AN ABSTRACT AND REUSABLE

PROGRAMMING LANGUAGE ARCHITECTURE

HASSAN AIT-KACI
hak@ 1| og. fr

ILOG
Research and Development
Optimization Group
http://ww.ilog.fr

9, rue de Verdun - B.P. 85
94253 Gentilly Cedex, France

December 8, 2006

(INCOMPLETE DRAFT)

Copyright®© ILOG, S.A. and Hassan iA-K ACl

Preamble

Purpose

The purpose of this document is to describe, explain, artthjjube design of the | og. | an-
guage. desi gn package. Its main goal is to serve as a specification as walbdasumentation
of the details of various of its intricacies. As such, it ®rwnainly its author helping him to keep
track of subtleties he alone may know of but may not rememiagteast not in full detail—and,
of course, it is also meant for those brave enough to usd d]dee those who wish to understand
it in details @Qasp) to adapt and/or extend its functionalities.

Acknowledgement

Many thanks are due to the few, the proud, thelunteer” pre-«-testers of the viability of the
whole design—especially thedb design teant,and any others having been exposed, willy or
nilly, to some of, or the whole package as its design was dfgl. . .

Many thanks also toLloG for their open mind, as well as their keen acumen making tkreysa
intellectual investment of trusting their R&D to make no qmamise in the best quality of their
software. | have enjoyed the challenge of meeting theirozusts demands with the best possible
scientific environment.

Thank you Chritiane Bracchi, Chrisptophe Gefflot, Fréd®aulin, and Patrick Viry!. .;.-)
2Thanks, in particular, to Jean-Franis Puget, LoG's VP of Optimization, and Jean-Frémis Abramatic, LOG’S
CTO, for their support, and of course Pierre Hareimd’s CEO for his tireless contagious enthusiasm.

Contents

1 Programming language design 1
2 Overview 3
2.1 Abstract programming language design e e ... 3
2.1.1 Surfacelanguage 3
2.1.2 Kernellanguage 3
2.1.3 Typelanguage e 3
2.1.4 Intermediate languageo 3
2.1.5 Executionbackend o 3
2.1.6 Pragmatics 3
3 The kernel language 5
3.1 Kernelexpression e e 5
3.2 Processing akernelexpression e e 5
3.2.1 Sanitizer e 6
3.2.2 Typechecker e 6
3.2.3 Compiler e e 6
3.3 Description of kernel expressions e e 7
3.3.1 Constant e 11
3.3.2 Abstraction 21
3.3.3 Application 31
3.34 Local e 14
3.35 Parameter 14

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

336 Global.
337 Dummy
3.3.8 Definition o L
3.3.9 IfThenElse
3.3.10 AndOr
3.3.11 Sequence
3312 Let
3313 Loop
3.3.14 ExitWithvalue
3.3.15 Assignment L
3.3.16 NewArrayo
3.3.17 ArraySlot
3.3.18 ArraySlotUpdate
3.3.19 ArrayExtension
3.3.20 Arraylinitializer oL
3321 Tuple
3.3.22 NamedTuple
3.3.23 TupleProjection
3.3.24 TupleUpdate
3.3.25 NewObject
3.3.26 DottedNotation
3.3.27 FieldUpdate
3.3.28 Homomorphism
3.3.29 Comprehension

4 The type language

4.1 OVEeIVIEW
4.1.1 Polymorphism
4.1.2 Multiple Type Overloading
413 Currying
4.1.4 Standardizing

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

415 Copying . . . o o e e e 51
4.1.6 Equality e e 51
4.1.7 Unifying e 51
4.1.8 Boxing/unboxing 51
4.2 Thetypesystem e e e 52
4.3 StatiCtypes e e 53
4.3.1 Primitivetypes e 53
4.3.2 Typeconstructors e e e 53
4.3.3 Polymorphictypes 56
4.4 Typedefinitions e 56
441 Typealiasing 15
442 Typehiding e 57
4.5 DynamiCtypes 57
451 Extensionaltypes 58
4.5.2 Intensionaltypes e 58
5 The intermediate language 59
5.1 Do-nothinginstruction e e e 59
5.2 Pushinstructions 59
5.3 Subroutineinstructions e 60
5.4 POpINStruCtions e e e e e e 61
5.5 Relocatableinstructions e 61
5.6 Conversioninstructions e 61
5.7 Assignmentinstructions. e 62
5.8 Tuplecomponentinstructions. e 62
5.9 Array/Map allocation instructionso . . 62
5.10 Array/Map slotinstructions e 63
5.11 Fieldinstructions e 64
5.12 Built-inoperations e e e e 64
5.12.1 Arithmeticoperations. e 64
5.12.2 Arithmeticrelations 65

AIT-KACI iii

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

5.12.3 Booleanoperations e 66

5.12.4 Map and Sizeoperations 66

5.12.,5 Containeroperations e 66

5.12.6 Setoperations. e 67

5.12.7 Setrelations. 67

5.12.8 Setelementoperations 67

5.12.9 Rangeoperations 68

5.12.10Stringoperations e 68

5.12.111/00perations e e e e e e 68

5.13 Dummy instructions 69

6 The backend system 71

6.1 Theruntimesystem 71

6.2 Theruntimeobjects e 72

6.3 Thedisplaymanager 72

6.4 Theerrormanager. 0 i 72

7 A full example—HAK_LL 73

8 Conclusion 75

A A word on traceability 77

A.1 Relating concrete and abstractsyntax. 77
A1l Syntaxerrors e e e e e e T

A.1.2 StaticSemanticserrors e 77

A.1.3 Dynamic SemantiCSerrors v v i 77

A.2 Displayingandreading 77
A21 Displaying 78
A2.2 Reading e e 78

A.2.3 Concretizing abstract syntaxdown 78

A.2.4 Abstracting concrete syntax away i i o 78

B A four-panelled architecture 79

v HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

B.1

B.2

B.3

B.4
B.5

AIT-KACI

The Complete Kernel e 79
B.1.1 Sanitizing e e 97
B.1.2 Typecheckings.inference, 79
B.1.3 Compiling 79
The Complete Type System i i 80
B.2.1 Thetypeprover e 18
Structure of th&ypeChecker L 81
B.3.1 Thetypeconstructs 82
B.3.2 Definingnewtypes 28
The Basic InstructionSet e 82
The Complete Backend .. 82
B.5.1 TheRuntineclass 82
B.5.2 TheRuntineGbjectclass 82
B.5.3 TheDi splayManagerclass. 82
B.54 TheErrorManager class 82
\%

Chapter 1

Programming language design

Languageis a means of communication. By this definition, a particldarguage serves as a
conduit for information exchange between communicatirtgies. Such entities may be of various
kinds (be it sentient-e.g, humans, animals—or pragmatic tools-¢, elevators, cars, computers,
etc). A programming languagés a language for human-to-computer or computer-to-coerput
communication.

A natural language such as the one you are reading and | am using right now, iaguéme
for human-to-human communication. Such languages are(gky) not designed—thegvolve!
Programming languages are designédhey are designed today more formally thanks to linguistic
research that led to syntactic science (leading to parsbntdogy) and research in the formal
denotational semantics of programming constructs. Asdrcéise of a natural language, a grammar
will regulate the formation of sentences (programs) thditbve understood (interpreted/executed)
according to the language’s natural (denotational/oparal) semantics.

Designing a programming language is difficult because itireg being aware of all the (over-
whelmingly numerous) consequences of the slightest delggision that may occur anytime dur-
ing the lexical or syntactical analyses, and the static eradyic semantics phases. Because of
the potentially high design costs (in time and effort, boain terms of the quality of the end
product—viz., performance and reliability of the language being desiyfni@vesting in defining
and implementing a new language is prohibitive.

Fortunately, there have been design tools to help in theesgcSo-called meta-compilers have
been used to great benefit and higher quality of languagecimgrhtations. The “meta” part is

1in fact, natural languages haee-evolved under one another’s historical and geographithlénce and often
mutate through exchange of syntax and/or semantics—we tlimdade hereartificial human languages likEs-
perantq etc., ... The “damage” incurred by a language adopting a newnoftatated concept from another being
this co-evolution. There also are some rare natural lanegititat evolved away from others due to mere geographical
reasons.

2Not to mention how to justify, let alone guarantee, the attrress of the design’s implementation.

1

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

actually mostly true for the lexical and syntactic phasetheflanguage design. Even then, the
metasyntactic tools are often restricted to specific ckaségrammars and/or parsing algorithms.
Still fewer propose tools foabstract syntaxMost that do confine the abstract syntax language to
some form of idiosyncratic representation of a tree langweith somead hocinterpretation. Even
rarer are language design systems that propose abstract@sable components in the form of
expressions of a formal typed kernel calculus. This is wihiatwork proposes, and this document
explains such a design.

This work is therefore a metadesign: it is the design of agiesiol. The emphasis—the novelty
of what is proposed here—is not so much on the lexical/syiciEhases, but mostly on the
semantic phases.

This document describes the design of an abstract reusadeapming language architecture
and its implementation in Java. It represents the basidangas these abstract and reusable con-
structs, and any well-typed compositions thereof, may bmtiated in various modular language
configurations.

3The lexical/syntactic phases also deserve attention, hadd implemented a set of extensions to the conventional
| ex/ yacc (alternatively,f | ex/ bi son) meta[lex/syntact]ical tools [3]. More has to be done ort gide—e.g,
documentation!—and much of it is operational and can be asede factqlex/syntact]ical front end to the semantic
architecture proposed here.

4The first facet was the elaboration@fcc, an advanced system for syntax-directed compiler geoar{di. The
third facet will be the integration of logic-relational ¢fin Logic Programming) and objet-relational (from Database
Programming). A later facet may be to complete the desigmédle both_1 FE-technology [2] andsAHLP technol-
ogy to cohabit.

PAGE 2 OF 83 HASSAN

Chapter 2

Overview

2.1 Abstract programming language design

2.1.1 Surface language
2.1.2 Kernel language

2.1.3 Type language

2.1.4 Intermediate language

2.1.5 Execution backend
Semantic language: Runtime objects
Type-directed Display manager
Type-directed Data Reader

2.1.6 Pragmatics

Concretevs. abstract error handling

Concretevs. abstract Vocabulary

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 4 OF 83 HASSAN

Chapter 3

The kernel language

3.1 Kernel expression

3.2 Processing a kernel expression

Typically, upon being read, daxpr essi on will be:

1. “name-sanitized>—in the context of é&ani ti zer to discriminate between local names
and global names, and establish pointers from the locahbkrioccurrences to the abstrac-
tion that introduces them, and from global names to entnéise global symbol table;

2. type-checked-in the context of a'ypeChecker to discover whether it has a type at all,
or several possible ones (only expressions that have aemigambiguous type are further
processed);

3. “sort-sanitized™—in the context of &ani t i zer to discriminate between those local vari-
ables that are of primitive Java typesit ordoubl e) or of Qbj ect type (this is necessary
because the set-up means to use unboxed values of prinyipes for efficiency reasons);
this second “sanitization” phase is also used to computetsffor local names.¢., so-
calledde Bruijn indice$ for each type sort;

4. compiled—in the context of &Conpi | er to generate the sequence of instructions whose
execution in an appropriate runtime environment will eaéduthe expression;

5. executed-in the context of &unt i me to execute its sequence of instructions.

5

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.2.1 Sanitizer

A sanitizeris an object that “cleans up”™—so to speak—an expressiors oérhaining ambiguities
as it is being processed. There are two kinds of ambiguh@snust be “sanitized:”

e after parsing, it must be determined which identifiers asertames ofocal variablesvs.
those ofglobalvariables;

e after type-checking, it must be determined the runtime gbevery abstraction parameter
and use this to compute the local variable environment tfisieeach local variablé.

Thus a sanitizer is a discriminator of names and sorts.

3.2.2 Typechecker

The type checker is in fact a type inference machine thathegites missing type information
by type unification. It may be (and often is) used as a typeskihg automaton when types are
(partially) present.

Each expression must specify its owgpeCheck(TypeChecker) method that encodes its
formal typing rule.

3.2.3 Compiler

This is the class defining a compiler object. Such an objeseseas the common compilation
context shared by aBxpr essi on and the subexpressions comprising it. Each type of expres-
sion representing a syntactic construct of the kernel laggulefines aonpi | e(Conpi | er)
method that specifies the way the construct is to be compilélde context of a given compiler.
Such a compiler object consists of attributes and methadgdnerating straightline code which
consists of the sequence of instructions correspondinddp-&éevel expression and its subexpres-
sions.

Upon completion of the compilation of a top-level expressia resulting code array is extracted
from the sequence of instructions, which may then be exdcuteéhe context of &Runti ne
object, or, in the case of Befi ni ti on, be saved in the code array in tbefi ni tion’s
codeEnt ry() field—aDef i nedEnt r y object, which encapsulates its code entry point, which
in turn may then be used to access the defined symbol's coéxdgution).

1These offsets are the so-callée Bruijnindices ofA-calculus [4]. Or rather, their sorted version.

2lt has occurred to this author that his choice of the word itsgr” is perhaps a tad of a misnomer—
“discriminator” may be a better choice. This also goes feithog. | anguage. desi gn. kernel . Sani ti zer
class’ method namegé€., di scri ni nat eNanmes anddi scri nmi nat eSort s rathertharsani t i zeNanes and
sanitizeSorts).

PAGE 6 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

Each expression construct of the kernel must thereforeifgpgacompiling rule. Such a rule
expresses how the abstract syntax construct maps intoghsliree code sequence.

