

}

int dimension = tuple.dimension();
for (int i=0; i<dimension; i++)

// desugar each tuple component using the appropriate tuple projection as father
_desugarTupleComponent(index,

tuple.component(i),
new TupleProjection(father,new Int(i+1)),
substitution);

}

Desugars the specified namedtuple pattern given that the expression in which it is immediately
nested is the expression specified asfather.

private final void _desugarNamedTuplePattern (int index, NamedTuple tuple, Expression father,
HashMap substitution)

throws UndefinedEqualityException
{

TupleFieldName[] fields = tuple.fields();
int dimension = fields.length;
for (int i=0; i<dimension; i++)

// desugar each tuple component using the appropriate tuple projection as father
_desugarTupleComponent(index,

tuple.component(i),
new TupleProjection(father,new StringConstant(fields[i].name())),
substitution);

}

Desugars the specified tuple component corresponding to thespecified tuple projection.

private final void _desugarTupleComponent (int index, Expression component,
TupleProjection projection, HashMap substitution)

throws UndefinedEqualityException
{

PAGE 34 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

if (component instanceof Dummy)
{ // it is a leaf consisting of a name
Dummy variable = (Dummy)component;
IndexedExpression value = (IndexedExpression)substitution.get(variable.name());

if (value == null && !_tables.isDefinedScalar(variable.name()))
// record only if first occurrence and not a global scalar
substitution.put(variable.name(),new IndexedExpression(index,projection));

else
// it is a repeated occurrence or a global scalar - generate an equality filter
_raw.expressions.add(new Application(_tables.equality(),

projection,
variable.typedCopy()));

return;
}

if (component instanceof Tuple)
// it is a nested tuple pattern - desugar the nested pattern
_desugarTuplePattern(index,(Tuple)component,projection,substitution);

else
// it is an interpreted expression - generate an equality filter
_raw.expressions.add(new Application(_tables.equality(),projection,component));

}

Applies the desugaring substitutions to each qualifier expression and the main expression, taking
care of enabling only those substitutions at indices less than the index of the qualifier (and all of
them for the main expression).

private final void _substituteDesugaring (HashMap substitution)
{

if (substitution.isEmpty())
return;

int index = 0;
int size = _raw.expressions.size();

while (index < size) // skip to the first desugared pattern
{
Parameter parameter = (Parameter)_raw.patterns.get(index);
if (parameter != null && parameter.isInternal())

break;
index++;

}

HashMap partialSubstitution = new HashMap(substitution.size());
for (int i=index; i < size; i++)

A ÏT-KACI PAGE 35 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

{
_updateSubstitution(i,partialSubstitution,substitution);
_raw.expressions.set(i,((Expression)_raw.expressions.get(i))

.substitute(partialSubstitution));
}

_raw.expression = _raw.expression.substitute(partialSubstitution);
}

Adds to the specified partial substitution any expression fromreference an indexed-expression
substitution) with an index less than, or equal to, the specified index, removing such indexed-
expressions fromreference.

private final static void _updateSubstitution (int index, HashMap partial, HashMap reference)
{

ArrayList keys = new ArrayList();

for (Iterator i=reference.entrySet().iterator(); i.hasNext();)
{
Map.Entry entry = (Map.Entry)i.next();
String key = (String)entry.getKey();
IndexedExpression value = (IndexedExpression)entry.getValue();
if (index <= value.index)

{
partial.put(key,value.expression);
keys.add(key);

}
}

int size = keys.size();
for (int i=size; i-->0;)

reference.remove(keys.get(i));
}

First unnests the filters of all nested comprehensions if any, then unnests the filters of this com-
prehension. It is important to proceed bottom up because filters may migrate up from inner com-
prehensions, and therefore the filters of a comprehension must be unnested only after those of its
nested comprehensions have been unnested.

final void unnestInnerFilters ()
{

if (_nestedComprehensionCount > 0)
{
_raw.expression.unnestInnerFilters();
for (int i=_raw.expressions.size(); i-->0;)

PAGE 36 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

((Expression)_raw.expressions.get(i)).unnestInnerFilters();
}

_unnestFilters();
}

Normalizes the qualifiers of this comprehension by unnesting the filters to the left as far as they
may go, recognizing selectors and slicing filters, and sets the construct to the translation of the
comprehension

private final void _unnestFilters ()
{

Qualifier[] qualifiers = new Qualifier[_raw.patterns == null ? 0 : _raw.patterns.size()];
for (int i=qualifiers.length; i-->0;)

qualifiers[i] = new Qualifier((Parameter)_raw.patterns.get(i),
(Expression)_raw.expressions.get(i));

if (qualifiers.length > 0) _normalize(qualifiers);

_construct = _translate(qualifiers,0);
if (_doLetWrapping && !_isLetWrapped())

{
Parameter[] monoidParameters = { new Parameter("OP"), new Parameter("ID") };
Expression[] monoidComponents = { _operation, _identity };

_construct = new Let(monoidParameters,monoidComponents,_construct);
}

_raw = null;
//Debug.step(this);

}

Returnstrue iff the first comprehension in which this is nested (if any) isone involving the same
monoid—then, as it is already wrapped inside that comprehensionLet over the same operation
and identity, there is no needed to wrap it again.

private final boolean _isLetWrapped ()
{

for (Expression e = _enclosingScope; e != null; e = e.enclosingScope())
if (e instanceof Comprehension)
{

Comprehension c = (Comprehension)e;
if (operation().equals(c.operation()) && identity().equals(c.identity()))
return true;

A ÏT-KACI PAGE 37 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

return false;
}

return false;
}

Reshapes the specified array of qualifiers unnesting all boolean filters by moving them to the left
as far as they may go (i.e., no further than a generator whose parameter occurs free in the filter),
and merging all filters related to the same generator into an commonand. A selector or slicing
condition is recognized and treated specially: it is passedto its generator qualifier where it is then
processed appropriately.

private final void _normalize (Qualifier[] qualifiers)
{

//System.out.print("Before normalization..."); Debug.step(qualifiers);
_unnestFilters(qualifiers.length-1,qualifiers);
//System.out.print("After normalization..."); Debug.step(qualifiers);

}

Normalizes the specified array of qualifiers up to the specified index minus one, then proceeds to
unnest leftward the qualifier at the specified index.

private final void _unnestFilters (int index, Qualifier[] qualifiers)
{

if (index == -1) return;

int upperLimit = index;
_unnestFilters(upperLimit-1,qualifiers);
Qualifier qualifier = qualifiers[index];

// push this qualifier to the left over null qualifiers if any
int i = index-1;
while (i >= 0 && qualifiers[i] == null) i--;
if (i < index-1)

