
A Generic XML-Generating Metacompiler

Hassan Aı̈t-Kaci
hak@ilog.com

July 18, 2008

Abstract

This describes a feature of Jacc,1 a Java-based system in the fashion of Yacc,2 the well-known metacom-
piler, where a minimalistic set of simple annotations may be specified on a few grammar’s rules and terminal
symbols to guide the automatic generation of code in XML format. The annotations basically specify how
to produce an XML construct out of the bits and pieces of a concrete syntax tree (CST). The information is
then used at parse-time by the generated parser to build the actual XML tree in accordance with the specified
patterns. This annotation-driven process is one of tree transduction (from CST to XML tree). Compilers
generated from such annotated Jacc grammars can generate XML code for a wide class of possible formats
depending on the syle of annotation chosen for serializing a piece of syntax corresponding to a few grammar
rules and terminals. In this document, we present the simple notation Jacc uses for such annotations deco-
rating a Yacc-style BNF grammar, and its operational semantics. We illustrate each construct with examples
of its use. We also discuss benefits and limitations of the current system.

KEYWORDS: Metacompilers, XML, Annotation-driven XML pattern generation

Contents
1 Introduction 2

1.1 Motivation . 2
1.2 Approach . 2
1.3 Organization of contents . 2

2 Review of related work 2

3 Quick overview of Jacc 2

4 XML serialization annotation 4
4.1 Basic annotation notation . 4
4.2 More complex annotation notation . 5

4.2.1 Children annotation . 6
4.2.2 Examples of children annotation . 6
4.2.3 Attributes annotation . 8
4.2.4 Examples of attribute notation . 8
4.2.5 Interpreted special forms . 9

4.3 Checking annotation consistency . 10

5 Example: the Rule Interchange Format 11

6 Conclusion 11
6.1 Recapitulation . 11
6.2 Further work . 11

1Just another compiler compiler.
2Yet another compiler compiler.

1

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

1 Introduction

1.1 Motivation

One of the nice consequences of the advent of the W3C eXtended Markup Language (XML) is that
is has become the universal format for producing code.

1.2 Approach

Our approach is simple: we use a simple grammar annotation scheme that drives XML-code gener-
ation.

1.3 Organization of contents

The rest of this document is organized as follows. In Section 2, we review extant work in relation
to the work presented here. Section 3 overviews the functionality of Jacc. In Section 4, the XML
annotation notation is described in detail. Section 5 illustrates how to use Jacc using as example the
XML serialization of the Rule Interchange Format’s Basic Logic Dialect. We conclude in Section 6
with some comments on the usefulness and future evolution of this tool.

2 Review of related work

3 Quick overview of Jacc

At first sight, Jacc may be seen as a “100% Pure Java” implementation of an LALR(1) parser gen-
erator [1] in the fashion of the well known UNIX tool Yacc—“yet another compiler compiler” [4].
However, Jacc is much more than. . . just another compiler compiler: it extends Yacc to enable
the generation of flexible and efficient Java-based parsers and provides enhanced functionality rarely
available in other similar systems.

The fact that Jacc uses Yacc’s metasyntax makes it readily usable on most Yacc grammars. Other
Java-based parser generators all depart from Yacc’s format, requiring nontrivial metasyntactic pre-
processing to be used on existing Yacc grammars—which abound in the world, Yacc being by far
the most popular tool for parser generation. Importantly, Jacc is programmed in pure Java—this
makes it fully portable to all existing platforms, and immediately exploitable for web-based software
applications.

Jacc further stands out among other known parser generators, whether Java-based or not, thanks
to several additional features. The most notable are:

• Jacc uses the most efficient algorithm known to date for its most critical computation (viz.,
the propagation of LALR(1) lookahead sets). Traditional Yacc implementations use the
method originally developed by DeRemer and Penello [3]. Jacc uses an improved method
due to Park, Choe, and Chang [5], which drastically ameliorates the method of by DeRemer
and Penello. To this author’s best knowledge, no other (available) Java-based metacompiler
system implements the Park, Choe, and Chang method [2].

Draft of July 18, 2008 Page 2 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

• Jacc allows the user to define a complete class hierarchy of parse node classes (the objects
pushed on the parse stack and that make up the parse tree: nonterminal and terminal symbols),
along with any Java attributes to be used in semantic actions annotating grammar rules. All
these attributes are accessible directly on any pseudo-variable associated with a grammar rule
constituents (i.e., $$, $1, $2, etc.).