3.3 Description of kernel expressions

The clas€Expr essi on is the mother of all expressions in the kernel language. dtiigs the
prototypes of the methods that must be implemented by atesspon subclasses. The subclasses
of Expr essi on are:

e Const ant : constant (void, boolean, integer, real number, objéct);
e Abst racti on: functional abstractior&(la A\-calculus)?

e Appl i cati on: functional application;

e Local : local name;

e Par anet er: a function’s formal parameter (really a pseudo-expresa® it is not fully
processed as a real expression and is used as a shared typeaindn repository for all
occurrences in a function’s body of the variable it stand} fo

e { obal : global name;

e Dummy: temporary place holder in lieu of a name prior to being disgrated into a local or
global one.

e Defi ni ti on: definition of a global name with an expression defining it gia@bal store;
e | f ThenEl se: conditional;

e AndOr : non-strict boolean conjunction and disjunction;

e Sequence: sequence of expressions (presumably with side-effects);

e Let : lexical scoping construct;

e Loop: conditional iteration construct;

e Exi t Wt hVal ue: non-local function exit;

e Assi gnment : construct to set the value offacal oragl obal variable;
e NeWAr r ay: construct to create a new (multidimensional) array;

e ArraySl ot : construct to access the element of an array;

e ArraySl ot Updat e: construct to update the element of an array;

3Section 3.3.1.
4Section 3.3.2.

AIT-KACI PAGE 7 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

e Tupl e: construct to create a new position-indexed tuple;

e NanmedTupl e: construct to create a new name-indexed tuple;

e Tupl eProj ect i on: construct to access the component of a tuple;
e Tupl eUpdat e: construct to update the component of a tuple;

e New(Obj ect : construct to create a new object;

e Dot t edNot at i on: construct to emulate the traditional object-orientedt*diereference
notation;

e Fi el dUpdat e: construct to update the value of an object’s field;
e ArrayExt ensi on: construct denoting a literal array;

e Arraylnitializer: construct denoting a syntactic convenience for speafymtial-
ization of an array from an extension;

e Hormonor phi sm construct denoting a monoid homomorphism;
e Conpr ehensi on: construct denoting a monoid comprehension;

In this section, we are going to give a detailed descripticash kernel construct. The description
of an expression will have the following items:

® ABSTRACT SYNTAX

® OPERATIONAL SEMANTICS

® TYPING RULE

® COMPILING RULE

ABSTRACT SYNTAX

This describes the abstract syntax form of the kernel espes A kernel expression will be
written inblue.

OPERATIONAL SEMANTICS

This describes informally the meaning of the expressiore fittation]e], wheree is an abstract
syntax expression, denotes the (mathematical) sem@entiatationof e. The notation7'], where

T is a type, denotes the (mathematical) semaaiicotationof 7'—namely,[77] is the set of alll

abstract denotatioris]’s such that kernel expressierhas type!.

TYPING RULE

PAGE 8 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

This describes formally the logical rules for typing therkarexpression. A type will be written in
red.

A typing judgments a formula of the forn* = e : 7', and is read as:uhder typing context,
expressiore has typel’.”

In its simplest form, dyping context is a function mapping the parameters)eébstractions to
their types. In the formal presentation of an expressigrpgng rule, the context keeps the type
binding under which the typing derivation has progresse@pplying the rule in which it occurs.

The notatior[x : T] denotes the context defined frdrras follows:

. def T if y=u;
Clz: 7)) = { ['(x) otherwise (3-1)

A typing ruleis a formula of the form:

T T

; (3.2)

whereJ and theJ;’s, i = 0,...,n, n > 0, are typing judgments. This “fraction” notation ex-
presses essentially an implication: when all the formullathe rule’s premisegthe J;'s in the
fraction’s “numerator”) hold, then the formula in the rndeonclusion(the fraction’s “denomina-
tor”) holds too. Whem = 0, the rule has no premiseie., the premise is tautologicaltyue (e.g,

0 = 0)—the rule is called aaxiomand is written with an empty “numerator.”

A conditionaltyping rule is a typing rule of the form:

Ji, .oy dn

. (Jr,. .., T (3.3)

wherec is a boolean metacondition involving the rule’s judgments.

A typing rule (or axiom), whether or not in conditional forns, usually read backwards.€.,
upwards) from the rule’sonclusionthe bottom part, or “denominator”) to the rulggeemisegthe
top part, or “numerator”). Namely, the rule of the form:

e Ty, ...,0, Fe, : T,

'e: T (3.4)
is read thus:
“The expressiore has typel’ under typing context | f the expression; has typel;
under typing context';, ..., the expression, has typ€l;,, under typing context

Fn.”

AIT-KACI PAGE 9 OF 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

For example,

I' = c: Boolean, ' F ey : T, T' F ey : T
I' Fifcthene;elseey : T

is read thus:

“The expressionf c then e; else e; has typel” under typing context | f the expres-
sionc has typeXoolean under typing contexXt if both expressions, ande, have
the same typ&’ under the same typing contdxt

With judgments spelled-out, a conditional typing rule {3ddks like:

Fll—elle,...,Fnl—en:Tn
' e : T

C(F7F17 c ‘7Pn7€7 €1, .- '7671,7T7 T17 e '7Tr1,) (35)

wherec(T',T'y,..., Ty, e,eq,...,e,,T,T1,...,T,) is a boolean meta-condition involving the con-
texts, expressions, and types. Such a rule is read thus:

the meta-condition holds, the expression has typ€el’ under typing context
I' I I the expressiom; has typ€l; under typing context', ..., the expression
e, has typé€l;,, under typing context,,.”

An example of a conditional rule is that of abstractions thast take into account whether or not
the abstraction isxitable—i.e., it may be exited non-locally:

Dlay : -+ 1) F e T
I' F junctionxy,...,2, - € : 1T1,...,1T, =T

function z1,...,x, - elis not exitable

Similarlly, atyping axiom
'e: T (3.6)

is read as;The expressiore has typel’ under typing context.” and aconditional typing axiom
is a typing axiom of the form:

_ ['e, T g
rre:7 | dbeD) (3.7)
wherec(I', e, T') is a boolean meta-condition on typing cont&xiexpressiorn, and typel” and is
read as; | f the meta-conditior(T", ¢, 7") holds the expressiom has typel’ under typing
contextI’” We shall see examples of typing axioms in Sections 3.3.1 &18.3

5See Sections 3.3.2 and 3.3.14.

PAGE 100F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

COMPILING RULE

This describes the way the expression’s components areadapio a straightline sequence of
instructions. An instruction (or generally any instructisequence) will be written IRAGENTA.
Any meta-information annotation used in code instructienigstruction sequences will be written
in

The compiling rule for expressianis given as a functiommpile|_| of the form:

compile[e] = | NSTRUCTI ON
: (3.8)
| NSTRUCTI ON

3.3.1 Constant

Constants represents the built-in primitive (unconsedgtata elements of the kernel language.

ABSTRACT SYNTAX

A Constantexpression is an atomic literal. Objects of cl&s1st ant denote literal constants:
the integers€.g, —1, 0, 1, etc), the real numberse(g, —1.23, ..., 0.0, ..., 1.23, etc), the
charactersd.g, 'a’,'t/, '@, '#', etc), and the constant®id, true, andfalse. The constantoid is
of typeLioid, such that:

[Doid] £ {[void]}
and the constantsue andfalse of type‘Boolean, such that:

[Boolean] = {[false], [teue]}.

Other built-in types are:

[Int] £7Z = {..[-1,[0],[1],...}
[Real] = R = {...,[-1.23],...,[0.0],...,[1.23],...}
[¢hat] = set of all Unicode characters
[Gtring] = set of all finite strings of Unicode characters.

Thus, theConst ant expression class is further subclassed ihtat , Real , Char , NewQbj ect ,
andBui | ti nObj ect Const ant , whose instances denote, respectively: integers, flogkomgt
numbers, characters, new objects, and built-in objectteois€.g, strings).

AIT-KACI PAGE 11 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

TYPING RULE
The typing rules for each kind of constant are:

Lvoldl o~ wow
[true] [' F teue @ Boolean
[false] I' = false : Boolean
[int] TRE——— n IS an integer (3.9)
[real] AT n is a floating-point number
[char] I ¢ Char c is a character
[string] s is a string

I' F s : Gtring

We postpone for now the typing of object constants until weenstand object types.

3.3.2 Abstraction

ABSTRACT SYNTAX

This is the standard-calculus functional abstraction, possibly with multipl@rameters. Rather
than using the conventionalnotation, we write an abstraction as:

functionxy,...,x, - e (3.10)

where ther;’s areabstraction parameters-identifiers denoting variables local to the expression
e, the abstraction’sody.

PAGE 120F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

TYPING RULE

There are two cases to consider depending on whether thaetiost is or noexitable An exitable
abstraction is one that corresponds to a real source lapguagction from which a user may exit
non-locally® Other (non-exitable) abstractions are those that are @aitlglgenerated by syntactic
desugaring of surface syntaxe-g, see Sections 3.3.12 and 3.3.29. It is the responsibilithef
parser to identify the two kinds of abstractions and markxéslgle all and only those abstractions
that should be.

Cley 1Y) T, F e T

unction zq,...,x, - eliS notexitable
I' - functionzy,...,x, - e : Ty,...., T, =T f Lo

(3.11)

If the abstraction is exitable however, we must record ith@ typing context. Namely,let =
function z1,...,z, - e;then,

Dpcglry T4 vz, T B e T

is exitable 3.12
't-oa:17),....7, =T “ ()
wherel'y._, is the same context dsexcept thallp, < ..
3.3.3 Application
ABSTRACT SYNTAX
fler, ... en) (3.13)
TYPING RULE
e 17, -, '-e, 1T, I'+ f:T,...7,—T

L' fler,....e,) = T (3.14)

6Seeerit with v in Section 3.3.14, on Page 17.

AIT-KACI PAGE 130F 83

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

3.3.4 Local
3.3.5 Parameter
3.3.6 Global
3.3.7 Dummy
3.3.8 Definition
3.3.9 |IfThenElse

ABSTRACT SYNTAX

if c then ey else ey

OPERATIONAL SEMANTICS

TYPING RULE

I' = c: Boolean, ' F ey : T, ' F ey : T
I' F ifctheney else ey : T

COMPILING RULE

compile[if ¢ then ey else ey = compile[c]
JUMP_ON_FALSE
compile[eq]
Jump
compile[es]

3.3.10 AndOr

ABSTRACT SYNTAX

PAGE 140F 83

(3.15)

(3.16)

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

ep and/ot ey

TYPING RULE

I' - e : Boolean, I' F ey : Boolean
I' F ey and/or ey : Boolean

(3.17)

And

COMPILING RULE

compile[e; and ey = compile[eq]
JumP_ON_FALSE | Of
compile[es]
JumP_ON_TRUE | Ot
| of : PuUsH.FALSE
Jump | np
| ot : PUSH_TRUE

(3.18)

Or

COMPILING RULE

compi[e[[el ot 62]] = compi[e[[el]]
JUuMP_ON_TRUE | Ot
compile]es]
JumP_ON_FALSE | of
| ot : PUSH_TRUE

Jump | np
| of : PuUsH_FALSE

(3.19)

AIT-KACI PAGE 150F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.3.11 Sequence

ABSTRACT SYNTAX

{en; ...;en }

TYPING RULE

r-e 17y, ..., ' e, : T,
LE{es..5en} o T,

(3.20)

COMPILING RULE

compile[{ e1; ...;e, }] = compile[e;]

Por_ el (3 21)

compile[e,]
3.3.12 Let

3.3.13 Loop

ABSTRACT SYNTAX

wbhilecdoe (3.22)
wherec ande are expressions.
OPERATIONAL SEMANTICS

TYPING RULE

I' = ¢ : Boolean, ' e : T
I' F whbhilecdoe : Yoid

(3.23)

PAGE 16 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

COMPILING RULE

compile[robile ¢ Do €] = compile[c]
JUMP_ON_FALSE
compile[e] (3.24)
JumpP
PusH_VoiI D
3.3.14 ExitWithValue
ABSTRACT SYNTAX
erit roith v (3.25)

wherew is an expression.

OPERATIONAL SEMANTICS

Normally, exiting from an abstraction is done simply by fiiadg off” (one of) the tip(s) of the
expression tree of the abstraction’s body. This operasocaptured by the simple operational
semantics of each of the threeTurn instructions. Namely, when executin@ar urn instruction,
the runtime performs the following three-step procedure:

1. it pops the result from its result staék;
2. itrestores the latest saved runtime state (popped offahed-state stack);
3. it pushes the result popped in Step 1 onto the restorezlsstatn result stack.

However, it is also often desirable, under certain circamsgs, that computatiamot be let to
proceed further at its current level of nesting of exitalldsteactions. Then, computation may be
allowed to return right away from this current nesting.(as if having fallen off this level of
exitable abstraction) when the conditions for this to hapae met. Exiting an abstraction thus
must also return a specific value that may be a function of dmtext. This is what the kernel
constructiorerit toith v expresses. This kernel construction is provided in ordspézify that the
current local computation should terminate without furthéo, and exit with the value denoted by
the specified expression.

"Wherestackhere means “stack @fppropriateruntime sort;” approppriate, that is, as per the instrutsisort—
viz., | NT, REAL, or runtimeOBJ ECT.

AIT-KACI PAGE 170F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

TYPING RULE

Now, there are several notions in the above paragraphs ¢edtsome clarification. For example,
what arf'exitable” abstraction is, and why worry about a dedicated construbeikernel language
for such a notion if it does nothing more than what is done By aurn instruction.