{
qualifiers[index] = null;
qualifiers[index = i+1] = qualifier;

}

if (qualifier.isGenerator()) return;

// this qualifier is then a filter - unnest it as far as it can go
while (index > 0)

if (qualifiers[index-1].isGenerator())
if (qualifier.expression.containsFreeName(qualifiers[index-1].parameter.name()))

PAGE 38 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

{ // collect if selector, or slicing with no selectors; else, leave the filter
if (qualifier.isSelector(qualifiers[index-1].parameter))

{
qualifiers[index-1].addSelector(qualifier.expression);
_eraseQualifier(index,upperLimit,qualifiers);

}
else

if (qualifiers[index-1].selectors == null
&& qualifier.isSlicing(qualifiers[index-1].parameter))

{
qualifiers[index-1].addSlicing(qualifier.expression);
_eraseQualifier(index,upperLimit,qualifiers);

}
return; // this is as far as it can go

}
else // move this filter over one step to the left

{
qualifiers[index] = qualifiers[index-1];
qualifiers[index = index-1] = qualifier;

}
else // qualifiers[index-1] is a filter
if (index > 1) // if qualifiers[index-2] exists, it must contain a generator

if (!qualifier.expression.containsFreeName(qualifiers[index-2].parameter.name()))
{ // move this filter over two steps to the left

qualifiers[index] = qualifiers[index-1];
qualifiers[index-1] = qualifiers[index-2];
qualifiers[index = index-2] = qualifier;

}
else // collect if selector, or slicing with no selectors; else, merge into the
{

if (qualifier.isSelector(qualifiers[index-2].parameter))
qualifiers[index-2].addSelector(qualifier.expression);

else
if (qualifiers[index-2].selectors == null

&& qualifier.isSlicing(qualifiers[index-2].parameter))
qualifiers[index-2].addSlicing(qualifier.expression);

else // merge this filter with the previous one using an ’and’
qualifiers[index-1].expression = new And(qualifiers[index-1].expression,

qualifier.expression);
_eraseQualifier(index,upperLimit,qualifiers);
return; // this is as far as it can go

}
else // unnest further up, or merge this filter into the previous one using an ’and’

{
if (!_isFurtherUnnestable(qualifier.expression))

qualifiers[index-1].expression = new And(qualifiers[index-1].expression,
qualifier.expression);

_eraseQualifier(index,upperLimit,qualifiers);

A ÏT-KACI PAGE 39 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

return; // this is as far as it can go
}

// index == 0
if (_isFurtherUnnestable(qualifier.expression))

_eraseQualifier(index,upperLimit,qualifiers);
}

Goes up the scope tree as far as it can without crossing a scopethat either contains more than one
nested comprehension or captures a free variable in the specified filter, until it reaches a compre-
hension. If it can do so and the found comprehension is of samenature as this one, adds the filter
to that comprehension, and returnstrue; otherwise, returnsfalse.

private final boolean _isFurtherUnnestable (Expression filter)
{

Expression enclosingScope = _enclosingScope;

while (enclosingScope != null && enclosingScope.nestedComprehensionCount() == 1)
{
if (enclosingScope instanceof Comprehension)

{
Comprehension comp = (Comprehension)enclosingScope;
if (operation().equals(comp.operation()) && identity().equals(comp.identity()))

{
comp.addFilter(filter);
return true;

}

return false;
}

Scope scope = (Scope)enclosingScope;
for (int i=scope.arity(); i-->0;)

if (filter.containsFreeName(scope.parameter(i).name()))
return false;

enclosingScope = scope.enclosingScope();
}

return false;
}

Adds the specified filter to the qualifiers of this comprehension.

final void addFilter (Expression filter)
{

PAGE 40 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

_raw.patterns.add(null);
_raw.expressions.add(filter);

}

Sets the qualifier at the specifiedindex to null and percolates thisnull as far to the right as it
may go.

private final static void _eraseQualifier (int index, int upperLimit, Qualifier[] qualifiers)
{

qualifiers[index] = null;
for (int i=index; i < upperLimit && qualifiers[i+1] != null; i++)

{
qualifiers[i] = qualifiers[i+1];
qualifiers[i+1] = null;

}
}

This translates monoid comprehension syntax using (possibly filtered) homomorphisms. It as-
sumes that the array of qualifiers has been normalized. The translation scheme is as follows:

[op,id]{e | } = op(e,id);
[op,id]{e | c} = if c then op(e,id) else id;
[op,id]{e | x <- e’, c, Q} = f_hom(e’, lambda x.[op,id]{e | Q}, op, id, lambda x.c);
[op,id]{e | x <- e’, y <- e’’, Q} = hom(e’, lambda x.[op,id] { e| y <- e’’, Q}, op, id);

private final Expression _translate (Qualifier[] qualifiers, int index)
{

if (index == qualifiers.length || qualifiers[index] == null)
return new Application(_raw.op(),_raw.expression,_raw.id());

Expression body = null;
Homomorphism hom = null;

if (index < qualifiers.length-1 && qualifiers[index].parameter != null
&& qualifiers[index+1] != null && qualifiers[index+1].parameter == null)

{
body = _translate(qualifiers,index+2);

if (qualifiers[index].selectors != null)
return _selectorExpression(qualifiers[index],qualifiers[index+1].expression,body);

hom = new FilterHomomorphism(_tables,
qualifiers[index].expression,
new Scope(qualifiers[index].parameter,body),
_raw.op(),_raw.id(),
new Scope((Parameter)qualifiers[index].parameter.typedC

A ÏT-KACI PAGE 41 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

qualifiers[index+1].expression));
}

else
{
body = _translate(qualifiers,index+1);

if (qualifiers[index].parameter == null)
return new IfThenElse(qualifiers[index].expression,body,_raw.id());

if (qualifiers[index].selectors != null)
return _selectorExpression(qualifiers[index],null,body);

hom = new Homomorphism(qualifiers[index].expression,
new Scope(qualifiers[index].parameter,body),
_raw.op(),_raw.id());

}

if (qualifiers[index].slicings != null)
hom.setSlicings(qualifiers[index].slicings);

if (_raw.inPlace == Homomorphism.ENABLED_IN_PLACE)
return hom.enableInPlace();

if (_raw.inPlace == Homomorphism.DISABLED_IN_PLACE)
return hom.disableInPlace();

return hom;
}

This returns aLet wrapping anIfThenElse as the transformed expression resulting from a
(possibly filtered) generator that contains at least one selector expression. More precisely, if the
generator is of the form:

x <- e such that f
sliced by s1, ..., sm
selected by v1, ..., vn

and the body of translating the remaining qualifiers isbody, then the resulting selector expression
is:

let x = v1
in if x is_in e

and x == v2 and ... and x == vn
and s1 and ... and sm
and f

then body
else id

where each slicing has its slicing variable unsanitized from a dummy local back to a dummy.