• Jacc makes use of all the well-known conveniences defining precedences and associativity
associated to some terminal symbols for resolving parser conflicts that may arise. While such
conflicts may in theory be eliminated for any LALR(1) grammar, such a grammar is rarely
completely obtainable. In that case, Yacc technology falls short of providing a safe parser
for non-LALR grammar. Yet, Jacc can accommodate any such eventual unresolved conflict
using non-deterministic parse actions that may be tried and undone.

• Further still, Jacc can also tolerate non-deterministic tokens. In other words, the same token
may be categorized as several distinct lexical units to be tried in turn. This allows, for example,
parsing languages that use no reserved keywords (or more precisely, whose keywords may
also be tokenized as identifiers, for instance).

• Better yet, Jacc allows dynamically (re-)definable operators in the style of the Prolog lan-
guage (i.e., at parse-time). This offers great flexibility for on-the-fly syntax customization, as
well as a much greater recognition power, even where operator symbols may be overloaded
(i.e., specified to have several precedences and/or associativity for different arities).

• Jacc supports partial parsing. In other words, in a grammar, one may indicate any nonter-
minal as a parse root. Then, constructs from the corresponding sublanguage may be parsed
independently from a reader stream or a string.

• Jacc automatically generates a full HTML documentation of a grammar as a set of inter-
linked files from annotated /**...*/ javadoc-style comments in the grammar file, in-
cluding a navigatable pure grammar in “Yacc form,” obtained after removing all semantic
and serialization annotations, leaving only the bare syntactic rules.

• Jacc may be directed to build a parse-tree automatically (for the concrete syntax, but also
for a more implicit form which rids a concrete syntax tree of most of its useless information).
By contrast, regular Yacc necessitates that a programmer add explicit semantic actions for
this purpose.

• Jacc supports a simple annotational scheme for automatic XML serialization of complex
Abstract Syntaxt Trees (AST’s). Grammar rules and non-punctuation terminal symbols (i.e.,
any meaning-carrying tokens such as, e.g., identifiers, numbers, etc.) may be annotated with
simple XML templates expressing their XML forms. Jacc may then use these templates to
transform the Concrete Parse Tree (CST) into an AST of radically different structure, con-
structed as a JDOM XML document [?]. This yields a convenient declarative specification
of a tree transduction process guided by just a few simple annotations, where Jacc’s “sen-
sible” behavior on unannotated rules and terminals works “as expected.” This greatly eases
the task of retargeting the serialization of a language depending on variable or evolving XML
vocabularies.

With Jacc, a grammar can be specified using the usual familiar Yacc syntax with semantic actions
specified as Java code. The format of the grammar file is essentially the same as that required by

Draft of July 18, 2008 Page 3 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

Yacc, with some minor differences, and a few additional powerful features. Not using the additional
features makes it essentially similar to the Yacc format.

For details on how Jacc extends Yacc to support Prolog-style dynamic operators, see Section ??.
For instructions on how to organize a Jacc grammar, please refer to [?] the documentation of the
grammar format, or to the description of grammar commands. If you wish to use Jacc, follow
these simple steps. You may also want to peruse the code of Jacc grammar examples. References
For detailed explanations of most constructions and algorithms used by this package, please refer to
the following.

4 XML serialization annotation

We need a means to annotate a Jacc grammar so as to ease and automate the process of specifying
an XML serialization for the language defined by the grammar. The way we proceed is by annotating
some rules and terminals to produce an XML form built out of those XML forms built for the
constituents of the CST (i.e., from a terminal’s contents or a rule’s RHS).

To this end, Jacc will come handy. This section describes a (meta-)grammar for a simple anno-
tation language meant to enable passing XML formatting information from a Jacc grammar to
a Jacc parser. This language is that of the forms that go between square brackets either in the
%xmlinfo command annotating a terminal or appearing in a rule being annotated for XML con-
version for serialization purposes. Doing this gives us great flexibility for extending or modifying
the annotation meta-syntax simply by:

1. modifying the Jacc grammar source file;
2. running the jacc command on it to regenerate the XmlAnnotationParser Java source;
3. recompiling.

Et voilà ! ...

4.1 Basic annotation notation

We first introduce the basic annotation notation for the very common case when the XML tree to be
constructed from the CST is homomorphic to the CST in that it only needs information that is local
to the CST node. We will extend this notation later when the tree construction is heteromorphic,
needing information from below this node.