First of all, from its very namerit with v assumes that computation reageredhat from which it
mustexit. This is anexitableabstraction; that is, the latestabstraction having the property of be-
ing exitable Not all abstractions are exitable. For example, any atistrathat is generated as part
of the target of some other kernel expression’s syntactiggise.g, let 1 = e1;...;2, = ¢e,; ine

or (@, Ig){e| 1 « e,...,z, — e,}, and more generally any construct that hide implicit ab-
stractions within), willnotbe deemed exitable.

Secondly, exiting with a value means that the typ€ of v must be congruent with what the return
type of the abstraction being exited is. In other words:
X :T"—=T, o :T
I' F oeritwoitho @ T

(3.26)

whereXr denotes the latesixitableabstraction in the context
The above scheme indicates the following necessities:

1. The typing rules for an abstraction deemed exitable memird in its typing context’
the latest exitable abstraction, if any such exists; (ifendoes, a static semantics error is
triggered to indicate that it is impossible to exit from arnaxe before first entering some-
where)®

2. Congruently, the\ppL Y instruction of an exitable closure must take care of chairtins
exitable closure before it pushes a new state for it in thedatate stack of the runtime sys-
tem with the last saved exitable closure, and mark the saadel &s being exitable; (dually,
this exitable state stack must also be popped upon “fallifig-ei.e., normally exiting—an
exitable closure. That is, whenever an exitable state tenes).

3. NewNL_ReTURrN instructions (for each runtime sort) must be defined like t@responding
RETURN instructions except that the runtime state to restore isotiee popped out of the
exitable state stack.

COMPILING RULE

compile[erit toith v] = compile[v]
NL_RETURN_SOr{(v (3.27)

8See Typing Rule 3.12 on Page 13.

PAGE 180F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of December 8, 2006

3.3.15

3.3.16

3.3.17

3.3.18

3.3.19

3.3.20

3.3.21

3.3.22

3.3.23

3.3.24

3.3.25

3.3.26

Assignment
NewArray
ArraySlot
ArraySlotUpdate
ArrayExtension
Arraylnitializer
Tuple
NamedTuple
TupleProjection
TupleUpdate
NewObject

DottedNotation

This class represents a syntactic construct that is ofted, @beit with different, though related,
interpretations. A dotted notation is an expression (mtéisnhaan application, but it could be any
composition—ofwvhat/with whato be determined according to partial type analysis).

Thus, this class can be used to represent a particular kifehofional applications la object-
oriented programming; or (equivalently), arrow compasitin Category Theory. More precisely,
it represents the application (resp., composition) ofEapr essi on to (resp., with) another

Expr essi on, thoseExpr essi ons being determined according to the type of the expression

on theleft of the "dot”.

Thus, a dotted notation is interpreted as follows.

A Dot t edNot at i on object is a wrapper of an expression—most often, of an agjodie, but
more generally, of any composition. It is a binary expressibthe forme;.e,, wheree; ande,
are expressions. This is interpreted depending on the tiypeas follows:

AIT-KACI

PAGE 190F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

e if e;’'s type is a clas€, then this is interpreted as:

where 0:C,e) is some "mangling” of the name of the member of thealgrpres-
siono of class type ' being so-referred, and is either the empty string or the args of
the member expression

For example, consider:
counter.set(1);

whencounter : Count er isan object of clas€ount er , with method (sayfount er set
(Counter, int) -> int.Then,forexample, adefault”’mangling’

may simply concatenate the names of the class and the meegaaged with an underscore

character (), followed by ’(’, the object, and) ’; in other words:

="Count er set (counter)”and . Therefore,
counter.set(1l) ====> Counter_set(counter)(1);

that is:

counter.set(1l) ====> Counter_set(counter, 1);

o if e)’'stypeis atuple typeT;,...,T,) or (i, : Ty,...,l, : T,,), then this is interpreted as:

project.,(eq)

whereproject, is a tupleprojectionof type (73, ...,7,) — 1, ande = k,k = 1,...,n, or
of type(ly : T1,...,l, : T,) — T, ande = 1,k = 1,...,n. Thisis interpreted as:

TupleProjection(ey, e3) : Ty.
For example:
(name := "a”, number := 1).name ~» (name := "a”, number := 1)@name
In other words,
proj,ame : (name : string, number : int) — string((name := "a” number := 1))) : string
e Otherwise, the default is simply to interpret this as theliappon:
member _name(e;)(eq)()

This default behavior can be overridden and customizedigirthe methodsset NoDef aul t ()
andset Def aul t (Expr essi on).

PAGE 200F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

3.3.27 FieldUpdate

3.3.28 Homomorphism

By homomorphisrme mean specificallpnonoidhomomorphism. For our purposes, a monoid is a
set of data values or structure®(a data type) endowed with an associative binary operatidn a
an identity element. Examples are:

Type Operation Identity
Int +ont 0

Int *Tnt 1

Int MAL 0 — 009t
Int mMingy + 0073t
Real +9eal 0.0
Real *Real 1.0
NReal MAarReal — OO0 %eal
Real MiNReqr +00meal
Boolean 0T%Bo0lean false
Boolean andxsoolean true
setdata structures set union the empty et

list data structures list concatenation the empty]Jist

Monoid homomorphisms are quite useful for expressing agekind of iteration declaratively.

ABSTRACT SYNTAX

This is the class of objects denoting (monoid) homomorphkisi@uch an expression means to
iterate through a collection, applying a function to eadmednt, accumulating the results along
the way with an operation, and returning the end result. Ndoeeisely, it is the built-in version of
the general computation scheme whose instance is the faljdlvom” functional, which may be
formulated recursively, for the case of a list collectiost, a

hom%@ Wl = lg

1 1 (328)
homy® (f)[H|T] = f(H) ® homg?® ()T

AIT-KACI PAGE 21 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Clearly, this scheme extends a functido a homomorphism of monoids, from the monoid of lists
to the monoid defined by, 14).

Thus, an object of this class denotes the result of applyuaty & homomorphic extension of a
function) to an element of collection monoid €. a data structure such as a set, a list, or a
bag), the image monoid being implicitly defined by the binaperation {¢)—also called the
accumulatioroperation. It is made to work iteratively.

For technical reasons, we need to treat specially so-catidectionhomomorphismsi.e., those
whose accumulation operation constructs a collectionh sisca set. Although a collection ho-
momorphism can conceptualy be expressed with the gendrahss; the function applied to an
element of the collection will return a collectionq,, a free monoid) element, and the result of
the homomorphism is then the result of tallying the part@lections coming from applying the
function to each element into a final “concatenation.”

Other (non-collection) homomorphisms are calpeainitive homomorphisms. For those, the func-
tion applied to all elements of the collection will returc@amputecelement that may be directly
composed with the other results. Thus, the difference erivibe two kinds of (collection or
primitive) homomorphisms will appear in the typing and tlbele generated (collection homomor-
phism requiring an extra loop for tallying partial resulta the final collection). It is easy to make
the distinction between the two kinds of homomorphismskbkan the type of the accumulation
operation (see below).

Therefore, aollection homomorphisrexpression constructing a collection of typ€l(7") con-
sists of:

e the collection iterated over—of typell'(1");
e the iterated function applied to each element—of type— coll(7"); and,
¢ the operation “adding” an element to a collection—of typeoll(T) — coll(T').

T’ primitive homomorphismaomputing a value of typ&' consists of:

e the collection iterated over—of typell'(7");
¢ the iterated function applied to each element—of type— 7’; and,
¢ the monoid operation—of typ&, 7" — T

Even though the scheme of computation for homomorphismwithesl above is correct, it is not
often used, especially when the function already encafesuthe accumulation operation, as is
always the case when the homomorphism comes from the désggdra comprehension-see
below). Then, such a homomorphism will directly side-effdae collection structure specified as
the identity element with a function of the forjimction = - = @® 1 (i.e, adding element to the
collection) and dispense altogether with the need to acatmintermediate results. We shall call

PAGE 22 0F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

those homomorphisma-placehomomorphisms. To distinguish them and enable the suporess
of intermediate computations, a flag indicating that the twmorphism is to be computed in-place
is provided. Both primitive and collection homomorphisna de specified to be in-place. If
nothing regarding in-place computation is specified for embmorphism, the default behavior
will depend on whether the homomorphism is collection (difig in-place), or primitive (default
is notin-place). Methods to override the defaults are provided.

For an in-place homomorphism, the iterated function endapss the operation, which affects the
identity element, which thus accumulates intermediatalt®@sind no further composition using
the operation is needed. This is especially handy for cidles that are often represented, for
(space and time) efficiency reasons, by iteratable bulkttres constructed by allocating an empty
structure that is filled in-place with elements using a bumilftadd” method guaranteeing that the
resulting data structure is canonicales that it abides by the algebraic properties of its type of
collection €.g, adding an element to a set will not create duplicatés).

Although monoid homomorphisms are defined as expressiaheikernel, they are not meant to
be represented directly in a surface syntax (although tbaid¢but would lead to rather cumber-
some and not very legible expressions). Rather, they aratmede used for expressing higher-
level expressions known asonoid comprehensionghich offer the advantage of the familar (set)
comprehension notation used in mathematics, and can tsdtad into monoid homomorphisms
to be type-checked and evaluated.

A monoid comprehension is an expression of the form:

(@, La)e |- ant (3.29)

where(®, 1) define a monoid is an expression, and the's arequalifiers A qualifier is either
an expressiom or a pairr « e, wherez is a variable ana is an expression. The sequence of
gualifiers may also be empty. Such a monoid comprehensiarsissyntactic sugar that can be
expressed in terms of homomorphisms as follows:

def

(@, Lp){e |} e g
(@, 1e){e |z — €,Q} £ home®Aa.(@, Lg){e | QH(e) (3.30)
(@, 1a){e | c,Q} £ if c then (@, Lo){e | Q} else Ly

This is explained more formally in Section 3.3.29.

Comprehensions are also interesting as they may be subjéernisformations leading to more
efficient evaluation than their simple “nested loops” operal semantics (by using “unnesting”
techniques and using relational operations as implementeistructions).

AIT-KACI PAGE 23 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

3.3.29 Comprehension

The concept of monoid homomorphism is useful for expresaiimgmal semantics of iteration over
collections. However, it is not very convenient as a prograng construct. A natural notation for
such a construct that is both conspicuous and can be exgresserms of monoid homomor-
phisms is anonoid comprehensioi his notion generalizes the familiar notation used fortivwg

a set in comprehension (as opposed to writing it in extensisimg a pattern and a formula de-
scribing its elements (as oppposed to listing all its elesje-or example, the set comprehension
{{x,2?) | x € N, In.x = 2n} describes the set of paits, z2) (the pattern), verifying the formula
x € N, dn.z = 2n (thequalifier).

This notation can be extended to any (primitive or collagtimonoid®. The syntax of a monoid
comprehension is an expression of the fapde | Q} wheree is an expression called tteadof
the comprehension, ar@gis called its qualifier and is a sequenge. . ., ¢,, n > 0, where eacly;

is either

e ageneratorof the formz « e, wherez is a variable and is an expression; or,
e afilter ¢ which is a boolean condition.

In a monoid comprehension expressiofie | Q}, the monoid operatiom is called theaccumu-
lator.

As for semantics, the meaning of a monoid comprehensionfisedein terms of monoid homo-
morphisms.

DEFINITION 3.3.1 (MoNoID COMPREHENSION The meaning of a monoid comprehension over
a monoid® is defined inductively as follows:

ug(e) if @ is a collection monoid

olel} = o |
e if @ is a primitive monoid

elefz — ¢,Q} = homZa. @ {e | QY(€)

efe] c,Q} = if cthen @ {e | Q} else 30

such thak : ¥, ¢ : T, and® is a collection monoid.

Note that although the input monoig is explicit, each generatar «— ¢’ in the qualifier has an
implicit collection monoid> whose characteristics can be inferred with polymorphiatgpules.

Although Definition 3.3.1 can be effectively computed usiegted loopsife., using the iteration
semantics (3.28)), such would be in general rather inefficieather, an optimized implementation
can be achieved by various syntactic transformation espreas rewrite rules. Thus, the principal

PAGE 24 0F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

benefit of using monoid comprehensions is to formulate efficoptimizations on a simple and
uniform general syntax of expressions irrespective of iipguonoids.

Thus, monoid comprehensions allow the formulation of “deative iteration.” Note the fact men-
tioned earlier that a homomorphism coming from the trarsiatf a comprehension encapsulates
the operation in its function. Thus, this is generally tak@advantage with operations that cause
a side-effect on their second argument to enable an in-placemorphism to dispense with un-
needed intermediate computation.

Section 3.3.29 gives a detailed explanation of the syma@esugaring of a pattern-directed high-
level syntax of comprehensions into more basic kernel esgives.

Comprehension

This class represents a monoid comprehension whose actuali$ interpreted as a construct
involving the parts of the syntactic form of the comprehensiThe syntax of a monoid compre-
hension is given by an expression of the form:

[op,id] { e | ql, ..., agn}

where[op, i d] define a monoide is an expression, and tlg s arequalifiers A qualifier is
either abooleanexpression or a pap <- e, wherep is a pattern (any expression) ands
an expression. The sequence of qualifiers may also be empth & monoid comprehension
is syntactic sugar that is in fact translated into a comimnadf homomorphisms and/or filtering
tests, possibly wrapped inside a let factoring out some coation.

package il og. | angi age. desi gn. ker nel . Conpr ehensi on;

public class Conprehensi on extends ProtoExpression

{
public static bool ean OPAQUE PARAMETERS = true;

private Tables _tables;
private Rawl nfo _raw;

private Expression _construct;
private Expression _operation;
private Expression _identity;

private Expression _encl osi ngScope;

Constructs an already translated comprehensionlast eonstruct. This is provided as a public
constructor but should be used with care as it trusts thagpkeified arguments are correctly set

up.