PAGE 42 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

private final Expression _selectorExpression (Qualifier generator, Expression filter,
Expression body)

{
Expression condition = new Application(_tables.in(),

new Dummy(generator.parameter),
generator.expression);

for (int i=1; i<generator.selectors.size(); i++)
condition = new And(condition,

(Expression)generator.selectors.get(i));

if (generator.slicings != null)
for (int i=0; i<generator.slicings.size(); i++)
condition = new And(condition,

((Application)generator.slicings.get(i)).undoDummyLocal());

if (filter != null)
condition = new And(condition,filter);

return new Let(generator.parameter,
((Application)generator.selectors.get(0)).argument(1),
new IfThenElse(condition,body,_raw.id()));

}

public final void setCheckedType ()
{

if (setCheckedTypeLocked()) return;
_construct.setCheckedType();
setCheckedType(_construct.checkedType());

}

public final void typeCheck (TypeChecker typeChecker) throws TypingErrorException
{

if (typeCheckLocked()) return;

if (!(_construct instanceof Let))
{
_construct.typeCheck(_type,typeChecker);
return;

}

Let let = (Let)_construct;
let.setType(_type);

Scope scope = (Scope)let.function();
typeChecker.unify(scope.parameter(0).typeRef(),operation().typeRef(),this);
typeChecker.unify(scope.parameter(1).typeRef(),identity().typeRef(),this);

A ÏT-KACI PAGE 43 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Expression operation = let.argument(0);
Expression identity = let.argument(1);

Type[] argumentTypes = { operation.typeRef(), identity.typeRef() };
FunctionType functionType = new FunctionType(argumentTypes,let.typeRef()).setNoCurrying(

identity.typeCheck(typeChecker);
let.function().typeCheck(functionType,typeChecker);
operation.typeCheck(functionType.domains()[0],typeChecker);

}

public final void compile (Compiler compiler)
{

if (_construct instanceof Let) _fixTypeBoxing();
_construct.compile(compiler);

}

This fixes the boxing of the monoid operator and identity by systematically unboxing all occur-
rences of the collection element type. This is necessary because collection-building built-in dummy
instructions likeSET ADD have a needlessly polymorphic type that becomes instantiated only
when it is applied. However, a monoid comprehension construct is aLet 3.3.12 that abstracts the
monoid operation and identity. Now, when the operation isSET ADD, for example, as the compiler
compiles the application corresponding to the ”Let,” it sees it as a non-applied function argument
with a polymorphic type and will proceed to ”pad” it (seeExpression 3.1. This ”padding” must
be avoided, as well as all boxing of the types corresponding to the elements of the collection.

private final void _fixTypeBoxing ()
{

Let let = (Let)_construct;

FunctionType potype = (FunctionType)((FunctionType)let.function().checkedType()).domain(
FunctionType otype = (FunctionType)let.argument(0).checkedType();
Type itype = let.argument(1).checkedType();

if (itype.kind() == Type.BOXABLE)
((BoxableTypeConstant)itype).setBoxed(false);

if (otype.domain(0).kind() == Type.BOXABLE)
{
((BoxableTypeConstant)otype.domain(0)).setBoxed(false);
otype.unsetDomainBox(0);

((BoxableTypeConstant)potype.domain(0)).setBoxed(false);
potype.unsetDomainBox(0);

PAGE 44 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

if (otype.domain(0).isEqualTo(otype.domain(1))) // primitive comprehension
{
((BoxableTypeConstant)otype.domain(1)).setBoxed(false);
otype.unsetDomainBox(1);

((BoxableTypeConstant)potype.domain(1)).setBoxed(false);
potype.unsetDomainBox(1);

((BoxableTypeConstant)otype.range()).setBoxed(false);
otype.unsetRangeBox();

((BoxableTypeConstant)potype.range()).setBoxed(false);
potype.unsetRangeBox();

}
}

}

public final String toString ()
{

return _raw == null ? _construct.toString() : _raw.toString();
}

public final String toTypedString ()
{

return _raw == null ? _construct.toString() : _raw.toString() + " : " +
checkedType() == null ? type().toString() : checkedType().toString();

}

private class RawInfo
{

Expression operation;
Expression identity;
Expression expression;
AbstractList patterns;
AbstractList expressions;
byte inPlace;

boolean isDesugared;

RawInfo (Expression operation, Expression identity, Expression expression,
AbstractList patterns, AbstractList expressions, byte inPlace)

{
this.expression = expression;
this.operation = operation;
this.identity = identity;
this.patterns = patterns;

A ÏT-KACI PAGE 45 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

this.expressions = expressions;
this.inPlace = inPlace;

}

final Expression op ()
{
return operation.typedCopy();

}

final Expression id ()
{
return identity.typedCopy();

}

public final String toString ()
{
StringBuffer buf = new StringBuffer("[")

.append(operation())

.append(",")

.append(identity())

.append("] { ")

.append(expression)

.append(" | ");

for (int i=0; i<patterns.size(); i++)
{
Object pattern = patterns.get(i);
if (pattern != null)

buf.append(pattern).append(" <- ");
buf.append(expressions.get(i));
if (i < patterns.size() - 1)

buf.append(", ");
}

return buf.append(" }").toString();
}

}

private static class IndexedExpression
{

int index = -1;
Expression expression;

IndexedExpression (Expression expression)
{
this.expression = expression;

}

PAGE 46 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

IndexedExpression (int index, Expression expression)
{
this.index = index;
this.expression = expression;

}

public final String toString ()
{
return expression + "/" + index;

}
}

private class Qualifier
{

Parameter parameter;
Expression expression;
ArrayList slicings;
ArrayList selectors;

Qualifier (Parameter parameter, Expression expression)
{
this.parameter = parameter;
this.expression = expression;

}

final boolean isGenerator ()
{
return parameter != null;

}

final boolean isSlicing (Parameter parameter)
{
return expression.isSlicing(tables(),parameter);

}

final void addSlicing (Expression slicing)
{
if (slicings == null)

slicings = new ArrayList();
slicings.add(slicing);

}

final boolean isSelector (Parameter parameter)
{
return expression.isSelector(tables(),parameter);

}

final void addSelector (Expression selector)

A ÏT-KACI PAGE 47 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

{
if (selectors == null)

selectors = new ArrayList();
selectors.add(selector);

}

public final String toString ()
{
if (parameter == null)

return expression.toString();

return parameter + " <- " + expression +
(selectors == null ? "" : " selected by " + selectors) +
(slicings == null ? "" : " sliced by " + slicings);

}
}

}

PAGE 48 OF 83 HASSAN

Chapter 4

The type language

4.1 Overview

We first define some basic terminology regarding the type system and operations on types.