In order for the parser of the annotation notation to stay small and light-weight, as well as avoiding
ambiguity and stay strictly within LALR(1) recognition power, we will adopt the following very
simple keyword-driven syntax. For example:

A0 : A1 A2 A3 A4

[
nsprefix : "foo"
localname : "Azero"
attributes : {a = "bar blah", b="blech"}
children : (2, 3)

]
;

Draft of July 18, 2008 Page 4 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

means that the XML form of an A0 node (created when the parser uses this grammar rule bottom-up)
will look like:

<foo:Azero a="bar blah" b="blech">
(XML form of A2)

(XML form of A3)

</foo:Azero>

In such an annotation, appearing in any order, the notation "keyword : value" is such that
keyword is an admissible keyword. An admissible keyword is such that there may be at most one
occurrence per annotation of nsprefix, localname, attributes, or children.

Such an admissible keyword is followed by a value, which may be either an identifier, a single- or
double-quoted string, or a list between curly braces {...}, or parentheses (...), the nature of
this list’s brackets and elements depending on the keyword (see the annotation grammar for details).

The annotation is meant to be light-weight. So, all these keywords may be abbreviated to any non-
empty case-insensitive prefix of their full form, and some punctuation may be used interchangeably
or simply omitted: e.g., the ‘:’ separating keywords and values, the ‘,’ separating list elements, as
well as unnecessary quotes, are all in fact optional. The following key/value separator symbols may
be used: ‘:’ ‘=’ ‘->’ ‘=>’ or they may be simply omitted. Similarly, the following list separator
symbols may be used: ‘,’ (comma), ‘;’ (semicolon), or they may be simply omitted.

For example, the annotation shown above could as well be written as follows:

A0 : A1 A2 A3 A4

[
NS : foo
LO : Azero
AT : {a -> ’bar blah’; b -> blech}
CH : (2 3)

]
;

4.2 More complex annotation notation

The simple notation above is all one needs in many common cases: it works whenever the XML seri-
alization pattern is constructible only from the immediate constituents of the rule’s LHS (A0)—i.e.,
the XML trees of the rule’s RHS symbols (when n > 0). It is, however, insufficient for expressing
XML serialization patterns that depend on sub-elements contained within those of the XML serial-
ization of the RHS symbols. The simple case is called homomorphic tree transduction, while the
more complex case is called heteromorphic tree transduction.3

A more elaborate XML annotation notation extends the above basic notation by allowing the values
of attributes and children in the annotation to take on more complex forms denoting a reference to
the desired XML constructs within the XML trees already built for the CST children of this node.
Following are some simple color-coded examples illustrating the meaning of these annotations,

3The Greek etymology of the words says precisely that: “homo-morphic” = “similar form” (from the Greek “ηoµo-
µo%ϕoς ,” meaning “same shape”), and “hetero-morphic” = “of dissimilar form” (from the Greek “ηετε%o-µo%ϕoς ,” mean-
ing “different shape”).

Draft of July 18, 2008 Page 5 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

showing how the basic notation for homomorphic tree-transduction annotations for attribute and
children is extended to express heteromorphic tree-transduction as well.

4.2.1 Children annotation

The full form of the annotation expression for specifying children is:

CH:(... w1 ... wnc[x1.xm]/a ...)

of which only c is mandatory. The four parts of a child specification expression are such as described
next.

1. The wrapper path w1...wn is optional: each wrapper wi is a pair made of a (unquoted,
single-quoted, or double-quoted) string (an XML tag), followed by a distribution marker :
either a dot (‘.’), or an asterisk (‘*’). Using a dot triggers single wrapping, while using an
asterisk triggers distibutive wrapping (at the nesting level specified).

2. The child—there are two cases:

(a) in a rule’s annotation, c is a positive integer and denotes a position in the rule’s RHS
(i.e., a position in the CST) and refers to the XML tree corresponding to the child CST
at this position;

(b) if not a number, c must be a special form. In this case, there may be nothing trailing
after c; i.e., [x1.xm]/a is empty.

3. The XML tree path [x1.xm] is optional; if not empty, it denotes a path in the XML
tree corresponding to referring CST child, each xj being a positive integer denoting a child
position in the XML tree rooted in this referring CST child.

4. The attribute reference /a is optional; when present, a is a (possibly unquoted, single-quoted,
or double-quoted) string; it must be the name of an XML attribute in the ultimate XML tree
referred to by c[x1.xm], and denotes the string content making up the value of
that XML attribute.

4.2.2 Examples of children annotation

Basic children annotation The notation:

CH:(2, 4)

specifies that the XML children are, in this order:

1. the XML form of 2nd child CST,

2. the XML form of 4th child CST.

Draft of July 18, 2008 Page 6 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

Extended children annotation

• Grandchild reference—the notation:

CH:(2[1], 4[2])

specifies that the XML children are, in this order:

1. the 1st XML component of the XML form of 2nd child CST,

2. the 2nd XML component of the XML form of 4th child CST.