AIT-KACI PAGE 250F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

publ i ¢ Conprehensi on (AbstractlList paraneters, AbstractList val ues, Expression body)

{

_construct = new Let (paraneters, val ues, body);

}

Constructs aaw comprehension with the specifed arguments and assumindetaelt in-place
mode for performing the monoid operation.

publ i ¢ Conprehensi on (Tabl es tabl es, Expression operation, Expression identity,
Expressi on expression, AbstractList patterns, AbstractlList expressi
{

thi s(tabl es, operation,identity, expression, patterns, expressi ons, Hononor phi sm DEFAULT _|

}

Constructs aaw comprehension with the specifed arguments. A comprehemsiaw as long as
it has not been translated into a meaningful expressiomslaion will happen automatically as
soon as the meaning expresssion is needed.

publ i c Conprehensi on (Tabl es tabl es, Expression operation, Expression identity,
Expressi on expression, AbstractList patterns, AbstractlList expressi
byte i nPl ace)

{

_tables = tables;

_operation = operation;

_identity = identity;

if (patterns == null)

patterns = expressions = new Arraylist(0);

_raw = new Rawl nf o(new Dumy (" OP") . addTypes(operati on). set Ext ent (operati on),
new Durmy (" $I D$") . addTypes(i dentity).setExtent(identity),
expressi on, patterns, expressions,inPl ace);

}

Constructs a fully translated comprehension using theispgexpression as its meaning expres-
sion.

private Conprehensi on (Expression construct)

{

_construct = construct;

}

PAGE 26 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

publ i c bool ean _dolLet Wappi hg = true;

public final Conprehension setNoLet W apping ()

{
_doLet Wappi ng = fal se;
_raw. operation = _operation;
_raw.identity = _identity;
return this;
}
public final Tables tables ()
{
return _tabl es;
}
public final Expression operation ()
{
return _operation;
}
public final Expression identity ()
{
return _identity;
}
public final Expression copy ()
{
if (_raw == null)
return new Conprehensi on(_construct. copy());
ArraylList patterns = new Arraylist(_raw patterns.size());
for (int i=0; i<_raw patterns.size(); i++)
{
Expression pattern = (Expression)_raw. patterns.get(i);
if (pattern !'= null) patterns.add(pattern.copy());
}
ArraylLi st expressions = new Arrayli st (_raw. expressions.size());
for (int i=0; i<_raw expressions.size(); i++)
expressi ons. add(((Expressi on) _raw. expressions.get(i)).copy());
return new Conprehension(_tables, operation.copy(), _identity.copy(),
_raw. expressi on. copy(), patterns, expressions,
_raw. i nPl ace) ;
}

public final Expression typedCopy ()
{

AIT-KACI PAGE 27 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

publ

}

publ
{

}

if (_raw == null)
return new Conprehensi on(_construct.typedCopy());

ArraylList patterns = new Arraylist(_raw patterns.size());
for (int i=0; i<_raw patterns.size(); i++)

{

Expression pattern = (Expression)_raw. patterns.get(i);
if (pattern !'= null) patterns.add(pattern.typedCopy());

}

ArraylLi st expressions = new Arrayli st (_raw. expressions.size());
for (int i=0; i<_raw expressions.size(); i++)
expressi ons. add(((Expressi on) _raw. expressions.get(i)).typedCopy());
return new Conprehension(_tables, operation.typedCopy(), _identity.typedCopy(),
_raw. expressi on.typedCopy(), patterns, expressi ons,
_raw. i nPl ace) . addTypes(this);
ic final int number OF Subexpressions ()
if (_raw!=null) _construct();
return _construct. nunmber O Subexpressi ons();
ic final Expression subexpression (int n) throws NoSuchSubexpressi onException
if (_raw!=null) _construct();
return _construct. subexpression(n);
ic final Expression setSubexpression (int n, Expression expression) throws NoSuchSub
if (_raw!=null) _construct();
return _construct. set Subexpressi on(n, expression);
ic final Expression sanitizeNanes (ParaneterStack paraneters, O assTypeHandl e handl e)
if (_raw!=null) _construct();
_construct = _construct. sanitizeNanmes(paraneters, handl e);
return this;

ic final void sanitizeSorts (Encl osure encl osure)

_construct.sanitizeSorts(encl osure);

PAGE 280F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

Constructs this monoid comprehension by first desugarayggitterns into simple parameters, then
normalizing its qualifiers by unnestings filters as far tolgfeas possible, and finally translating
the transformed raw comprehension into its meaning exjoess

private final void _construct () throws Undefi nedEqualityException

{

desugar Patterns();
unnestlnnerFilters();

}

Returns the comprehension obtained after applying thafsggesubstitution to the subexpressions
of this. If this comprehension is already translated, thigody amounts to setting the construct to
the substituted construct. If this is a raw comprehensiare must be taken to proceed from left
to right over the qualifiers and preventing generator véegto be substituted in expressions lying
to their right (including the main expression of the com@metion).

public final Expression substitute (HashMap substitution)

{
if (_raw == null)
{
_construct = _construct.substitute(substitution);
return this;
}
if (!substitution.isEmpty())
{
_operation = _operation.substitute(substitution);
_identity = _identity.substitute(substitution);

_substituteQualifiers(0, substitution);

}

return this;

Proceeds through the raw qualifiers substituting exprassitaking sure that generator parameters
are removed from the substitution before applying it to wiestto the right of the specified index
(including the main expression of the comprehension).

private final void _substituteQualifiers (int index, HashMap substitution)

if (index == _raw. patterns.size())

AIT-KACI PAGE 290F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

_raw. expressi on = _raw. expression. substitute(substitution);
el se
{
Expression pattern = (Expression)_raw. patterns. get(index);
Expr essi on expressi on = (Expression)_raw. expressions. get (i ndex);

/1 in all cases, apply the substitution to the qualifying expression
_raw. expressions. set (i ndex, expressi on. substitute(substitution));

if (pattern == null)
/1 thisis a filter - sinply proceed
_substituteQualifiers(index+l, substitution);
el se
/1 this is a generator - nust check whether pattern is opaque paraneter
if (pattern instanceof Paraneter || (pattern instanceof Dumry && OPAQUE PARANME
{
/1l this is an opaque paranmeter - it is renmoved fromthe substitution
/'l before proceeding further to the right, and reinstated afterwards
String name = pattern instanceof Dumry ? ((Dummy)pattern).nane()
((Paraneter)pattern).nane();
bj ect val ue = substitution.renove(nane);
_substituteQualifiers(index+l, substitution);
if (value !'= null) substitution. put(nane, val ue);
}
el se
{ /] this is not a paraneter - apply the substitution to the pattern and pr o
_raw. patterns. set(index, pattern. substitute(substitution));
_substituteQualifiers(index+l, substitution);

}

Sets the link to the enclosing scope of this comprehensitretspecified expression, then visits all
the qualifier expressions to link up their scope trees ofatesbmprehensions to this, and returns
the number of such nested comprehensions.

final int |inkScopeTree (Expression ancestor)

{
if (_scopeTreel sLinked)
return _nest edConprehensi onCount;
_encl osi ngScope = ancestor;
_nest edConpr ehensi onCount = _raw. expressi on.|inkScopeTree(this);
for (int i=_raw expressions.size(); i-->0;)

_nest edConpr ehensi onCount += ((Expression)_raw. expressions.get(i)).linkScopeTree(t

PAGE 300F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

_scopeTreel sLinked = true;

return 1 + nestedConprehensi onCount;

}

Desugars the patterns of this comprehension into simplanpeters, substituting expression in
terms of these parameters inside the comprehension whereaate. Then, this proceeds desug-
aring the patterns of nested comprehensions if any. It i®napt for this method to proceed top

down so that the patterns of potential inner comprehensiasbe affected by the desugaring of
outer ones.

final void desugarPatterns () throws UndefinedEqualityException

{

if (_raw == null || _raw isDesugared)
return;

_desugar Patterns();

i f (_nestedConprehensi onCount > 0)

{
for (int i=0; i< raw patterns.size(); i++)
{
Expression pattern = (Expression)_raw patterns.get(i);
if (pattern != null) pattern. desugarPatterns();
((Expression) _raw. expressions.get(i)).desugarPatterns();
}
_raw. expressi on. desugar Patterns();
}

Converts the patterns into simple parameters and sulestittge occurrences of the formal names
from the patterns by what is appropriate in terms of the nesarpaters inside the raw expression
(and any other pertinent expression in raw expressidres-those to the right of a pattern gener-
ator). While desugaring, new filters may be generated albegvay upon repeated occurrences
of formal names or the presence of interpretable expressiothe patterns. These are simply
appended to the raw list of expressions. Because of thisgee to append as manyl | s to the
list of patterns in order to maintain the two lists at equabs.

private final void _desugarPatterns () throws Undefi nedEqualityException
{
HashMap substitution = _initial Substitution();

int size = _raw. patterns.size();

AIT-KACI PAGE 310F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

for (int i=0; i<size; i++)
_raw. patterns.set (i, _desugarPattern(i, (Expression)_raw patterns.get(i), substituti ol

for (int i=_raw expressions.size()-size; i-->0;) _raw patterns.add(null);
_substituteDesugaring(substitution);
_raw. i sDesugared = true;

}

Returns a substitution initialized with the local parametf the enclosing scopes of this compre-
hension if any.

private final HashMap _initial Substitution ()

{
HashMap substitution = new HashMap();

for (Expression e = _enclosingScope; e != null; e = e.encl osingScope())
if (e instanceof Scope)
{
Scope s = (Scope) e;
for (int i =s.arity(); i-->0;)
{

String name = s.paraneter(i).name();
if (substitution.get(nane) == null)
substi tution. put (nane,
new | ndexedExpressi on(new Dumy(s. paraneter(i))));

}

return substitution;

}

Transforms the specified pattern into a parameter and redorthe specified substitution any
appropriate expression in terms of this parameter for spoeding occurrences of the pattern
components in the qualifying expressions at index higham the specified index.

In OPAQUE_PARAMETERS mode (the default), an outer pattern consisting of just amtifier

is always considered new and creates an opaque scope foeet®ccurrences in the qualifier
expressions lying on its right as well as for the main expoessf the comprehension. If on
the other handDPAQUE_PARAMETERS is f al se, such an identifier is deemed sensitive to its
namesakes in the substitution and global scalar, (non-functional) definitions. Then, it will
be considered a repeated or interpreted occurrence, wigictizge case may be. It returns the
parameter desugaring the specified pattern.

PAGE 320F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

private final Parameter _desugarPattern (int index, Expression pattern, HashMap substit uf
t hrows Undefi nedEqual it yExcepti on
{
if (pattern == null || pattern instanceof Paraneter)
return (Paraneter)pattern;

Par anet er paraneter = null;
Dunmry variable = null;

if (pattern instanceof Dummy)
{ /] the pattern is an identifier
vari abl e = (Dunmy) pattern;
par aneter = new Paraneter(vari abl e);

i f (! OPAQUE_PARANETERS)

{
I ndexedExpressi on val ue = (I ndexedExpressi on)substitution. get(variable.name(
if (value == null)
{ // this is the first occurrence - record only if not a global scalar
if (! _tables.isDefinedScal ar(variable.name()))
substitution. put(vari abl e. name(), new | ndexedExpr essi on(i ndex, vari abl e)
}
el se
{ /] this is a repeated occurrence - generate an equality filter
vari abl e = new Dumry(paraneter = new Paramet er (val ue. expression. typeRef (]
_raw. expressi ons. add(new Application(_tables.equality(),
vari abl e,
val ue. expressi on. typedCopy()));
}
}

return paraneter;

}

paraneter = new Paraneter(pattern.typeRef());
vari abl e = new Dummy(par anet er. nanme());

if (pattern instanceof Tuple)
/1l the pattern is a tuple - proceed with desugaring it
_desugar Tupl ePat t ern(i ndex, (Tupl e) pattern, vari abl e, substitution);
el se
/1l the pattern is an interpreted expression - generate an equality filter
_raw. expressi ons. add(new Application(_tables.equality(),variable,pattern));

return paraneter,

AIT-KACI PAGE 330F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Desugars the specifigdipl e pattern given that the expression in which it is immediatedgted
is the expression specified fat her .

private final void _desugarTuplePattern (int index, Tuple tuple, Expression father
HashMap substitution)
throws Undefi nedEqual it yExcepti on

if (tuple instanceof NamedTupl e)
{ /1 treat nanmed tuples specially
_desugar NamedTupl ePat t er n(i ndex, (NamedTupl e) t upl e, f at her, substitution);
return;

}

i nt di mension = tuple.dinension();
for (int i=0; i<dinmension; i++)
/| desugar each tupl e conponent using the appropriate tuple projection as father
_desugar Tupl eConponent (i ndex,
t upl e. component (i),
new Tupl eProj ection(father, new Int(i+1)),
substitution);

Desugars the specified namiedpl e pattern given that the expression in which it is immediately
nested is the expression specified as$ her .

private final void _desugar NamedTupl ePattern (int index, NamedTuple tuple, Expression fat
HashMap substitution)
t hrows Undefi nedEqual i t yExcepti on
{
Tupl eFi el dNane[] fields = tuple.fields();
int dimension = fields.|ength;
for (int i=0; i<dinmension; i++)
/1l desugar each tuple conmponent using the appropriate tuple projection as father
_desugar Tupl eConponent (i ndex,
tupl e. conponent (i),
new Tupl eProj ecti on(father,new StringConstant(fields[i].nam
substitution);

Desugars the specified tuple component corresponding &ptfied tuple projection.