4.1.1 Polymorphism

Here, by “polymorphism,” we mean ML-polymorphism (i.e., 2nd-order universal)—with a few
differences that will be explained along the way—in other words, types presented with a grammar
such as:

[1] Type ::= SimpleType| TypeScheme

[2] SimpleType ::= BasicType| FunctionType| TypeParameter

[3] BasicType ::= Int | Real | Boolean | . . .

[4] FunctionType ::= SimpleType→ SimpleType

[5] TypeParameter::= α | α′ | . . . | β | β ′ | . . .

[6] TypeScheme ::= ∀ TypeParameter. Type

that ensures that universal type quantifiers occur only at the outset of a polymorphic type.1

1Or more precisely that∀ never occurs nested inside a function type arrow→. This apparently innocuous detail
ensures decidability of type inference. BTW, the2nd order comes from the fact that the quantifier applies totype
parameters (as opposed to1st order, if it had applied tovalueparameters). Theuniversalcomes from∀, of course.

49

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

4.1.2 Multiple Type Overloading

This is also often calledad hocpolymorphism. When enabled (the default), this allows a same
identifier to have several unrelated types. Generally, it isrestricted to names with functional types.
However, since functions are first-class citizens, this restriction makes no sense, and therefore the
default is to enable multiple type overloading for all types.

Note that there is no established technology that prevails for supportingbothML-polymorphic type
inference and multiple type overloading. Here (and in several other parts of this overall design) I
have had to innovate and put to use techniques from (Constraint) Logic Programming to be able to
prove the combination of types supportable by this architecture.

4.1.3 Currying

Currying is an operation that exploits the following mathematical isomorphism of types:2

T, T ′ → T ′′ ≃ T → (T ′ → T ′′) (4.1)

which can be generalized to its multiple form:

T1, . . . , Tn → T ≃ T1, . . . , Tk → (Tk+1, . . . , Tn → T) k = 1, . . . , n− 1 (4.2)

When function currying is enabled, this means that type-checking/inference must build this equa-
tional theory into the type unification rules in order to consider types equal modulo this isomor-
phism.

4.1.4 Standardizing

As a result of,e.g., currying, the shape of a function type may change in the course of a type-
checking/inference process. Type comparison may thus be tested on various structurally different,
although syntactically congruent, forms of a same type. A type must therefore assume a canonical
form in order to be compared. This is whatstandardizinga type does.

Standardizing is a two-phase operation that firstflattensthe domains of function types, thenre-
namesthe type parameters. The flattening phase simply amounts to uncurrying as much as pos-
sible by applying Equation (4.1) as a rewrite rule, althoughbackwards(i.e., from right to left) as

2For the intrigued reader curious to know what deep connection there might be between functional types and
Indian cooking, the answer is,“None whatsoever!” The word was coined after Prof. Haskell B. Curry’s last name.
Curry was one of the two mathematicians/logicians (along with Robert Feys) who conceivedCombinator Logicand
Combinator Calculus, and made extensive use of the isomorphism of Equation (4.1)—hence the folklore’s use of the
verbto curry—(currying, curryed),—in French:curryfier—(curryfication, curryfíe), to mean transforming a function
type of several arguments into that of a function of one argument. The homonymy is often amusingly mistaken for an
exotic way of [un]spicing functions.

PAGE 50 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

long as it applies. The second phase (renaming) consists in making a consistent copy of all types
reachable from a type’s root.

4.1.5 Copying

Copying a type is simply taking a duplicate twin of the graph reachable from the type’s root.
Sharing of pointers coming from the fact that type parameters co-occur are recorded in a parameter
substitution table (in our implementation, simply ajava.util.HashMap) along the way, and
thus consistent pointer sharing can be easily made effective.

4.1.6 Equality

Testing for equality must be done modulo a parameter substitution table (in our implementation,
simply ajava.util.HashMap) that records pointer equalities along the way, and thus equality
up to parameter renaming can be easily made effective.

A tableless version of equality also exists for which each type parameter is considered equal only
to itself.

4.1.7 Unifying

Unifying two types is the operation of filling in missing information (i.e., type parameters) in each
with existing information from the other by side-effecting(i.e., binding) the missing information
(i.e., the type parameters) to point to the part of the existing information from the other type they
should be equal to (i.e., their values). Note that, like logical variables in Logic Programming, type
parameters can be bound to one another and thus must be dereferenced to their values.

4.1.8 Boxing/Unboxing

The kernel language is polymorphically typed. Therefore, afunction expression that has a poly-
morphic type must work for all instantiations of this type’stype parameters into either primitive
unboxed types (e.g., Int, Real, etc.) or boxed types. The problem this poses is: how can we
compile a polymorphic function into code that would correctly know what the actual runtime sorts
of the function’s runtime arguments and returned value are,before the function type is actually
instantiated into a (possibly monomorphic) type?3 The problem was addressed by Xavier Leroy

3Besides compiling distinct copies for all possible runtimesort instantiations (like,e.g., C++ template functions),
nor recompiling each time a specific instantiation is needed. The former is not acceptable because its tends to inflate
the code space explosively. The latter can neither be envisaged because it goes against a few (rightfully) sacrosanct

A ÏT-KACI PAGE 51 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

10 years ago [5] and he proposed a solution.4 Leroy’s method is based on the use of type anno-
tation that enables a source-to-source transformation. This source transformation is the automatic
generation ofwrappersandunwrappersfor boxing and unboxing expressions whenever necessary.
After that, compiling the transformed source as usual will be guaranteed to be correct on all types.

I adapted and improved the main idea from Leroy’s solution sothat:

• the type annotation and rules are greatly simplified;

• no source-to-source transformation is needed;

• un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

4.2 The type system

The type system consists of two complementary parts: astaticand adynamicpart.5 The former
takes care of verifying all type constraints that are statically decidable (i.e., before actually running
the program). The latter pertains to type constraints that must wait until execution time to decide
whether those (involving runtime values) may be decided. This is called dynamic type-checking
and is best seen (and conceived) as anincrementalextension of the static part.

A type is either a static type, or a dynamic type. A static typeis a type that is checked before
runtime by the type-checker. A dynamic type is a wrapper around a type that may need additional
runtime information in order to be fully verified. Its staticpart must be (and is!) checked statically
by the static type checker, but the compiler may complete this by issuing runtime tests at adequate
places in the code it generates; namely, when:

• binding abstraction parameters of this type in an application, or

• assigning to local and global variable of this type, or

• updating an array slot, a tuple component, or an object’s field, of this type.