• Descendant reference—the notation:

CH:(2[1.4], 1[2.1.3])

specifies that the XML children are, in this order:

1. the 4th XML component of 1st XML component of the XML form of 2nd child CST,

2. the 3rd XML component of 1st XML component of 2nd XML component of the XML
form of 1st child CST.

• Attribute reference—the notation:

CH:(2[1.4]/foo)

specifies that the only XML child is the string value of the attribute named foo of the 4th

XML component of 1st XML component of the XML form of 2nd child CST.

• Wrappers—the notation:

CH:(foo.2, bar.fuz.4)

specifies that the XML children are, in this order:

1. <foo>(XML form of 2nd child CST)</foo>

2. <bar><fuz>(XML form of 4th child CST)</fuz></bar>

By default, wrappers do not distribute over their contents. In other words, the resulting form
will be one with all the contents wrapped in a single nesting of wrappers. If it is desired to
override this default behavior and actually distribute a wrapper tag path over the sequence
making up the contents being wrapped, then one uses an asterisk (‘*’) instead of a dot (‘.’),
as in, e.g.:

CH:(foo*2, bar*fuz.4)

Thus, using an asterisk rather than a dot in specifying a wrapper path triggers one of three
things depending on whether the contents being wrapped is:

1. nothing—in which case nothing is generated;

2. a single XML element—in which case the wrapped single element is generated;

3. a sequence of XML elements—in which case the corresponding sequence of wrapped
elements is generated.

Draft of July 18, 2008 Page 7 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

4.2.3 Attributes annotation

The full form of the annotation expression for specifying an attribute is:

AT:{... foo=c[x1.xm]/a ...}

of which only c is mandatory.

• If [x1.xm]/a is missing, then c may be only one of:

1. a literal string—e.g., "bar"; or,

2. a special form—i.e., $VALUE or $TEXT.

• If [x1.xm] is present, the xi’s are a sequence of dot-separated positive integers, an
XML tree path referencing an XML subtree. Then, the annotation must be that of a rule and
c must be a positive integer denoting the position a child CST for the current rule (a position
in the rule’s RHS). It refers to the XML tree of child CST at that position.

If /a is present, it must be the name of an attribute in the XML tree so referenced. This
annotation denotes the string value of this attribute in that XML tree. If /a is missing, then
the annotation denotes the text content of the XML tree so referenced.

4.2.4 Examples of attribute notation

Basic attribute annotation The notation:

AT:{foo="bar"}

sets the attribute named foo to the literal string value "bar".

Extended attribute annotation

• Child’s text value—the notation:

AT:{foo=3}

sets the attribute named foo to the text value of the XML form of 3rd child CST.

• Child’s attribute value—the notation:

AT:{foo=3/bar}

sets the attribute named foo to the value of the attribute named bar in the XML form of 3rd

child CST.

• Descendant’s text value—the notation:

AT:{foo=3[1.2]}

sets the attribute named foo to the text value of the 2nd XML component of the 1st XML
component of the XML form of the 3rd child CST.

Draft of July 18, 2008 Page 8 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

• Descendant’s attribute value—the notation:

AT:{foo=3[1.2]/bar}

sets the attribute named foo to the value of the attribute named bar located in the 2nd XML
component of the 1st XML component of the XML form of the 3rd child CST.

• Terminal value—in a terminal’s annotation only, the notation:

AT:{foo=$VALUE}

sets the attribute named foo to the value of the terminal node actually parsed.

4.2.5 Interpreted special forms

In addition to the above notation (and default behavior), we provide the following conveniences to
specify finer details on the XML appearance from the information present in the CST thanks to the
following built-in special forms, which all starting with a dollar sign (‘$’), followed by the (case-
insensitive) form identifier and possible arguments between parentheses and separated by a legal list
separator; namely, blank space, ‘,’ (comma), or ‘;’ (semicolon).

Extracting the value of a terminal The notation $VALUE may appear in an XML annotation
expression for either a rule or a terminal whenever the CST construct it refers to is that of a terminal.
For example:

• an attribute value string; e.g., the notation:

%xmlinfo SHTOONG [L:"BAR" N:"Foo" A:{ fuz = $VALUE }]

specifies that a terminal symbol SHTOONG with print value "Gloop" will be serialized as
follows:

<Foo:BAR fuz="Gloop"/>

• a single XML content string; e.g., the notation:

%xmlinfo SHTOONG [L:"BAR" N:"Foo" C:($VALUE)]

specifies that a terminal symbol SHTOONG with print value "Gloop" will be serialized as
follows:

<Foo:BAR>Gloop</Foo:BAR>

Concatenating pieces of text Wherever text is expected, we may use the notation $TEXT(...)
to denote the text string resulting from the concatenation of the text strings denoted by its arguments,
each of which may be either a literal (possibly single- or double-quoted) string, or a reference to
a text value deeper in a descendant CST’s XML structure using the XML tree reference notation
c[x1...xn]/a, where the [x1...xn] and /a parts are optional.