private final void _desugar Tupl eConmponent (int index, Expression component,
Tupl eProj ecti on projection, HashMap substituti ol
t hrows Undefi nedEqual i t yExcepti on

{

PAGE 340F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

i f (component instanceof Dumry)
{ /] it is a leaf consisting of a nane
Dumry vari abl e = (Dunmy) conponent;
| ndexedExpr essi on val ue = (| ndexedExpressi on)substitution.get(variable.nane());

if (value == null && ! _tabl es.isDefinedScal ar(vari abl e. name()))
/1l record only if first occurrence and not a gl obal scal ar
substitution. put(vari abl e. name(), new | ndexedExpr essi on(i ndex, projection));
el se
/1 it is a repeated occurrence or a global scalar - generate an equality filter
_raw. expressi ons. add(new Application(_tables.equality(),
proj ecti on,
vari abl e. t ypedCopy()));

return;

}

i f (component instanceof Tuple)
/1 it is a nested tuple pattern - desugar the nested pattern
_desugar Tupl ePat t ern(i ndex, (Tupl e) comrponent, proj ecti on, substitution);
el se
/1 it is an interpreted expression - generate an equality filter
_raw. expressi ons. add(new Application(_tables.equality(), projection, conponent));

Applies the desugaring substitutions to each qualifier&sgion and the main expression, taking
care of enabling only those substitutions at indices leas the index of the qualifier (and all of
them for the main expression).

private final void _substituteDesugaring (HashMap substitution)

if (substitution.isEmpty())
return;

int index = 0;
int size = _raw. expressions.size();

while (index < size) // skip to the first desugared pattern

{
Par anet er parameter = (Parameter)_raw. patterns. get(index);
if (paraneter != null && paraneter.islnternal())
br eak;
i ndex++;
}

HashMap parti al Substitution = new HashMap(substitution.size());
for (int i=index; i < size; i++)

AIT-KACI PAGE 350F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

{
_updat eSubstitution(i,partial Substitution, substitution);
_raw. expressions.set (i, ((Expression)_raw expressions.get(i))
.substitute(partial Substitution));
}
_raw. expressi on = _raw. expression.substitute(partial Substitution);

}

Adds to the specified partial substitution any expressiomiref er ence an indexed-expression
substitution) with an index less than, or equal to, the $etindex, removing such indexed-
expressions fromef er ence.

private final static void _updateSubstitution (int index, HashMap partial, HashMap refer¢

{
ArraylLi st keys = new Arraylist();
for (lterator i=reference.entrySet().iterator(); i.hasNext();)
{

Map. Entry entry = (Map. Entry)i.next();

String key = (String)entry. getKey();

I ndexedExpr essi on val ue = (I ndexedExpressi on)entry. getVal ue();
if (index <= val ue.index)

{

partial . put (key, val ue. expressi on);
keys. add(key);
}
}

int size = keys. size();
for (int i=size; i-->0;)
reference. renmove(keys. get(i));

First unnests the filters of all nested comprehensions if grgn unnests the filters of this com-
prehension. It is important to proceed bottom up becausedithay migrate up from inner com-
prehensions, and therefore the filters of a comprehensiat beuunnested only after those of its
nested comprehensions have been unnested.

final void unnestlinnerFilters ()

{
i f (_nestedConprehensi onCount > 0)

{

_raw. expression.unnestlnnerFilters();
for (int i=_raw expressions.size(); i-->0;)

PAGE 36 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

((Expression) _raw. expressions.get(i)).unnestinnerFilters();

}

_unnestFilters();

}

Normalizes the qualifiers of this comprehension by unngdtie filters to the left as far as they
may go, recognizing selectors and slicing filters, and detsconstruct to the translation of the
comprehension

private final void _unnestFilters ()

{
Qualifier[] qualifiers = new Qualifier[_raw. patterns == null ? 0 : _raw patterns.siz
for (int i=qualifiers.length; i-->0;)
qualifiers[i] = new Qualifier((Parameter)_raw. patterns.get(i),
(Expression) _raw. expressions.get(i));

if (qualifiers.length > 0) _normalize(qualifiers);

_construct = _translate(qualifiers,0);
if (_doLetWapping & ! _islLet Wapped())
{

Paranmeter[] nonoi dParaneters = { new Paraneter("$0P$"), new Paraneter("$I D$") };
Expressi on[] nmonoi dConponents = { _operation, _identity };

_construct = new Let (nonoi dPar anet er s, nonoi dConponents, _construct);

}

_raw = null;
/ | Debug. step(this);

Returng r ue iff the first comprehension in which this is nested (if anydiee involving the same
monoid—then, as it is already wrapped inside that comprEbahet over the same operation
and identity, there is no needed to wrap it again.

private final boolean _isLetWapped ()
{
for (Expression e = _enclosingScope; e != null; e = e.encl osingScope())
if (e instanceof Conprehension)
{
Compr ehensi on ¢ = (Conprehensi on) e;
if (operation().equals(c.operation()) & identity().equals(c.identity()))
return true;

AIT-KACI PAGE 370F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

return fal se;

}

return fal se

}

Reshapes the specified array of qualifiers unnesting alelbodilters by moving them to the left
as far as they may go.€., no further than a generator whose parameter occurs fréeifilter),
and merging all filters related to the same generator intooameonand. A selector or slicing
condition is recognized and treated specially: it is passets generator qualifier where it is then
processed appropriately.

private final void _normalize (Qualifier[] qualifiers)

{
/1 Systemout.print("Before nornmalization..."); Debug.step(qualifiers);
_unnestFilters(qualifiers.length-1,qualifiers);
[l Systemout.print("After normalization..."); Debug.step(qualifiers);
}

Normalizes the specified array of qualifiers up to the spetifidex minus one, then proceeds to
unnest leftward the qualifier at the specified index.

private final void _unnestFilters (int index, Qualifier[] qualifiers)

{

if (index == -1) return;

int upperLimt = index;
_unnestFilters(upperLinmt-1,qualifiers);
Qualifier qualifier = qualifiers[index];

/[l push this qualifier to the left over null qualifiers if any
int i = index-1;
while (i >= 0 && qualifiers[i] == null) i--;
if (i < index-1)
{
qualifiers[index] = null
qualifiers[index = i+1] = qualifier

}

if (qualifier.isCGenerator()) return

/1l this qualifier is then a filter - unnest it as far as it can go
while (index > 0)
if (qualifiers[index-1].isCGenerator())
if (qualifier.expression.containsFreeName(qualifiers[index-1]. paranmeter.nanme()))

PAGE 380F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

{ /1 collect if selector, or slicing with no selectors; else, leave the filter
if (qualifier.isSelector(qualifiers[index-1]. paraneter))

{
qual i fiers[index-1].addSel ector(qualifier.expression);
_eraseQualifier(index,upperLinit,qualifiers);
}
el se
if (qualifiers[index-1].selectors == nul
&& qualifier.isSlicing(qualifiers[index-1].paraneter))
{
qualifiers[index-1].addSlicing(qualifier.expression);
_eraseQualifier(index,upperLimt,qualifiers);
}
return; // this is as far as it can go
}
else // nmove this filter over one step to the left
{
qualifiers[index] = qualifiers[index-1];
qualifiers[index = index-1] = qualifier;
}

else // qualifiers[index-1] is a filter
if (index > 1) // if qualifiers[index-2] exists, it nmust contain a generator
if ('qualifier.expression.containsFreeNane(qualifiers[index-2].paraneter.name(
{ /] nmove this filter over two steps to the left
qualifiers[index] = qualifiers[index-1];
qualifiers[index-1] = qualifiers[index-2];
qualifiers[index = index-2] = qualifier
}
else // collect if selector, or slicing with no selectors; else, nmerge into the
{
if (qualifier.isSelector(qualifiers[index-2].paraneter))
qual i fiers[index-2].addSel ector(qualifier.expression);
el se
if (qualifiers[index-2].selectors == nul
&& qualifier.isSlicing(qualifiers[index-2].paraneter))
qual i fiers[index-2].addSlicing(qualifier.expression);
else // merge this filter with the previous one using an ’'and
qualifiers[index-1].expression = new And(qualifiers[index-1].expressio
qual i fier.expression);
_eraseQualifier(index,upperLimt,qualifiers);
return; // this is as far as it can go
}
el se // unnest further up, or nmerge this filter into the previous one using an ’
{
if (!_isFurtherUnnestable(qualifier.expression))
qualifiers[index-1].expression = new And(qualifiers[index-1].expression
qual i fier.expression);
_eraseQualifier(index,upperLinit,qualifiers);

AIT-KACI PAGE 390F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

return; // this is as far as it can go

}

[l index ==
i f (_i sFurtherUnnestabl e(qualifier.expression))
_eraseQualifier(index,upperLimt,qualifiers);

Goes up the scope tree as far as it can without crossing a Htaipeither contains more than one
nested comprehension or captures a free variable in théfisgddter, until it reaches a compre-
hension. If it can do so and the found comprehension is of sahee as this one, adds the filter
to that comprehension, and retutrrsue; otherwise, returngal se.

private final bool ean _isFurtherUnnestable (Expression filter)
{

Expressi on encl osi ngScope = _encl osi ngScope;

whil e (encl osi ngScope !'= null && encl osi ngScope. nest edConpr ehensi onCount () == 1)
{
i f (encl osi ngScope instanceof Conprehension)
{
Compr ehensi on conp = (Conpr ehensi on) encl osi ngScope;
if (operation().equal s(conp.operation()) & identity().equal s(conp.identity(
{

conmp. addFilter(filter);
return true;

}

return false;

}

Scope scope = (Scope) encl osi ngScope;
for (int i=scope.arity(); i-->0;)
if (filter.contai nsFreeNane(scope. paraneter(i).name()))
return false;

encl osi ngScope = scope. encl osi ngScope();

}

return false;

}

Adds the specified filter to the qualifiers of this comprehemnsi

final void addFilter (Expression filter)
{

PAGE 400F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

_raw. patterns. add(null);
_raw. expressions. add(filter);

}

Sets the qualifier at the specifieddex tonul | and percolates thisul | as far to the right as it
may go.

private final static void _eraseQualifier (int index, int upperLimt, Qualifier[] qualifi

{
qualifiers[index] = null;
for (int i=index; i < upperLimt && qualifiers[i+1l] !'= null; i++)
{
qualifiers[i] = qualifiers[i+1];
qualifiers[i+1l] = null;
}
}

This translates monoid comprehension syntax using (plgsBitered) homomorphisms. It as-
sumes that the array of qualifiers has been normalized. &hsl&tion scheme is as follows:

[op,id]{e | } = op(e,id);

[op,id]{e | ¢} =if c then op(e,id) else id;

[op,id]{e | x <- e, ¢c, @ =f_hon(e’, lanbda x.[op,id]{e | @&, op, id, lanbda x.c);
[op,id]{e | x <- e, y<- €', G =home, lanbda x.[op,id] { e|] v < €', @, op, id);

private final Expression _translate (Qualifier[] qualifiers, int index)

if (index == qualifiers.length || qualifiers[index] == null)
return new Application(_raw op(),_raw expression, _raw.id());

Expression body = null;
Hononor phi sm hom = nul | ;

if (index < qualifiers.length-1 & & qualifiers[index].paranmeter != null
&& qualifiers[index+1l] != null && qualifiers[index+1].paranmeter == null)
{
body = _translate(qualifiers,index+2);
if (qualifiers[index].selectors != null)

return _sel ectorExpression(qualifiers[index],qualifiers[index+l].expression, bo

hom = new Fi | t er Homonor phi sn(_t abl es,
qual i fiers[index].expression,
new Scope(qualifiers[index].paraneter, body),
_raw.op(), _raw id(),
new Scope((Paraneter)qualifiers[index].paranmeter.ty]

AIT-KACI PAGE 41 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

qualifiers[index+1l].expression));

}

el se
body = translate(qualifiers,index+1);

if (qualifiers[index].paranmeter == null)
return new | f ThenEl se(qualifiers[index].expression, body, raw.id());

if (qualifiers[index].selectors != null)
return _sel ector Expression(qualifiers[index],null,body);

hom = new Honmonor phi sn{ qual i fiers[index].expression
new Scope(qualifiers[index]. paraneter, body),
_raw.op(), _raw.id());

}

if (qualifiers[index].slicings != null)
hom set Sli ci ngs(qualifiers[index].slicings);

if (_raw. inPlace == Hononor phi sm ENABLED | N_PLACE)
return hom enabl el nPl ace();

if (_raw. inPlace == Honmonor phi sm DI SABLED | N _PLACE)
return hom di sabl el nPl ace();

return hom

}

This returns d_et wrapping anl f ThenEl se as the transformed expression resulting from a
(possibly filtered) generator that contains at least onectail expression. More precisely, if the
generator is of the form:

X <- e such that f
sliced by s1, ..., sm
selected by v1, ..., vn

and the body of translating the remaining qualifierisasly, then the resulting selector expression
is:

let x = vl
inif xis_ine
and x == v2 and ... and x == vn
and s1 and ... and sm
and f
t hen body
else id

where each slicing has its slicing variable unsanitizethfeobdummy local back to a dummy.