There are two kinds of dynamic types:

• Extensional types—defined with explicit extensions (either statically provided or dynami-
cally computed runtime values):

principles like separate compilation and abstract libraryinterfacing—imagine having to recompile code from a library
everytime you want to use it!

4This solution is the one implemented in the CAML compiler [6].
5See Appendix Section B.2 on Page 80 for the complete class hierarchy of types in the package

ilog.language.design.types.

PAGE 52 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

– Set extension type;

– Int range extension type (close interval of ints);

– Real range extension type (close interval of reals).

A special kind of set of int type is used to define enumeration types (from actual symbol
sets) through opaque type definitions.

• Intensional types—defined using any runtime boolean condition to be checked at runtime,
calls to which are tests generated statically;e.g.non-negative numbers (i.e.,int+,float+).

4.3 Static types

The static type system...

4.3.1 Primitive types

Boxable types

• Void

• Int

• Real

• Char

• Boolean

Boxed types

Built-in type constants (e.g., String).

4.3.2 Type constructors

Function types

Tuple types

Position tuple types

Named tuple types

A ÏT-KACI PAGE 53 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Array types

0-based int-indexed arrays

Int range-indexed arrays

Set-indexed arrays

Multidimensional arrays

Collection types

Set, bag, and list types

Class types

This is the type of object structures. It declares aninterface(or member type signature) for a
class of objects and the members comprising its structure. It holds information for compiling field
access and update, and enables specifying animplementationfor methods manipulating objects of
this type.

A class implementation uses the information declared in itsinterface. It is interpreted as follows:
only non-method members—hereafter calledfields—correspond to actual slots in an object struc-
ture that is an instance of the class and thus may be updated. On the other hand, all members (i.e.,
both fields and method members) are defined as globalfunctionswhose first argument stands for
the object itself (that may be referred to as ‘this’).

The syntax we shall use for a class definition is of the form:

class classname { interface } [{ implementation}] (4.3)

The interfaceblock specifies the type signatures of themembers(fieldsandmethods) of the class
and possibly initial values for fields. Theimplementationblock is optional and gives the definition
of (some or all of) the methods.

For example, one can declare a class to represent a simple counter as follows:

class Counter { value : Int = 1;
method set : Int → Counter;

}
{ set(value : Int) : Counter = (this.value = value);
}

(4.4)

The first block specifies the interface for the class typeCounter defining two members: a field
value of typeInt and a methodset taking an argument of typeInt and returning aCounter

PAGE 54 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

object. It also specifies an initialization expression (1) for thevalue field. Specifying a field’s
initialization is optional—when missing, the field will be initialized to a null value of appropriate
type:0 for anInt, 0.0 for aReal, false for aBoolean, ′\000′ for aChar, "" for aString, void for
Void,6 andnullT for any other typeT . The implementation block for theCounter class defines
the body of theset method. Note that a method’s implementation can also be given outside the
class declaration as a function whose first argument’s type is the class. For example, we could have
defined theset method of the classCounter as:

def Counter::set(x : Counter,n : Int) : Counter = (x.value = n); (4.5)

On the other hand, although a field is also semantically a function whose first argument’s type is a
class, it maynot be defined outside its class. Defining a declared field outsidea class declaration
causes an error. This is because the code of a field is always fixed and defined to return the value
of an object’s slot corresponding to the field. Note however that one may define a unary function
whose argument is a class type outside this class when it is not a declared field for this class. It will
be understood as amethodfor the class (even though it takes no extra argument and may be invoked
in ”dot notation” without parentheses as a field is) and thus act as a ”static field” for the class. Of
course field updates using dot notation will not be allowed onthese pseudo fields. However, they
(like any global variable) may be (re)set using a global (re)definition at the top level, or a nested
global assignment.

Note also that a field may be functional without being a method—the essential difference being
that a field is part of the structure of every object instance of a class and thus may be updated within
an object instance, while a method is common to all instancesof a class and may not be updated
within a particular instance, but only globally for all the class’ instances.

Thus, everytime aCounter object is created withnew, as in, for example:

c = new Counter; (4.6)

the value1 will be used to initialize the slot that corresponds to the location of thevalue field.
Then, field and method invocation can be done using the familiar ”dot notation”;e.g.:

c.set(c.value+ 2);
write(c.value);

(4.7)

This will setc’s value field to3 and print out this value. This code is exactly equivalent to:

Counter::set(c,Counter::value(Counter::c) + 2);
write(Counter::value(Counter::c));

(4.8)

6Strictly speaking, a field of typeVoid is useless since it can only have the unique value of this type(i.e., void).
Thus, avoid field should arguably be disallowed. On the other hand, allowing it is not semantically unsound and may
be tolerated for the sake of uniformity.

A ÏT-KACI PAGE 55 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Indeed, field and method invocation simply amounts to functional application. This scheme offers
the advantage that an object’s fields and methods may be manipulated as functions (i.e., as first-
class citizens) and no additional setup is needed for type-checking and/or type inference when it
comes to objects.

Incidentally, some or all type information may be omitted while specifying a class’simplementa-
tion (though not itsinterface) as long as non-ambiguous types may be inferred. Thus, the imple-
mentation block for classCounter in class definition (4.4) could be written more simply as:

{ set(n) = (value = n); } (4.9)

Declaring a class type and defining its implementation causes the following:

• the name of the class is entered with a new type for it in the type table (an object comprising
symbol tables, of typeilog.language.design.types.Tables, where its type def-
inition associates it with aClassType whose class structure is encapsulated by an object
of typeilog.language.design.types.ClassInfo where code entries for all its
members’ types are recorded;

• each field of a distinct type is assigned an offset in an array of slots (per sort);

• each method and field expression is name-sanitized, type-checked, and sort-sanitized after
closing it into an abstraction takingthis as first argument;

• each method definition is then compiled into a global definition, and each field is compiled
into a global function corresponding to accessing its valuefrom the appropriate offset;

• finally, each field’s initialization expression is compiledand recorded in theClassType
to be used at object creation time. An object may be created atrun-time (using thenew

operator followed by a class name).

4.3.3 Polymorphic types

4.4 Type definitions

Before we review dynamic types, we shall describe how one candefine new types using existing
types. Type definitions are provided both for convenience ofmaking programs more legible by
giving “logical” names (or terms) to otherwise verbose types, and that of hiding information details
of a type making it act as a new type altogether. The former facility is that of providingaliasesto
types (exactly like a preprocessor’s macros get expanded right away into their textual equivalents),
while the latter offers the convenience of definingnewtypes in terms of existing ones, but hiding
this information. It follows from this distinction that a type alias isalwaysstructurally equivalent

PAGE 56 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

to its value (in fact an alias disappears as soon as it is read in, being parsed away into the structure
defining it). By contrast, a defined type isneverstructurally equivalent to its value nor any other
type—it is only equivalent to itself. To enable meaningful computation with a defined type, two
meta-(de/con)structors are thus provided: one for explicitly castinga defined type into the type
that defines it, and one explicitly seeing a type as a specifieddefined type (if such a defined type
does exist and with this type as definition).