This construct comes handy for composing a text string on the fly to make up the text value of a
child or an attribute. For example, given the annotations in Figure 1, the piece of Entry syntax:

Draft of July 18, 2008 Page 9 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

%xmlinfo ID
[

L : "Identifier"
A : { name = $VALUE}

]

%xmlinfo STR
[

L : "String"
A : { value = $VALUE}

]

Type : ID ’:’ ID
[

L : "Type"
A : { general = 1/name special = 3/name }

]
;

Entry : STR ’@’ Type
[

L : "Place"
A : { type = $TEXT("[" 3/special "]" 3/general) }
C : (1/value)

]
;

Figure 1: Example of annotations using the $VALUE and $TEXT special forms

bar@less:top

gets serialized as:

<Place type="[top]less">bar</Place>

4.3 Checking annotation consistency

We need to enforce consistent number referencing in the tree addresses used in the notation—i.e.,
the numbers that refer to RHS nodes and XML elements (the ci’s and the xi’s below). Indeed, they
should (be made to) obey the following necessary conditions (all easy to justify):

• Condition 1: An annotation for a terminal, or for a rule with an empty RHS, should not be
allowed to use a tree address in any attribute specifier (only symbol, quoted string, or number).
A terminal’s annotation CH may only contain wrappers and a reference to $VALUE.

• Condition 2: In an annotation AT:{...}, the name of an attribute following an XML tree
reference must be a legal attribute of the element so referenced.

Draft of July 18, 2008 Page 10 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

• Condition 3: In a rule annotation CH:(...ci[...]...), the number of ci’s must be
between 1 and the length of the rule’s RHS.

• Condition 4: In an annotation CH:(...), two distinct occurrences of XML content refer-
ences must not be allowed to be one another’s prefix or duplicate address. In other words, no
tree address may occur more that once in the same annotation; and, whenever a tree address
occurs in an annotation, none of its prefixes may occur in the same annotation.

In other words, whenever the child path expression c[x1.xn] occurs in a CH anno-
tation, then neither c[x1.xn−1], nor c[x1.xn−2], . . . , nor c[x1], nor
c may be allowed to occur in the same CH annotation.

For example, both the CH annotations CH:(1 2) and CH:(1 2[1] 2[2]) are legal;
however, neither CH:(1 2 1) nor CH:(1 2[1] 1[2]) are.

• Condition 5: Whenever a tree address of the form c[x1.x2.xn] occurs, then for it
to be consistent, this entails that the XML form of the CST node referenced by c must consist
of exactly one XML element—as opposed to none or many. This is true iff the referenced
RHS symbol is either a value-carrying terminal, or a non-terminal all of whose possible XML
forms are each single XML elements. This must be verified statically at grammar analysis
time.

Violation of any of these conditions at parser-generation time should raise an exception and be re-
ported as an error. If all these conditions hold, then the code for the method xmlify(Element
container) defined in the class ParseNode, and the method createXmlForm(ParseNode
node, Element root) defined in the class XmlInfo, is guaranteed to work safely.

5 Example: the Rule Interchange Format

6 Conclusion

6.1 Recapitulation

6.2 Further work

References

[1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers: Principles, Techniques, and Tools4.
Addison-Wesley, 1986.

[2] CHOE, K.-M. Private communication (choe@compiler.kaist.ac.kr). Korean Ad-
vanced Institute of Science and Technology, Seoul, South Korea, December 2000.

[3] DEREMER, F., AND PENELLO, T. Efficient computation of lookahead sets. ACM Transactions
of Programming Languages and Systems 4, 4 (October 1982), 615–749.

4This text is also familiarly known as “The Dragon Book”

Draft of July 18, 2008 Page 11 / 12

HASSAN A ÏT-KACI A Generic XML-Generating Metacompiler

[4] JOHNSON, S. C. Yacc: Yet another compiler compiler. Computer Science Technical Report 32,
AT&T Bell Labs, Murray Hill, NJ (USA), 1975. Reprinted in the 4.3BSD Unix Programmer’s
Manual, Supplementary Documents 1, PS1:15. UC Berkeley, 1986.

[5] PARK, J., CHOE, K.-M., AND CHANG, C. A new analysis of LALR formalisms. ACM
Transactions of Programming Languages and Systems 7, 1 (January 1985), 159–175.

Draft of July 18, 2008 Page 12 / 12