PAGE 42 0F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

private final Expression _selectorExpression (Qualifier generator, Expression filter

{

publ

publ

Expressi on body)

Expression condition = new Application(_tables.in(),
new Dummy(gener at or. paranet er),
gener at or. expr essi on);

for (int i=1; i<generator.selectors.size(); i++)
condition = new And(condition
(Expressi on)generator.selectors.get(i));

if (generator.slicings !'=null)
for (int i=0; i<generator.slicings.size(); i++)
condition = new And(condition
((Application)generator.slicings.get(i)).undoDumyLocal ());

if (filter !'= null)
condition = new And(condition,filter);

return new Let (generator. paramneter,
((Application)generator.selectors.get(0)).argunment(1),
new | f ThenEl se(condition, body, raw.id()));

ic final void setCheckedType ()

i f (setCheckedTypeLocked()) return
_construct. set CheckedType();
set CheckedType(_construct. checkedType());

ic final void typeCheck (TypeChecker typeChecker) throws Typi ngErrorException
i f (typeCheckLocked()) return;

if (!'(_construct instanceof Let))
{
_construct.typeCheck(_type, typeChecker);
return;

}

Let let = (Let)_construct;
| et.set Type(_type);

Scope scope = (Scope)let.function();
t ypeChecker. uni fy(scope. paraneter (0).typeRef (), operation().typeRef(),this);
t ypeChecker . uni fy(scope. paraneter(1).typeRef (),identity().typeRef(),this);

AIT-KACI PAGE 43 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Expression operation = let.argunent(0);
Expression identity = |l et.argunent (1);

Type[] argunent Types = { operation.typeRef (), identity.typeRef() };
FunctionType functionType = new Functi onType(argunent Types,|let.typeRef()).setNoCurry

identity.typeCheck(typeChecker);
I et.function().typeCheck(functionType,typeChecker);
operation. typeCheck(functi onType. domai ns()[0], typeChecker);

}
public final void conpile (Conpiler conpiler)
{
if (_construct instanceof Let) _fixTypeBoxing();
_construct. conpil e(conpiler);
}

This fixes the boxing of the monoid operator and identity bgtegnatically unboxing all occur-
rences of the collection element type. This is necessamguseccollection-building built-in dummy
instructions likeSET_ADD have a needlessly polymorphic type that becomes instadtianly
when it is applied. However, a monoid comprehension cooststaLet 3.3.12 that abstracts the
monoid operation and identity. Now, when the operatidsi3 _ADD, for example, as the compiler
compiles the application corresponding to thet ,” it sees it as a non-applied function argument
with a polymorphic type and will proceed to "pad” it (SEepr essi on 3.1. This "padding” must
be avoided, as well as all boxing of the types correspondiniye elements of the collection.

private final void _fixTypeBoxing ()
{

Let let = (Let)_construct;

Functi onType potype = (FunctionType) ((FunctionType)let.function().checkedType()).dom
FunctionType otype = (FunctionType)l et. argunent (0).checkedType();
Type itype = let.argunment(1).checkedType();

if (itype.kind() == Type. BOXABLE)
((Boxabl eTypeConst ant)itype). set Boxed(fal se);

if (otype.domain(0).kind() == Type. BOXABLE)

{
((Boxabl eTypeConst ant) ot ype. domai n(0)) . set Boxed(f al se);

ot ype. unset Domai nBox(0) ;

((Boxabl eTypeConst ant) pot ype. donai n(0)) . set Boxed(f al se);
pot ype. unset Dormai nBox(0) ;

PAGE 44 0F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

if (otype.domain(0).isEqual To(otype. donain(1))) [l primtive conprehension
{
((Boxabl eTypeConst ant) ot ype. domai n(1)) . set Boxed(fal se);
ot ype. unset Domai nBox(1) ;

((Boxabl eTypeConst ant) pot ype. dormai n(1)) . set Boxed(f al se);
pot ype. unset Domai nBox(1) ;

((Boxabl eTypeConst ant) ot ype. range()) . set Boxed(f al se);
ot ype. unset RangeBox() ;

((Boxabl eTypeConst ant) pot ype. range()) . set Boxed(fal se);
pot ype. unset RangeBox() ;

}
}
}
public final String toString ()
{
return _raw == null ? _construct.toString() : _raw.toString();
}
public final String toTypedString ()
{
return _raw == null ? _construct.toString() : _raw.toString() + " : " +
checkedType() == null ? type().toString() : checkedType().toString();
}

private class Rawl nfo
{

Expressi on operation;
Expression identity;
Expr essi on expression;
AbstractList patterns;
AbstractLi st expressions;
byte inPl ace;

bool ean i sDesugar ed;

Rawl nf o (Expressi on operation, Expression identity, Expression expression,
AbstractLi st patterns, AbstractlList expressions, byte inPlace)
{
thi s. expressi on = expression;
thi s. operati on = operation;
this.identity identity;
this.patterns patterns;

AIT-KACI PAGE 450F 83

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

thi s. expressi ons = expressi ons;

this.inPlace = inPl ace;
}
final Expression op ()
{
return operation.typedCopy();
}
final Expression id ()
{
return identity.typedCopy();
}

public final String toString ()
{
StringBuffer buf = new StringBuffer("[")

. append(operation())
.append(",")
.append(identity())
-append(”] { ")

. append(expressi on)

-append(” | ");
for (int i=0; i<patterns.size(); i++)
{
Cbj ect pattern = patterns.get(i);
if (pattern !'= null)
buf . append(pattern).append(” <- ");
buf . append(expressions. get(i));
if (i < patterns.size() - 1)
buf . append(", ");
}

return buf.append(" }").toString();
}
}

private static class | ndexedExpression

{
int index = -1;
Expr essi on expression;

I ndexedExpr essi on (Expressi on expression)

{

t hi s. expressi on = expression

}

PAGE 46 OF 83

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

I ndexedExpressi on (int index, Expression expression)

{
this.index = index;
t hi s. expressi on = expression

}

public final String toString ()
{

}

return expression + "/" + index;
}

private class Qualifier
{
Par anet er paraneter;
Expr essi on expression;
Arrayli st slicings;
ArraylLi st sel ectors;

Qualifier (Paraneter parameter, Expression expression)

{
thi s. parameter = paraneter;
thi s. expressi on = expression
}
final bool ean i sGenerator ()
{
return paraneter != null
}
final boolean isSlicing (Paraneter paraneter)
{
return expression.isSlicing(tables(), paraneter);
}
final void addSlicing (Expression slicing)
{
if (slicings == null)
slicings = new ArrayList();
slicings.add(slicing);
}
final bool ean isSel ector (Paraneter paraneter)
{
return expression.isSelector(tables(), paraneter);
}

final void addSel ector (Expression selector)

AIT-KACI PAGE 47 0F 83

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

{
if (selectors == null)
sel ectors = new Arraylist();
sel ectors. add(sel ector);
}
public final String toString ()
{
if (paraneter == null)
return expression.toString();
return paraneter + " <- " + expression +
(selectors == null 2 "" "
(slicings == nul| 2?2 "" " sliced by
}

PAGE 48 0F 83

sel ected by

+ selectors) +

+ slicings);

HASSAN

Chapter 4

The type language

4.1 Overview

We first define some basic terminology regarding the typeegysind operations on types.

4.1.1 Polymorphism

Here, by ‘polymorphisni we mean ML-polymorphismife., 2nd-order universal)—with a few
differences that will be explained along the way—in otherdago types presented with a grammar
such as:

[1] Type = SimpleType| TypeScheme

[2] SimpleType := BasicType| FunctionType| TypeParameter
[3] BasicType n= Jnt | Real | Boolean | ...

[4] FunctionType := SimpleType — SimpleType

[5] TypeParameter:= o | & | ...| 5| 0 | ...

[6] TypeScheme := V¥ TypeParameterType

that ensures that universal type quantifiers occur onlyeadthset of a polymorphic type.

10r more precisely that never occurs nested inside a function type arrow This apparently innocuous detail
ensures decidability of type inference. BTW, thred order comes from the fact that the quantifier appliesyte
parameters (as opposedlist order, if it had applied twalueparameters). Theniversalcomes fron¥, of course.

49

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

4.1.2 Multiple Type Overloading

This is also often calledd hocpolymorphism. When enabled (the default), this allows aesam
identifier to have several unrelated types. Generallyrggssricted to names with functional types.
However, since functions are first-class citizens, thigrictgn makes no sense, and therefore the
default is to enable multiple type overloading for all types

Note that there is no established technology that prewailsifpportindothML-polymorphic type
inference and multiple type overloading. Here (and in savether parts of this overall design) |
have had to innovate and put to use techniques from (Congttaigic Programming to be able to
prove the combination of types supportable by this arctutec

4.1.3 Currying

Currying is an operation that exploits the following mattaizal isomorphism of type%:
7" — T"~T — (T" - T") (4.1)
which can be generalized to its multiple form:

Tv,....T, = T ~T,....Ty — (Thsr,.... T, —=T) k=1,...,n—1 (4.2)

When function currying is enabled, this means that typecking/inference must build this equa-
tional theory into the type unification rules in order to ddes types equal modulo this isomor-
phism.

4.1.4 Standardizing

As a result of,e.g, currying, the shape of a function type may change in thesmof a type-
checking/inference process. Type comparison may thussbedten various structurally different,
although syntactically congruent, forms of a same type.petynust therefore assume a canonical
form in order to be compared. This is wistndardizinga type does.

Standardizing is a two-phase operation that fiettensthe domains of function types, thee-
namesthe type parameters. The flattening phase simply amountsdortying as much as pos-
sible by applying Equation (4.1) as a rewrite rule, althobghbkwardgi.e., from right to left) as

2For the intrigued reader curious to know what deep connedtiere might be between functional types and
Indian cooking, the answer i8None whatsoever!” The word was coined after Prof. Haskell B. Curry’s last name.
Curry was one of the two mathematicians/logicians (alorthy WRiobert Feys) who conceivé&tbmbinator Logicand
Combinator Calculusand made extensive use of the isomorphism of Equation{h&nce the folklore’s use of the
verbto curry—(currying, curryed),—n French:curryfier—(curryfication, curryé), to mean transforming a function
type of several arguments into that of a function of one ampumirhe homonymy is often amusingly mistaken for an
exotic way of [un]spicing functions.

PAGE 500F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

long as it applies. The second phase (renaming) consistakimga consistent copy of all types
reachable from a type’s root.

4.1.5 Copying

Copying a type is simply taking a duplicate twin of the graplahable from the type’s root.
Sharing of pointers coming from the fact that type paranseteroccur are recorded in a parameter
substitution table (in our implementation, simply ava. uti | . HashMap) along the way, and
thus consistent pointer sharing can be easily made eféectiv

4.1.6 Equality

Testing for equality must be done modulo a parameter subistittable (in our implementation,
simply aj ava. uti | . HashMap) that records pointer equalities along the way, and thualégu
up to parameter renaming can be easily made effective.

A tableless version of equality also exists for which eagietgarameter is considered equal only
to itself.

4.1.7 Unifying

Unifying two types is the operation of filling in missing infoation {.e., type parameters) in each
with existing information from the other by side-effectifige., binding) the missing information
(i.e, the type parameters) to point to the part of the existingrimfition from the other type they
should be equal td.g., their values). Note that, like logical variables in Logim§ramming, type
parameters can be bound to one another and thus must berdeoei@ to their values.

4.1.8 Boxing/Unboxing

The kernel language is polymorphically typed. Thereforiyrection expression that has a poly-
morphic type must work for all instantiations of this typ&gpe parameters into either primitive
unboxed typesd.g, Jnt, fReal, etc) or boxed types. The problem this poses is: how can we
compile a polymorphic function into code that would corlg&how what the actual runtime sorts
of the function’s runtime arguments and returned value laeéore the function type is actually
instantiated into a (possibly monomorphic) tgHerhe problem was addressed by Xavier Leroy

3Besides compiling distinct copies for all possible runtiseet instantiations (likes.g, C++ template functions),
nor recompiling each time a specific instantiation is needéx former is not acceptable because its tends to inflate
the code space explosively. The latter can neither be aegatishecause it goes against a few (rightfully) sacrosanct

AIT-KACI PAGE 51 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

10 years ago [5] and he proposed a solufidreroy’s method is based on the use of type anno-
tation that enables a source-to-source transformatiois. Sidurce transformation is the automatic
generation ofvrappersandunwrapperdor boxing and unboxing expressions whenever necessary.
After that, compiling the transformed source as usual vélbnaranteed to be correct on all types.

| adapted and improved the main idea from Leroy’s solutiothst

¢ the type annotation and rules are greatly simplified;
e NO source-to-source transformation is needed,;
e un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

4.2 The type system

The type system consists of two complementary partstaticand adynamicpart® The former
takes care of verifying all type constraints that are saédlifadecidableice., before actually running
the program). The latter pertains to type constraints thegtiwait until execution time to decide
whether those (involving runtime values) may be decideds Ehcalled dynamic type-checking
and is best seen (and conceived) agn@rementakextension of the static part.

A type is either a static type, or a dynamic type. A static tiga type that is checked before

runtime by the type-checker. A dynamic type is a wrapper madautype that may need additional

runtime information in order to be fully verified. Its stapart must be (and is!) checked statically
by the static type checker, but the compiler may completelihiissuing runtime tests at adequate
places in the code it generates; namely, when:

¢ binding abstraction parameters of this type in an appbcaior
e assigning to local and global variable of this type, or
e updating an array slot, a tuple component, or an objectd, fadlthis type.

There are two kinds of dynamic types:

e Extensional types—defined with explicit extensions (eitstatically provided or dynami-
cally computed runtime values):

principles like separate compilation and abstract libratgrfacing—imagine having to recompile code from a lilgrar
everytime you want to use it!

4This solution is the one implemented in the CAML compiler.[6]

5See Appendix Section B.2 on Page 80 for the complete classarbigy of types in the package
i 1 og. | anguage. desi gn. types.

PAGE 520F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of December 8, 2006

— Set extension type;

— Int range extension type (close interval of ints);

— Real range extension type (close interval of reals).

A special kind of set of int type is used to define enumeratyges (from actual symbol

sets) through opaque type definitions.