The classilog.language.design.types.Tables contains the symbol tables for global
names and types. The name spaces of the identifiers denoting type and non-type (global or local)
names (which are kept in the global symbol table) are disjoint—so there are no name conflicts
between types and non-type identifiers.

ThetypeTable variable contains the naming table for types and thesymbolTable variable
contains the naming table for other (non-type) global names.

This section will unfold all the type-related data-structures starting from the class that manages
symbols:ilog.language.design.types.Tables. The names can be those of types and
values. They areglobalnames.7 The type namespace is independent of the value namespace—i.e.,
the same name can denote a value and a type.

4.4.1 Type aliasing

4.4.2 Type hiding

4.5 Dynamic types

Dynamic types are to be checked, if possible statically (at least their static part is), at least in two
particular places of an expression. Namely,

• at assignment/update time; and,

• at (function) parameter-binding time.

This will ensure that the actual value placed in the slot expecting a certain type does respect addi-
tionnal constraints that may only be verified with some runtime values. Generally, dynamic types
are so-calleddependenttypes (such as,e.g., array of size(n), a “safe” array type depending
on the array size that may be only computed at runtime—i.e., à la Java arrays.).

From this, we require that a class implementing theDynamicType interface provides a method
public boolean verifyCondition() that is invoked systematically by code generated

7At the moment, there is no name qualification or namespace management. When this service is provided, it will
also be through theilog.language.design.types.Tables class.

A ÏT-KACI PAGE 57 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

for dynamically typed function parameters and for locations that are the target of updates (i.e,
array slot update, object field update, tuple field update) atcompilation of abstractions and various
assignment constructs. Of this class, three subclasses derive their properties:

• extensional types;

• Boolean-assertion types;

• non-negative number types.

We shall consider here a few such dynamic types (motivated esssentially by the need expressed for
OPL, and hence NGO, types). Namely,

• extensional types;

• intensional types (e.g., non-negative numbers)

An extensionaltype is a type whose elements are determined to be members of apredetermined
and fixed extension (i.e., any runtime value that denotes a collection—such as a set, an int range,
a float range, or an enumeration). Such types pose the additional problem of being usable at
compile-time to restrict the domains of other variables. However, some of those variables’ values
may only fully be determined at runtime. These particular dynamic types have therefore a simple
verifyCondition() method that is automatically run as soon as the extension is known. It
just verifies that the element is abona fidemember of the extension), otherwise it relies on a more
complicated scheme based on the notion ofcontract. Basically, a contract-based type is an exten-
sional type that does not have an extension (as yet) but already carries the obligation that some par-
ticular individual constants be part of their extensions. Those elements consitute “contracts” that
must be honored as soon as the type’s extension becomes known(either positively—eliminating
the contract, or negatively—causing a type error).

4.5.1 Extensional types

Set types

Int range types

Float range types

Enum types

4.5.2 Intensional types

Example: non-negative numbers

Define new (opaque) typesNat as a dynamically constrainedInt type...

PAGE 58 OF 83 HASSAN

Chapter 5

The intermediate language

The complete list of instructions that are currently definedis as follows.