¢ Intensional types—defined using any runtime boolean camdib be checked at runtime,
calls to which are tests generated staticalgnon-negative numbergé., i nt +,f | oat +).

4.3 Static types

The static type system...

4.3.1 Primitive types
Boxable types

e ‘Loid

o Jnt

o Neal
Char

SBoolean

Boxed types

Built-in type constantsd.g, Gtring).

4.3.2 Type constructors
Function types
Tuple types

Position tuple types
Named tuple types

AIT-KACI

PAGE 530F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Array types

0-based int-indexed arrays
Int range-indexed arrays
Set-indexed arrays
Multidimensional arrays

Collection types

Set, bag, and list types

Class types

This is the type of object structures. It declaresirterface (or member type signature) for a
class of objects and the members comprising its structuhalds information for compiling field
access and update, and enables specifyinghatementatiorior methods manipulating objects of
this type.

A class implementation uses the information declared imtexface. It is interpreted as follows:
only non-method members—hereatfter callietds—correspond to actual slots in an object struc-
ture that is an instance of the class and thus may be updatethe®ther hand, all memberiss,
both fields and method members) are defined as gloibationswhose first argument stands for
the object itself (that may be referred to #sis’).

The syntax we shall use for a class definition is of the form:
class cl assnane { A } (4.3)

Theinterfaceblock specifies the type signatures of thembergfieldsandmethod} of the class
and possibly initial values for fields. Th@plementatiorplock is optional and gives the definition
of (some or all of) the methods.

For example, one can declare a class to represent a simpleecas follows:

class Counter { val ue:Jnt=1;
method set : Jnt — Counter;

} (4.4)

{ set(val ue:Jnt): Count er = (this.val ue = val ue);

}

The first block specifies the interface for the class t@pent er defining two members: a field
val ue of typeJnt and a methodet taking an argument of typént and returning &ount er

PAGE 54 0F 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

object. It also specifies an initialization expressiohfor theval ue field. Specifying a field’s
initialization is optional—when missing, the field will beiiialized to a null value of appropriate
type: 0 for anJnt, 0.0 for afieal, false for aBoolean, "\000’' for aChar," " for a Gtring, void for
0i0,% andnull; for any other typel’. The implementation block for th@ount er class defines
the body of theset method. Note that a method’s implementation can also benguéside the
class declaration as a function whose first argument’s tyfeei class. For example, we could have
defined theset method of the clas€ount er as:

oef Count er ::set (x : Count er ,n : Jnt) : Count er = (x.val ue = n); (4.5)

On the other hand, although a field is also semantically atifomevhose first argument’s type is a
class, it maynot be defined outside its class. Defining a declared field outsidlass declaration
causes an error. This is because the code of a field is alwagsdixd defined to return the value
of an object’s slot corresponding to the field. Note howeliat bne may define a unary function
whose argument is a class type outside this class when it ssaeclared field for this class. It will
be understood asmethodor the class (even though it takes no extra argument and savbked

in "dot notation” without parentheses as a field is) and thaisaa a "static field” for the class. Of
course field updates using dot notation will not be allowedh®se pseudo fields. However, they
(like any global variable) may be (re)set using a globaldgéjition at the top level, or a nested
global assignment.

Note also that a field may be functional without being a methtte essential difference being
that a field is part of the structure of every object instarf@aass and thus may be updated within
an object instance, while a method is common to all instantasclass and may not be updated
within a particular instance, but only globally for all thiass’ instances.

Thus, everytime &ount er object is created withetvo, as in, for example:
¢ = netv Count er ; (4.6)

the valuel will be used to initialize the slot that corresponds to theatoon of theval ue field.
Then, field and method invocation can be done using the famidiot notation”;e.g:

c.set (c.val ue + 2); 4.7)
wite(c.val ue); '

This will setc’s val ue field to 3 and print out this value. This code is exactly equivalent to:

Count er ::set (c,Count er ::val ue(Count er ::c) + 2);

wri t e(Count er ::val ue(Count er ::c)); (4.8)

8Strictly speaking, a field of typ&oio is useless since it can only have the unique value of this tiypevoid).
Thus, avoid field should arguably be disallowed. On the other hand, atigut is not semantically unsound and may
be tolerated for the sake of uniformity.

AIT-KACI PAGE 550F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

Indeed, field and method invocation simply amounts to fuumeti application. This scheme offers
the advantage that an object’s fields and methods may be ofatgd as functiond.g., as first-
class citizens) and no additional setup is needed for tyygelang and/or type inference when it
comes to objects.

Incidentally, some or all type information may be omittedillspecifying a class’snplementa-
tion (though not itanterfacg as long as non-ambiguous types may be inferred. Thus, tpkeim
mentation block for clas€ount er in class definition (4.4) could be written more simply as:

{set (n)=(value=n); } (4.9)
Declaring a class type and defining its implementation catisefollowing:

e the name of the class is entered with a new type for it in the tgple (an object comprising
symbol tables, of typel og. | anguage. desi gn. t ypes. Tabl es, where its type def-
inition associates it with & assType whose class structure is encapsulated by an object
of typei | og. | anguage. desi gn. t ypes. C assl nf o where code entries for all its
members’ types are recorded;

e each field of a distinct type is assigned an offset in an arfajots (per sort);

e each method and field expression is name-sanitized, typekeld, and sort-sanitized after
closing it into an abstraction takintgis as first argument;

e each method definition is then compiled into a global debnitiand each field is compiled
into a global function corresponding to accessing its viiom the appropriate offset;

e finally, each field's initialization expression is compiladd recorded in th€l assType
to be used at object creation time. An object may be creatednatime (using theieto
operator followed by a class name).

4.3.3 Polymorphic types

4.4 Type definitions

Before we review dynamic types, we shall describe how onededine new types using existing
types. Type definitions are provided both for conveniencenaking programs more legible by
giving “logical” names (or terms) to otherwise verbose typnd that of hiding information details
of a type making it act as a new type altogether. The formelitiats that of providingaliasesto
types (exactly like a preprocessor’s macros get expandataway into their textual equivalents),
while the latter offers the convenience of definmgwtypes in terms of existing ones, but hiding
this information. It follows from this distinction that agg alias isalwaysstructurally equivalent

PAGE 56 OF 83 HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

to its value (in fact an alias disappears as soon as it is redmking parsed away into the structure
defining it). By contrast, a defined typensverstructurally equivalent to its value nor any other
type—it is only equivalent to itself. To enable meaningfahtputation with a defined type, two
meta-(de/con)structors are thus provided: one for explicastinga defined type into the type
that defines it, and one explicitly seeing a type as a spediiéided type (if such a defined type
does exist and with this type as definition).

The class | 0g. | anguage. desi gn. t ypes. Tabl es contains the symbol tables for global
names and types. The name spaces of the identifiers dengp@@ihd non-type (global or local)
names (which are kept in the global symbol table) are disjeso there are no name conflicts
between types and non-type identifiers.

Thet ypeTabl e variable contains the naming table for types andgiiebol Tabl e variable
contains the naming table for other (non-type) global names

This section will unfold all the type-related data-struetistarting from the class that manages
symbols:i | og. | anguage. desi gn. t ypes. Tabl es. The names can be those of types and
values. They arglobalnames’. The type namespace is independent of the value namespace—
the same name can denote a value and a type.

4.4.1 Type aliasing
4.4.2 Type hiding

4.5 Dynamic types

Dynamic types are to be checked, if possible staticallygast their static part is), at least in two
particular places of an expression. Namely,

e at assignment/update time; and,
e at (function) parameter-binding time.

This will ensure that the actual value placed in the slot eipg a certain type does respect addi-
tionnal constraints that may only be verified with some maetivalues. Generally, dynamic types
are so-calledlependentypes (such a%.g, arr ay _of _si ze(n), a “safe” array type depending
on the array size that may be only computed at runtimes-a la Java arrays.).

From this, we require that a class implementingEBy@ani c Ty pe interface provides a method
publ i ¢ bool ean verifyCondition() thatis invoked systematically by code generated

At the moment, there is no name qualification or namespacagement. When this service is provided, it will
also be through thiel og. | anguage. desi gn. t ypes. Tabl es class.

AIT-KACI PAGE 570F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

for dynamically typed function parameters and for locatidhat are the target of updatase(
array slot update, object field update, tuple field updatepatpilation of abstractions and various
assignment constructs. Of this class, three subclassies tiegir properties:

e extensional types;

e Boolean-assertion types;

e non-negative number types.
We shall consider here a few such dynamic types (motivateskbasially by the need expressed for
OpPL, and hence MO, types). Namely,

e extensional types;

¢ intensional typesq.g, non-negative numbers)
An extensionatype is a type whose elements are determined to be membergretlatermined
and fixed extension.g., any runtime value that denotes a collection—such as a @bt aange,
a float range, or an enumeration). Such types pose the awfifpvoblem of being usable at
compile-time to restrict the domains of other variableswigeer, some of those variables’ values
may only fully be determined at runtime. These particulanaiyic types have therefore a simple
verifyCondition() method that is automatically run as soon as the extensionawk. It
just verifies that the element igs@na fidemember of the extension), otherwise it relies on a more
complicated scheme based on the notionaitract Basically, a contract-based type is an exten-
sional type that does not have an extension (as yet) butigliczaries the obligation that some par-
ticular individual constants be part of their extensioneo3e elements consitute “contracts” that

must be honored as soon as the type’s extension becomes Keiher positively—eliminating
the contract, or negatively—causing a type error).

4.5.1 Extensional types

Set types

Int range types
Float range types
Enum types

4.5.2 Intensional types
Example: non-negative numbers

Define new (opaque) typ@dat as a dynamically constrainéaht type...

PAGE 58 0F 83 HASSAN

Chapter 5

The intermediate language

The complete list of instructions that are currently defirseas follows.

5.1 Do-nothing instruction

1. No_.Op

5.2 Push instructions

PusH_I

PusH.O

PuUsH.R
PUSH_OFFSET_I
PUSH.OFFSET_O
PUSH_.OFFSET_R
PUSH_TUPLE

PUSH_SET_I

© 0 N o g ks~ wDdE

PUSH_SET_R

[EY
o

. PUSH.SET.O

'_\
'_\

. PUSH_I NT_RNG

=
N

. PUSH_REAL_RNG

59

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

13.
14.

5.3

© © N o 00 s~ 0w Db PRE

N N NN R P R R R R R R R
W N P O © 00 N O 0 W N P O

24.

PusH_CL OSURE

PUSH_NEWOBJECT

Subroutine instructions

APPLY
APPLY_HomI
APPLY_HOM R
APPLY_HOM.O
APPLY_l P_HOM.I
APPLY_| P_.HOM R
APPLY_l P_.HOM O
AppLY_CoLL_I

ApPPLY_COLL_R

. AppLY_CoLL_O

. AppLY_CoLL_Homl

. APPLY_COLL_HOMR

. AppLY_CoOLL_HoM O

. APPLY_| P_CoLL_HomI
. AppPLY_I P.COLL_HOMR
. AppPLY_I P.COLL_HOM O
. CALL

. END

. RETURNLI

. RETURN_R

. RETURN_O

. NL_RETURNLI

. NL_RETURN_R

NL_RETURN_O

PAGE 600F 83

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

5.4 Pop instructions

1. Por.I
2. Por.O
3. PorP_R

5.5 Relocatable instructions

1. JumpP
2. JUMP_ON_FALSE
3. JUuMP_ON_TRUE

5.6 Conversion instructions

.1 _ToO
.1 ToR
OToll
OToR
RTo.l
RTo.O
ARRAY_TO_MAP_I
ARRAY_TO_MAP_R
ARRAY_TO_MAP_O
. MAP_TO_ARRAY_O

© © N o g bk wDdPRE

e
N)

. CHECK_ARRAY_SI ZE

[EEN
N

. RECONCI LE_| NDEXABLES

[EEN
w

. ARRAY_l NI TI ALI ZE

[EEN
o

. SHUFFLE_MAP_I

[EEN
a1

. SHUFFLE_MAP_R

16. SHUFFLE_MaP_O

AIT-KACI PAGE 61 0F 83

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

5.7 Assignment instructions

1. SET_GLOBAL

2. SET_OFFSET.I
3. SET_.OFFSET_O
4. SET_OFFSET_R

5.8 Tuple component instructions

GET_TUPLE_I
GET_TUPLE_R
GET_TuPLE_O
SET_TUPLE.I

SET_TUPLE_R

o 0~ w NP

SET_TuPLE_O

5.9 Array/Map allocation instructions

PUSH_ARRAY_|
PUSH_ARRAY_R
PUSH_ARRAY_O
PusH_MaP_|
PusH_.MaP_R
PusH_MaP_O
MAKE_ARRAY_|
MAKE_ARRAY_R
MAaKE_ARRAY_O
. MAKE_MAP_I
. MaKE_MAP_R
12. Make_MAP_O

© © N o g bk wDdPRE

[
N)

PAGE 62 0F 83

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of December 8, 2006

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

5.10 Array/Map slot instructions

e el
A W N R O

© © N bk wDbdRE

g
g
g
g
g
g

LL_ARRAY_l A

LL_ARRAY_I M

LL_ARRAY_CA

LL_ARRAY_OM

LL_ARRAY_RA

LL_-ARRAY_RM
FiLL_Map_l A
FiLL_Map_Il M
FrrL_Map_CA
FiLL_MapP_OM
FI LL_MaP_RA
FI LL_.MAP_RM

GET_ARRAY_|

GET_I NT_| NDEXED_MAP_I
GET_I NT_| NDEXED_MAP_O
GET_I NT_| NDEXED_MAP_R
GET_MaP_|

GET_ARRAY_O
GET_MAP_O

GET_ARRAY_R

GET_MaP_R

. SET_ARRAY_I

. SET_I NT_| NDEXED_MAP_I
. SET_I NT_l NDEXED_MAP_O
. SET_I NT_l NDEXED_MAP_R
. SET_MAP_|

15.