5.1 Do-nothing instruction

1. NO OP

5.2 Push instructions

1. PUSH I

2. PUSH O

3. PUSH R

4. PUSH OFFSET I

5. PUSH OFFSET O

6. PUSH OFFSET R

7. PUSH TUPLE

8. PUSH SET I

9. PUSH SET R

10. PUSH SET O

11. PUSH INT RNG

12. PUSH REAL RNG

59

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

13. PUSH CLOSURE

14. PUSH NEW OBJECT

5.3 Subroutine instructions

1. APPLY

2. APPLY HOM I

3. APPLY HOM R

4. APPLY HOM O

5. APPLY IP HOM I

6. APPLY IP HOM R

7. APPLY IP HOM O

8. APPLY COLL I

9. APPLY COLL R

10. APPLY COLL O

11. APPLY COLL HOM I

12. APPLY COLL HOM R

13. APPLY COLL HOM O

14. APPLY IP COLL HOM I

15. APPLY IP COLL HOM R

16. APPLY IP COLL HOM O

17. CALL

18. END

19. RETURN I

20. RETURN R

21. RETURN O

22. NL RETURN I

23. NL RETURN R

24. NL RETURN O

PAGE 60 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

5.4 Pop instructions

1. POP I

2. POP O

3. POP R

5.5 Relocatable instructions

1. JUMP

2. JUMP ON FALSE

3. JUMP ON TRUE

5.6 Conversion instructions

1. I TO O

2. I TO R

3. O TO I

4. O TO R

5. R TO I

6. R TO O

7. ARRAY TO MAP I

8. ARRAY TO MAP R

9. ARRAY TO MAP O

10. MAP TO ARRAY O

11. CHECK ARRAY SIZE

12. RECONCILE INDEXABLES

13. ARRAY INITIALIZE

14. SHUFFLE MAP I

15. SHUFFLE MAP R

16. SHUFFLE MAP O

A ÏT-KACI PAGE 61 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

5.7 Assignment instructions

1. SET GLOBAL

2. SET OFFSET I

3. SET OFFSET O

4. SET OFFSET R

5.8 Tuple component instructions

1. GET TUPLE I

2. GET TUPLE R

3. GET TUPLE O

4. SET TUPLE I

5. SET TUPLE R

6. SET TUPLE O

5.9 Array/Map allocation instructions

1. PUSH ARRAY I

2. PUSH ARRAY R

3. PUSH ARRAY O

4. PUSH MAP I

5. PUSH MAP R

6. PUSH MAP O

7. MAKE ARRAY I

8. MAKE ARRAY R

9. MAKE ARRAY O

10. MAKE MAP I

11. MAKE MAP R

12. MAKE MAP O

PAGE 62 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

13. FILL ARRAY IA

14. FILL ARRAY IM

15. FILL ARRAY OA

16. FILL ARRAY OM

17. FILL ARRAY RA

18. FILL ARRAY RM

19. FILL MAP IA

20. FILL MAP IM

21. FILL MAP OA

22. FILL MAP OM

23. FILL MAP RA

24. FILL MAP RM

5.10 Array/Map slot instructions

1. GET ARRAY I

2. GET INT INDEXED MAP I

3. GET INT INDEXED MAP O

4. GET INT INDEXED MAP R

5. GET MAP I

6. GET ARRAY O

7. GET MAP O

8. GET ARRAY R

9. GET MAP R

10. SET ARRAY I

11. SET INT INDEXED MAP I

12. SET INT INDEXED MAP O

13. SET INT INDEXED MAP R

14. SET MAP I

15. SET ARRAY O

A ÏT-KACI PAGE 63 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

16. SET MAP O

17. SET ARRAY R

18. SET MAP R

5.11 Field instructions

1. GET FIELD I

2. GET FIELD O

3. GET FIELD R

4. SET FIELD I

5. SET FIELD O

6. SET FIELD R

5.12 Built-in operations

5.12.1 Arithmetic operations

1. ADD II

2. ADD IR

3. ADD RI

4. ADD RR

5. SUB II

6. SUB IR

7. SUB RI

8. SUB RR

9. MINUS I

10. MINUS R

11. MUL II

12. MUL IR

13. MUL RI

PAGE 64 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

14. MUL RR

15. DIV II

16. DIV IR

17. DIV RI

18. DIV RR

19. MODULUS

20. MIN II

21. MIN IR

22. MIN RI

23. MIN RR

24. MAX II

25. MAX IR

26. MAX RI

27. MAX RR

28. ABS I RI

29. ABS R

30. SQRT

31. POWER

5.12.2 Arithmetic relations

1. EQU II

2. EQU OO

3. EQU RR

4. NEQ II

5. NEQ OO

6. NEQ RR

7. GTE II

8. GTE IR

9. GTE RI

A ÏT-KACI PAGE 65 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

10. GTE RR

11. GRT II

12. GRT IR

13. GRT RI

14. GRT RR

15. LTE II

16. LTE IR

17. LTE RI

18. LTE RR

19. LST II

20. LST IR

21. LST RI

22. LST RR

5.12.3 Boolean operations

1. NOT

5.12.4 Map and Size operations

1. MAP SIZE

2. ARRAY SIZE

3. INDEXABLE SIZE

4. GET INDEXABLE

5.12.5 Container operations

1. BELONGS I

2. BELONGS O

3. BELONGS R

PAGE 66 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

5.12.6 Set operations

1. SET COPY

2. MAKE SET I

3. MAKE SET O

4. MAKE SET R

5. SET DIFF

6. SET SYM DIFF

7. INTER

8. UNION

9. D SET DIFF

10. D SET SYM DIFF

11. D INTER

12. D UNION

5.12.7 Set relations

1. SUBSET

5.12.8 Set element operations

1. SET ADD I

2. SET ADD R

3. SET ADD O

4. SET RMV I

5. SET RMV R

6. SET RMV O

7. FIRST I

8. FIRST O

9. FIRST R

10. LAST I

11. LAST O

A ÏT-KACI PAGE 67 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

12. LAST R

13. NEXT I

14. NEXT C I

15. NEXT O

16. NEXT C O

17. NEXT R

18. NEXT C R

19. ORD I

20. ORD O

21. ORD R

22. PREV I

23. PREV C I

24. PREV O

25. PREV C O

26. PREV R

27. PREV C R

5.12.9 Range operations

1. INT RNG UB

2. INT RNG LB

3. REAL RNG UB

4. REAL RNG LB

5.12.10 String operations

1. STRCON

5.12.11 I/O operations

1. WRITE I

2. WRITE O

3. WRITE R

PAGE 68 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

5.13 Dummy instructions

1. DUMMY EQU

2. DUMMY NEQ

3. DUMMY AND

4. DUMMY OR

5. DUMMY STRCON

6. DUMMY WRITE

7. DUMMY SIZE

8. DUMMY SET ADD

9. DUMMY SET RMV

10. DUMMY BELONGS

11. DUMMY ORD

12. DUMMY FIRST

13. DUMMY LAST

14. DUMMY NEXT

15. DUMMY NEXT C

16. DUMMY PREV

17. DUMMY PREV C

A ÏT-KACI PAGE 69 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 70 OF 83 HASSAN

Chapter 6

The backend system

6.1 The runtime system

This is the class defining a runtime object. Such an object serves as the common execution environ-
ment context shared byInstructions being executed. It encapsulates a state of comptutation
that is effected by each instruction as it is executed in its context.

A Runtime object consists of attributes and structures that togetherdefine a state of computation,
and methods that are used by instructions to effect this state as they are executed. Thus, each
instruction class defines anexecute(Runtime)method that specifies its operational semantics
as a state transformation of its given runtime context.

Initiating execution of aRuntime object consists of setting its code array to a given instruction
sequence, setting its instruction pointerip to its code’s first instruction and repeatedly calling
execute(this) on whatever instruction is currently at addressip in the current code array.
The final state is reached when a flag indicating that it is so isset totrue. Each instruction is
responsible for appropriately setting the next state according to its semantics, including saving and
restoring states, and (re)setting the code array and the various runtime registers pointing into the
state’s structures.

Runtime states encapsulated by objects in this class are essentially those of a stack automaton,
specifically conceived to support the computations of a higher-order functional language with lex-
ical closures—i.e., a λ-calculus machine—extended to support additional features—e.g., assign-
ment side-effects, objects, automatic currying. . . As suchit may viewed as an optimized variant
of Peter Landin’s SECD machine [4]—in the same spirit as LucaCardelli’s Functional Abstract
Machine (FAM) [1], although our design is quite different from Cardelli’s in its structure and
operations.

Because this is a Java implementation, in order to avoid the space and performance overhead of

71

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

being confined to boxed values for primitive type computations, three concurrent sets of structures
are maintained: in addition to those needed for boxed (Java object) values, two extra ones are
used to support unboxed integer and floating-point values, respectively. The runtime operations
performed by instructions on aRuntime object are guaranteed to be type-safe in that each state is
always such as it must be expected for the correct accessing and setting of values. Such a guarantee
must be (and is!) provided by theTypeChecker and theSanitizer, which ascertain all the
conditions that must be met prior to having aCompiler proceed to generating instructions which
will safely act on the appropriate stacks and environments of the correct sort (integer, floating-
point, or object).

6.2 The runtime objects

6.3 The display manager

6.4 The error manager

PAGE 72 OF 83 HASSAN

Chapter 7

A full example—HAK LL

This chapter details the design of a concrete language from scratch. We call this languageHAK LL—
presumably to mean, somewhat presumptuously: Hassan Aı̈t-Kaci’s Little Language.1

HAK LL is a fully-working prototype language whose essential goalis to illustrate and demonstrate
our architecture: the expressive power of the kernel language and the workings of its type-checker,
compiler, and runtime systems. It is an imperative functional language with objects, where func-
tions are first-class citizens.HAK LL has a surface syntax for an interactive language that can
define top-level constructs and evaluate expressions. It supports 2nd-order (ML-like) type poly-
morphism, automatic currying, multiple type overloading,dynamic operator overloading, as well
as flat classes and objects (i.e., no subtyping nor inheritance—yet).