SET_ARRAY_O

AIT-KACI

PAGE 63 0F 83

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

16. SET_MAP_O
17. SET_ARRAY_R
18. SET_MAP_R

5.11 Field instructions

2L o

GET_FI ELD_I
GET_FI ELD_O
GET_FI ELD-R
SET_FI ELD_I
SET_FI ELD.O

SET_FI ELD_R

5.12 Built-in operations

5.12.1 Arithmetic operations

e
N P O

© © N o g B~ wDdE

ADD_I |
ADD_I R
ADD_RI
ADD_RR
SuB.l |
SuB.l R
SuB_Rl
SuUB_RR

M Nus_I

. M NUSR
. MuL_l |
. MULLIR
13.

MUL _RI

PAGE 64 0F 83

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE

Incomplete Draft of December 8, 2006

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

MuL _RR
Di vl
D vlIR
D v_RI
DI V_.RR
MoDuUL US
M NI
M NI R
M N_RI
M N_RR
Max_| |
Max_l R
Max_RI
Max_RR
ABs_| Rl
ABS_R
SQRT

Power

5.12.2 Arithmetic relations

© © N o g kDN PRE

Equ.l |
EQu_0O
EQU_RR
NEQ.I |
NEQ_.OO
NEQ.RR
Gre.l |
Grell R
Gre_Rl

AIT-KACI

PAGE 650F 83

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

10. Gre_RR
11. GrT_I |
12. GRTIR
13. GRT_RI
14. GRT_RR
15. LTE]
16. LTEIR
17. LTERI
18. LTE.RR
19. Lst.l1
20. LsTIR
21. LsT R
22. LSTRR

5.12.3 Boolean operations

1. Not

5.12.4 Map and Size operations

1. MapP_SI zE
2. ARRAY_SI ZE
3. | NDEXABLE_SI ZE

4. GET_| NDEXABLE

5.12.5 Container operations

1. BELONGS.I
2. BELONGS_O

3. BELONGS_R

PAGE 66 OF 83

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

5.12.6 Set operations

SET_COPY
MAKE_SET.I
MAKE_SET_O
MAKE_SET_R
SET.DI FF
SET_SYM.DI FF
| NTER

UNI ON
D_SET.DI FF

© ©® N o g bk~ wDdPRE

[EEN
o

. D.SET_Sym.DI FF

[EEN
=

. DI NTER
. D_UNI ON

[EEN
N

5.12.7 Set relations

1. SuBSET

5.12.8 Set element operations

SET_ADD.|
SET_ADD_R
SET_ADD_O
SET_Rwmv_|
SET_RW_R
SET_Rmv_O
FI RST.I

FI RST_O
FI RST_R

© ©® N o O b~ wDdPRE

[EEN
o

. LAST.I

[EEN
=

. LAST.O

AIT-KACI PAGE 67 0F 83

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

LASTR
NEXT_I
NEXT_CI
NEXT_O
NEXT_CO
NEXT_R
NEXT_CR
OrD.I
OrD_O
ORD_R
PREV_I
PrRev_C.I
PREV_O
PReV_C O
PREV_R
PREV_CR

5.12.9 Range operations

o NP

5.12.10 String operations

1.

| NT_RNG_UB
| NT_RNG_LB
REAL_RNG_UB
REAL_RNG.LB

STRCON

5.12.11 1/O operations

1.

WRI TE_I

2. WRI TE_O
3. WRI TELR

PAGE 680F 83

HASSAN

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

5.13 Dummy instructions

Dummy _EQu
DuMmMY _NEQ
DumMmY _AND
Dummy_OR
DuMMY_STRCON
Dummy VWRI TE
Dummy_SI zE

DumMmMY_SET_ADD

© © N O A~ DN

DumMmmY_SET_Rmv

[EEN
o

. DumMmY_BEL ONGS

[EEN
=

. Dummy_ORD

[EEN
N

. DummY_FI RST

[EEN
w

. Dummy_LAST

=
N

. DuMMY_NEXT

[EEN
a1

. Dummy_NEXT_C

[EEN
»

. Dummy_PREV

[EEN
\l

. Dummy_PREV_C

AIT-KACI PAGE 69 0F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 700F 83 HASSAN

Chapter 6

The backend system

6.1 The runtime system

This is the class defining a runtime object. Such an objeeesexs the common execution environ-
ment context shared dynst r uct i ons being executed. It encapsulates a state of comptutation
that is effected by each instruction as it is executed inatgext.

A Runt i me object consists of attributes and structures that togelékme a state of computation,
and methods that are used by instructions to effect thie statthey are executed. Thus, each
instruction class defines &xecut e(Runt i me) method that specifies its operational semantics
as a state transformation of its given runtime context.

Initiating execution of &kunt i me object consists of setting its code array to a given insibact
sequence, setting its instruction pointep to its code’s first instruction and repeatedly calling
execut e(t hi s) on whatever instruction is currently at addresp in the current code array.
The final state is reached when a flag indicating that it is s®idot r ue. Each instruction is
responsible for appropriately setting the next state aliogrto its semantics, including saving and
restoring states, and (re)setting the code array and theugaruntime registers pointing into the
state’s structures.

Runtime states encapsulated by objects in this class aeatedly those of a stack automaton,
specifically conceived to support the computations of aérigitder functional language with lex-
ical closures—e., a A-calculus machine—extended to support additional feateeg, assign-
ment side-effects, objects, automatic currying... As dtuahay viewed as an optimized variant
of Peter Landin’'s SECD machine [4]—in the same spirit as LGeadelli’'s Functional Abstract
Machine (FAM) [1], although our design is quite differenbrin Cardelli’s in its structure and
operations.

Because this is a Java implementation, in order to avoid gheesand performance overhead of

71

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

being confined to boxed values for primitive type computatidhree concurrent sets of structures
are maintained: in addition to those needed for boxed (Jaject values, two extra ones are
used to support unboxed integer and floating-point valuespeactively. The runtime operations
performed by instructions onRunt i me object are guaranteed to be type-safe in that each state is
always such as it must be expected for the correct accessihggdting of values. Such a guarantee
must be (and is!) provided by theypeChecker and theSani ti zer, which ascertain all the
conditions that must be met prior to havin@anpi | er proceed to generating instructions which
will safely act on the appropriate stacks and environmehtie correct sort (integer, floating-
point, or object).

6.2 The runtime objects
6.3 The display manager

6.4 The error manager

PAGE 720F 83 HASSAN

Chapter 7

A full example—HAK_LL

This chapter details the design of a concrete language fcoswch. We call this languagenk _L L—
presumably to mean, somewhat presumptuously: Hassalagits Little Languagé-

HAK_L L is a fully-working prototype language whose essential go@l illustrate and demonstrate
our architecture: the expressive power of the kernel laggaad the workings of its type-checker,
compiler, and runtime systems. It is an imperative funaldanguage with objects, where func-
tions are first-class citizensHAK_LL has a surface syntax for an interactive language that can
define top-level constructs and evaluate expressions.pfiagsts 2nd-order (ML-like) type poly-
morphism, automatic currying, multiple type overloadidgnamic operator overloading, as well
as flat classes and objeci®(no subtyping nor inheritanceye.

1... and pronouncedtacklé—not to be confused with an otherwise known programmingyisage of greater
notoriety and whose name is the first name of Prof. HaskelluryC

73

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 74 0F 83 HASSAN

Chapter 8

Conclusion

75

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

PAGE 76 OF 83 HASSAN

Appendix A

A word on traceability

A.1 Relating concrete and abstract syntax

Error traceability...

A.1l.1 Syntax errors

A.1.2 Static Semantics errors
Typing errors

Other Static Semantics errors

A.1.3 Dynamic Semantics errors
Runtime errors

Java errors
A.2 Displaying and reading

... In concrete/abstract syntax.

77

Incomplete Draft of December 8, 2006

ABSTRACT AND REUSABLE

A.2.1 Displaying
A.2.2 Reading

A.2.3 Concretizing abstract syntax down

... with writing tables.

A.2.4 Abstracting concrete syntax away

... with reading tables.

PAGE 78 0F 83

HASSAN

Appendix B

A four-panelled architecture

B.1 The Complete Kernel

B.1.1 Sanitizing
B.1.2 Type checkingvs. inference

B.1.3 Compiling

79

€84008 39vd

NVSSVH

NamedType TypeParameter ConstructedType ExtensionalType IntensionalType

e

BoxableTypeConstant FunctionType TupleType ArrayType CollectionType

T

TypeConstant @ NamedTupleType % BagType @

sadA 1 ub 1sep "abenbue | "6o | I
abexoed ayy ul sadAl Jo Ayorelaly sse|D

.\.

QollectionTypeConstant @ DefinedType

9002 ‘g 1aqwiada(Jo Jeiq a1ajdwoou]

WalsAs adA| adwod syl 2'g

379VSNIY ANV LOVH1SayY

PROGRAMMING LANGUAGE ARCHITECTURE Incomplete Draft of December 8, 2006

B.2.1 The type prover

B.3 Structure of the TypeChecker

An object of the class| og. | anguage. desi gn. t ypes. TypeChecker is a backtracking
prover that establishes various kindsgofals The most common goal kind established by a type
checker is ayping goat—but there are others.

A Typi ngGoal object is a pair consisting of an expression and a type. Rgoaityping goal
amounts to unifying its expression component’s type wightyppe component. Such goals are
spawned by the type checking method of expressions as petyipe checking rules. Some glob-
ally defined symbols having multiple types, it is necessaryeiep choices of these and backtrack
to alternative types upon failure. Thus'apeChecker object maintains all the necessary struc-
tures for undoing the effects that happened since the lastelpoint. These effects are:

1. type variable binding,
2. function type currying,

3. application expression currying.

In addition, it is also necessary to remembefGalal objects that were proven since the last choice
point in order to prove them anew upon backtracking to arnrradtese choice. This is necessary
because the goals are spawned by calls ta §hheeCheck method of expressions that may be
exited long before a failure occurs. Then, all the origiyping goals that were spawned in the
mean time since the current choice point’s goal must beabkshed. In order for this to work,
any choice points that were associated to these origind$ goast also be recovered. To enable
this, when a choice point is created foGaobal symbol, choices are linked in the reverse order
(i.e., ending in the original goal) to enable reinstating all clesithat were tried for this goal.

In order to coordinate type proving, a typechecker objepassed to all type checking and unifi-
cation methods as an argument in order to record any effélseinppropriate trail.

To recapitulate, the structures oTgpeChecker object are:

e agoal stackcontaininggoal objects €.g, Typi ngGoal) that are yet to be proven;

e abinding trail stackcontaining type variables and boxing masks to reset to "untdbupon
backtracking;

e afunction type currying trailcontaining 4-tuples of the form (function type, previous do
mains, previous range, previous boxing mask) for resettiedunction type to the recorded
domains, range, and mask upon backtracking;

AIT-KACI PAGE 810F 83

Incomplete Draft of December 8, 2006 ABSTRACT AND REUSABLE

e anapplication currying trailcontaining triples of the form (application type, previdusc-
tion, previous arguments) for resetting the applicatiah&recorded function and arguments
upon backtracking;

e agoal trail containingTypi ngGoal objects that have been proven since the last choice
point, and must be reproven upon backtracking;

e achoice-point stackvhose entries consists of:

— aqueue offypi ngGoal Ent ry objects wherefrom to constructs n@wypi ngGoal
objects to try upon failure;

— pointers to all trails up to which to undo effects.
B.3.1 The type constructs
B.3.2 Defining new types

B.4 The Basic Instruction Set

B.5 The Complete Backend

B.5.1 TheRunti ne class

B.5.2 TheRunti meQbj ect class
B.5.3 TheDi spl ayManager class
B.5.4 TheErr or Manager class

PAGE 82 0F 83 HASSAN

Bibliography

[1]

[2]

[3]

[4]
[5]

[6]

Luca Cardelli. The functional abstract machiRelymorphism, the ML/LCF/Hope Newsletter
I(1), 1983. (Also Technical Report TR-107, AT&T Bell Labooaes, April 1983.).

Hassan Ait-Kaci. An introduction to LIFE—Programmimgth logic, inheritance, functions,
and equations. In Dale Miller, editdProceedings of the Symposium on Logic Programming
The MIT Press, 1993.

Hassan Ait-Kaci. Jacc—Just another compiler compiler. Optimization Group Technical
Reportforthcoming ILoG, Gentilly, France, forthcoming 2002.

Peter Landin. The mechanical evaluation of expressi@msnmunications of the ACM964.

Xavier Leroy. Boxing and unboxing in polymorphicallyggd languages. IRroceedings of
the ACM Conference on Principles of Programming LanguaB&RL'92), 1992.

Pierre Weiss and Xavier Leroy. The CAML compiler. Reséareport, INRIA, Rocquencourt,
France, 1994.

Jacc is a java-based software that generatessar(1) parsing automaton from a familigracc-like action-
annotated context-free grammar. it provides several usatensions toyacc’s parsing capabilitiese(g, dynamic
operator definitiong& la PROL OG, non-terminal subclassingic., ...).Jacc is the property of LOG but is not part of
the software products sold and/or maintained lbbyd—it is not this author’s interest to commercializecc (at least

not in the immediate future and in its current state), butrugecific request, and on a per-case basis, compiled java

classes (not sources) fpucc may be made available on &as is” basis if it is worth LOG’s and this author’s time to
do so.

83