1... and pronounced “hackle”—not to be confused with an otherwise known programming language of greater
notoriety and whose name is the first name of Prof. Haskell B. Curry.

73

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 74 OF 83 HASSAN

Chapter 8

Conclusion

75

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 76 OF 83 HASSAN

Appendix A

A word on traceability

A.1 Relating concrete and abstract syntax

Error traceability...

A.1.1 Syntax errors

A.1.2 Static Semantics errors

Typing errors

Other Static Semantics errors

A.1.3 Dynamic Semantics errors

Runtime errors

Java errors

A.2 Displaying and reading

... in concrete/abstract syntax.

77

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

A.2.1 Displaying

A.2.2 Reading

A.2.3 Concretizing abstract syntax down

... with writing tables.

A.2.4 Abstracting concrete syntax away

... with reading tables.

PAGE 78 OF 83 HASSAN

Appendix B

A four-panelled architecture

B.1 The Complete Kernel

B.1.1 Sanitizing

B.1.2 Type checkingvs. inference

B.1.3 Compiling

79

In
co

m
p

lete
D

rafto
fD

ecem
b

er
8

,2
0

0
6

A
B

S
T

R
A

C
T

A
N

D
R

E
U

S
A

B
L

E

B
.2

T
he

C
om

plete
Type

S
ystem

C
lass

hierarchy
oftypes

in
the

package
i
l
o
g
.
l
a
n
g
u
a
g
e
.
d
e
s
i
g
n
.
t
y
p
e
s

Type

StaticType DynamicType

NamedType TypeParameter ConstructedType ExtensionalType IntensionalType

BoxableTypeConstant FunctionType TupleType ArrayType CollectionType

TypeConstant TypeTerm NamedTupleType SetType BagType ListType

CollectionTypeConstant ClassType DefinedType

P
A

G
E

8
0

O
F

8
3

H
A

S
S

A
N

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

B.2.1 The type prover

B.3 Structure of theTypeChecker

An object of the classilog.language.design.types.TypeChecker is a backtracking
prover that establishes various kinds ofgoals. The most common goal kind established by a type
checker is atyping goal—but there are others.

A TypingGoal object is a pair consisting of an expression and a type. Proving a typing goal
amounts to unifying its expression component’s type with its type component. Such goals are
spawned by the type checking method of expressions as per their type checking rules. Some glob-
ally defined symbols having multiple types, it is necessary to keep choices of these and backtrack
to alternative types upon failure. Thus, aTypeChecker object maintains all the necessary struc-
tures for undoing the effects that happened since the last choice point. These effects are:

1. type variable binding,

2. function type currying,

3. application expression currying.

In addition, it is also necessary to remember allGoal objects that were proven since the last choice
point in order to prove them anew upon backtracking to an alternative choice. This is necessary
because the goals are spawned by calls to thetypeCheck method of expressions that may be
exited long before a failure occurs. Then, all the original typing goals that were spawned in the
mean time since the current choice point’s goal must be reestablished. In order for this to work,
any choice points that were associated to these original goals must also be recovered. To enable
this, when a choice point is created for aGlobal symbol, choices are linked in the reverse order
(i.e., ending in the original goal) to enable reinstating all choices that were tried for this goal.

In order to coordinate type proving, a typechecker object ispassed to all type checking and unifi-
cation methods as an argument in order to record any effect inthe appropriate trail.

To recapitulate, the structures of aTypeChecker object are:

• agoal stackcontaininggoalobjects (e.g., TypingGoal) that are yet to be proven;

• abinding trail stackcontaining type variables and boxing masks to reset to ”unbound” upon
backtracking;

• a function type currying trailcontaining 4-tuples of the form (function type, previous do-
mains, previous range, previous boxing mask) for resettingthe function type to the recorded
domains, range, and mask upon backtracking;

A ÏT-KACI PAGE 81 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

• anapplication currying trailcontaining triples of the form (application type, previousfunc-
tion, previous arguments) for resetting the application tothe recorded function and arguments
upon backtracking;

• a goal trail containingTypingGoal objects that have been proven since the last choice
point, and must be reproven upon backtracking;

• achoice-point stackwhose entries consists of:

– a queue ofTypingGoalEntry objects wherefrom to constructs newTypingGoal
objects to try upon failure;

– pointers to all trails up to which to undo effects.

B.3.1 The type constructs

B.3.2 Defining new types

B.4 The Basic Instruction Set

B.5 The Complete Backend

B.5.1 TheRuntime class

B.5.2 TheRuntimeObject class

B.5.3 TheDisplayManager class

B.5.4 TheErrorManager class

PAGE 82 OF 83 HASSAN

Bibliography

[1] Luca Cardelli. The functional abstract machine.Polymorphism, the ML/LCF/Hope Newsletter,
I(1), 1983. (Also Technical Report TR-107, AT&T Bell Laboratories, April 1983.).

[2] Hassan Aı̈t-Kaci. An introduction to LIFE—Programmingwith logic, inheritance, functions,
and equations. In Dale Miller, editor,Proceedings of the Symposium on Logic Programming.
The MIT Press, 1993.

[3] Hassan Aı̈t-Kaci. Jacc—Just another compiler compiler.1 Optimization Group Technical
Reportforthcoming, ILOG, Gentilly, France, forthcoming 2002.

[4] Peter Landin. The mechanical evaluation of expressions. Communications of the ACM, 1964.

[5] Xavier Leroy. Boxing and unboxing in polymorphically typed languages. InProceedings of
the ACM Conference on Principles of Programming Languages (POPL’92), 1992.

[6] Pierre Weiss and Xavier Leroy. The CAML compiler. Research report, INRIA, Rocquencourt,
France, 1994.

1Jacc is a java-based software that generates aLALR(1) parsing automaton from a familiaryacc-like action-
annotated context-free grammar. it provides several useful extensions toyacc’s parsing capabilities (e.g., dynamic
operator definitions̀a la PROLOG, non-terminal subclassing,etc.., . . .).Jacc is the property of ILOG but is not part of
the software products sold and/or maintained by ILOG—it is not this author’s interest to commercializeJacc (at least
not in the immediate future and in its current state), but upon specific request, and on a per-case basis, compiled java
classes (not sources) forJacc may be made available on an“as is” basis if it is worth ILOG’s and this author’s time to
do so.

83

